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Addition theorem of Slater-type orbitals: Application to H 2
1 in a strong magnetic field
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TheC-matrix representation of the two-range addition theorem of Slater-type functions~STFs! proved to be
very useful especially when using a computer algebra system. However, for intensive numerical work it was
found advantageous to use theG- ~or T-! matrix representation for thes part of STFs while the remaining term
is expanded with the help of the addition theorem of solid spherical harmonics. Two major advantages are to
be related to this procedure. On the one hand, the newC matrices are symmetric and most important can be
generated recursively. On the other hand, this procedure allows one to generalize and to unify the previousE-
and F-matrix expansions. Indeed, the newT-matrix form allows one to avoid the calculation ofC-matrix
elements and much more important to use a recursive scheme in order to generate their elements. As an
application of these formulas, we address in the last part of this work the study of the electronic structure of
H2

1 when subjected to a strong magnetic field. Our calculation shows that the expansion in terms of spherical
harmonics~i.e., STFs! becomes slowly convergent for large values of the magnetic field.
@S1063-651X~98!15310-2#

PACS number~s!: 02.70.2c, 32.60.1t
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I. INTRODUCTION

Slater-type functions~STFs! are known to be mathemat
cally well suited for a good description of atomic and m
lecular electron densities. However, during the first deca
of quantum chemistry their use was limited to very simp
molecules owing to the difficulties inherent to the evaluat
of the so-called multicenter integrals. Since then, many
forts have been made to elaborate efficient numerical pro
dures in order to evaluate such integrals. Although limited
linear molecules, theALCHEMY program @1# was probably
the best example of success in using STFs to model com
cated molecular systems. In fact,ALCHEMY might be consid-
ered as the very first step towards a more sophisticated
gram dealing with chemical systems of arbitrary geometr
Needless to say, that a generalization ofALCHEMY is not an
easy task because one first needs to break through the
rious multicenter integrals problem. For such a purpose,
main methods were thoroughly investigated, namely,
addition-theorem-based methods@2–21# and those using in-
tegral transforms@22–32# but so far none of these has real
taken the lead. The oldest of these methods is, probably,
to Barnett and Coulson@3# who represent the off-center ST
by an infinite multipolar expansion. Perhaps, the main f
ture of such a series is the form of its Fourier coefficie
which are functionals of the electron variabler and have two
different analytical forms according to the values ofr. This
procedure is therefore known as the two-range expan
method. Over the years, many variations of this appro
were investigated. Of course, the mathematics leading
these variations is the same as that used by Barnett and C
son but the original part of each work essentially resides
the manner of representing and computing~when necessary!

*Present address: Department of Chemistry, University of Otta
10 Marie Curie St., P.O. Box 450, Stn A. Ottawa, Ontar
Canada K1N 6N5.
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the Fourier coefficients which we will call Barnett-Coulson
Löwdin functions ~BCLFs!. As a matter of fact two main
representations emerged, namely, the analytical and the
merical way. In the first approach, multicenter integrals
evaluated analytically which implicitly requires an analyt
representation of BCLFs. Conversely, the second appro
uses numerical integration techniques to deal with mu
center integrals and hence the manner in which BCLFs
represented does not matter as long as this represent
yields a fast and numerically stable computational proced
The above mentioned methods could also be mixed toge
to obtain what is commonly known as a seminumerical
proach in which certain integrals are evaluated analytica
while for some others the numerical technique is preferre

TheC-matrix formulation of the two-range addition theo
rem of STFs@33# was proposed with a view to obtainin
analytical representations of multicenter integrals. Inde
since C-matrix elements are integers such an appro
proved to be very useful when implemented within a co
puter algebra system~using integer arithmetics! @34,35#.
However, the original formulation had two major limitation
On the one hand, it was derived for linear systems lying
the Z axis and on the other hand it turned out that so
important mathematical results regardingC matrices were
difficult to establish within such a formulation. Accordingly
the first part of this work proposes a rederivation of t
C-matrix representation of the addition theorem of STFs
is shown that by expanding thes part, ur2aun2 l 21exp
(2zur2au), and the angular term,ur2au lYl

m(u,w), of a STF
separately makes it possible to obtain the expression oC
matrices in a very straightforward manner. The usefulnes
this approach is, then, illustrated by establishing the limits
the indices definingC matrices in a much more simple wa
than that of Rashid@9# and Suzuki@36#. In the second part
we show another of its advantageous aspects by rederi
the series representation of BCLFs which in contrast to
previous one involves only one matrix~calledT! whose el-
ements can be computed recursively. Another notewor
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,
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PRE 59 2413ADDITION THEOREM OF SLATER-TYPE ORBITALS: . . .
advantage of this procedure is that a polynom
approximation of BCLFs may be constructed with the h
of the so-called Lanczos-t method which also allows one t
calculate the deviation from the exact result in advance.
third part of this work is finally devoted to calculating th
ground-state energy of H2

1 when experiencing a strong t
superstrong magnetic field. For such a purpose, we opte
use an atomic basis set in which all of the STFs have
same screening constants~to facilitate the optimization
work!.

