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Addition theorem of Slater-type orbitals: Application to H,* in a strong magnetic field
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The C-matrix representation of the two-range addition theorem of Slater-type fun¢&dms proved to be
very useful especially when using a computer algebra system. However, for intensive numerical work it was
found advantageous to use iBe (or T-) matrix representation for the part of STFs while the remaining term
is expanded with the help of the addition theorem of solid spherical harmonics. Two major advantages are to
be related to this procedure. On the one hand, the @awatrices are symmetric and most important can be
generated recursively. On the other hand, this procedure allows one to generalize and to unify the Brevious
and F-matrix expansions. Indeed, the néwmatrix form allows one to avoid the calculation Gfmatrix
elements and much more important to use a recursive scheme in order to generate their elements. As an
application of these formulas, we address in the last part of this work the study of the electronic structure of
H," when subjected to a strong magnetic field. Our calculation shows that the expansion in terms of spherical
harmonics(i.e., STF$ becomes slowly convergent for large values of the magnetic field.
[S1063-651%98)15310-2

PACS numbegs): 02.70—c, 32.60:+t

[. INTRODUCTION the Fourier coefficients which we will call Barnett-Coulson—
Lowdin functions (BCLFs). As a matter of fact two main
Slater-type function$STF9 are known to be mathemati- representations emerged, namely, the analytical and the nu-
cally well suited for a good description of atomic and mo- merical way. In the first approach, multicenter integrals are
lecular electron densities. However, during the first decadesvaluated analytically which implicitly requires an analytic
of quantum chemistry their use was limited to very simplerepresentation of BCLFs. Conversely, the second approach
molecules owing to the difficulties inherent to the evaluationuses numerical integration techniques to deal with multi-
of the so-called multicenter integrals. Since then, many efeenter integrals and hence the manner in which BCLFs are
forts have been made to elaborate efficient numerical proceepresented does not matter as long as this representation
dures in order to evaluate such integrals. Although limited toyields a fast and numerically stable computational procedure.
linear molecules, thaLcHEMY program[1] was probably The above mentioned methods could also be mixed together
the best example of success in using STFs to model complto obtain what is commonly known as a seminumerical ap-
cated molecular systems. In fast,cCHEMY might be consid- proach in which certain integrals are evaluated analytically
ered as the very first step towards a more sophisticated pravhile for some others the numerical technique is preferred.
gram dealing with chemical systems of arbitrary geometries. The C-matrix formulation of the two-range addition theo-
Needless to say, that a generalizatiorabEHEMY is not an  rem of STFs[33] was proposed with a view to obtaining
easy task because one first needs to break through the notnalytical representations of multicenter integrals. Indeed,
rious multicenter integrals problem. For such a purpose, twsince C-matrix elements are integers such an approach
main methods were thoroughly investigated, namely, theroved to be very useful when implemented within a com-
addition-theorem-based methdds-21] and those using in- puter algebra systenfusing integer arithmetigs[34,35.
tegral transform$22—32 but so far none of these has really However, the original formulation had two major limitations.
taken the lead. The oldest of these methods is, probably, duen the one hand, it was derived for linear systems lying on
to Barnett and Coulsof8] who represent the off-center STF the Z axis and on the other hand it turned out that some
by an infinite multipolar expansion. Perhaps, the main feaimportant mathematical results regardi@ymatrices were
ture of such a series is the form of its Fourier coefficientsdifficult to establish within such a formulation. Accordingly,
which are functionals of the electron variabland have two the first part of this work proposes a rederivation of the
different analytical forms according to the valuesrofThis =~ C-matrix representation of the addition theorem of STFs. It
procedure is therefore known as the two-range expansiois shown that by expanding the part, |[r—al"~'texp
method. Over the years, many variations of this approack—¢|r—al), and the angular tern; —a|'Y["(6,¢), of a STF
were investigated. Of course, the mathematics leading teeparately makes it possible to obtain the expressio@ of
these variations is the same as that used by Barnett and Couhatrices in a very straightforward manner. The usefulness of
son but the original part of each work essentially resides irthis approach is, then, illustrated by establishing the limits of
the manner of representing and comput{ndien necessajy the indices definingC matrices in a much more simple way
than that of Rashifl9] and Suzuki36]. In the second part,
we show another of its advantageous aspects by rederiving
*Present address: Department of Chemistry, University of Ottawathe series representation of BCLFs which in contrast to the
10 Marie Curie St., P.O. Box 450, Stn A. Ottawa, Ontario, previous one involves only one matrigalled T) whose el-
Canada K1N 6N5. ements can be computed recursively. Another noteworthy
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advantage of this procedure is that a polynomialassuming the center of the STF on thexis. Obviously, this
approximation of BCLFs may be constructed with the helpformalism can easily be generalized to an arbitrary center by
of the so-called Lanczosmethod which also allows one to including a suitable Wigner rotation matrix. However, in do-
calculate the deviation from the exact result in advance. Théng so the expression of theé matrices becomes far more
third part of this work is finally devoted to calculating the complicated. In the rest of this section, it is our aim to de-
ground-state energy of F1 when experiencing a strong to velop the mathematics allowing us to obtain a more conve-
superstrong magnetic field. For such a purpose, we opted taient C-matrix representation of a general BCI(B), i.e.,

use an atomic basis set in which all of the STFs have theorresponding to a STF located on an arbitrary center. For
same screening constanfso facilitate the optimization such a purpose, instead of expanding the STF directly over a

work). complete basis set of surface spherical harmonics we prefer
using a product of two addition theorems which have the

Il. BARNETT-COULSON —LOWDIN FUNCTIONS: advantage of making a clear distinction between the term

AN OUTLINE which is easy to translate and that which is not. In fact the

_ . _ easier part is obviously the angular term which is expandable
A. Introduction to Barnett-Coulson —Lowdin functions according to the following relationshii3s]:
In an early work devoted to the elaboration of a general
algorithm for the evaluation of multicenter integrals over N(r—ay=4m(2l+ 1!
STFs, Barnett and CoulsdB] proposed to use an addition L, ) )
theorem in order to separate the integration variables from SO (Im[l'm’|I—=1"m—m")

the parameters related to the geometrical structure of the r+unur2d-=1r)+1j!

