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Fluctuations in photon local delay time and their relation to phase spectra in random media
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The temporal evolution of microwave pulses transmitted through random dielectric samples is obtained from
the Fourier transform of field spectra. Large fluctuations are found in the local or single-channel delay time,
which is the first temporal moment of the transmitted pulse at a point in the output speckle pattern. Both
positive and negative values of the local delay time are observed. The widest distribution is found at low-
intensity values near a phase singularity in the transmitted speckle pattern. In the limit of long duration,
narrow-bandwidth incident pulses, the single-channel delay time equals the spectral derivative of the phase of
the transmitted field.@S1063-651X~99!13102-7#

PACS number~s!: 41.20.Jb, 05.40.2a, 71.55.Jv
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Statistical optics has concentrated on fluctuations of
flected and transmitted intensity. The Rayleigh distribut
describes large fluctuations in intensity at the output o
scattering medium excited by monochromatic radiation. T
intensity of a single polarization component normalized to
ensemble average has a negative exponential distribu
exp(2I/^I&) @1#. This distribution obtains under the assum
tion that the fieldE5Aeif can be represented as a superp
sition of uncorrelated partial waves. However, in multip
scattering media, the coherent nature of wave propaga
inevitably leads to both short- and long-range contributio
to the intensity correlation function@2–4#. These give rise to
enhanced fluctuations in the intensity@5#, total transmission
@6–10#, and electronic conductance@11–13#, which have
been studied intensively in the past decade. The degre
nonlocal intensity correlation is a measure of the closenes
the localization threshold@2–13# and determines the statist
cal distributions of key transmission quantities. In this pa
we consider fluctuations in pulse propagation. This is in c
trast to previous studies of the statistics of steady-s
propagation in random media and to measurements of
time of flight distribution@14–17#. Fluctuations in the pulse
evolution are averaged over an ensemble of samples and
obtains the arrival time distribution for transmitted photon
which is proportional to the path length distributionP(s).
This corresponds to the particle transport picture and giv
mix of ballistic and diffusive components. Here we consid
fluctuations in the dynamics of transmission for a given
cident and outgoing channel for different realizations o
random medium. Specifically, we define the local or sing
channel delay timetab as the first temporal moment for
transmitted pulse associated with an incident pulse of ba
width Dv centered att50 in the time domain and atv0 in
the frequency domain,

tab~v0 ,Dv!5

E uEab~ t;v0 ,Dv!u2t dt

E uEab~ t;v0 ,Dv!u2dt

, ~1!

where Eab(t;v0 ,Dv) is the transmitted field in channelb
PRE 591063-651X/99/59~2!/2406~6!/$15.00
-
n
a
e
s
on
-
-

on
s

of
to

r
-
te
he

ne
,

a
r
-
a
-

d-

arising from an incident wave in channela. This definition
has been used in earlier work in the context of nuclear ph
ics @18#. This is in contrast to previous discussions of t
Wigner time delay and the Wigner-Smith time delay matr
which have been powerful concepts for a statistical desc
tion of scattering@19–21#. The diagonal elementsQaa of the
lifetime matrix Q52 iS21]S/]v, whereS is the 2N32N
scattering matrix, are interpreted in terms of the time spen
the scattering region by a wave packet incident in one ch
nel. As shown by Smith@22#, they are the sum over all oupu
channels ~both in reflection and transmission! of Dtab
5Re@(2 i /Sab)(]Sab /]v)# weighted by the probability of
emerging from that channel I ab/2N : Qaa
5(1/2N)(bI abDtab @23#. The sum of theQaa over all 2N
channels is the Wigner time delaytW5(aQaa , which is the
trace of the lifetime matrix and is proportional to the dens
of states@24–27#. Local delay times have been consider
for electrons tunneling through barriers and for classical e
nescent waves@28,29#. In these cases, scattering through
fixed structure into a one-dimensional system is conside
Here we study the propagation of an incident spatial mo
into a multichannel random medium. The field is detected
a point in the output speckle pattern for an ensemble of r
dom configurations. The subscriptab, which indicates the
input and output channels, is omitted in the following
simplify notation.

