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Multisoliton perturbation theory for the Manakov equations and its applications
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The effect of small perturbations on the collision of vector solitons in the Manakov equations is studied in
this paper. The evolution equations for the soliton paramégenplitude, velocity, polarization, position, and
phasesthroughout collision are derived. The method is based on the completeness of the bounded eigenstates
of the associated linear operator lip space and a multiple-scale perturbation technique. These results are
applied to the coupled nonlinear ScHiager equations, which govern the pulse propagation in birefringent
nonlinear optical fibers. Both transmission and repulsion scenarios are predicted. More interestingly, it is found
that, near the transition from transmission to repulsion, the collision outcome is very sensitive to the cross-
phase modulational coefficient and initial soliton parameters. Rapid and considerably large oscillations in the
parameters of the final vector solitons are observed. All these predictions are confirmed by direct numerical
simulations. Applications of these results to ultrafast soliton switching devices are also discussed.
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I. INTRODUCTION called vector solitong7,25]. The collision of vector solitons
is critical in many optical switching devices and nonlinear
Nonlinear pulse propagation in optical fibers has beerpptical telecommunication networks. In all-optical soliton
studied over 30 years. The idea of using optical solitons agwitching, various ultrafast digital logic gates have been pro-
information bits in high-speed telecommunication systemg0sed and experimentally demonstrafi¢8,16. These logic
was first proposed in 197Rl], and then demonstrated ex- gates utilize the phase or frequency shift created by the col-
perimentally in 1980[2]. In the following years, as fiber lision betvs_/een orthogonally polarized solitons. They can op-
technology advanced, interest in optical soliton transmissiofgrate at bit rates up to 0.2 THz. In long haul telecommuni-

started to increase. Multigigabits transmission over mor&ation systems, PDM and WDM technology have been

than 10000 km was reported regularly starting in 1991. T*plored. In a PDM system, soliton_s are Iaunc.hed .alternately
: 3]long the fast and slow axes of a birefringent fiber in order to
reduce the tail interference of adjacent solitgdg]. This

techniqgues such as wavelength division multiplexing : S ;
(WDM), polarization division multiplexingPDM), and dis- technigue could doub!e the transmission rate of a single-
' ' wavelength channel with little increase in bit error rate. In a

persion management have been proposed and utilized. Var\'/VDM system, multiple channels with finite frequency sepa-

ous all-optical ultrafast soliton switches have also been d€zaiiqng are utilized. This technique could increase the total

signed and demonstrated. These techniques have Spurrgd,smission rate of a communication line by many fold. But
fresh interest in the theoretical modeling of pulse propagaghen these two techniques are combined, collision between
tion and collision in the underlying communication systems.solitons in different channels will arise. This will alter the
In an ideal fiber, optical solitons can be modeled approxipolarization states of the originally orthogonal solitons, and
mately by the nonlinear Schinger (NLS) equation, whose  thus ruin the benefits of the PDM system. In fact, it has been
solution behaviors are completely knowd4]. But in real-  shown recently by experiments and theoretical analysis that
ity, optical fibers are birefringent. Pulses travel at slightlythe WDM and PDM systems are incompatiljte8,19. In
different speeds along the two orthogonal polarization axesrystals, collision of beam@patial vector solitonds also an
This effect has been analyzed 6], where two coupled interesting question. A spatial soliton logic gate based on the
nonlinear Schrdinger (CNLS) equations were derived for interaction of two orthogonally polarized beams has also
the pulse propagation along the two polarization axes. In &#een proposefil2,2Q.
linearly birefringent fiber, the cross-phase modulational Collision of vector solitons in the CNLS equations has
(XPM) coefficient is 2/3. But it may take other values if the been studied beforf21,23-23. If the XPM coefficient is
birefringence is elliptic[6]. If the birefringence randomly one, the equations are the integrable Manakov equations.
varies along the fiber due to bending, twisting, and the enviThe soliton collision is elastic, and the outcome has been
ronmental perturbations, the pulses evolve according to thexplicitly specified[21,22. But in many situations, this co-
Manakov equations with corrections caused by polarizatiorefficient is not equal to one. Furthermore, small perturbations
mode dispersiori8,9]. The CNLS equations also arise for such as polarization mode dispersion, third-order dispersion,
beam propagation in crystdl&0—12. In this case, the XPM and Raman scattering may also need to be considered. In
coefficient can be very close to one. Water waves is anothesuch cases, the collision is inelastic and more difficult to
field where these equations are relevi8,14]. analyze. In the work23-25, such small perturbations were
Birefringent fibers also support optical solitofteey are  neglected, while the XPM coefficient was taken different
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from one. In[23], the authors studied this inelastic collision out the collision. Such information is valuable for under-
between two orthogonally polarized solitons. They numeri-standing the collision process of vector solitons in the
cally demonstrated the transmission, reflection and fusiopresence of perturbations. As an example, we consider the
scenarios depending on the precollision soliton parameter€NLS equation with the XPM coefficient close to 1, and
They also qualitatively explained some of these scenariostudy in detail the collision of two orthogonally polarized
using a simple analytical estimate based on spatial resonanselitons. We find that both transmission and reflection sce-
between the two solitons. [[24], this collision was investi- narios can occur. Transmission typically happens when the
gated numerically. It was shown that large collision speedXPM coefficient or the collision speed is larger than certain
causes little radiation, but appreciable changes in the pulseritical values. Reflection arises when the opposite condi-
ellipticity. Smaller relative speed gives imperfect collision tions are true. In both cases, the soliton parameters are
for nearly orthogonal, linearly polarized pulses.[BE], we  changed considerably after collision. More interestingly,
showed that the CNLS equations support many types of veawvhen the collision changes from transmission to repulsion,
tor solitons. Only the single-hump ones are stable. Using ¢he parameters of the outcoming solitons are very sensitive to
NLS soliton in a slowly varying potential model, we ex- those of the incoming solitons and the XPM coefficient.
plained certain types of transmission and reflection behavRapid and appreciable oscillations in the parameters of the
iors. We also showed numerically that collision of two vec-outcoming solitons are observed just before and after the
tor solitons could create one or more new vector solitons itransition. All these theoretical predictions are confirmed by
the XPM coefficient is large. our direct numerical simulations. We also find, through nu-
Despite the above efforts, a rigorous analytical theory demerical calculations, that two colliding solitons can also fuse
scribing the collision process has still been lacking. In thisinto one, or new vector solitons can be created, after colli-
paper, we present such an analytical theory. We study thsion. This may happen when the XPM coefficient is not close
collision of two vector solitons, based on the perturbedto one, which lies outside the regime of the current pertur-
Manakov equations: bation theory. In the end, we discuss the implications of
these results to digital soliton logic gates, and propose a
A+ At (JA]?+|B|2)A=eM(A,B,dy,d,), (1.1a  soliton-repulsion logic gate using birefringent fibers.
This paper is organized as follows. In Sec. Il, we deter-
iB,+ B+ (|B|2+|A|)B=€N(A,B,d,,d). (1.1  mine the exact two-soliton solution of the Manakov equa-
tions by the Hirota method. In Sec. Ill, we derive the evolu-
tion equations for the soliton parameters throughout collision
for the perturbed Manakov equations. In Sec. IV, we apply