I'=0m'=~1'
molecule. Strictly speaking, this addition theorem allowed ) )
the authors to expand the part of a STF in the following XY (=) (). ©)
way:
+oo C. Derivation of a C-matrix representation

r—a|"texp(— Blr—al) = E (27\+1) Regarding the difficult part, i.e., the part of a STF, we
use the expansion of E¢l). Thus, starting with the Gegen-
a-r bauer expansion of the Yukawa potent{gd7], p. 107 in
Xén,)\(ﬂ!arr)P)\(?): (1) which the modified Bessel functions are expanded according
to Ref.[37] (p. 72, one obtains after some algebra the fol-
where P,(z) represents the standard Legendre polynomialéowing C-matrix representation of the zeroth order BCLF:

while ¢, ,(B.,a,r) is a function that depends only on the

Jar

Slater exponenp and the modulus of the vectorsand a. A ydia, r) _ £ ﬁ: ﬁ: in—1
The Barnett-Coulsod, , functions appeared afterwards in a Jar 2 <0 <o K(' D(Lp<)

review paper of Lavdin [4] under the name o functions.

Many authors have, henceforth, referred to these functions as X(Lp)"MH(¢ar), 4)

Lowdin « functions. In this work we prefer to call these

guantities Barnett-Coulson—kalin functions and use the where the functiorH;(¢,a,r) is defined as
notation A", ;,(3,a,r). In fact Eq. (1) is straightforwardly i

obtained by differentiating) times (with respect tog) the ~ Hi(&ar)=exp(—Z{p-)[(—1)" expl{p<)—exp—{p)],
Gegenbauer addition theorem of the Yukawa poteritgd], ®

p. 107, that is to say, exp{ Blr —a|)/|r —a|. This yields the  \here theC matrices corresponding to this are as follows:
following definition for BCLFs:

A=V N=])V [NV 2 =i [N\ [2N—]
«42+1/2(,3,a,r):|>\+1/2(Bp<)K>\+1/2(,3p>), Cg(i,j)z%)—%)— ( : )( N I)(j) N J
A1 B.at)=—(a19B) AV 1l Boasr),

v (6)
;/i\/\l’](?re ﬁ<rani(tj ph> dlgné)te ffllrllf;l@é) a?(tjh n:ailr):a’rc)i’ditrieiptec_th of the zeroth orde€ matrix are integers. To obtain a similar
€ly. Here, 1 Snould be pointed out that in addition to erepresentatlon for thath order BCLF, it suffices to differ-

above definition, one can find in the literature numerous
variations of this definition. Such variations are essentlally entiaten times both sides of Ed4) with respect toZ. This

From the above definition it could be seen that the elements

obtained by including or dropping some multiplication fac- yields
tors.
AQH,Z(g,a,r) ( 1)>‘ é 2)\: é Ep (n)(p)
B. Expansion of the angular part of a STF \E =0 f=op=0g=0\P/\Q
In previous work Jones and Weatherf¢&8] introduced N —i—i 0/
. . . X (2N =i=]+1)n_pCx(i,})

a special representation of BCLFs, the so-caldnatrix . .
representation, which is well adapted for integer arithmetic X(Lpo) AN (gp)itPmama—l

calculations since the elements of such matrices are integers.
In their derivation, the authors simplified the mathematics by XHiiq(Lar), (7)
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where the §), represents the Pochhammer symbol. Settingcorresponds ta andr. In the notation of Refd.9,33,3§ the
n=i+q andv=j+p—q and changing the summation lim- powers of ¢a) and (r) were, respectively, written &s-|

its one obtains after some simple algebra —A—1 andj—I1—\—1. Thus comparison of these numbers
to those defined above yields the following relationships:
AQ l/z(g,a,r) A+n A+n N _: v L ,
T:EO EO CM(, ) (Lp )i A1 i=u+2l=1"=|m|, and j=v—I+I"+|m|. (12
n=0 v=

From these equations, obtaining the upper limits afidj is
straightforward since use of simple algebra yields max(
=n+I+X and max{)=n+\. This clearly demonstrates the
flexibility provided by separating the part and the angular
part of a STF. Furthermore, using the same strategy it can
also be shown that in the case of arbitrary.e., not lying on

the Z axis, the summation limit derived above foiis no
longer valid.

®)

where the matrixC) involved in this expression is connected
to that of order zero according to

4

!

o

X(2N—i—j+p+1),_oCUi—0a,j—p+a).