In a homogeneous medium of thicknessL with phase ve-
locity n, the phase accumulated as the angular frequenc
increased byDv is Df5DkL5DvL/n and is proportional
to the delay timet5L/n so that the delay time ist
5Df/Dv. In this simple situation, the phase derivativef8
[df/dv is known as the group delay and is a measure
the transit time through a homogeneous medium. In a r
dom medium, however, the wave is multiply scattered a
the output field is the superposition of partial waves arrivi
at a point. If we ignore fluctuations in the phase velocity f
different paths in the medium and additional phase sh
associated with focal points and reflections, the phase a
mulated by the wave in following a path of lengths as the
frequency is incremented byDv is Dfs5Dvs/v, giving a
delay timeDfs /Dv5s/v. The sum of these times weighte
by P(s), *P(s)s/v ds, gives the average value of th
2406 ©1999 The American Physical Society
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local delay time^t&. In this paper we investigate the fluc
tuations oft. Measurements of microwave radiations prop
gating through random samples show that the single-cha
delay time varies with the width of the incident pulse. W
find that fluctuations int increase as the pulse bandwid
narrows. For narrow-bandwidth pulses, large positive a
negative values oft are found. These large values are rela
to the nature of the speckle pattern at the output of the
dium. They occur most commonly when a null in the spec
pattern passes near the detector as the frequency is va
The phase is undetermined at these nulls and jumps bp
radians when a null passes through the detector as the
quency is tuned. In contrast to the characteristics of st
speckle patterns investigated by Freundet al., which are in-
dependent of the scattering medium@30#, here the phase
variation reflects the underlying dynamics. When consid
ing pulse propagation, it is natural to define the energy tra
mission coefficienteab as well as the local delay timetab of
the ouput pulse. This gives a set of variables (e,t). We will
study pulses of specific width, particularly in the limitDv
→0. In this limit corresponding to long pulses, the loc
delay time t approaches the spectral phase derivativef8
@31# and the energy transmission coefficiente approaches the
intensity transmission coefficientI.

The sample studied is composed of randomly positio
1
2 -in. polystyrene spheres at a volume filling fraction of 0.
contained within a 1-m-long, 7.6-cm-diam copper tube. N
sample configurations are created by rotating the tube a
its axis. Wire antennas are used as the emitter and detec
the input and output surface of the sample. A Hewlett Pa
ard 8722C vector network analyzer performs a measurem
of the microwave field, giving its amplitude and phase. Me
surements are made between 7 and 25 GHz, using frequ
intervals of 625 kHz. This wide frequency range allows us
reconstruct via Fourier transformation the time response
an input pulse of any shape over a wide frequency range.
value of the local delay time depends upon the spectrum
the incident pulse. Here we consider incident pulses that
Gaussian or rectangular in the frequency domain. Gaus
pulses have a rapid falloff in both the time and frequen
domains, whereas rectangular pulses allow us to select a
cise spectral range but oscillate in the time domain. Dir
dynamical microwave measurements are possible in p
ciple, but generating precisely shaped pulses is not alw
possible. The complex response to an incident pulse w
carrier frequency v0 can be written as E(t)
5uE(t)uexp$ i @v0t1f(t)#%. An example of the amplitude
uE(t)u and phasef(t) of the response to a pulse construct
by Fourier transforming the field spectrum in a particu
sample configuration is presented in Fig. 1 for tw
pulses centered at 10 GHz with a Gaussian envel
1/A2ps exp(2t2/2s2), with s51 and 100 ns.

Various properties have been used to characterize
travel time of a wave packet@32#. When the pulse is no
appreciably distorted in transmission, the delay time of
lient features such as the peak can be used. In multi
scattering media, however, the shape is generally unrel
to that of the incident pulse and changes with configurat
@see Fig. 1~a!#. It is therefore not possible to associate fe
tures of the transmitted pulse with the incident pulse. Ho
ever, the shift of the barycenter of the transmitted pulse
-
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tensity at the output surface of the sample, as given in
~1!, is well defined even in a multiple-scattering system. W
note that the integration over the pulse is reminiscent of
definition of the associated quantity, the energy transmiss
coefficiente(v0 ,Dv)5* uE(t;v0 ,Dv)u2dt, where the time
origin is taken at the center of the incident pulse at the in
surface. It is therefore natural to use Eq.~1! to represent
dynamic fluctuations of pulses in mesoscopic systems.
find t541.8 and 59.8 ns for the pulses of Figs. 1~a! and 1~b!,
respectively. The local delay time averaged over 581 sam
configurations is^t&542.6 ns for a 1-ns incident pulse
while ^t&545 ns for a 100-ns incident pulse. The differen
in averaged values is due to variations in dynamical prop
ties over the bandwidth. For comparison, the travel ti
through 1 m of free space would be 3.3 ns.

