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Soliton interaction for a nonlinear discrete double chain
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We investigate solution behavior with an emphasis on the localization of a double chain built up from two
coupled one-dimensional Ablowitz-Ladi¢AL) lattices. Whereas each one-dimensional AL lattice is com-
pletely integrable, the AL-type coupling between them causes the system to become nonintegrable. With
regard to the stationary system we present a rigorous proof of its honintegrability by means of the Melnikov
method. Concerning stationary localized states, we identify the parameter regions for which the origin of the
stationary map represents a hyperbolic equilibrium point. We show the existence of transversal intersections of
the stable and unstable manifolds of the hyperbolic point. The associated homoclinic orbit is used to excite
standing bright two-soliton-like excitations on the double chain. We compute both, analytically as well as
numerically, the dynamical energy exchange rate between the two AL strings when on each of them a single
AL soliton is launched. It is shown that the soliton interaction depends on the distance between the solitons and
their mutual phase relation. There exist distinct energy exchange regimes ranging from suppressed to pro-
nounced energy exchange. In the latter case directed energy flow from one chain into the other takes place.
Eventually almost all energy is stored in a single chain in the form of a breather solution showing a bias toward
one-dimensional coherent excitation patterns. In general, the single solitons from the integrable limit with no
mutual coupling survive as moving breathers under the action of the nonintegrable coupling, and thus experi-
ence no lattice pinning. The only pinned solution we obtained resulted from the homoclinic orbit derived from
the stationary system. As an interesting dynamical feature we observe that a single soliton may split into two
moving breathing states of different amplitudes as well as different velodigd€63-651X99)07702-§

PACS numbgs): 41.20.Jb, 63.20.Pw, 63.20.Ry

[. INTRODUCTION tial equation, namely, the continuum nonlinear Sclimger
(NLS) equation, as a model of significant physical relevance.
Discrete nonlinear lattice systems have attracted consideirhe latter represents a completely integrable equation, and
able interest in the last yeaf$—25]. By now it is well es-  finds application in numerous physical contexts ranging from
tablished that nonlinear lattice systems may exhibit self-optical pulse propagation in nonlinear fibers to condensed
localized excitations, e.g., in the form of solitons or matter physics, fluid mechanics, and biophysics. In particu-
breathers, viz. spatially localized and time-periodic solutionslar, soliton solutions as self-localized states play an impor-
While for exact soliton solutions the integrability of the cor- tant role. The one-dimensional AL system is also integrable,
responding lattice system is required, breather solutions ar@nd supports soliton solutions which are essentially the dis-
also found in nonintegrable lattice systems. Recently, rigorerete version of the NLS solitonk36—38. However, for
ous results have been obtained concerning the existence anmthny physical contexts the+Il description is insufficient,
stability of breathers in nonlinear lattic$8,26,27. Intrin-  and more than one spatial extension has to be taken into
sic localized modes have been observed experimentally in amccount. There is yet another aspect making the study of
electric network28]. Many investigations, mostly of a nu- coupled AL systems worthwhile, namely, the question of
merical nature, have been performed to explore the statiorwhether integrability is provided only in the one-dimensional
ary and dynamical properties of self-localized states. How<¢ase. In other words: Do coupled AL systems maintain inte-
ever, most studies focused on systems extending in ongrability and exhibit self-localized states in the form of soli-
spatial direction only, while less has been done with respedbns? We know from the inverse scattering transformation
to lattice systems with more than one spatial dimension. Théhat the solutions of one-dimensional AL systems do not
dynamics of two coupledl+1)-dimensional nonlinear con- interact in nonlinear spectral spad®6,37. Therefore,
tinuum Schrdinger equations were studied in the context ofcoupled AL systems offer a possibility to address the issue of
nonlinear optics, where they describe pulse propagation isoliton interaction for instance in the situation when either
birefringet optical fiber§29-32. Furthermore, in Ref§33—  chain is initiated with an exact AL soliton.
35] the dynamics of a system consisting of two coupled In the current paper we undertake a detailed discussion of
chains of masses representing a DNA model were investithe stationary and dynamical properties of the AL double
gated. chain with an emphasis on the excitation of localized solu-
In the present paper we study a discrete double chaitions. In Sec. Il we introduce the model of the double chain.
consisting of two coupled one-dimensional Ablowitz-Ladik An investigation of the stationary system is performed in
(AL) lattice strings. Choosing the AL system as the back-Sec. Ill. The latter can be formulated in terms of a symplec-
bone for the double chain was also motivated by the facttic four-dimensional map. We study its equilibrium points
that it realizes a possible discretization of a partial differen-and their stability properties in Sec. IV. As long as the map
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origin represents a hyperbolic equilibrium, the formation of 5 I

