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The suppression by a parametric harmonic action of noise-induced oscillations in an underdamped pendulum
with nonlinear friction, recently reported by Landa al. [Phys. Rev. E56, 1465 (1997)], is studied in an
approximately soluble model system. In the high-frequency limit, a process of consecutive averaging over two
widely different relevant time scales reveals the analogy of the problem with a noise-induced transition whose
critical point is changed by the driving term. The obtainment of analytical results for the probability distribu-
tion function and the spectrum allows us to understand and control the ¢B84€163-651X99)04302-0

PACS numbds): 05.40—a

The presence of multiplicative noise in nonlinear systems X+ €2B(1+ ax?)X+ w2 1+a cog w,t)
can lead to effects unpredictable from a deterministic ap- 12 03 2
+ e E(H)](x—eyx®)=0, 1)

roach and specific to the parametric character of the fluc-
P P P where the presence of the factor in some of the terms

tuations. It is remarkable that, in multiplicative stochastic. dicates their perturbative charactBrande are parameters
processes, the most probable values of the relevant variabl ' S their pertu . Ve iBranda are p
Of the frictional force;&(t) is the wide-band noisg and w,

do_not necessarily coincide with the deterministic sta_lt_ionaryare, respectively, the amplitude and frequency of the driving
points, and, as a consequence, the threshold conditions QL. andy gives the nonlinearity of the potentidlor y
qualitative changes in the probability density can depend noL 1/6 the model describes a pendulum with sufficiently small
only on the deterministic parameters, as it happens in addpscillations[5]).

tive processes, but also on the noise strength. In studies on |n the high-frequency regimep,>w,, there are three
the emergence of state-dependent fluctuations in the macrasdely separate characteristic times in the problem: first, the
scopic dynamics of diverse physical systems, it was showperiod of the driving forcer,=2#/w,; second, the period
analytically that, for particular zero-dimensional models, thisof the unperturbed harmonic oscillataty=2m/w,; and
property leads to the appearance of the analog of an equilikhird, the time linked to the secular variations of the ampli-
rium phase transition with effective order parameter andude and phase of the generated oscillatiags,which, be-
critical temperature both depending on the intensity of thecause of thee factor in Eq.(1), is much longer tharr,. In
fluctuations[1,2]. The phenomenon, which had previously this limit, analytical solutions can be obtained. In effect, we
been found by Stratonovich in the study of self-excited oscan assume that, given the magnitude of both the noise term
cillations in electronic circuits with “external noisef3],  and the frictional force, their effect on the dynamics during a
was termed anoise-induced transitiop4], and its relevance driving period is negligible; consequently, the method intro-
in different contexts has frequently been pointed[@JtRe-  duced by Landau in Ref7] to study the effect of a fast-
cently, similar behavior has been found in the oscillationsforcing term on a Hamiltonian system can be used to average
induced by parametric broadband noise in a pendubifnit  over the driving period the Hamiltonian part of our system.
has also been shown that these oscillations can be suppressegglecting second-order terms ie, the thus obtained

by the action of a parametric harmonic fof&. The aim of  coarse-grained system corresponds to a harmonic oscillator
our work has been to understand analytically this suppreswith an effective frequency given by

sion. To this end we have focused on an approximately

2\ 1/2
soluble model system that presents all the elements neces- . 1+ a’wg @
sary for the occurrence of the effect. The results, which make @ef= @o 2(,,3

explicit the connection with a noise-induced transition whose _ _ _
critical point is changed by the driving force, provides usand perturbed by a quartic potential whose effective param-

with the clues to control the output signal. eter is
We have considered an underdamped harmonic oscillator a%wd
parametrically driven by a harmonic action and perturbed by Yer=1 112 el ©)
a

a quartic potential, a nonlinear frictional force, and a para-
metric broadband noise. Specifically, we have studied the Hence, the complete reduced system is described by the
Stratonovich stochastic equatip®,6] equation
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X+ wix= e[ = 2B(1+ ax®)X+ 0§ yerX’]
— eP2w3E(1) (x— eyx°), (4)

0.08

which can now be solved following the asymptotic methods
developed by Krylov and Bogoliubov in the study of nonlin-
ear oscillations[8] as they were subsequently applied by
Stratonovich to stochastic systerfi3]. In this sense, we
choose as definitions for the amplitudd, and phasey
=weit+ ¢, of the oscillations the equations= A cos(wet
+¢) andX= — we A Sin(weit+ ).

With these changes, E) is reduced to a system of two
first-order equations istandard forn{3], and the average of

0.08

0.04

Root-mean-squared amplitude (<A®>)"*

0.02

0.00 Ll

the deterministic terms over the period of the oscillatgy . Driving amhtude a 10
=27/ wq¢ can be readily carried out. Additionally, sinégét) FIG. 1. Root-mean-square amplitude vs the amplitude of the
is modeled as a zero-mean colored noise centered on thiiving force forw,=20 (a) andw,=40 (b). The rest of the param-
frequency 2vq, with spectral density eters of the system are in both cases 100,3=0.1,A =100, and
Kk(2wg)! ker(2wp) = 1.5.
w?+(2w0)*+\?