By changing the central frequency of the incident pul
one can follow the variation with frequency of the singl
channel delay time for a particular sample configuration a
pulse bandwidth. The frequency dependence oft(v,Dv) for
a square pulse is plotted in Fig. 2 between 11 and 12 GHz
three different values of the incident pulse bandwidthDv. A
comparison with

Df

Dv
~v![

f~v1Dv/2!2f~v2Dv/2!

Dv

shows thatt and Df/Dv do not coincide as expected i
such a medium. However, when the average of these q
tities over sample configurations is taken,^t& is indistin-

FIG. 1. Amplitude of the time response~solid line! to a Gauss-
ian pulse~dashed line! with ~a! s51 ns and~b! s5100 ns, cen-
tered around 10 GHz. The total energy of the input pulse* uEu2dt is
normalized to unity. The solid curve is the actual scale, while
dashed curve is rescaled. The slowly varying component of
phasef(t) is shown as the dotted curve.



r
id
in
y

fir

w
it
-
a

ase
In-
de-
are
sin-

is

n-
rity

ar a
long
ven

of
line
lus

ay

tive

ese
ot
The
s of
-

-

81

he
ale

2408 PRE 59P. SEBBAH, O. LEGRAND, AND A. Z. GENACK
guishable from̂ Df/Dv&, which is shown as the thin solid
line. This figure also shows that fluctuations oft and
Df/Dv around their average values are of the same orde
magnitude and increase with decreasing pulse bandw
The local delay timet can be smaller than the travel time
free space and even negative. This occurs most frequentl
pulses of duration greater than^t& corresponding toDv less
than the field correlation frequencydv;^t&21. Figure 3
shows the response to a Gaussian pulse withs5100 ns,
centered at 11.1025 GHz, which corresponds to the
negative peak in Fig. 2~c!.

In order to clarify the character of these fluctuations,
plot in Fig. 4 the phase derivative of the transmitted field,
phase modulus 2p, and the logarithm of the transmitted in
tensity, which represents the complete field between 10

FIG. 2. Local delay time~thick solid line! for the square band
width pulse with bandwidths of~a! Dv5500 MHz, ~b! Dv
550 MHz, and ~c! Dv55 MHz compared toDf/Dv ~dotted
line! versus frequency. The averaged local delay time over 5
sample configurations is shown as the thin solid line.

FIG. 3. Amplitude time response~solid line! to a Gaussian pulse
~dashed line! with s5100 ns, centered around 11.1025 GHz. T
solid curve is the actual scale, while the dashed curve is resc
The slowly varying component of the phasef(t) is shown as the
dotted curve.
of
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10.5 GHz. Large positive and negative peaks in the ph
derivative are associated with small values of intensity.
deed, a zero in the amplitude would correspond to an un
fined phase since the real and imaginary parts of the field
then zero. The equiphase line map around such a phase
gularity is a ‘‘star’’ @30# and the phase circulation around th
singularity is an integer multiple of 2p @33#. A phase singu-
larity is by convention positive if the phase circulates cou
terclockwise. The phase map of arbitrary phase singula
network has been investigated by Freundet al. @30#. To ex-
plore excursions in the phase as a singularity moves ne
point, we measured the phase at closely spaced points a
a line as the frequency is tuned. After the spectrum at a gi
position is taken, the detector is translated byDx51 mm on
a 4-cm-long line running symmetrically about the center
the output surface. The increment in phase along the
from 18 GHz is obtained by unwrapping the phase modu
2p @34#, which is shown in Fig. 5~a!. As the speckle pattern
changes with increasing frequency, phase singularities m
move across the detection line resulting in a 2p phase dif-
ference between consecutive detector positions giving a1p
jump on one side of the singularity and2p jump on the
other side. The phase difference between two consecu
positions of the detector is presented in Fig. 6. A 2p step is
the signature of a phase singularity moving between th
two positions. AsDx goes to zero, this phase difference pl
would become a series of sharp steps and flat plateaus.
presence of phase singularities results in large fluctuation
the phase derivativef8 as a function of frequency and de
tector position, as shown in Fig. 5~b!. Strong fluctuations of