stationary bright solitonlike solutions on the double chain is C={H. @}, W={H W, ©®
possible. However, the four-dimensional map is noninteyie|ding the (deformed canonical equations

grable, which is shown rigorously by means of the Melnikov
method in Sec. V. We exploit the homoclinic orbit associated

with the intersecting stable and unstable manifolds of the iP,= A (1+u|®,|?),

unstable map origin to createpgnnedtwo-soliton-like state Idy

on the double chain. In Sec. VI we study the dynamical

energy exchange between the two AL strings, when on each . oH 5

of them an exact AL soliton is launched. We demonstrate I‘I’n:mw (14 pu|¥,[?). (7)
n

that the exact AL solitons sustain weak nonintegrable inter-
chain couplings amovingbreathers not experiencing a pin-

. ) With our choice of nonlinear coupling both the horizontal
ning potential.

and vertical couplings are of AL type. This symmetric cou-

pling type has to be distinguished from other nonlinear cou-
Il. AL DOUBLE CHAIN plings arising in the optical fiber model29-33. Note that
for vanishing horizontal couplingg=0 the system of equa-
from two coupled one-dimensional AL lattice chains tions (1) and (2) degouples ‘!’“O integrable AL d‘”.‘ers'
(string9, each infinitely extended along the horizontal direc-Whereas fo_r Zero _vertlca_l couplings=0 it dec_omposes Into
tion. Vertically opposite sites on the two chains are couplec}\’.\'0 one-d|men3|opal . integrable AL chains. The one-
to each other via the interchain coupling parameterThe d'm?".‘s'on"".' AL Iatthe IS completely.|ntegrat[[é6—3a, and
coupling along each chaithorizontal couplingis governed exhibits soliton solutions. These solitons can travel along the

: lattice chain keeping their form invariantFor studies of
h Y. Th f I ) .
by the paramete e system of coupled equations reads problems related with the AL equation, see R¢88-46.)

On the other hand, we know that most nonlinear lattice sys-
tems are nonintegrable. For illustration we consider the one-
dimensional AL lattice corresponding to E@L) in the ab-
sence of the coupling term, i.ex=0. Adding then for
—a(1+pu|Py?)V,, (1) instance a local cubic nonlinear terphd ,(t)|?®,(t) to the
right-hand sidgrhs) of Eq. (1) renders this one-dimensional
o, gene_ralized di_screte nonlinear Scttirmger (GDNLS) equa-
i—== —“V(1+p| VD)V + ¥, 1) tion into a nonlntegral_ale syste[_42,44,4Z. Due to the non-
integrability, exact soliton solutions are no longer supported.
_ 2 When launching an AL soliton on the GDNLS lattice one
(14 [ Wyl . @ observes that it may become pinned under the influence of
the periodic lattice potentigl9,44,47, preventing solitary
(The nonlinearity parametgr can be set to unity due to the waves from propagating along the GDNLS lattice. Since the
scaling property of the AL systein.The corresponding AL double chain consists of two integrable AL strings also
Hamiltonian is determined by coupled through an AL term, the interesting question arises
of whether the coupled system of Eq4) and (2) is still
integrable and has soliton solutions. Perturbational methods
H=-VY, (0 &, +D Dy, ) become applicable in the case of weak couplings. We use the
n case of weak interchain couplings for whiahis taken to be
small compared to the horizontal coupling strength
—VY (P WE PRV, Remarkably, the associated stationary system of the
n coupled AL double chain is nonintegrable, which is demon-
strated rigorously further belowsee Sec. ¥ In connection