X(§p>)V7}\71HM(§7avr)a

Cl(i,j)=2>

n min(p,i,A\+p—j)
p=0 g=max0,i—\,p—j) (

Ill. SERIES REPRESENTATION OF BCLFs

In computing molecular multicenter integrals, it may be
(99 necessary to compute numerical values of BCLFs,
) ) ] A’(¢,a,r), with large orders.. It is, therefore, important to
Here it should be pointed out that the abd¥ematrix repre-  glaporate numerically stable representations of such func-
sentation of BCLF$Wh|Ch in fact Corl’eSpondS to the expan- tions. According to previous WOf[(Zl], it was shown that
sion of ans-type STH is numerically equivalent to that given use of closed analytical forms of modified Bessel functions
by Jones and Weatherfoi@9] in the sense that the values in the definition of BCLFs(2) ultimately lead to theC-
generated with Eq(9) are identical to those obtained with matrix formalism, proposed by Jones and Weatherf8a.
the definition of Refs[33,39. However, the present ap- However, in spite of its analytical interest, such an approach
proach reveals certain numerical properties that can be ads not well adapted for intensive numerical computation with
vantageous when addressing computational work. Indeedlouble precision coding since the elementsGimatrices
Eg. (9) shows that ouC matrices are not only symmetrical increase in size very rapidly, making the final results often
but more importantly their elements may be computed frominaccurate. Fortunately, this aspect of thenatrix formula-
those ofC? which in turn satisfy a very simple recurrence tion may be overcome by means of two different strategies.
relation [cf. Eq. (6)]. Moreover, the present representationIndeed, if very small basis sets are considered, use of the
permits one to prove several mathematical properties almo&-matrix formulation for numerical purposes can be made

effortlessly which in the framework of Sharmal§] ap-

proach would require tedious algebraic work. As a first in-

stance, let us show that forn+1+\ the elements of the
generalC(i,j) matrices(as defined in Ref.33]) vanish. This
was proved differently by RashifP] and by Suzuki[36]

possible by means of a high-precision arithmetic. However,
as pointed out by Kravchenko and co-workdr0—42
general-purpose programs SuchMesPLE Or MATHEMATICA
will certainly be very slow and only specialized packages
will offer the best performances. In addition to the high-

using a similar strategy, namely, performing several summaduality results presented by these authors, the most signifi-
tions by means of suitable combinations of the addition angant conclusion is that high-precision arithmetic does not
multiplication theorems of the binomial coefficients. In our lead to a catastrophic loss of speed when the basic operations
case we can arrive at the same result without any furthedre performed by means of special algoritH2].

calculations by a simple examination of the highest powers As an alternative to high-precision arithmetic, Jof#3]

of the terms g’a) and @r) Indeed Working under the same expanded BCLFs in the form of a Ta.ylor series which led to
conditions as these authors, i.e., assuming vextom thez ~ the so-calledE- andF-matrix expansionE matrices are used
axis the addition theorem of Eq3) takes the following for numerical computations inside the sphere of radius
form: =a while F matrices are used outside this sphere. The rest of
this section introduces a generalization of this approach in
which only one matrix is involved. To do so, let us substitute
for the modified Bessel functionsl, ({p~) and
Ki;12({p~) involved in the definition of BCLF$2), respec-
tively, the series expansion given in RE87] (p. 66 and the
closed analytical expression of RE37] (p. 72. Hence, sim-
plifying the result following from thenth derivative with
respect taZ, one obtains

I=[m]

W(r—a)=4m(21+1)!! > (=)' iml

I"=0
(Im[l” +|m|m|l =1’ —|m|0)
207+ [m)+ 1120 =1 —[m) + 1]1

1 !
><aI I \mlrl +|m|ym‘m‘(r)_

(10

£<P<
" P>

Thus multiplying the above expression with that of E8),

in which n is first replaced byr—1, and collecting the pow-
ers of (¢(a) and ({r) one obtains a product of the form
(za)# A1+l =Imlppyr=a=1+1"+Iml - Here, it should be
emphasized that since oGrmatrices are symmetrical it does
not matter which of the variables. and p- in Eq. (8)

A|n+1/2(§:a:r):(_1)n exp(—Zps)

)I+ll2

+ o

"
p=0 s=max0,n—2p)

I+n

Te(Lp)P(Lp-)s,

(12
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where the matrix eIemeﬂt'pg”S is defined as Thus far, a general -matrix expansion was derived after
substituting a Taylor series for the modified Bessel function
oy (I+p+1)! (—1)° I,({p-) occurring in the definition of BCLFs. With respect
Tps=n! p!(2l+2p+2)! (2p—n+s)! to computational efficiency it would, however, be of interest
to derive an alternative expansion which is valid only within
Imax a 29(21—q)! (2p+q)! a finite range of the forn0,7,,J- This additional step is
X q:zqmm (=1 gd—q! (s—'(n-s+q)!|’ mainly motivated by the fact that in most molecular calcula-

tions the small values of the argumefji are frequently

(13 encountered in comparison to large values of this argument
(in which case the multicenter integral will probably be ne-
. . _ glected. In addition to this physical argument, it is well

rl]-!g_re, I IShOUId be 3tressed thz%lifho'n-;_mat_rlx ﬁxpan_smn known that despite their tremendous analytical significance,
exhibits at least two advantages. The firSt Is the UNIqQUENesg,, .- series are of little use for computational purposes
of the definition of t_hglr elem_ents smce_accordlng 10 El-gince there exist much more useful expansions generally
(12), the samel matrix is used in both regions of the space, based on the use of orthogonal polynomials. Indeed, a typical

l.€., inside and out§|de the sphem:e.a. Suc_h an expansion - g ation with Taylor series is that they converge very rapidly
may hence be considered as a unified series representation;

h d ad lated he ab if'the neighborhood of the center of expansion while they
B.CL'.:S' The second a va_ntage related to the a OVE EXpPafipcome poorly convergent as one goes away from this cen-
sion is the possibility of using Eq13) to generate efficiently

ter. Conversely, use of a suitable class of orthogonal polyno-

T-matrix elements. As a matter of fact such a calculationy,ias ajiows the error to be distributed over the entire range,
may be carried out following two ways. In the first approach,; ¢ “jts magnitude remains approximately the same. In the

we start by rewriting the definition of-matrix elements13) case of interest use of the so-called Lanczosethod allows

with gnin=max(0s—n) andgm,,=min(,s).