II. BARNETT-COULSON –LÖWDIN FUNCTIONS:
AN OUTLINE

A. Introduction to Barnett-Coulson –Löwdin functions

In an early work devoted to the elaboration of a gene
algorithm for the evaluation of multicenter integrals ov
STFs, Barnett and Coulson@3# proposed to use an additio
theorem in order to separate the integration variables f
the parameters related to the geometrical structure of
molecule. Strictly speaking, this addition theorem allow
the authors to expand thes part of a STF in the following
way:

ur2aun21exp~2bur2au!5 (
l50

1`

~2l11!
2l11

Aar

3zn,l~b,a,r !PlS a•r

ar D , ~1!

wherePn(z) represents the standard Legendre polynom
while zn,l(b,a,r ) is a function that depends only on th
Slater exponentb and the modulus of the vectorsr and a.
The Barnett-Coulsonzm,n functions appeared afterwards in
review paper of Lo¨wdin @4# under the name ofa functions.
Many authors have, henceforth, referred to these function
Löwdin a functions. In this work we prefer to call thes
quantities Barnett-Coulson–Lo¨wdin functions and use the
notationAl 11/2

n (b,a,r ). In fact Eq. ~1! is straightforwardly
obtained by differentiatingn times ~with respect tob! the
Gegenbauer addition theorem of the Yukawa potential~@37#,
p. 107!, that is to say, exp(2bur2au)/ur2au. This yields the
following definition for BCLFs:

Al11/2
0 ~b,a,r !5Il11/2~br,!Kl11/2~br.!,

~2!
Al11/2

n ~b,a,r !52~]/]b!Al11/2
n21 ~b,a,r !,

where r, and r. denote min(a,r) and max(a,r), respec-
tively. Here, it should be pointed out that in addition to t
above definition, one can find in the literature numero
variations of this definition. Such variations are essentia
obtained by including or dropping some multiplication fa
tors.

B. Expansion of the angular part of a STF

In previous work Jones and Weatherford@33# introduced
a special representation of BCLFs, the so-calledC-matrix
representation, which is well adapted for integer arithme
calculations since the elements of such matrices are integ
In their derivation, the authors simplified the mathematics
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assuming the center of the STF on theZ axis. Obviously, this
formalism can easily be generalized to an arbitrary cente
including a suitable Wigner rotation matrix. However, in d
ing so the expression of theC matrices becomes far mor
complicated. In the rest of this section, it is our aim to d
velop the mathematics allowing us to obtain a more con
nient C-matrix representation of a general BCLF~2!, i.e.,
corresponding to a STF located on an arbitrary center.
such a purpose, instead of expanding the STF directly ov
complete basis set of surface spherical harmonics we pr
using a product of two addition theorems which have
advantage of making a clear distinction between the te
which is easy to translate and that which is not. In fact
easier part is obviously the angular term which is expanda
according to the following relationship@38#:

Yl
m~r2a!54p~2l 11!!!

3 (
l 850

l

(
m852 l 8

l 8 ^ lmu l 8m8u l 2 l 8m2m8&
~2l 811!!! @2~ l 2 l 8!11#!!

3Yl 2 l 8
m2m8~2a!Yl 8

m8~r !. ~3!

C. Derivation of a C-matrix representation

Regarding the difficult part, i.e., thes part of a STF, we
use the expansion of Eq.~1!. Thus, starting with the Gegen
bauer expansion of the Yukawa potential~@37#, p. 107! in
which the modified Bessel functions are expanded accord
to Ref. @37# ~p. 72!, one obtains after some algebra the fo
lowing C-matrix representation of the zeroth order BCLF

Al11/2
0 ~z,a,r !

Aar
5~21!l

z

2 (
i 50

l

(
j 50

l

Cl
0~ i , j !~zr,! i 2l21

3~zr.! j 2l21Hi~z,a,r !, ~4!

where the functionHi(z,a,r ) is defined as

Hi~z,a,r !5exp~2zr.!@~21! i exp~zr,!2exp~2zr,!#,
~5!

where theC matrices corresponding to this are as follows

Cl
0~ i , j !5

~l2 i !!

2l2 i

~l2 j !!

2l2 j S l
i D S 2l2 i

l D S l
j D S 2l2 j

l D .

~6!

From the above definition it could be seen that the eleme
of the zeroth orderC matrix are integers. To obtain a simila
representation for thenth order BCLF, it suffices to differ-
entiaten times both sides of Eq.~4! with respect toz. This
yields

Al11/2
n ~z,a,r !

Aar
5

~21!l

2zn21 (
i 50

l

(
j 50

l

(
p50

n

(
q50

p S n
pD S p

qD
3~2l2 i 2 j 11!n2pCl

0~ i , j !

3~zr,! i 1q2l21~zr.! j 1p2q2l21

3Hi 1q~z,a,r !, ~7!
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where the (a)n represents the Pochhammer symbol. Sett
m5 i 1q andn5 j 1p2q and changing the summation lim
its one obtains after some simple algebra

Al11/2
n ~z,a,r !

Aar
5 (

m50

l1n

(
n50

l1n

Cl
n~m,n!~zr,!m2l21

3~zr.!n2l21Hm~z,a,r !, ~8!

where the matrixCl
n involved in this expression is connecte

to that of order zero according to

Cl
n~ i , j !5 (

p50

n

(
q5max~0,i 2l,p2 j !

min~p,i ,l1p2 j ! S n
pD S p

qD
3~2l2 i 2 j 1p11!n2qCl

0~ i 2q, j 2p1q!.

~9!

Here it should be pointed out that the aboveC-matrix repre-
sentation of BCLFs~which in fact corresponds to the expa
sion of ans-type STF! is numerically equivalent to that give
by Jones and Weatherford@39# in the sense that the value
generated with Eq.~9! are identical to those obtained wit
the definition of Refs.@33,39#. However, the present ap
proach reveals certain numerical properties that can be
vantageous when addressing computational work. Ind
Eq. ~9! shows that ourC matrices are not only symmetrica
but more importantly their elements may be computed fr
those ofCl

0 which in turn satisfy a very simple recurrenc
relation @cf. Eq. ~6!#. Moreover, the present representati
permits one to prove several mathematical properties alm
effortlessly which in the framework of Sharma’s@6# ap-
proach would require tedious algebraic work. As a first
stance, let us show that fori .n1 l 1l the elements of the
generalC( i , j ) matrices~as defined in Ref.@33#! vanish. This
was proved differently by Rashid@9# and by Suzuki@36#
using a similar strategy, namely, performing several sum
tions by means of suitable combinations of the addition a
multiplication theorems of the binomial coefficients. In o
case we can arrive at the same result without any fur
calculations by a simple examination of the highest pow
of the terms (za) and (zr ). Indeed working under the sam
conditions as these authors, i.e., assuming vectora on theZ
axis the addition theorem of Eq.~3! takes the following
form:

Yl
m~r2a!54p~2l 11!!! (

l 850

l 2umu

~21! l 2 l 82umu

3
^ lmu l 81umumu l 2 l 82umu0&

@2~ l 81umu!11#!! @2~ l 2 l 82umu!11#!!