-

d.

FIG. 4. ~a! Phase derivative,~b! phase modulus 2p, and ~c!
logarithm of the magnitude between 10 and 10.5 GHz.
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Df/Dv will occur whenDv is small since it is then not so
different fromf8 @Fig. 2~c!#. For largerDv @Fig. 2~a!#, av-
eraging of random variations in phase reduces these fluc
tions.

The magnitudes of fluctuations ofDf/Dv andt are com-
parable as are their correlation frequencies. In the limitDv

FIG. 5. Surface plot of~a! the cumulative phase and~b! the
phase derivative with frequency between 18 and 18.1 GHz ac
the output of the sample obtained by sweeping the detector ove
mm, each millimeter.

FIG. 6. Phase difference between four consecutive detector
sitions (x519–22 mm) at the output surface of the sample of F
5 in the frequency range 18–19 GHz.
a-

→0, these become identical. In the Appendix we show t
the delay time can be expressed in terms of the intensity
the phase derivative as

t~v0 ,Dv!5

E gv0 ,Dv
2 ~v!I ~v!f8dv

E gv0 ,Dv
2 ~v!I ~v!dv

, ~2!

wheregv0 ,Dv(v) is the spectrum of the incident pulse. Th
right-hand side of Eq.~2! is shown in Fig. 7 for a particular
sample configuration, for a Gaussian incident pulse w
bandwidthDv51/2ps579.6 MHz and central frequenc
v0 between 7 and 25 GHz. It is indistinguishable from t
delay timet of a Gaussian pulse withs52 ns, which is
also plotted in Fig. 7. Equation~2! is found to be accurate
experimentally to within 0.1%~1%! for a Gaussian pulse
with s51 ns(s5100 ns). Equation~2! provides a useful
shortcut to the computation of the local delay time as co
pared to computing the temporal integral in Eq.~1! from the
Fourier transform of the field.

For pulse bandwidths much smaller than the correlat
frequency, which is essentially the inverse of the avera
delay time, the transmission coefficientI is roughly constant
over the pulse bandwidth. Therefore,t;Df/Dv for a nar-
row rectangular pulse in the frequency domain@Fig. 2~c!#.
Only at frequencies at which the intensity drops rapidly a
cannot be taken as constant over the bandwidth are fluc
tions inDf/Dv larger than fluctuations int. In these cases
a phase singularity moves near the detector, giving a cha
in phase of the order ofp over a frequency changeDv that
can be arbitrarily small and in particular smaller thandv.
The shape of a pulse, which encompasses a bandwidth
which the intensity changes appreciably, will generally
different from that of the incident pulse as is seen in Fig.

Taking the limit Dv→0 in both Eqs.~A4! and ~A5! of
the Appendix, one finds,

lim
Dv→0

t~v0 ,Dv!5f8~v0!. ~3!

ss
40

o-
.

FIG. 7. Right-hand side of Eq.~2! between 7 and 25 GHz fo
one sample configuration when considering a Gaussian pulse s
of 79.6 MHz bandwidth. This plot is indistinguishable from the pl
of the delay time versus frequency of a Gaussian pulse withs
52 ns.
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To illustrate this result, the time delay between 10 and
GHz is presented in Fig. 8 for various pulse widths and
compared to the phase derivativef8 for the same frequency
range @Fig. 8~e!#. We find experimentally that for a puls
with standard deviations5400 ns, which corresponds to
bandwidth of Dv/2p51/2ps;0.4 MHz, the time delay
and the phase derivative are almost indistinguishable.
nally, considering the total energy of the output pu
e(v0 ,Dv)5* uE(t;v0 ,Dv)u2dt, we find from Parseval’s
theorem@1# that limDv→0e5I . We are thus able to define
general statistical set of variables (e,t) that capture the sta
tistics of dynamics in mesoscopic systems and approach
variables (I ,f8) in the limit of narrow bandwidth pulses.