as follows: one to obtain(within a given sphere<r,,,) a polynomial
Gmax approximation of BCLFs and in the meantime the upper
T'p‘,ns=(—1)5up _E s—q vWq., (14) _bound of the Qewatl_on fr_om the ex_act expansmn._Accord-
4= Amin ingly, our starting point will be the differential equation sat-

isfied by the reduced Bessel functidn=1,,(z)/Z'**?

where the termsi,, vy, andw, are defined according to  which reads as follows:

~ @2 (2p)t(l+p+1)! _ It @=q) 22 (2)+2(1+1)Z (20— 2%, (2)=0,
U= pr2it2p+2) Va2 C qii—q)!
(15) with
_ (2p)!
4 (2p—n+s)! (2pta)t. u(0)=ag= (18)

21V (14-3)

From a numerical viewpoint, it is clear that the above defi-

nitions lend themselves to a recursive evaluation but morgrom this equation, it is clear that singgz) is an even

importantly they also allow the internal computer roundingfunction its series expansion should contain only even pow-

error to be easily controlled since no large number is generers of the variable, that is to sa;{(z)zzqa(z'%zm_ Now, if

ated. _ _ this series is approximated by the fifdtterms(i.e., a poly-
The se_cond approa_ch we are proposing for the eV3|Ua_“0ﬁomiaI of degree R), Eq. (18) ultimately leads to the can-

of T-_matrlx elements is fo_unded on a Com_pletely recursiveeeliation of all coeﬁicients{a(z'(}}q:0,1,___,\,. In order to avoid

algorithm. Indeed, the derivative of the series representatiofhis troublesome situation Lanczp#4] (p. 464 proposed to

of the functionA}(Z,a,r) given by Eq.(12) with respect to  jniroduce in the right hand side of the initial differential

{ yields the following recurrence relation: equation(18) a perturbation term the magnitude of which
A 'n —In may be made as small as we please. In the original method of
Tos =(2p+s=M Ty Tpe 1. (16 | anczos and its well-known variation elaborated by Clen-

shaw the perturbative term is generally written as a linear
combination of Tchebyshev polynomials. Note that in further

studies of this method other bounded orthogonal polynomials
were also used. In the present case we can write

To initialize the numerical procedure, it was found conve-
nient to start with the zeroth ord&r matrix, i.e., ", since
its elements are defined explicitly by

o__ (U*prD!  22=s)t 17 22 (2)+2(1+ )24 (2) - 224(2)
PS pl(214+2p+2)! s!(l—s)!
z z
Moreover, the above ratio may easily be computed using a - TT2N<rm_M) t7 T2<N+l)<m')’ (19)

simple recursive procedure, since the eleme'l'd;%lvS and

T'p"os+1 may be related td"p"(’S by means of simple relation- whereT,(z) stands for the well-known Tchebyshev polyno-
ships. The first fewT matrices presented in Table | have mial ([37], p. 256 of degreev while r 5 is the upper bound
been obtained with the help of a simperRTRAN program  of the range within which the expansion is being elaborated.
using the recurrence relatid@6). The parameters and 7' are additional unknowns which on
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TABLE I. Inverse of the elements &f " matrices computed recursively with the help of the relationghé.

1 w -1
6 3 -6
TOO 5 éi?) TO1- 30 120
362 880 45 360 362 88
39916 80 3991680 —3991 680
I o o —-15 —15]
5 5 1 35 35 210 -210
20 70 70 21 . 630 630 2520 —7560
2520 2520 756 27720 27720 99 792 — 498 960
166320 166320 498 960 2162160 2162160 7413120 —51891 84Q
259 459200 259459200 864 864 000-7 783 776 00(
I 9 9 ) 21 189 943 ’
198 198 462 2079 20790
a0 10 296 10 296 24024 108 108 1 081 (80
926 640 926 640 2162 160 9729720 97 297 P00
126 023 040 126 023 040 294053760 1323241920 13 232 419 200
23944377600 23944377600 55870214400 251415964800 2514 159 648 000
o % - 63 -63 ~315 " —945]
99 99 1386 4158 —~10395 —~20790
o 2574 2574 6 552 216 216 —540 540 —1081 080
154 440 154 440 6 486 480 2162 160 2 —97 297 20Q
15 752 880 15 752 880 882 161 280 203575680 6616 209 600— 13 232 419 20(
2394437760 2394437760 167610643200 29578348800 628 539 912-00014 159 648 000

the one hand prevent overdetermination and on the othgyuter algebra system to generate the analytical formulas de-
hand give the accuracy of the polynomial approximationfining the unknownsa(z'& as well asr and 7'. These defini-
Indeed, since Tchebyshev polynomials satisfy the inequalityions will obviously be a function of the parameteiithin
IT,(z)|<1 for any real argumerze[—1,1], then making the rangeze[ —6,+6] used in Table II, the modified Bessel
use of the Schwartz inequality one obtains function I, 1,/(2) is evaluated by means of the following

, , polynomial approximation:
TTzN(:)+T,T2(N+1)< K)$|T|+|7"|- (20)
m

rma

6
o
| — n+1/2 a 2q’
Now, expanding both sides of the differential equati®6) n+122) D(n) ° qgo 297
yields, after some straightforward algebra, the following sys-
tem: whereD(n) has the definition
O=7+17,
D(n)=n®+ 153 54 5021 ap 437 763 3
, n)=n°+-—n n n
2q(2q+21+1)aby—aj), ;) =rcih+r'cin Y, 8 32 640
m=12..N (21) , 8441639, 168247461 334678851
5120 81 920 327 680

o= SN 712

R Apart fromay which is defined by the initial conditiofEq.

y(0)=112"*r(1+3)],

(18)], all the other coefficients,, involved in the above
polynomial approximation are to be evaluated according to
wherec, represents the coefficient multiplying theth de-  the relationship

gree monomial involved in the Tchebyshev polynomial

T,(z). For numerical purposes the above system can be 5

solved using essentially two different approaches. The first

: : asq= 2, CpN°, with g=1,2,...
way and probably the most straightforward is to use a com- p=0
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TABLE II. Lanczos expansion of the reduced Bessel funciigiz) for ze[—6,+ 6] [cf. Eq. (18)].