3al 2 l 82umur l 81umuYl 1umu
m ~r !. ~10!

Thus multiplying the above expression with that of Eq.~8!,
in which n is first replaced byn2 l , and collecting the pow-
ers of (za) and (zr ) one obtains a product of the form
(za)m2l211 l 2 l 82umu(zr )n2l211 l 81umu. Here, it should be
emphasized that since ourC matrices are symmetrical it doe
not matter which of the variablesr, and r. in Eq. ~8!
g

d-
d,

st

-

a-
d

er
s

corresponds toa andr. In the notation of Refs.@9,33,36# the
powers of (za) and (zr ) were, respectively, written asi 2 l
2l21 and j 2 l 2l21. Thus comparison of these numbe
to those defined above yields the following relationships:

i 5m12l 2 l 82umu, and j 5n2 l 1 l 81umu. ~11!

From these equations, obtaining the upper limits ofi and j is
straightforward since use of simple algebra yields maxi)
5n1l1l and max(j)5n1l. This clearly demonstrates th
flexibility provided by separating thes part and the angula
part of a STF. Furthermore, using the same strategy it
also be shown that in the case of arbitrarya, i.e., not lying on
the Z axis, the summation limit derived above fori is no
longer valid.

III. SERIES REPRESENTATION OF BCLFs

In computing molecular multicenter integrals, it may b
necessary to compute numerical values of BCL
An

n(z,a,r ), with large ordersn. It is, therefore, important to
elaborate numerically stable representations of such fu
tions. According to previous work@21#, it was shown that
use of closed analytical forms of modified Bessel functio
in the definition of BCLFs~2! ultimately lead to theC-
matrix formalism, proposed by Jones and Weatherford@33#.
However, in spite of its analytical interest, such an appro
is not well adapted for intensive numerical computation w
double precision coding since the elements ofC matrices
increase in size very rapidly, making the final results oft
inaccurate. Fortunately, this aspect of theC-matrix formula-
tion may be overcome by means of two different strateg
Indeed, if very small basis sets are considered, use of
C-matrix formulation for numerical purposes can be ma
possible by means of a high-precision arithmetic. Howev
as pointed out by Kravchenko and co-workers@40–42#
general-purpose programs such asMAPLE or MATHEMATICA

will certainly be very slow and only specialized packag
will offer the best performances. In addition to the hig
quality results presented by these authors, the most sig
cant conclusion is that high-precision arithmetic does
lead to a catastrophic loss of speed when the basic opera
are performed by means of special algorithms@42#.

As an alternative to high-precision arithmetic, Jones@43#
expanded BCLFs in the form of a Taylor series which led
the so-calledE- andF-matrix expansion.E matrices are used
for numerical computations inside the sphere of radiusr
5a while F matrices are used outside this sphere. The res
this section introduces a generalization of this approach
which only one matrix is involved. To do so, let us substitu
for the modified Bessel functionsI l 11/2(zr,) and
K l 11/2(zr.) involved in the definition of BCLFs~2!, respec-
tively, the series expansion given in Ref.@37# ~p. 66! and the
closed analytical expression of Ref.@37# ~p. 72!. Hence, sim-
plifying the result following from thenth derivative with
respect toz, one obtains

Al 11/2
n ~z,a,r !5~21!n

2

zn S r,

r.
D l 11/2

exp~2zr.!

3 (
p50

1`

(
s5max~0,n22p!

l 1n

Tp,s
l ,n~zr,!2p~zr.!s,

~12!
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where the matrix elementTp,s
l ,n is defined as

Tp,s
l ,n5n!

~ l 1p11!!

p! ~2l 12p12!!

~21!s

~2p2n1s!!

3F (
q5qmin

qmax

~21!q
2q~2l 2q!!

q! ~ l 2q!!

~2p1q!!

~s2q!! ~n2s1q!! G ,

~13!

with qmin5max(0,s2n) andqmax5min(l,s).
Here, it should be stressed that ourT-matrix expansion

exhibits at least two advantages. The first is the uniquen
of the definition of their elements since according to E
~12!, the sameT matrix is used in both regions of the spac
i.e., inside and outside the spherer 5a. Such an expansion
may hence be considered as a unified series representati
BCLFs. The second advantage related to the above ex
sion is the possibility of using Eq.~13! to generate efficiently
T-matrix elements. As a matter of fact such a calculat
may be carried out following two ways. In the first approac
we start by rewriting the definition ofT-matrix elements~13!
as follows:

Tp,s
l ,n5~21!sup (

q5qmin

qmax S n
s2qDvqwq , ~14!

where the termsup , vq , andwq are defined according to

up5
~2l !!

l !

~2p!! ~ l 1p11!!

p! ~2l 12p12!!
, vq5

l !

~2l !!
2q

~2l 2q!!

q! ~ l 2q!!
,

~15!

wq5
~2p!!

~2p2n1s!!
~2p1q!!.

From a numerical viewpoint, it is clear that the above de
nitions lend themselves to a recursive evaluation but m
importantly they also allow the internal computer roundi
error to be easily controlled since no large number is gen
ated.

The second approach we are proposing for the evalua
of T-matrix elements is founded on a completely recurs
algorithm. Indeed, the derivative of the series representa
of the functionAn

n(z,a,r ) given by Eq.~12! with respect to
z yields the following recurrence relation:

Tp,s
l ,n115~2p1s2n!Tp,s

l ,n2Tp,s21
l ,n . ~16!

To initialize the numerical procedure, it was found conv
nient to start with the zeroth orderT matrix, i.e.,T l ,0, since
its elements are defined explicitly by

Tp,s
l ,0 5

~ l 1p11!!

p! ~2l 12p12!!