solitons collide with each other elastically, except that their Eese lrlesults ]EO the CrI]\ILS echuatloln In gartllcular Wedséudy

polarizations may change after collision. If the |ncom|ngt e collision of two orthogonally polarized solitons, and dis-
Luss the analytical and numerical results in detail. In Sec. V,

We summarize the main results obtained in the previous sec-

such change will not occur. Whesn<1, Eqgs.(1.1) are the q | h i i hing d
perturbed Manakov equations. Generally, all the soliton patlons and explore their applications to soliton switching de-

Here A and B are complex functions, and<1. When e
=0, Egs.(1.1) are the integrable Manakov equations. Vector

rameters will change after collision. Three types of analytlcal Ces.

approaches are known for studying the dynamics of solitons

and their collisions in perturbed integrable systems. They are Il. EXACT TWO-SOLITON SOLUTIONS
the variational principle method, the direct perturbation tech- IN THE MANAKOV EQUATIONS

nique based on a Green’s function, and the perturbed inverse
scattering method. These methods have been comprehens:
sively reviewed iff 26]. Some of the recent contributions can
be found in[27-30. As far as soliton collision is concerned,
these methods have been applied to the KdV, modified KdV

ﬁt?atzﬂg[?g rzdé) nczﬂglgsnslgg:grggoSi%%aggn; ;'gﬂegfpz the polarization and phase variables of the solitons, and re-
formulate their solution.

soliton pair into a breather and transmissive collision, have ™ * o 0o el vion of the Manakov equations is
been analyzed in detail. The perturbation theory for a smgleglven b
soliton of the Manakov system has also been develope y

When € is zero, Egs.(1.1) are the Manakov equations,
which allow exactN-soliton solutions. These solutions can
be determined by Hirota’s method. The two-soliton solution
has been given by Radhakrishnetnal. [22]. For the conve-
hience of the present analysis, we will explicitly introduce

[9,31,32. s
In the present paper, we study the soliton collision in the [A = 9030&;5 e—”*’ 2.1
perturbed Manakov equations. Our method is based on the Bj [singe 7|yt entn
closure of the bounded eigenstates of the associated linear
operator and a direct perturbation technigsee[33,29,3Q).  where
We first construct the exact two-soliton solution of the
Manakov equations by the Hirota method. Then, we employ n=ax+ia’t+ no, (2.2
this perturbation technique to the colliding vector solitons
under perturbations, and derive the evolution equations for a=r+iv, mno=&ti{o, (2.3

the amplitudes, velocities, polarizations, positions, and
phases of the two colliding solitons. Integration of these evoandr, v, 6, , §;, and{, are real constants. This soliton can
lution equations will give these soliton parameters throughbe rewritten as
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A cos@ei’ ot (20t 2o} We can see that it has ar_nplitud’ér, \_/elocity 2v, polariza-
B|= | singe-is|v2re o' secHr(x—2ut) tion 6, initial central position— &,/r, in-phase constant,,