Coefficients a, a, ag ag agg ap,

Co 55 651 869/327 680 1406 223/163 840 637/196 608 15951/81 920 13/983 040 1/2 949 120
(o2 469 148/20 480 164 263/20 480 1663/12 288 19/16 384 1/122 880 0
Cy 312 513/2 560 2 965/1 024 31/1 024 1/6 144 0 0

C3 4175/128 121/256 1/384 0 0 0

Cq 141/32 1/32 0 0 0 0

Cs 1/4 0 0 0 0 0

where the numerical values of the factars are given in  matter is so complex that up to now most of the theoretical
Table II. investigations were conducted on a very short list of di-
The formulas given above may be rewritten in a formatomic moleculessee, for instance, R€i45]). On top of this
suitable for intensive numerical calculation using optimizedlist, we find the hydrogen molecular ion which over the years
evaluation schemes, e.g., the Horner algorithm. In fact, if thegzielded a wealth of numerical resul$6-59.
largest value ofl is a priori known, the storage of such In the nonrelativistic approximation, the total Hamiltonian
general formulas becomes unnecessary because fouany describing a spinlessH when subjected to a magnetic field
<1 -1 the coefficient§a$”’}o—qn may be determined from B may be expressed in the laboratory coordinate sysbem
those describing(z) and 3_1(2), i.e., {allo=q=n and dicated by capital) as follows:

{a(z'q—l)}olgq.gN, thanks to the following three-term recur- )
rence relation: - 1 |- € 1 €€
H, = — P = A 5> —
. o . - i=§a,b 2m; { Lo T T2 JEI IR/ — Ry
u-1(2)=2°%4+1(2) + (21 + 1) y(2). (22 (24)

Clearly from the above equation, it becomes st.re}ight[olr)warq,vhere the indices andj run over the electroite), and the
to derive the relationship connecting the coefficies protons(a) and (b). The variablee; represents the charge of

to a$) anda$, " which reads as follows: theith particle. In atomic units this value is either 1) or
(+1). In addition, for our subsequent calculations the vector
al V=(21+1)a}, potentialsA;; are taken in the gauge, makiiVg: Aj =0.
23) Following the deta_lled_ paper of Khers_onsl{[il], the
(-1 1) s (+1) above molecular Hamiltonian breaks down into several terms
8y "=(2l+Dazytay, 7, 9q=12,..N. which when using the Born-Oppenheim@diabati¢ ap-

proximation allows one to write for the molecule the follow-

As an alternative to computer algebra, the linear sys@tn  ing Hamiltonian(in atomic units:

may also be solved using a more conventional numerical

method. In such a case it may be seen that the first of equa- R 1 . B 1

tions (21) yields 7=— 7’ which allows one to reduce the Hy=— > Vit > L,+ 3 2 R R + R’ (25
dimensionality of our system. The coefficier&y)}o=q<n a b

are then determined using a backward recursive procedure

starting witha$), . Of course at the end of this calculation the wherep stands for the rati®/B, in which B, represents the
coefficients under consideration will be a function of  reference magnetic field strength (1 &2.350 54<10° G).
which in turn is determined from the initial conditian(0). [Z denotes theZz component of the angular momentum op-

Note that although large numbers are generated by this presrator which in spherical coordinates is defined las
cedure, it does not suffer from numerical instabilities since— —jz 9/9p. The geometric parameters are explicitly de-

all the intermediate numbers are finally divided by the largescriped in Fig. 1.
of such numbers. In the Appendix general analytical formu- Tq solve the Schiinger equation involving the Hamil-

las defining{a$)}o=q<n and 7’ are given. tonian (25), we will use the Hartree-Fock variational proce-
dure in which molecular orbitaléViOs) are represented by a
IV. H," IN A STRONG MAGNETIC FIELD linear combination of atomic orbitalé CAO-MO). Accord-

. L ) ingly, theith MO will be written as
In this section it is our aim to check the accuracy and the

usefulness of the approach developed above by applying the -
analytical results to the very simple moleculg*Hvhen sub-

jected to a strong magnetic field parallel to its principal axis R R »
(assumed to be th& axis). Here, note has to taken that in

spite of its simplicity, the study of i still raises very in- z
teresting investigations. As a matter of fact, when experienc- * * i

ing strong magnetic fields, the change in the behavior of FIG. 1. Coordinate system.
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TABLE lIl. Convergence of the LCAO-MO ionization energy ofr} as a function of the size of the atomic basis set. The same Slater
exponent was used for all AOs.