2s~2l 2s!!

s! ~ l 2s!!
. ~17!

Moreover, the above ratio may easily be computed usin
simple recursive procedure, since the elementsTp11,s

l ,0 and
Tp,s11

l ,0 may be related toTp,s
l ,0 by means of simple relation

ships. The first fewT matrices presented in Table I hav
been obtained with the help of a simpleFORTRAN program
using the recurrence relation~16!.
ss
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,
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Thus far, a generalT-matrix expansion was derived afte
substituting a Taylor series for the modified Bessel funct
I n(zr,) occurring in the definition of BCLFs. With respec
to computational efficiency it would, however, be of intere
to derive an alternative expansion which is valid only with
a finite range of the form@0,tmax#. This additional step is
mainly motivated by the fact that in most molecular calcu
tions the small values of the argumentzr, are frequently
encountered in comparison to large values of this argum
~in which case the multicenter integral will probably be n
glected!. In addition to this physical argument, it is we
known that despite their tremendous analytical significan
Taylor series are of little use for computational purpos
since there exist much more useful expansions gener
based on the use of orthogonal polynomials. Indeed, a typ
situation with Taylor series is that they converge very rapi
in the neighborhood of the center of expansion while th
become poorly convergent as one goes away from this c
ter. Conversely, use of a suitable class of orthogonal poly
mials allows the error to be distributed over the entire ran
i.e., its magnitude remains approximately the same. In
case of interest use of the so-called Lanczos-t method allows
one to obtain~within a given spherer<r max) a polynomial
approximation of BCLFs and in the meantime the upp
bound of the deviation from the exact expansion. Acco
ingly, our starting point will be the differential equation sa
isfied by the reduced Bessel functionî l5I l 11/2(z)/zl 11/2

which reads as follows:

z2î l9~z!12~ l 11!zî l8~z!2z2î l~z!50,

with

î l~0!5a05
1

2l 11/2G~ l 1 3
2 !

. ~18!

From this equation, it is clear that sinceî l(z) is an even
function its series expansion should contain only even po
ers of the variable, that is to say,î l(z)5Sqa2q

( l )z2q. Now, if
this series is approximated by the firstN terms~i.e., a poly-
nomial of degree 2N), Eq. ~18! ultimately leads to the can
cellation of all coefficients$a2q

( l )%q50,1,...,N . In order to avoid
this troublesome situation, Lanczos@44# ~p. 464! proposed to
introduce in the right hand side of the initial differenti
equation~18! a perturbation term the magnitude of whic
may be made as small as we please. In the original metho
Lanczos and its well-known variation elaborated by Cle
shaw the perturbative term is generally written as a lin
combination of Tchebyshev polynomials. Note that in furth
studies of this method other bounded orthogonal polynom
were also used. In the present case we can write

z2î l9~z!12~ l 11!zî l8~z!2z2î l~z!

5tT2NS z

r max
D1t8T2~N11!S z

r max
D , ~19!

whereTn(z) stands for the well-known Tchebyshev polyn
mial ~@37#, p. 256! of degreen while r max is the upper bound
of the range within which the expansion is being elaborat
The parameterst andt8 are additional unknowns which o
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TABLE I. Inverse of the elements ofT l ,n matrices computed recursively with the help of the relationship~16!.

T0,05F 1
6

120
5 040

362 880
39 916 800

G T0,15F ` 21

3 26

30 120

45 360 362 880

3 991 680 23 991 680

G
T2,05F 5 5 15

70 70 210

2 520 2 520 7 560

166 320 166 320 498 960

G T2,153
` ` 215 215

35 35 210 2210

630 630 2 520 27 560

27 720 27 720 99 792 2498 960

2 162 160 2 162 160 7 413 120 251 891 840

259 459 200 259 459 200 864 864 00027 783 776 000

4
T4,053

9 9 21 189 945

198 198 462 2 079 20 790

10 296 10 296 24 024 108 108 1 081 080

926 640 926 640 2 162 160 9 729 720 97 297 200

126 023 040 126 023 040 294 053 760 1 323 241 920 13 232 419 200

23 944 377 600 23 944 377 600 55 870 214 400 251 415 964 800 2 514 159 648 000

4
T4,153

` ` 263 263 2315 2945

99 99 1 386 4 158 210 395 220 790

2 574 2 574 6 552 216 216 2540 540 21 081 080

154 440 154 440 6 486 480 2 162 160 ` 297 297 200

15 752 880 15 752 880 882 161 280 203 575 680 6 616 209 600213 232 419 200

2 394 437 760 2 394 437 760 167 610 643 200 29 578 348 800 628 539 912 00022 514 159 648 000

4

th
n
li

ys

ia
b

fir
m

de-

l
g

to
the one hand prevent overdetermination and on the o
hand give the accuracy of the polynomial approximatio
Indeed, since Tchebyshev polynomials satisfy the inequa
uTn(z)u<1 for any real argumentzP@21,1#, then making
use of the Schwartz inequality one obtains

UtT2NS z

r max
D1t8T2~N11!S z

r max
D U<utu1ut8u. ~20!

Now, expanding both sides of the differential equation~19!
yields, after some straightforward algebra, the following s
tem:

05t1t8,

2q~2q12l 11!a2q
~ l !2a2~q21!

~ l ! 5tc2m
2N1t8c2m

2~N11! ,

m51,2,...,N ~21!

a2N
~ l ! 5t8c2~N11!

2~N11!5t822N11,

î l~0!51/@2l 11/2G~ l 1 1
2 !#,

wherecm
n represents the coefficient multiplying themth de-

gree monomial involved in the Tchebyshev polynom
Tn(z). For numerical purposes the above system can
solved using essentially two different approaches. The
way and probably the most straightforward is to use a co
er
.
ty

-

l
e

st
-

puter algebra system to generate the analytical formulas
fining the unknownsa2q

( l ) as well ast and t8. These defini-
tions will obviously be a function of the parameterl. Within
the rangezP@26,16# used in Table II, the modified Besse
function In11/2(z) is evaluated by means of the followin
polynomial approximation:

In11/2~z!5
a0

D~n!
zn11/2(

q50

6

a2qz2q,

whereD(n) has the definition

D~n!5n61
153

8
n51

5021

32
n41

437 763

640
n3

1
8 441 639

5120
n21

168 247 461

81 920
n1

334 678 851

327 680
.