and opposite phase constaht

+&o}- (2.4 The two-soliton solution is given by
|
€M+ a,e”2+en’t 7+t Sy et n2t 75 +S
A= , 2.5
14+em*t 7 +Riy @Mt 75 +So4 @i T2+ Sy 4 @2t M TRaq @ity + Mty +Rs (259
e+ Be"2+emn " TSy @mt et s+ Sy
B= " = , 2.5h
1+em* 7 +Riy @m+t s +So4 @7 + M2+ Sy 4 @72t 15 tRo @Mt Wl T2t 15 +Rs (2.5b
|
where 710= 710~ IN2V2r 4, (2.17
a2
=aXx+iagt+ , 2.6 — ' .
BRI Mo PO o= mat §In((e 2+ €53 - In2var,+ Hiyi+ 7)),
. . 2.1
a=retivg,  70= kot ilko, 2.7 (218
H H 0. = Ty = !
@, =cos8,e%, B.=singe %, (2.9 c0s#,=s;, sinf,=s;, (2.19
Ry _ K11 Ry_ Koo Sy K12 52:524—%(’)’1_’)’1) (22@
- * 1 - * 7 — T x>
arta; Azt a; a+a; We would like to remind the reader that, in the above two-
(29 soliton solutions{ay , 7o, 0k . 6« » K=1,2 are the intermedi-
lay— ay|? ate parameters. The two separate solit¢dd4) actually
178 ; o - -
R3— AT mral)la +a*|2(K“K22_ K12K21), have amplitudes2r,, velocities 2, polarizationsg; (6,),
1H RS2 T2 /191 T “2 (2.10 initial positions— &, /1, in-phase constants,, and oppo-
' site phase constan(8,), respectively. It_is_ easy to show
[eS1] _ 7 r that, if these actual parameters of the initial solitons are
© e oL o ) ven. then the intermediat téysand , are det
g = = Ko1— K11/ given, then the intermediate parametéssand 5, are deter-
L] (ar+ai)(ar+ay) | A B2 (2.12 mined from the equation,
- 2i (8= 1)
eS2 az_al az- _al ) COt aze
= K12~ K22/, . — . (s,
%] (aptag)(aitay) LAl LA 1 5in 26, tan6,— (sir? 6, — D)% (%2~
. tand,(cos ,— D) — % sin 29,e% (%279
an
(2.21
ajal + BiBF
Kij -1 (2.13  Where
2(aj+aj) .
aj +a,
If we assume that the two solitons have different velocities, = ata’
1 1

say,vi>v,, then ast— —«, this solution reduces to two

separate one-solitons:

An] [cosger] em cosf,e' %2 e”2
— - —q ——— J— . T,
Bl [Sin61e™' ) L em 7t | sinGe %2 |1+ em2t 7
(2.149
where
_ e = =
m=axXtiait+t g, mo=&wtilv, (219

sieim=eS1/|eS12+]eS12,  sjelmi=eS/\/|e%12+|eS1|?,

(2.16

and the values ofyp,, are obtained from Egs2.17) and
(2.18), respectively.

As t—oo, the two-soliton solution2.5) also reduces to
two separate one-solitons:

[ A, cosf,e'’1 e’ cosf,e'%2 e”?
— ~ % X A% . —i <~ %
Bh Sinale"51 1+e7]1+7lf siné,e 192 1+e172+77§
(2.22

where the quantities with carets are given by relations similar
to Egs.(2.159—(2.20, with the bars replaced by carets, and
the indices 1 and 2 in them switched. Notice that after colli-
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sion, the solitons pass through each other. Their amplitudeghere¢, and ¢, (k=1,2) are real functions,
and velocities do not change, but the polarizations, phases,

and positions are shifted. These shifted values can be ob- Ek"‘izk:iait"'?ko, (2.29
tained directly from the precollision soliton parameters. For
this purpose, we define the unit vector ie.
cosfe! (o™ 9 — T T2 2T
c=| singei o~ (2.23 &= —2r ot + &k, L= (rg—vidt+ . (2.29

for a soliton(2.1). This vector determines the soliton’s po- Thus,. .before co|||5|on the solitons have amplltud@k,
and (2.22 of the two-soliton solution(2.5), it is easy to — &1y, in phaseg, and opposite phase%_l(az) respec-