Basis sét ¢ R=1 ¢ R=2 ¢ R=3 ¢ R=10 ¢ R=20

1s 152 04408365 124 05865050 1.08 05643157 1.00 0.5002975 1.00 0.500 0000
2s, 2p 1.92 04515293 156 0.6021662 1.36 05766141 1.00 0.5005242 1.00 0.5000125
3s, 3p 1.92 04516623 1.80 0.6022389 164 05770731 1.00 0.5005616 1.00 0.500014 1
4s, 4p, 3d 212 04517683 1.84 0.6026007 160 05775322 1.00 05005749 1.00 0.500014 2
5s, 5p, 4d 232 04517817 188 0.6026254 136 0.5775388 104 05005769 1.00 0.500014 3
6s, 6p, 5d, 4f 240 04517850 2.12 06026324 1.88 05775605 1.00 05005783 1.00 0.500 014 3
ExacP 0.451 786 3 0.602 634 2 0.577 562 9 0.500 578 7 0.500 014 3

@An atomic basis set of the fordAs,Bp,Cd...} includes the AOs of the forffi{1s,2s,...,As},{2p,3p,...,.Bp},{3d,4d,...,Cd},.. }.
®Exact values for binding energies and other expectation values are to be found [63Ref.

N Jl:<)(n 1om (glRa)|O|Xn 1o,m (§2Ra)>y
1= 2 CuiXus (26) e e
n72:<Xn1,ll,ml(glRa)|O|an,ll,m1(§2Rb)>v (27)
in which thex,, are the AOs. From this definition, it is ob-
vious that AOs should carefully be chosen in order to makavhere O represents the kinetic energy operatei/2A, or
the approximatdi.e., variational solution converge rapidly the Coulomb operator B or the unity constant. For nu-
to the exact wave function. In the free-field case, it is cusmerical purposes it may be seen that the basic building block
tomary to expand MOs in terms of STFs since the latter givdo the above quantities is the overlap integral obtained by
a reliable description of the electron densities in all regionssetting the operatoO=1. Obviously, one-center overlaps
of the space and especially in the vicinity of the nuclei andare just the Laplace transform of a monomial function of the
farther away. Within the framework of the LCAO-MO ap- form R4 . As regards the two-center integrals, combination
proach, the calculation of the electronic energy of He-  of the addition theorenil) with that of Eq.(3) yields after
quires the evaluation of two types of integrals: some algebra the following expression:

2 2 (Iomy|lomy| 1, —15my—mj) '
ny,lp,my _ 2 20121122 2 121112 2 mp—my
S m (L1 L2 D) = NaNo(4m) (21 + 1t X 2|§ GO DT Ve D)

nqg,ly,m l,—
1717 r_ ’_ 2
[,=0 my=—

!
l+15

X2 (lamy]lmylxmy— ma)(rm T texp( — ¢4r)|r'2 AT 225 b)) [V 2 (brb) ]*

N=[1-1)

(28)

in which X" indicates that the summation is performed with ~ The numerical values listed hereafter were obtained in the
steps of 2 and(l;m;|l,m,|Ism3) represents the so-called free-field case. This calculation was conducted with an
Gaunt coefficients[60], pp. 751-754 Of course, in the atomic basis set in which the Slater exponents, {’s,,were
case of a diatomic system lying on the axis the above ept identical for all AOs. Besides inducing useful simplifi-
r_elatlonqshlp simplifies considerably since we have the relagations in the analytical form of the overlaps, the major ad-
tion Y, '(km, @) = (2l +1)/(4) 6y in whichkiis an arbi- yaniage of this constraint is to allow one to optimize this

trary integer. In the present investigation for which only gin e honiinear parameter in a very straightforward manner.
overlap integrals are required, the BCLF occurring in the

above equation is evaluated with the help of tBenatrix of course vyh_en usmg.such a basis ;et the expansion of Eqg.
expansion developed in Sec. Il C. More specifically, us€ of (26) will definitely require more AOs in order to achieve an
matrices in this case is probably the best strategy since a@cceptable accuradgee Table II). _

cording to the above expression, overlaps are described by a In @ previous work, de Melet al. [48] have used a linear
finite expansion. However, when more complicated integralgombination of 5 and 2 STFs to study the electronic struc-
are requirede.g., exchange integrals appearing when manyture of H,* experiencing a strong magnetic field. In spite of
electron molecules are considerage of theT-matrix ex-  its small size, such an atomic basis set yielded a fairly good
pansion and its corresponding Lanczo®rm allow one to  qualitative picture of the underlying physics appearing under
overcome the numerical difficulties connected to @ena-  such a regime. In the following, we will extend this work to
trices(cf. Sec. llI). include in the computational procedure as many STFs as we
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TABLE IV. Ground-state binding energy of Hl in a strong magnetic field.

Basis s&t ¢ E," ¢ E,° L [ L E,°

1s 144 —1.8804670 1.96 -2.4918757 3.16 —2.7570952 8.98  17.4360052
2s, 2p 2.04 —1.9428214 293 -2.7278763 4.86 —3.8760500 6.58 11.3237964
3s, 3p 251 —1.9471023 2.24 —-2.7598047 3.68 —4.0593574 10.52 —0.5119501

4s, 4p, 3d 2.01 —1.9498602 2.88 —2.7852452 3.16 —4.2826650 9.44 -7.4127544
5s, 5p, 4d 177 —1.9499412 258 —2.7901329 4.36 —4.3278819 13.04 —8.656 907 6
6s, 6p, 5d, 4f 2.07 —1.9499649 3.16 —2.7905419 5.34 —4.3326566 15.52 —8.9657143
E (Ref. [50]) —1.9498000 —2.790 3000 —4.350 0000 —10.270 000
E (Ref.[48]) —1.8817000 —2.5137000

8An atomic basis set of the form{AsBp,Cd,...; includes the AOs of the form
{{1s,2s,...,As},{2p,3p,...,Bp},{3d,4d,...,Cd},...}.

b’E’Energy values(in Ry) were obtained with the parametefd=1, R=1.752a.u. for b,8=3, R
=1.376 a.u. for ¢, =10,R=0.958 a.u.), and§=100,R=0.448 a.u.).