Apart from a0 which is defined by the initial condition@Eq.
~18!#, all the other coefficientsa2q involved in the above
polynomial approximation are to be evaluated according
the relationship

a2q5 (
p50

5

cpnp, with q51,2,...
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TABLE II. Lanczos expansion of the reduced Bessel functionîn(z) for zP@26,16# @cf. Eq. ~18!#.

Coefficients a2 a4 a6 a8 a10 a12

c0 55 651 869/327 680 1 406 223/163 840 637/196 608 15 951/81 920 13/983 040 1/2 94
c1 469 148/20 480 164 263/20 480 1663/12 288 19/16 384 1/122 880
c2 312 513/2 560 2 965/1 024 31/1 024 1/6 144 0
c3 4 175/128 121/256 1/384 0 0 0
c4 141/32 1/32 0 0 0 0
c5 1/4 0 0 0 0 0
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where the numerical values of the factorscp are given in
Table II.

The formulas given above may be rewritten in a fo
suitable for intensive numerical calculation using optimiz
evaluation schemes, e.g., the Horner algorithm. In fact, if
largest value ofl is a priori known, the storage of suc
general formulas becomes unnecessary because for am
< l 21 the coefficients$a2q

(m)%0<q<N may be determined from
those describingî l(z) and î l 21(z), i.e., $a2q

( l )%0<q<N and
$a2q

( l 21)%0<q<N , thanks to the following three-term recu
rence relation:

î l 21~z!5z2î l 11~z!1~2l 11!î l~z!. ~22!

Clearly from the above equation, it becomes straightforw
to derive the relationship connecting the coefficientsa2q

( l 21)

to a2q
( l ) anda2q

( l 11) which reads as follows:

a0
~ l 21!5~2l 11!a0

l ,
~23!

a2q
~ l 21!5~2l 11!a2q

~ l !1a2q
~ l 11! , q51,2,...,N.

As an alternative to computer algebra, the linear system~21!
may also be solved using a more conventional numer
method. In such a case it may be seen that the first of e
tions ~21! yields t52t8 which allows one to reduce th
dimensionality of our system. The coefficients$a2q

( l )%0<q<N

are then determined using a backward recursive proce
starting witha2N

( l ) . Of course at the end of this calculation th
coefficients under consideration will be a function oft8
which in turn is determined from the initial conditionî l(0).
Note that although large numbers are generated by this
cedure, it does not suffer from numerical instabilities sin
all the intermediate numbers are finally divided by the larg
of such numbers. In the Appendix general analytical form
las defining$a2q

( l )%0<q<N andt8 are given.

IV. H 2
1 IN A STRONG MAGNETIC FIELD

In this section it is our aim to check the accuracy and
usefulness of the approach developed above by applying
analytical results to the very simple molecule H2

1 when sub-
jected to a strong magnetic field parallel to its principal a
~assumed to be theZ axis!. Here, note has to taken that
spite of its simplicity, the study of H2

1 still raises very in-
teresting investigations. As a matter of fact, when experie
ing strong magnetic fields, the change in the behavior
e
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f

matter is so complex that up to now most of the theoreti
investigations were conducted on a very short list of
atomic molecules~see, for instance, Ref.@45#!. On top of this
list, we find the hydrogen molecular ion which over the yea
yielded a wealth of numerical results@46–59#.

In the nonrelativistic approximation, the total Hamiltonia
describing a spinless H2

1 when subjected to a magnetic fie
B may be expressed in the laboratory coordinate system~in-
dicated by capitalL! as follows:

ĤL5 (
i 5e,a,b

1

2mi
F P̂i /L2

ei

c
A i /LG2

1
1

2 (
j Þ i

eiej

uRi /L2Rj /Lu
,

~24!

where the indicesi and j run over the electron~e!, and the
protons~a! and ~b!. The variableei represents the charge o
the i th particle. In atomic units this value is either~21! or
~11!. In addition, for our subsequent calculations the vec
potentialsA l i are taken in the gauge, making“•A i /L50.

Following the detailed paper of Khersonskij@51#, the
above molecular Hamiltonian breaks down into several te
which when using the Born-Oppenheimer~adiabatic! ap-
proximation allows one to write for the molecule the follow
ing Hamiltonian~in atomic units!:

ĤM52
1

2
¹e

21
b

2
L̂z1

b2

8
r22

1

Ra
2

1

Rb
1

1

R
, ~25!

whereb stands for the ratioB/B0 in which B0 represents the
reference magnetic field strength (1 a.u.52.350 543109 G).
L̂z denotes theZ component of the angular momentum o
erator which in spherical coordinates is defined asL̂z
52 i\]/]w. The geometric parameters are explicitly d
scribed in Fig. 1.

To solve the Schro¨dinger equation involving the Hamil
tonian ~25!, we will use the Hartree-Fock variational proc
dure in which molecular orbitals~MOs! are represented by
linear combination of atomic orbitals~LCAO-MO!. Accord-
ingly, the i th MO will be written as

FIG. 1. Coordinate system.
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TABLE III. Convergence of the LCAO-MO ionization energy of 1sg as a function of the size of the atomic basis set. The same S
exponent was used for all AOs.