verify that tively. Furthermore, for convenience, we will drop the bars.
. _
+_1 a;tax| _ ata —\ I1l. COLLIDING VECTOR SOLITONS
CL=7" % = C1+—(Cz “C1)C |,
xaj—aj| ar UNDER PERTURBATIONS
2.24
( 3 When e<1, the colliding soliton solution can be ex-
1a*+a,| a,+a* panded into a perturbation series,
T 1 2| _ 14
v s CRRL S L 2
X Q2741 2“1 A=Ap(r, v, i Ok, 6, kK=1,2)+ €A+ €Ayt
(2.24h
(3.13
where 2
B=Bh(rk,vk,§k,§k,0k,5k, k:1,2)+EBl+€ Bz+"',
(3.1b
a;+a} a;+al)(a,+al 172
| 3| (a;+a7)( 2! 2)|CI*~C£|2 | where
a;—ay| |a;—ay|
(2.25 t
_ . . ! . §k=_zf radt+ o, (3.29
andc, andc, (k=1,2) are the just defined unit vectors for 0
the precollision and after-collision solitons, respectivage
also[21]). These relations will readily give the shifted polar- _ ft 22
ization and phase values. It is clear from E524) that the &= O(r" vi) At Lo (3.2

soliton polarizations do not change; only in the case when

their initial polarizations are parallét; Iic; , i.e., 6; =6, , Due to the small perturbations, the soliton parametgrs
and |8, —8,|=0 or ), or orthogonal(c; L.c, , i.e.,|6; vk, éko, {ko, Ok andéy will be forced to vary. In the fol-

— 6, |=m/2). The position shifts of the colliding solitons are lowing, we derive the evolution equations for the soliton
also easy to obtain. Suppose that>v,. Then these shifts parameters throughout collision. The method we will use is

can be derived from Eq$2.14 and(2.22 as based on the completeness of the bounded eigenstates of the
associated linear operator and a multiple-scale perturbation
procedure.
Iny Iny When Egs(3.1) are substituted into Egél.1), the zeroth-
AXl:?' Axp=— ? (2.2 order equations are trivially satisfied singg andB, are the

exact two-soliton solutions of the Manakov equations. At

In the rest of this paper, we will treat the two-soliton ordere, we get

solutionsAy, andBy, as functions of the initial soliton param- Ld—R—W 3.3
eters[see Eqs(2.14)], ; (3.3

where

Al [A,

[BJ [ }(rlavlvglaglv011511r21U21521§2-‘92152) L=ig+ 03 )H, 3.4
(2.2 g3
|
2|Ap|*+|Bp? A% AnB} AnBh

e AL 2|An2+[Bul?  ARBR A} B -
Ai B ArBn  2By* A2 Bf ’ '

AR BR AnBS B’ 2|By|?+[An|?
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which is a Hermitian matrix, ization operator around a single soliton, which have been
. T discussed beforf]. In this way, we can show that the dis-
®=(A;,A1 ,B1,BI) ", (3.60  crete and continuous eigenfunctions in the null spadeare
. T orthogonal to each other. Furthermore, the nonzero inner
R=(M,—M*,N,—N*)", (3.7 products of the discrete eigenfunctions are
2 ~ ~
. v, W, )=V, ¥, )*=4i, 3.16
W:'gl {Wr Lirt ¥y ot W kot + Vg Lot + W, bkt (Wro¥a)=(Wge¥e) (3.163
+\I,§k5kT}! (38) (\vak,‘lfgk)z(\lfgk,\lka)* =4i, (316b
U =(An,AF By,B)T. (3.9 (W, W)= (¥, T )*=4icos2,, (3.160
Here,o3=diag(1- 1) is the third Pauli spin matrix, the sub- (¥, ¥s)=(Vs,¥,)*=—8ir,sin26,. (3.160
scriptT is the derivative with respect to the slow tinse and Ko KoK
the superscripT represents the transpose of a matrix. Here k=1 and 2. Notice that the baSTErk andflka have a

Even though the linear operathrin Eq. (3.3) is a partial
differential operator with variable coefficients, E§.3) can
still be solved. Here the key idea is to establish the complet
ness of the bounded eigenstated.af L, space, and define _
an appropriate inner product. We first study the null space of W Wo Ve ¥ W, Vs, k=12, (817
L. Recall that the two-soliton solutiof2.5) has 12 free pa-
rameters. The derivatives &8f with respect to each of these
parameters, i.e.,

secular term proportional tb To avoid such an undesirable
Jehavior, we use instead the equivalent set

which also spans the discrete subspace. The nonzero inner
products between them take the same form as E3%6),

with ¥, and¥, replaced by?, and¥,, respectively.

{\?,k,ﬁka,wgk,wgk,q'0k,\P5k, k=1,2 (3.10 Now, we are ready to solve the linear equati@®d) by
expanding the solutiod and the forcing ternR—W into
span the discrete subspace of this null space. Here, this complete set of’s eigen-functions:
T, =W, 2tV —1¥,), (3.11) 2
n= YA g) D= {cy W, +Cu W, +CyW, +Cy W,
=] k k Kk Kk
Y, =V, —2t(rW +o ¥, (3.12
+c5 Wy +CgV +fC(I) X, N dN,
The continuous subspace consists of eigenfunctions Sk T ek 5'<} APl )
d.(x,t,\), which are oscillatory at infinity. Here the param- (3.189
eter\ is the wave number of the function at infinity, which
characterizes the continuous eigenfunction. 2

The above discrete and continuous eigenfunctions forma  R—-W= >, {du¥y +dy ¥, +dg W, +dy P,
complete set. This has been shown[&B]. We define the k=1
inner product as