please. The increasing size of the basis set will not onlyFortunately from Fig. 1 it may be readily seen thathich is
allow us to improve the accuracy of the values given in Refthe distance from the electron to tAeaxis may be expressed
[48] but much more important to handle stronger magneticas follows;

fields. Indeed, the variational wave function constructed with

spherical STFs is expected to converge reasonably well in

the case where the electronic cloud is not sufficiently de- p=R sin =R,sin 6,=Rysin 6,. (30)
formed, that is to say when the spherical symmetry of the

Coulomb potential dominates. However, for larger values of

!3, the wave f_unction sh_ould be made flexible by ,i”Corporat'ConsequentIy, use of the above relations in Bf) helps

ing nonspherical STFs in order to properly describe the newne {5 express the original two- and three-center integrals

cyl:gdncz[ syrpn:ﬁtr)éo;‘_ tqg Sysftf?' lecular Hamiltoni (29 in terms of one- and two-center quantities. Accordingly,
ccording to e detinition of In€ molecular namitonian, 4, o integrals arising when a magnetic field is applied to a

it may be seen that in_ addition to the integrals given by EqIinear molecule lying on th& axis may be evaluated using
(27) we are also required to compute the following: the same numerical procedures already developed in the
field-free case. To illustrate this, we show in the following
how integrals(29) relate to those of Eq(27). For such a

(29 | i i ; ;
purpose let us consider the integr@l, Eq.(29), in whichp
J5= Xy 1y my(L1Ra) 0% X, 1, m(£2Rb)) is replaced byR, sin 6,:

L7:fL:<Xn1,Il,ml(éflRa)|P2|Xn2,|2,m2(§2Ra)>v

|
£:<an,ll,m1(gl1Ra)|R§Sin2( 0a)|Xn2,I2,m2(§21Rb)>

=2 (Xn,.1;.m,({1,R) RS 1= BI(47) Y5(Ra/Ra) 1 Xn, 1,.my( L2, Rb))- (31)

With the help of the multiplication theorem of surface values of the the binding energy of,Hin its ground state
spherical harmonics, the above relationship may be rewrittefyr various combinations of AOs.

in such a way as to obtain an overlap integral-based formula: perhaps the most important feature of these values is the
poor convergence that appears for increasing values of the

2 2 +2) 11 . magnetic field. Indeed, for large valuesBf i.e., =10 a.u.,
~7£:3(2€ 2| (2ny) Snoi 2l m (61,42,0) the discrepancy between our results and the benchmarks of
! v Kravchenko and Libermaf59] becomes more pronounced.
11+2 Here, it should be noticed that in their calculations these
—(- 1)ml\/5/(477)| F ) "(20[1;my|l —my) authors used very large Gaussian basis sets which were con-
-

structed following the approach devised by Schmidt and
Ruedenberd61] allowing one to attain completeness at in-
Xsﬂjiifél@l,éz,b)]- (32 finity.
In the case of a 100 a.®. field, our value calculated with
the largest basis set given in Table IM=%£20.69) is
As in the free-field case, we have listed in Table IV the —6.420 44 a.u. while the value of Kravchencko and Liber-
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man is—7.1276 a.u. The poor convergence encountered in Z ()
our calculation has essentially two different origins. On the

one hand and as mentioned in the field-free case, a basis set
involving only one exponent simplifies the mathematics and

the optimization work but requires more basis functions to 1
achieve an acceptable accuracy. On the other hand, exami-
nation of the electron density corresponding to several values
of B (Fig. 2 shows that for increasing values of the magnetic
field the “almost” spherical symmetry of i (when B

=0) [Fig. 2(a)] steadily disappears in favor of a more cylin-
drical shapgFig. 2(c)]. As a consequence the LCAO-type
expansion(26) in terms of STHinvolving spherical harmon- -1
ics) will ultimately require more and more terms 8sin-

creases.

V. CONCLUDING REMARKS = =)
Throughout the present work, useful expansions of @

BCLFs were presented and applied to study the behavior of 3z .
H," experiencing a strong magnetic field. In the first part, the 2
basic ideas needed in deriving a computationally oriented
C-matrix formulation of the addition theorem of STFs were
highlighted. This method exploits the fact that solid spherical 1
harmonics satisfy a very simple addition theorem which al-
lows one to introduce &-matrix-type expansion only for the
spherical part involved in STFs. Accordingly, it was shown
that not only these matrices are symmetrical but much more
important they can be generated recursively starting @ith
matrices occurring in the addition theorem of the Yukawa
potential. The second part is devoted to improve the series -1
expansion previously proposed by one of[d8]. Our ana-
lytical study led us to define a new infinite matrix which has
the advantage of having a unique definition regardless of the
space region. In addition, the analytical form of the infinite -2 -1 0 1 2
series presented in this work allowed us to obtain its poly- 19 X (a.u)
nomial approximate through the so-called Lanczosethod.
The application of our newC-matrix formulation was illus- %) 2
trated in the third part where we have addressed the study of
the hydrogen molecular ion subjected to a strong magnetic
field. This molecular system which in the field-free case may
be considered as trivial leads to a complex situation when
experiencing a strong magnetic field. Indeed, addition of ex-
ternal fields into the Hamiltonian yields complex equations
especially when nuclei are assumed to have finite masses 0
[62]. Furthermore, from the values listed in Table IV it
clearly appears that for increasing valueBathe expansion
in terms of STFs suffers from a poor convergence which is
essentially due to the difficulty of representing the electron
density by spherical harmonics. Improvements of these re-
sults can be obtained by means of various strategies. First,
one can increase the size of the basis(aéth different ex- 2t = s + +
ponent$ making it approach completenels9] but this, of (¢ X (au)
course, has a practical limitation when polyatomic systems
are considered. The second alternative is to incorporate in the FIG. 2. Electron density contours calculated drawn (ar 8
form of the AOs the cylindrical peculiarity of the problem =0, (b) B=1au, andc) =10a.u. In all cases, the interatomic
which normally would allow one to reduce the size of the distance was kept constant.
basis set but on the other hand requires developing ne
methods to handle multicenter integrals.