Basis seta z R51 z R52 z R53 z R510 z R520

1s 1.52 0.440 836 5 1.24 0.586 505 0 1.08 0.564 315 7 1.00 0.500 297 5 1.00 0.500 0
2s, 2p 1.92 0.451 529 3 1.56 0.602 166 2 1.36 0.576 614 1 1.00 0.500 524 2 1.00 0.500 0
3s, 3p 1.92 0.451 662 3 1.80 0.602 238 9 1.64 0.577 073 1 1.00 0.500 561 6 1.00 0.500 0
4s, 4p, 3d 2.12 0.451 768 3 1.84 0.602 600 7 1.60 0.577 532 2 1.00 0.500 574 9 1.00 0.500 0
5s, 5p, 4d 2.32 0.451 781 7 1.88 0.602 625 4 1.36 0.577 538 8 1.04 0.500 576 9 1.00 0.500 0
6s, 6p, 5d, 4f 2.40 0.451 785 0 2.12 0.602 632 4 1.88 0.577 560 5 1.00 0.500 578 3 1.00 0.500 0
Exactb 0.451 786 3 0.602 634 2 0.577 562 9 0.500 578 7 0.500 014

aAn atomic basis set of the form$As,Bp,Cd...% includes the AOs of the form$$1s,2s,...,As%,$2p,3p,...,Bp%,$3d,4d,...,Cd%,...%.
bExact values for binding energies and other expectation values are to be found in Ref.@63#.
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cm ixm , ~26!

in which thexm are the AOs. From this definition, it is ob
vious that AOs should carefully be chosen in order to ma
the approximate~i.e., variational! solution converge rapidly
to the exact wave function. In the free-field case, it is c
tomary to expand MOs in terms of STFs since the latter g
a reliable description of the electron densities in all regio
of the space and especially in the vicinity of the nuclei a
farther away. Within the framework of the LCAO-MO ap
proach, the calculation of the electronic energy of H2

1 re-
quires the evaluation of two types of integrals:
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J15^xn1 ,l 1 ,m1
~z1Ra!uOuxn2 ,l 2 ,m2

~z2Ra!&,

J25^xn1 ,l 1 ,m1
~z1Ra!uOuxn1 ,l 1 ,m1

~z2Rb!&, ~27!

whereO represents the kinetic energy operator21/2Da or
the Coulomb operator 1/Ra or the unity constant. For nu
merical purposes it may be seen that the basic building bl
to the above quantities is the overlap integral obtained
setting the operatorO51. Obviously, one-center overlap
are just the Laplace transform of a monomial function of t
form Ra

m . As regards the two-center integrals, combinati
of the addition theorem~1! with that of Eq.~3! yields after
some algebra the following expression:
Sn1 ,l 1 ,m1

n2 ,l 2 ,m2~z1 ,z2 ,b!5N1N2~4p!2~2l 211!!! (
l 2850

l 2

(
m2852 l 28

l 28 ^ l 2m2u l 28m28u l 22 l 28m22m28&

~2l 2811!!! @2~ l 22 l 28!11#!!
Y

l 22 l
28

m22m28~2b!

3 (
l5u l 12 l 28u

l 11 l 28

9^ l 1m1u l 28m28ulm12m28&^r
n121exp~2z1r !ur l 28Al11/2

n22 l 2~z2 ,b,r !/Abr&@Yl

m12m28~b/b!#*

~28!
the
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fi-
d-
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er.
Eq.
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r
-
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we
in which (9 indicates that the summation is performed w
steps of 2 and̂ l 1m1u l 2m2u l 3m3& represents the so-calle
Gaunt coefficients~@60#, pp. 751–754!. Of course, in the
case of a diatomic system lying on theZ axis the above
relationship simplifies considerably since we have the re
tion Yl

m(kp,w)5A(2l 11)/(4p)dm,0 in which k is an arbi-
trary integer. In the present investigation for which on
overlap integrals are required, the BCLF occurring in t
above equation is evaluated with the help of theC-matrix
expansion developed in Sec. II C. More specifically, use oC
matrices in this case is probably the best strategy since
cording to the above expression, overlaps are described
finite expansion. However, when more complicated integ
are required~e.g., exchange integrals appearing when ma
electron molecules are considered! use of theT-matrix ex-
pansion and its corresponding Lanczos-t form allow one to
overcome the numerical difficulties connected to theC ma-
trices ~cf. Sec. III!.
-

e
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The numerical values listed hereafter were obtained in
free-field case. This calculation was conducted with
atomic basis set in which the Slater exponents, i.e.,z’s, were
kept identical for all AOs. Besides inducing useful simpli
cations in the analytical form of the overlaps, the major a
vantage of this constraint is to allow one to optimize th
single nonlinear parameter in a very straightforward mann
Of course when using such a basis set the expansion of
~26! will definitely require more AOs in order to achieve a
acceptable accuracy~see Table III!.

In a previous work, de Meloet al. @48# have used a linea
combination of 1s and 2s STFs to study the electronic struc
ture of H2

1 experiencing a strong magnetic field. In spite
its small size, such an atomic basis set yielded a fairly go
qualitative picture of the underlying physics appearing un
such a regime. In the following, we will extend this work
include in the computational procedure as many STFs as
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TABLE IV. Ground-state binding energy of H2
1 in a strong magnetic field.

Basis seta z E1
b z E2

c z E3
d z E4

e

1s 1.44 21.880 467 0 1.96 22.491 875 7 3.16 22.757 095 2 8.98 17.436 005
2s, 2p 2.04 21.942 821 4 2.93 22.727 876 3 4.86 23.876 050 0 6.58 11.323 796
3s, 3p 2.51 21.947 102 3 2.24 22.759 804 7 3.68 24.059 357 4 10.52 20.511 950 1
4s, 4p, 3d 2.01 21.949 860 2 2.88 22.785 245 2 3.16 24.282 665 0 9.44 27.412 754 4
5s, 5p, 4d 1.77 21.949 941 2 2.58 22.790 132 9 4.36 24.327 881 9 13.04 28.656 907 6
6s, 6p, 5d, 4f 2.07 21.949 964 9 3.16 22.790 541 9 5.34 24.332 656 6 15.52 28.965 714 3
E ~Ref. @50#! 21.949 800 0 22.790 300 0 24.350 000 0 210.270 000
E ~Ref. @48#! 21.881 700 0 22.513 700 0