+d5kwgk+d6kq’5k}+f Dy ®.(x,t,N)d\.
— *T
(1,¢2)= J',x,l’[/l ( 03) PodX. (3.13 (3.19
Here, thec, s and C, are functions oft. Using the inner

Then, if »; and ¢, are inL’s null space, i.e., -
products of the equivalent s€8.17) to Eq. (3.19, we can

(o3 determine the expansion coefficiemts, from the following
P=1 - Hi, k=1,2; (3.149  equations:
3
H 1
then, it is easy to show that Mertidie= i(RW), (3.209
d vertidi=3(R¥,), 3.20
gt (¥ ¥2)=0. (3.15 krtida=3(RV) (3.200
+id%=—-3(RW¥,), 3.20
In the proof of this relation, the fact that is Hermitian has Slortid3=—a (R, (3.209
been used. - - L
We see from Eq(3.15 that, to evaluate the inner prod- ko Hidgtcos B (Sirtidg) = —7(RWr ),
ucts of two functions inL’s null space, we can take— (3.20d
—oo, Recall that, in this limit, the two-soliton solutioi2.5) - _ - )
reduces to two separate one-solitpsse Eqs(2.14]. Thus, ~ COS By(rr+id3y) —2ry sin 260, (Oyr+idz) =2(R, V5 ),

L's eigenfunctions are also simplified to those of the linear- (3.208
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(R¥,) are inserted into Eq¢3.20), such evolution equations will be
5kT+id§k=.—;. (3.20f  obtained. When the original time variable is restored, and
8r sin 26, Egs.(3.2) used, these evolution equations can be written as

When we substitute the two expansiof®18 and (3.19

) . s ) €
mto Eq. (3_.3) and compare the coefflc_lents of the discrete rkt:—(R,‘I’;k), (3.233
eigenfunctions, we find that the evolution equations for the 4
coefficientsc,, in Eq. (3.18 are
€
ichk=dn, Nn=1,2,586, (3.21a vie=7 (RW¥g), (3.23b
i(Cék‘l‘ 2Ukclk+ 2rk02k):d3k, (321b €
_ fu=—2nok— 7 (R, ), (3.230
1(Cax— 2rCak+ 201 Co) = duyy, (3.210
wherek=1 and 2, and the prime represents the derivative s 2 €
with respect td. Notice that, as— oo, the forcing termsl,, {ke="Tk~ Vic— COS Dy~ Z(R’\I’fk)’ (3.23d
can be easily calculated from EQ4$3.20 using the
asymptotic forms ofA,, and B, given in Eq.(2.22. If the _
perturbatiorR does not depend drexplicitly, then the space P :4 COS By i e(R’\P‘Sk) (3.239
integrals in the inner products of Eq8.20 can eliminate kt 8ry sin 26y '
thet dependence, and one obtains a constant value for each
of these forcing terms. These terms will generate secular and e(RY,)
even quadratic growth imb’'s expansion coefficients,, 5kt:—_"- (3.23
which will invalidate the perturbation seri¢8.1). To sup- 8r sin 2y

press this growth, we need to impose the condition
Integration of these differential equations will determine the
(3.22  evolution of the soliton parameters throughout collision.
With some more effort, the evolution of the continuous
These conditions will completely determine the slow timemodes in the solutiori3.18 can be similarly obtained. But
evolution of the soliton parameters. Indeed, when E822  this lies outside the scope of the present paper.

dy=0, n=1,..6, k=12.
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IV. SOLITON COLLISIONS IN THE CNLS EQUATIONS Thus the evolution equation@®.23 for the soliton param-
o S s ' eters reduce to
In polarization-maintaining birefringent fibers, pulses
along the two orthogonal polarization axes are governed by 1-8
the following CNLS equations: rkt:Tlék* (4.39
A+ At (JAIZ+ BIBI)A=0, (4.19 1-g
) 5 5 Ukt:Tlgky (4.3b
iBi+ B,,+ (|B|*+ B|A|)B=0. (4.1b
Here we did not explicitly include the group velocity terms. = — 21 U — 1_'B| (4.30
The reason is that such terms can be eliminated by a simple 4
phase transformatiorisee, e.g., Ref[34]), not that we
wanted to neglect them. But we did neglect the attenuation, 2 —B
higher-order dispersion and Raman effect. For soliton Ckt=Tk Vi COS DS — 4 ey (4.3d
switching devices, this approximation is justified, since these
effects are weak, and the switching fibers are short. How- 4 cos B ri— (1—B)1 4
ever, for long-distance communication systems, the approxi- Opi= 8 sn2 X (4.3¢
mation needs careful scrutiny. For linearly birefringent fi- FieSIN 2y
bers, the XPM coefficienB is 2/3. This is the case in logic 1 |
gates and switches. For elliptically birefringent fibegsill 5 (A=), .31
take other value§6]. In telecommunication fibers, the bire- K 8ry sin 29, '

fringence is random. In that casg,is averaged to be one.
Meanwhile, the linear and nonlinear polarization mode dis-where
persion terms will appear on the right-hand side of E4<l)
[8,9]. In this section, we only consider the polarization- *
maintaining fibers, where Eqg4.1) are the appropriate F=1cvi 66 S k=1,2)=ﬁw|AhBh|2dx.
model. (4.9
Comparing Egs(4.1) to Egs.(1.1), we see that
For simplicity, we consider the collision of two initially or-
e=1-8, M=|B|?A, N=|A|’B. (4.20  thogonal vector solitons, witlh;=0 and 6,= /2. In this
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FIG. 3. Numerical simulation of Eq$4.1) with 8=2/3 andv
=0.4. The initial condition is given by Eq$4.5) with other param-
eters specified in the text.