X (a.u)
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APPENDIX: THE LANCZOS EXPANSION OF 4F,(;c;2) N

— —_ _ p N+1

Throughout Sec. Il we have discussed two different b°+Cb1)Z+p22[ Pp-1#p(CHp=1)bp|25+ bz

methods that can be used to calculate the coefficients in- (A2)
volved in the polynomial approximation of BCLFs. In these

| . .
prqcedureqa(za}ogqu are calculated numerically using @ correspondingly, the perturbation term that will appear in
suitable recursive scheme. In the case under study, it is fokye right hand side of EqA1) will be a polynomial of de-
tunately possible to derive the analytical formulas describinq;reeN+ 1. In Lanczos’s original method such a polynomial
these coefficients. To do so, it should be noticed that thgi; pe written asTTA (2 ma) + 7 T (@ ma). Here, T (2)

N ) . Th
reduced Bessel functiof(z) is closely related to the hyper- represents the shifted Tchebyshev polynomial of degree

geometric functionyF,(;1 +3/2;z%/4). Accordingly, the fol- which according to Refi37] (pp. 210-212 may be written
lowing discussion will be focused on the functigk,(;c;z) as

which according to Ref|37] satisfies the differential equa-

tion: n 41K ‘
n n+
* _ n-k . n_, _ n+k| __
| 2 s q " 0w Tn(z)—gockz, with cf=(—1) (A n+k( 2k>'
g W(@tc - zW(2)-zWM2)=0, (A1) (A3)

whereW(z) stands forgF,(;c;z). Now, if one assumes a As in Sec. lll, equating expressiqA2) with Eq. (A3) will
polynomial approximation for the functionV(z), i.e., give a linear system similar to that given by EQ1). In
W(z)=2,’j:0bpzp, the left hand side of EqA1) takes the addition, the first of these equations yields —7’. Hence,

form taking the latter equality into account one can write
|
-1 ¢ 0 0 -+ 0 0 0 ,
bO Cl
0 -1 2c+1) 0 -+ 0 0 0 b!
1 C2
0 0 -1 3(c+2) -+ 0 0 0 b} C;
: : : : R : 0 =l ], (Ad)
0 o0 0 0 - —1 (p+1)(c+p) 0 b, Cp
: : : : . : : . , C‘
0 o 0 0 - 0 0 oogf AP e

whereC, stands for théth coefficient appearing in the poly- n k-1

nomial Ty, ,(z2)—T5(2). In addition, for practical reasons Ay =(—1)", {H (j+1)(c+j)|Cusn

we prefer to introduce the new variablg, such thatb, P k=pli=p

=b,/7'. To solve the above linear system, it is advisable to okl (),

use the well-known Cramer rule. In the case under study it =(-1" (AB)

! i & pl (o),
may easily be shown that the determinant of the above sys- P P

tem is defined byA=(—1)"*1. As regards, the determinant

corresponding to theth unknown, that isbg,, it may be  Now, using the initial conditionyF,(;c;0)=by=1 vyields

written as the definition of the parameter’' =1/b;. Furthermore, in-
serting the expression of’ into that of b;, allows us to

-1 ¢ 0 e Cq 0 finally derive the full analytical Lanczos-type expansion of
0 -1 2c+1) - GC, 0 oF1(;¢;2) in which the coefficients may be made explicit as
N R P 0 )
% |10 0 R o 0 o kgp (K pHL(C)k/(C)p]Chi1
P : o o bpzrb;,=b—2= ; . (A7)
0o 0 0 = Cpyp o0 1 > KI(C)Cret
(A5) k=0

The expansion of this determinant with respect to the columdrrom the above expression, it may readily be seen that the
of the constant<, yields after some algebraic manipula- coefficientsb, andb,, ; are connected by the following re-
tions the following expression: currence relation:
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1 Cp+1 straightforward. Before going further, it is of importance to
bp+l:(p+l)(c+p) bp— underline that, in our case, although the Lanczasethod
kZO K!'(C) Crs 1 allows us to obtain a useful polynomial approximation of the

Kummer function, the evaluation of such a polynomial may,
however, suffer from severe numerical instabilities. Indeed,
from Eq. (A7), it may be seen that the polynomial coeffi-

Here, it should be noticed that the first term appearing in th&€Ntsb, have alternating signs which in other words means

above equation defines the exact recurrence relation definirfj@t 10ss of significant digits is to be expected if the negative

the coefficients of the series representation 8f,(;c;z).  and the positive part are nearly equal. Such a troublesome

The second term is a correction to such coefficients resultingituation may be avoided if one uses quadruple precision and

from the polynomiali.e., truncation approximation. expresses the Lanczos polynomial as a difference of two
However, for computational purposes it is more advantaterms since the coefficients, may be written such that

geous to first evaluate by means of a backward recursive

relation the partial sums

with by=1. (A8)

(a)p (@)p
__1\n n —(— p —(—=1)P
o =Y (f L Po= (D" ooy, Y pio),
2 A (a)n+l p-1
9
"oy | "9 2 (D)l (@)slef
spzkzp k! RO with p=n—-1n-2,...,0. « _ (A10)

n
—1)Mk!I[(c)/(a cp
From this point, obtaining the coefficients, is of course kZO( JLehd(@)ralee
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