aAn atomic basis set of the form $As,Bp,Cd,...% includes the AOs of the form
$$1s,2s,...,As%,$2p,3p,...,Bp%,$3d,4d,...,Cd%,...%.
b–eEnergy values~in Ry! were obtained with the parametersb51, R51.752 a.u. for b,b53, R
51.376 a.u. for c, (b510, R50.958 a.u.), and (b5100,R50.448 a.u.).
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please. The increasing size of the basis set will not o
allow us to improve the accuracy of the values given in R
@48# but much more important to handle stronger magne
fields. Indeed, the variational wave function constructed w
spherical STFs is expected to converge reasonably we
the case where the electronic cloud is not sufficiently
formed, that is to say when the spherical symmetry of
Coulomb potential dominates. However, for larger values
B, the wave function should be made flexible by incorpor
ing nonspherical STFs in order to properly describe the n
cylindrical symmetry of the system.

According to the definition of the molecular Hamiltonia
it may be seen that in addition to the integrals given by E
~27! we are also required to compute the following:

J185^xn1 ,l 1 ,m1
~z1Ra!ur2uxn2 ,l 2 ,m2

~z2Ra!&,

~29!
J285^xn1 ,l 1 ,m1

~z1Ra!ur2uxn2 ,l 2 ,m2
~z2Rb!&.
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Fortunately from Fig. 1 it may be readily seen thatr which is
the distance from the electron to theZ axis may be expresse
as follows:

r5R sin u5Rasin ua5Rbsin ub . ~30!

Consequently, use of the above relations in Eq.~30! helps
one to express the original two- and three-center integ
~29! in terms of one- and two-center quantities. According
the integrals arising when a magnetic field is applied to
linear molecule lying on theZ axis may be evaluated usin
the same numerical procedures already developed in
field-free case. To illustrate this, we show in the followin
how integrals~29! relate to those of Eq.~27!. For such a
purpose let us consider the integralJ28 , Eq. ~29!, in which r
is replaced byRa sinua :
J285^xn1 ,l 1 ,m1
~z1 ,Ra!uRa

2sin2~ua!uxn2 ,l 2 ,m2
~z2 ,Rb!&

5 2
3 ^xn1 ,l 1 ,m1

~z1 ,Ra!uRa
2@12A5/~4p!Y2

0~Ra /Ra!#uxn2 ,l 2 ,m2
~z2 ,Rb!&. ~31!
the
the

s of
.
se
con-
nd

n-

r-
With the help of the multiplication theorem of surfac
spherical harmonics, the above relationship may be rewri
in such a way as to obtain an overlap integral-based form

J285
2

3~2z1!2 F @2~n112!#

~2n1!! G1/2H Sn112,l 1 ,m1

n2 ,l 2 ,m2 ~z1 ,z2 ,b!

2~21!m1A5/~4p! (
l 5u l 122u

l 112

9^20u l 1m1u l 2m1&

3Sn112,l ,m1

n2 ,l 2 ,m2 ~z1 ,z2 ,b!J . ~32!

As in the free-field case, we have listed in Table IV t
n
a:

values of the the binding energy of H2
1 in its ground state

for various combinations of AOs.
Perhaps the most important feature of these values is

poor convergence that appears for increasing values of
magnetic field. Indeed, for large values ofB, i.e., >10 a.u.,
the discrepancy between our results and the benchmark
Kravchenko and Liberman@59# becomes more pronounced
Here, it should be noticed that in their calculations the
authors used very large Gaussian basis sets which were
structed following the approach devised by Schmidt a
Ruedenberg@61# allowing one to attain completeness at i
finity.

In the case of a 100 a.u.B field, our value calculated with
the largest basis set given in Table IV (z520.69) is
26.420 44 a.u. while the value of Kravchencko and Libe
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man is27.1276 a.u. The poor convergence encountered
our calculation has essentially two different origins. On t
one hand and as mentioned in the field-free case, a bas
involving only one exponent simplifies the mathematics a
the optimization work but requires more basis functions
achieve an acceptable accuracy. On the other hand, ex
nation of the electron density corresponding to several va
of B ~Fig. 2! shows that for increasing values of the magne
field the ‘‘almost’’ spherical symmetry of H2

1 ~when B
50) @Fig. 2~a!# steadily disappears in favor of a more cyli
drical shape@Fig. 2~c!#. As a consequence the LCAO-typ
expansion~26! in terms of STF~involving spherical harmon-
ics! will ultimately require more and more terms asB in-
creases.

V. CONCLUDING REMARKS

Throughout the present work, useful expansions
BCLFs were presented and applied to study the behavio
H2

1 experiencing a strong magnetic field. In the first part,
basic ideas needed in deriving a computationally orien
C-matrix formulation of the addition theorem of STFs we
highlighted. This method exploits the fact that solid spheri
harmonics satisfy a very simple addition theorem which
lows one to introduce aC-matrix-type expansion only for the
spherical part involved in STFs. Accordingly, it was show
that not only these matrices are symmetrical but much m
important they can be generated recursively starting withC
matrices occurring in the addition theorem of the Yuka
potential. The second part is devoted to improve the se
expansion previously proposed by one of us@43#. Our ana-
lytical study led us to define a new infinite matrix which h
the advantage of having a unique definition regardless of
space region. In addition, the analytical form of the infin
series presented in this work allowed us to obtain its po
nomial approximate through the so-called Lanczos-t method.
The application of our newC-matrix formulation was illus-
trated in the third part where we have addressed the stud
the hydrogen molecular ion subjected to a strong magn
field. This molecular system which in the field-free case m
be considered as trivial leads to a complex situation w
experiencing a strong magnetic field. Indeed, addition of
ternal fields into the Hamiltonian yields complex equatio
especially when nuclei are assumed to have finite ma
@62#. Furthermore, from the values listed in Table IV
clearly appears that for increasing values ofB the expansion
in terms of STFs suffers from a poor convergence which
essentially due to the difficulty of representing the elect
density by spherical harmonics. Improvements of these
sults can be obtained by means of various strategies. F
one can increase the size of the basis set~with different ex-
ponents! making it approach completeness@59# but this, of
course, has a practical limitation when polyatomic syste
are considered. The second alternative is to incorporate in
form of the AOs the cylindrical peculiarity of the problem
which normally would allow one to reduce the size of t
basis set but on the other hand requires developing
methods to handle multicenter integrals.
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FIG. 2. Electron density contours calculated drawn for~a! b
50, ~b! b51 a.u., and~c! b510 a.u. In all cases, the interatom
distance was kept constant.
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APPENDIX: THE LANCZOS EXPANSION OF 0F 1„;c;z…