case, the initial phase constafg and o (k=1 and 2 can
be scaled out. Thus, before collision, the two solit¢hd 4
can be rewritten as

A(X,t) =\/irle‘{”1”“§*”§>‘} sechir ;x—2r v t+ &),
(4.59

B(x,t)= ﬁrze‘{vz”“g‘“%)‘} sechir ,x—2r vt + £).
(4.5b

Without loss of generality, we take, = —v,=v/4(>0). So
the approaching velocity of the two solitonsiisWe also fix

r,=1.2 andr,=1, so the initial amplitudes of the two soli-
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FIG. 4. Numerical simulation of Eq$4.1) with 8=2/3 andv
=1.6. The initial condition is given by Eq#$4.5).

affect the collision outcome as long &g>0 andé,,<0 are
large enough. We fi¥,,=10 and&,,=— 10 in our calcula-
tions. Thus, the two solitons are initially located at
—&10/r1~—8.33 and— &,0/r,=10, respectively. The only
free parameters left are the XPM coefficighaind the colli-
sion velocityv, which will be used as control parameters.
For given B8 and v values, we numerically integrate Egs.
(4.3 by the adaptive Runge-Kutta-Fehlberg method. Note
that ,=0 and#/2 are singular values in these equations. In
order to initiate the integration, we actually togk=10"°
and #,=m/2— 10" ®. Other choices of, and 6, values very
close to 0 andr/2, respectively, do not affect the results. The
integral | in Eq. (4.4) is evaluated by the trapezoidal rule
with error control. The overall accuracy of our computations
is about 10°.

tons are approximately 1.6971 and 1.4142, respectively. We first carry out two individual computations to show
They are chosen different so that we can track and identifyypical evolutions of soliton parameters throughout collision.
them after collision. The choices for the initial position pa-In the first case, we selegg=2/3, which corresponds to

rametersé;g and &, can be totally arbitrary. They will not

linearly birefringent fibers, and=0.4, which gives the ap-

TABLE I. Comparison between numerical and analytical values of the soliton parameters after collision.
The initial conditions are given by Eq&t.5 with other parameters specified in the text.

I U1 01 ro P 6,
case 1: analytical 1.4240 -0.1096 0.4120 0.7760 0.2268 1.4963
B=2/3,v=0.4 numerical 1.3652 —0.1148 0.3982 0.7557 0.2448 1.5026
case 2: analytical 1.2746 0.3448 0.3276 0.9254 —-0.3885 1.3192