S & w]=2k(w)=4N0?

[w?— (200)°— \?]?+ 4N\ w? © probability density can be obtained analyticglly-3,5, and,

) ) in terms of the parameters
and correlation function

—8Bwh
+
k(7)=o?e M cog2wqr), (6) wp K(2wef) 0
V=,
it is clear that for a sufficiently small correlation time\1/ 2Ky
<1/(ewes), the average of the stochastic terms can also be
performed. Then, after minor algebra we obtain that in first Sﬁaw;‘f
order the averaged equations fBg = ik, (1D
4
. w, .
A=e | —p+ ™l 02 K(2wgr) |A it reads )
[)
ef A lg M for >0
3 a1 WsgA)=1 I'(») (12)
_Z,BawefA +e 2wefA§l(t) , SA) for 1=0.
_ 3w2 w2 From these results it is understood how, for certain values
p=¢ — —OyefA2+ m+ e 122 gz(t)}, (7)  of the amplitude and frequency of the parametric harmonic
Bawe 20ef action, the oscillations generated by noise are suppressed. In
where effect, in order to have oscillations it is necessary that
42 >0, which, in the absence of driving, implies having values
wo0  wer— wp Weft Wy

<0, (g8 of the goise intensity larger .th.an .the thresho&g,(Zwo)”
=8B/ wy. In contrast, when driving is present, the condition

. . . . 2 4
and the effective stochastic forcégt) andZ,(t) are Gauss- for the existence of oscillations i&(2wey)>8Bwe wo,

=— +
4w§fp\2+4(a)ef— w0)2 N+ A weit wo)2

: . ; : and, taking into account the functional dependencewof
lan white noise terms defined by with a and w,, it is evident that a higher noise intensity is
(Zi(1))=0, required to generate the signal. More precisely, the oscilla-
tions are suppressed if the amplitude of the driving force
(LOGA)) =K 8(t—t"), i=1,2, (9) exceeds the critical valueZ,=2(wa/wo){wik(2wer)!
(88)—1}. These conclusions, which explain qualitatively
with K1 = k(2wef)/2 andK,= k(0)+ k(2wey) /2. part of the findings of Ref.6], are clearly illustrated in Figs.

In this framework the time evolution of the amplitude is 1 and 2, where the root-mean-square amplitude of the oscil-
given by a multiplicative stochastic process typical of thelations (A?))Y?=(v/A)¥?is depicted versus the frequency
previously mentionednoise-induced transition$1,2l. An  and amplitude of the driving force, respectively. It stands out
important difference with that effect must nevertheless behat it is the quotient betweem and w, that determines the
noted. In our case, the broadband naj¢g) affects the am- suppression of the output signal. The fact thgRwej)
plitude in two ways: through thedeterministic term <k (2w,) contributes also to a rise of the threshold, but, due
wok(2wer)/ (8w3 ) A, which changes the bifurcation point of to the broadband structure of the noise spectrum, only
the deterministic dynamics, and through the stochastic forchigher-order corrections derive from it. The creation by a
£,1(1), which, entering multiplicatively in the equation, alters high-frequency driving field ofiressedpotentials has previ-
the position of thedeterministicstationary points. For this ously been used in a different context to implement changes
process, which has also been shown to be relevant in thia the dynamics of a stochastic systéii]; in our case the
study of “on-off intermittency” [9,10], the steady-state critical point for the onset of the oscillations and the mean
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FIG. 2. Root-mean-square amplitude vs the frequency of the
driving force fora=3 (a) anda=10 (b). The rest of the parameters L R

are the same as in Fig. 1.

value of their amplitude can be controlled with a proper
choice of the parameters of the driving force.

The time evolution of the phase corresponds to an addi-
tive stochastic process. Because of the coupling, due to the
nonlinear part of the potential, @ and¢ in this process, we
cannot obtain analytical solutions for the complete probabil-
ity density. However, the analysis of the mean frequency L _

0

log_SIx; ©]
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(P)=wer+ € (13)
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gives some information about the characteristics of the gen-
erated signal. Contrary to the increase of the frequency
caused by the driving term and given by E#), there is a
reduction that has its origin, first, in the nonlinear character
of the potential, and second, in the twofold influence of
noise: thedeterministicterm m lowers the mean frequency,
and the stochastic forcg(t) changes the peak frequency in
the spectrum. This decrease, irrelevant in our model, can be
important in a less restrictive regime. Spectral changes with
a similar origin have been found in bidimensional stochastic
systems with deterministic dynamics inside bifurcation re- as——L L
gions[12]. Note that the occurrence in our reduced system of © Frequency
a regime offully developed oscillation3] can be interpreted FIG. 3. Approximate spectrum for the reduced system of(Eqg.
as the generation induced by noise dfrait cycle with @=100,4=0.1,A=100,y=0, w,=20,a=3, and
From this study it is evident that the nonlinearity of the K(2@0)/kc(2w0)=1.2 (&), «(2wo)/Kcr(2w0)=2  (b), and
potential is not a necessary condition for the existence of th&(2@o)/ kcr(2w00) =3 (0).
effect; it is in fact the nonlinear friction with the particular
functional form assumed that plays the key role in the apwhich was obtained in Ref3] applying a decoupling ansatz
pearance of the instability in our model. Therefore, to havéor the moments, and which, despite its approximate validity
insight into the qualitative changes detected in the spectra by14,15, is useful in a first approach to the problem. In this