Throughout Sec. III we have discussed two differe
methods that can be used to calculate the coefficients
volved in the polynomial approximation of BCLFs. In the
procedures$a2q

( l )%0<q<N are calculated numerically using
suitable recursive scheme. In the case under study, it is
tunately possible to derive the analytical formulas describ
these coefficients. To do so, it should be noticed that
reduced Bessel functionî l(z) is closely related to the hyper
geometric function0F1(; l 13/2;z2/4). Accordingly, the fol-
lowing discussion will be focused on the function0F1(;c;z)
which according to Ref.@37# satisfies the differential equa
tion:

z2
d2

dz2 W9~z!1c
d

dz
zW8~z!2zW~z!50, ~A1!

whereW(z) stands for0F1(;c;z). Now, if one assumes a
polynomial approximation for the functionW(z), i.e.,
W(z)5(p50

N bpzp, the left hand side of Eq.~A1! takes the
form
-
s

t
y
sy
t

m
a-
t
n-

r-
g
e

~2b01cb1!z1 (
p52

N

@2bp211p~c1p21!bp#zp1bNzN11.

~A2!

Correspondingly, the perturbation term that will appear
the right hand side of Eq.~A1! will be a polynomial of de-
greeN11. In Lanczos’s original method such a polynomi
will be written astTN* (z/r max)1t8TN11* (z/rmax). Here,Tn* (z)
represents the shifted Tchebyshev polynomial of degren
which according to Ref.@37# ~pp. 210–212! may be written
as

Tn* ~z!5 (
k50

n

ck
nzk, with ck

n5~21!n1kS 4

AD k n

n1k S n1k
2k D .

~A3!

As in Sec. III, equating expression~A2! with Eq. ~A3! will
give a linear system similar to that given by Eq.~21!. In
addition, the first of these equations yieldst52t8. Hence,
taking the latter equality into account one can write
S 21 c 0 0 ¯ 0 0 ¯ 0

0 21 2~c11! 0 ¯ 0 0 ¯ 0

0 0 21 3~c12! ¯ 0 0 ¯ 0

] ] ] ] � ] ] � 0

0 0 0 0 ¯ 21 ~p11!~c1p! ¯ 0

] ] ] ] � ] ] � ]

0 0 0 0 ¯ 0 0 ¯ 21

D S b08

b18

b28

]

bp8

]

bn8

D 5S C1

C2

C3

]

Cp

]

Cn11

D , ~A4!
of
as

the
-

whereCk stands for thekth coefficient appearing in the poly
nomial Tn11* (z)2Tn* (z). In addition, for practical reason
we prefer to introduce the new variablebp8 such thatbp8
5bp /t8. To solve the above linear system, it is advisable
use the well-known Cramer rule. In the case under stud
may easily be shown that the determinant of the above
tem is defined byD5(21)n11. As regards, the determinan
corresponding to thepth unknown, that is,bp8 , it may be
written as

Db
p8
5U21 c 0 ¯ C1 ¯ 0

0 21 2~c11! ¯ C2 ¯ 0

] ] ] � ] � 0

0 0 0 ¯ Cp ¯ 0

] ] ] � ] � ]

0 0 0 ¯ Cn11 ¯ 21

U .

~A5!

The expansion of this determinant with respect to the colu
of the constantsCp yields after some algebraic manipul
tions the following expression:
o
it
s-

n

Db
p8
5~21!n(

k5p

n F )
j 5p

k21

~ j 11!~c1 j !GCk11

5~21!n(
k5p

n
k!

p!

~c!k

~c!p
Ck11 . ~A6!

Now, using the initial condition0F1(;c;0)5b051 yields
the definition of the parametert851/b08 . Furthermore, in-
serting the expression oft8 into that of bp8 allows us to
finally derive the full analytical Lanczos-type expansion
0F1(;c;z) in which the coefficients may be made explicit

bp5tbp85
bp8

b08
5

(
k5p

n

~k!/ p! !@~c!k /~c!p#Ck11

(
k50

n

k! ~c!kCk11

. ~A7!

From the above expression, it may readily be seen that
coefficientsbp andbp11 are connected by the following re
currence relation:
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bp115
1

~p11!~c1p! F bp2
Cp11

(
k50

n

k! ~c!kCk11
G

with b051. ~A8!

Here, it should be noticed that the first term appearing in
above equation defines the exact recurrence relation defi
the coefficients of the series representation of0F1(;c;z).
The second term is a correction to such coefficients resul
from the polynomial~i.e., truncation! approximation.

However, for computational purposes it is more advan
geous to first evaluate by means of a backward recur
relation the partial sums

sn5
~21!n

2 S 4

AD n n!

~a!n11
,

~A9!

sp5 (
k5p

n

k!
~c!k

~c!n

ck
n

~a!k11
, with p5n21,n22,...,0.

From this point, obtaining the coefficientsbp is of course
nd
0

n

r

.

e
ng
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-
e

straightforward. Before going further, it is of importance
underline that, in our case, although the Lanczos-t method
allows us to obtain a useful polynomial approximation of t
Kummer function, the evaluation of such a polynomial ma
however, suffer from severe numerical instabilities. Inde
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