B=2/3,v=1.6 numerical 1.223 0.316 0.325 0.891 -0.363 1.297
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proaching velocity 0.4. For these values, the evolution of thesimilar changes as in the first case. One seemingly intriguing
soliton parameters are shown in Fig. 1. We observe that cokeature of this collision is that, after transmission, the polar-
lision takes place at~40. During collision, the velocity of ization parameter®), do not approach constants, and the
the right-moving soliton steadily decreases, and becomegositions and phaseg, ¢, andd, do not approach straight
negative when it emerges from the collision. This means thalines, as one would expect. Actually, this is easy to explain.
this soliton is reflected back by collisiofthis can be seen Recall that these parameters correspond to those of the two
from the position plots as well The same happens to the separate solitons before collisidpee Eqs(2.14)]. After a
other soliton. It initially moves to the left, but turns around transmissive collision, the values éf, ¢, 6¢, and d, are
after collision. This reflection scenario has been reported ishifted (the amplitudesr, and velocitiesv, remain the
[23,25. It is entirely due to the perturbatiorid.2), because samg. These shifted values can be obtained from EgR24)
without them, the two solitons would pass through eachand(2.26). In Fig. 2, we also plotted these shifted parameters
other (see Sec. )l The amplitudes of the two solitons also for the outcoming vector solitons. They behave as expected.
changed after collision: the larger soliton gets even largeriNotice that the polarizations of the transmitted solitons have
and the smaller one gets even smaller. Thus energy has beshifted away from 0 ané/2. This is the same daughter wave
transferred from the smaller soliton to the larger one. Addi-creation mentioned earlier. It is caused by the perturbations
tionally, the polarizations of the two solitons also shifted. (4.2), because in the Manakov model, two initially orthogo-
This means that the energy inside a vector soliton has beemal vector solitons do not change their polarizations after
partially transferred from one polarization axis to the othertransmission(see Sec. ) If transmission does not take
due to the collision. This is the so-called daughter weme place, there are no such shifts in the soliton parameter values.
shadow creation discussed ir25]. This is why in the first case the parameter values shown in
If we increase the colliding velocity, we expect the two Fig. 1 are the actual ones of the reflected vector solitons.
solitons to pass through each other. This is indeed the case. To check the above analytical results, we directly simu-
For 8= 2/3 andv = 1.6, the solutions of Eq$4.3) are shown lated the CNLS(4.1) with the initial conditions as given by
in Fig. 2. We see that, when the solitons come into collisionEgs. (4.5. Our numerical scheme is the pseudospectral
their velocities decrease significantly as before. But in thisnethod in space, and the Runge-Kutta method in time. The
case, they pick up speed again when they emerge from thesults for both cases discussed above are plotted in Figs. 3
collision. As a result, the solitons pass through each othem@nd 4, respectively. As predicted, the reflection scenario is
and settle down to constant speeds along the original dire@bserved in Fig. 3, while the transmission scenario is seen in
tions. This transmission scenario has also been studied b&ig. 4. The quantitative comparison between numerical and
fore [23—-24. The amplitudes of the two solitons underwent analytical values of the soliton parameters after collision are
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shown in Table I. We see that the agreement is quite sati®f this section and also Fig.)8When g further decreases
factory, considering that the perturbations in these cases amose to zero, the collision will be transmissive again. The
not really small €=1/3). reason is that, whep=0, the CNLS(4.1) become two de-
Next, we systematically study the postcollision vectorcoupled NLS, and the two orthogonal solito@ds5) will pass
solitons asB or v continuously varies. We first fix the colli- by each other with no collision at all. But thegeegimes lie
sion velocityv =0.4, and integrate Eq$4.3) for variousB  outside the scope of the present perturbation the@yln
values. The parameters of the vector solitons after collisiothe 6, and 6, plots, there are sharp corners ngar=0 and
againstg are plotted in Fig. §solid curve$. The following  #,=w/2. This is because we restricted the soliton polariza-
features can be observegd) For smallerg values, the soli- tions to be in the intervdlO, #/2]. Without this restriction,
ton velocities after collision have the opposite sign of theirsuch spikes would disappear.
original ones. This simply means that the solitons are re- Another noticeable feature in Fig. 5 is that the transition
flected by collision. For largeg values, the velocities after from reflection to transmission is not a smooth process. In
collision are of the same sign as their original ones. Thus théact, asg approache@. from either side, the soliton param-
solitons pass through each other after collision. The transieters after collision start to oscillate, and the oscillating fre-
tion from reflection to transmission takes place @t  quency gets higher and higher. To see it more clearly, we
~0.9733.(2) At smaller 8 values, the larger of the colliding twice magnify the transition regions in the first soliton’s pa-
solitons gets even larger, and the smaller of them gets evenameters and plot them in Fig. 6. Each time we zoom in, we
smaller, after collisions. In other words, in this case, collisionsee new and faster oscillations emerging. This process ap-
transfers energy from the smaller soliton to the larger one. Apears to continue indefinitely. The oscillation amplitudes in
larger B values, it is just the opposité€3) After collision, the  r4, vq, and 6, are about 4%, 50%, and 200% of their aver-
polarizations of the vector solitons are generally shiftedage values, respectively. Thus, in the transition region, the
away from 0 andn/2. In particular, for smalleB values, outcoming solitons are very sensitive to tBevalue. Slight
each of the two solitons after collision still retains most of itschanges in8 could alter the outcoming soliton parameters
energy in the original polarization axis in which energy is significantly. Similar behaviors are observed for the second
launched(since the polarization shift is less tham4). But  soliton as well. It makes the prediction of the vector solitons
for larger B values, the solitons can transfer most of theirafter collision somewhat uncertain in the transition region.
energy to the opposite polarization axes by collisigf.  This uncertainty is especially serious in the velocities and
When B decreases below roughly 0.75, the velocities of thepolarizations of the outcoming vector solitons because of the
reflected solitons start to get smaller. This suggests that for eelatively large and rapid oscillations in those parameters.
certain range of smaB values, the velocities of the reflected  All these analytical predictions have been verified by di-
solitons may become zero, thus the two solitons will fuserect numerical simulations. In Figs. 5 and 6, the numerically
into one after collision. This is indeed the casee the end obtained soliton parameters after collision are also plotted
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for comparison. We see that whehis close to 1, which is to their original ones. This is expected, since wheris
the regime where the above perturbation theory is based, tHarger, the collision is faster, and thus weaker. As a result,
agreement between the numerical and analytical values ihe solitons will change less in such a collision. One more
very good(as expected This agreement deteriorates whgn feature in Fig. 7 is that the transition from reflection to trans-
moves away from 1, but is still satisfactory over a broadmission is also sensitive and oscillating rapidly, just as in the
range of 8 values centered around 1. In particular, the nu-first case. In this region, the analytical and numerical values
merical results confirmed the jittery transition from reflectiondo not match well: the numerical curves are less violent. The
to transmission, which was predicted analyticalee Fig. reason is twofold. First, the perturbation parameterl/3 is
6). The numericalB, value for transition isB.~0.9730, not very small here. Thus the theoretical results are subject to
which agrees remarkably well with the analytigal value. errors of that order. Second, the soliton parameters in this
Next, we fix 8=2/3, and study the vector solitons after region are sensitive to the value. Nonetheless, the analyti-
collision for various collision velocities. The analytical cal curves still qualitatively capture the overall features of
soliton parameters are obtained by integrating E48) and  the numerical ones.
applying the shift formulae in Sec. Il in the case of a trans- From the above results, we conclude that the present per-
missive collision. These results are shown in Fig(s@dlid turbation theory successfully describes the reflection and
curves. Also plotted are the numerical valugslashed transmission scenarios of the collision frclose to 1. But
curveg for comparison. At small collision velocities, the col- there are other collision scenarios, notably fusion and cre-
lision is reflective, while at large collision velocities, it is ation of new vector solitons, which may occur@values far
transmissive. The transition valwe is predicted to be 1.05, away from 1. The present theory is inadequate in describing
which can be compared to the numerical value 1.03. On¢hem. Fusion typically occurs whesis small, and the col-
interesting feature in Fig. 7 is that, when-0, the param- lision is slow. One example, witl8=0.3 andv=0.4, is
eters of the reflected solitons approach certain limits. Foshown in Fig. 8. Creation of new vector solitons can happen
instance, we analytically predict that the velocitias;2and  when 8 is large, and the collision velocity is moderate. An
2v, approach—0.2046 and 0.3892, respectively. It is veri- example, with8=3 andv =1.6, is shown in Fig. 9. We will
fied by the numerical resultsee Fig. 7. This means that, discuss such collisions elsewhere.
for a slow collision, no matter how slow it is, the collision  Finally, we wish to compare the above collision results in
outcome is always the same. In particular, the outcominghe CNLS equations to those between kink and antikinks in
vector solitons always move at fixed nonzero speeds. This ihe ¢* nonlinear Klein-Gordon equations. In th# theory,
quite remarkable. Another feature in Fig. 7 is thatpagets  two types of collision scenarios between a kink and an anti-
larger, the soliton parameter values after collision get closekink have been reported5,36. One is reflection, in which
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the kink and antikink are reflected from each other. This V. DISCUSSION