In conclusion, we have investigated the dynamics of wa
propagation through random media by considering the
ergy transmission coefficient and the local delay time (e,t),
which, in the limit of long-bandwidth limited pulses, ap
proach the transmitted intensity and phase derivative, res
tively (I ,f8). We demonstrate thatt is the integral over
frequency ofIf8 weighted by the spectral density of th
incident pulse. Fluctuations int are found to be particularly
large, for narrow-bandwidth pulses, whene is considerably
smaller than̂ e&. This generally occurs when a phase sing
larity in the static speckle pattern passes near the dete
This indicates that the statistics oft and I are related. Mea-
surements@35# and calculations@36# of key dynamical dis-
tributions and correlation functions, which will be present
elsewhere, confirm the interplay betweenI andf8. Here we
have dealt with single-channel quantities. When conside

FIG. 8. Time delay between 10 and 11 GHz for an input pu
with ~a! s510 ns, ~b! s530 ns, ~c! s5100 ns, and~d! s
5300 ns. The phase derivative for the same frequency rang
shown in~e!.
1
s
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he

e
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-
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g

the spatially averaged delay time, however, it is appropr
to weight the local delay time by the energy transmiss
coefficient, which isIf8 in the limit of narrow bandwidth
pulses. The sum ofIf8 over all incident and outgoing chan
nels is proportional to the density of states and is in ma
respects analogous to the conductance, which is the sumI
over all input and output channels. We expect that large fl
tuations in the spatially averaged delay time will occur a
result of spatial correlation inIf8 just as enhanced conduc
tance and transmission fluctuations arise as a consequen
spatial correlation ofI. Thus the observations in this pap
should form the basis for treating some of the dynami
aspects of mesoscopic physics.
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APPENDIX

To prove Eq.~2! we first express the transmitted intensi
as

uE~ t;v0 ,Dv!u25E E dv1dv2Ẽ* ~v12v0 ,Dv!

3Ẽ~v22v0 ,Dv! ei ~v12v2!t, ~A1!

where Ẽ(v2v0 ,Dv)5gv0 ,Dv(v)E(v) is the Fourier
transform of the transmitted field for a given pulse sha
gv0 ,Dv(v). Takingv15v andv25v1h, we calculate the

numerator oft in Eq. ~1!:

E uE~ t;v0 ,Dv!u2t dt

5E dtE dhE dv te2 iht

3Ẽ* ~v2v0 ,Dv!Ẽ~v1h2v0 ,Dv!

5E dtE dhE dvF i
]

]h
~e2 iht!G

3Ẽ* ~v2v0 ,Dv!Ẽ~v1h2v0 ,Dv!.

~A2!

Assuming thatgv0 ,Dv(v) is vanishing at infinity, we find
after integrating by parts

E uE~ t;v0 ,Dv!u2t dt

52 i E dhE dt e2 ihtE dv Ẽ* ~v2v0 ,Dv!

3
]

]h
Ẽ~v1h2v0 ,Dv!

e

is
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52 i E dh 2pd~h!E dv Ẽ* ~v2v0 ,Dv!

3
]

]v
Ẽ~v1h2v0 ,Dv!

522ipE dv Ẽ* ~v2v0 ,Dv!

3
]

]v
Ẽ~v2v0 ,Dv!. ~A3!

Writing Ẽ5uẼueif, we obtain
et

ev
.

ys

ev

e

t

w

v

tz

tt.
E uE~ t;v0 ,Dv!u2t dt52pE uẼ~v2v0 ,Dv!u2f8~v!dv.

~A4!

The calculation of the denominator of Eq.~1! is straightfor-
ward:

E uE~ t;v0 ,Dv!u2dt52pE uẼ~v2v0 ,Dv!u2dv,

~A5!

which gives Eq.~2!.
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