varying the noise intensit}p], we sety=0 ande=1in Eq.  sense we have used it to obtain the spectrum as
(7), and, following Refs[3] and[13], we find an approxi-

mation for the spectrum of this new system, which, although
not equivalent to our starting model, is suitable to identify (A)Z/ D, D,
- . .o . — +
thg mechanisms responsible .for s.pecmc spectral f(_aatures. X ] 2 \(w_wef_ m)2+ Df (0+ wort M)+ D%
this end, we take as correlation time for the amplituge, ) )
the expression N (A% —(A) D,
2 \(w—wef—m)2+D§
8wl [ TXw+1/2) D,
= - +
R I R P (14 (0+ wes+m)2+D5)’

log, S{x; ©]

(15
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WhereD1=w8K2/(8w§f) is the contribution to the width of effect for v<<1/2, leading to the disappearance of the singu-
the signal that comes from the fluctuations in phasel@pd larity at the origin and therefore preventing the complete
=D, + 1/7, is the total width obtained when fluctuations in suppression of the oscillatiori$]; in contrast, it does not
amplitude are also considered; obviously, the relative imporproduce essential changes in the probability density outside
tance of both terms depends on the variance of the amplituddée threshold region. It is worth comparing this behavior
(ADY—(AY2=[v—T?(v+1/12)[T%(v)]/A. with the effect of additive noise on “on-off intermittency”

In Fig. 3 we plot this spectrum for three values of the[9].
noise strength. Increasing noise levels give rise to a widening The model presented accounts for the main characteristics
of the signal and to a reduction of the peak frequency. Evenef the output signal and gives an analytical criterion for its
tually a qualitative change takes place: coherence is consuppression. The mechanism behind the noise-generated os-
pletely lost as the preferred frequency disappears. The fasillations is the same one responsible for self-excited oscil-
loss of coherence can be understood as the result of the cor@tions in nonlinear systeni8]: the parametric noise alters
bined effect of the fluctuations in the two variables. We con-the deterministic dynamics in an effective way, leading to
jecture that these effects along with the additional shift inthe onset of a bifurcation at a certain strength, and subse-
frequency due to the nonlinearity of the potential can bequently changing the amplitude and frequency of lingt
relevant in the transitions observed in the spectra of moreycle The similarity with anoise-induced transitiofil] is
general model§5]. also evident. However, it must be noted that for that phe-

Concluding, we summarize our results in three mainnomenon the@rder parameteof the transition was identified
points. First, in the high-frequency limit, the effect of the with the most probable value of the relevant variablg,
parametric driving force on the studied system is just awhich equals{(2v—1)/(2A)}*? for v=1/2 and zero else-
renormalizationof the potential, the fundamental frequency where[1,3]; in our case the oscillations exist merely whin
being larger in thelressedpotential. As a consequence, the has nonzero valuesv{0) [5]. Hence, the thresholds for
critical point for the instability is changed, higher noise in- both processes are defined in a different way. The difference
tensities being necessary to have the transition; additionallyyith the so-callechoise-induced nonequilibrium phase tran-
the strengths of the effective stochastic forces are reduced a#tions recently found in the study of spatially distributed
the broadband noise is not centered at the double of the e$ystems subject to multiplicative noig&6], is clear: despite
fective fundamental frequency. Second, it is the cooperativéhe similar terminology, the problems are different.
effect of the nonlinear friction, with the particular functional  Finally, we emphasize the necessity of théactor in the
form assumed, and the parametric noise that gives rise to thefjuations to guarantee the difference in time scales and con-
oscillations; the nonlinearity in the potential, which is sequently the applicability of the used methodology. In spite
changed by the driving force, affects in first order the fre-of this limitation, the model gives clues to analyze some
guency of the output signal, whereas it has only a secondeatures of the effect that are still present under less restric-
order effect on the position of the critical point. Third, the tive conditions, and sets up a framework to evaluate the rela-
mean frequency diminishes as the noise strength increasdsie importance of the different elements that can be incor-
this property combined with the widening of the signal canporated in the modeling of real physical problems. Since
partially account for the qualitative changes detected in thatate-dependent noise emerges in a natural way in the de-
spectrum. The generalization of our model by including ad-scription of diverse processes, or it can conversely be in-
ditive fluctuations is straightforward. Indeed, the analyticalcluded in the dynamics in an externally controllable way, the
results of Ref[1] reveal that the presence of weak additive possible relevance of the phenomenon in a wide variety of
noise in the equation for the amplitude has a considerableontexts is clear.
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