happens for large collision velocities. The other is fusion, in  In the previous sections, we analytically studied the col-
which the kink and antikink capture each other and form dision of vector solitons in the perturbed Manakov equations,
long-lived, spatially localized, time-oscillatory state. This oc-and applied the results to the collision of orthogonally polar-
curs for small collision velocities. In the transition region, ized solitons in the CNLS equations. We showed that, in the
intervals of collision velocity for fusion and reflection alter- presence of perturbations, the soliton parameters, such as the
nate with each other. This alternation gets faster and faster &nplitudes, velocities, and polarizations, will change after
the collision velocity approaches a critical value. This so-Collision. We found that both transmissive and repulsive col-
called resonance structure was explained semianalytically iisions can occur, depending on the combinations of initial
[35]. The basic idea is that there exists an internal mode foparameter values. In the region of transition from transmis-
the kink and antikink in thes* equation. During collision, SION to reflection, .the coII|_S|on outcome is sensitive to the
this mode can temporarily store energy taken away from th arameters of coI.I|d|r_19 solitons and the XPM coefficigt
colliding waves’ kinetic energy, and give it back when the onsiderable oscillations were observed in the parameters of

LT . the outcoming vector solitons. These results were compared
collision is over. In our results for the CNLS equations, we 9 P

. e - L e to the direct numerical simulations, and very good agreement
also identified two collision scenarios: transmission and re-

. - ; o .~was demonstrated.
flection. In the transition region, we observed oscillations in

. . - L Next we discussed the applications of these results to op-
the parameters of the outcoming solitons. This is reminiscent.o switches. We have shown above that. for relatively
of the behavior in thep* i

theory. Furthermore, we have dis- gma)l collision velocities, the orthogonally polarized solitons
covered recently that internal modes also exist for vectofy polarization-maintaining fibers undergo reflective collision
solitons in the CNLS equations37]. This raises a strong (see Figs. 3 and)7 This suggests the interesting possibility
possibility that the resonance mechanism proposeB#  of designing the soliton-repulsion logic gate using birefrin-
may also be at work here. But for the parameter values wgent fibers(such a logic gate using dual-core fibers or beams
chose, the transition is clear-cut. There is no alternation bein crystals has been proposed recently[38,12). In this
tween parameter intervals for transmission and reflection. llogic gate, the control and signal pulses are launched succes-
would be interesting to see if this will change when the ini-sively along the fast and slow polarization axes of the bire-
tial soliton parameters are varied. To answer this questiorfringent fiber. If the relative group velocity of the two pulses
substantially more numerical and analytical work will be is moderately small, then they will be reflected by each other
needed. after collision. This reflective collision significantly increases
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