We introduce the model of the AL double chain built up

n

ot

i— === V(14| P|*)(Ppi1+ Ppo1)

—aZ (OFV +Vrd,) with the nonintegrable stationary map the existence of ho-
n moclinic orbits can be shown. Taking the points of the latter
EHél)(d>)+Héz)(\P)+Him(<I>,\If)_ 3) as the initial condition for the time-dependent system, a

standinglocalized solitonlike solutions on the AL double

chain is excited. As will be shown, for each parameter set
Using the deformed Poisson brackpt2—44 there is one and only one set of initial conditions leading to
such an exact standing localized eigenstate. On the other
hand, the dynamical solitons of the one-dimensional AL sys-

*\ 2
{@n, DR =i(1+ | o) S0, “) tems generally “survive” as breathing solitonlike excitations
movingalong the two AL strings.
{@n, @pp={D} , &1} =0, (5
lll. STATIONARY SYSTEM
the equations of motion can be derived from Hamiltor({i@n We are interested in stationary solutions of the system of

as equationg1) and (2) and make the ansatz
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V. (H)=ae '®, d,=b,e 1, (8) Taking the limit «=0 the four-dimensional mag is
equivalent to a pair of two-dimensional AL maps, each cor-
responding to a stationary one-dimensional AL lattice. For

with a uniform rotation frequencyo. In Ref. [47] it was < —2 the origin of such a two-dimensional map represents
shown that to obtain localized solutions one has to rely ol 9 Prep

real-valued amplitudes, b, R. Substituting Eq/8) into an unstable hyperbolic poif7]. The coinciding stable and

Egs. (1) and (2) we arrive at two coupled second-order dif- unstable manifolds of the hyperbolic point at (0,0) form a
fereﬁce equations perfect separatrix which is manifested as a standing bright

soliton on the(one-dimensional AL lattice. (For the inte-
grable one-dimensional AL lattice such a standing soliton
wan=—V(1+pa)(an,1+an-1)—aby(1+ua}), (9  can be moved with any desired velocity through a Galileo
boost[37].) When both two-dimensional AL maps become
__ 2 _ 2 coupled fora>0, it is of particular interest which of the
b=~ V(14 ubp) (Bns 1+ bp-1) aa“(1+'“b”)'(10) parameters that sets the origin is a hyperbolic equilibrium.
Orbits on its invariant stable and unstable manifolds still
support stationary solitonlike solutions of the coupled AL
double chain. Finally, we remark that the symplecticity of
the mapA is a readily proven property helpful for a stability
analysis of periodic orbits.

(For the sake of simplicity we s&f=1 in the following)
With the help of the substitutions

ah=Xn, @-1=Yn, bp=U,, by_1=v,, (11

IV. EQUILIBRIUM POSITIONS
we cast the difference system of equati¢@sand(10) into a AND LINEAR STABILITY ANALYSIS
four-dimensional mapA: R*—R* obeying the iteration

rules We investigate the equilibrium positions &f and their

corresponding stability properties. The mAgpossesses pe-
) R riodic points of ordek if the condition
Xn+1=AXp, (12) o
A*e=xg, keN (15)
with the amplitude vector holds and the points; determine a periodic orbit. To deter-
(13) mine the stability of such orbits we make use of the fact that
for symplectic maps linear stability implies spectral stability.
(A periodic orbit is linearly stable if all small perturbations
of it remain bounded for the evolution of the tangent map.
Spectral stability means that all eigenvalues of the tangent

o 4
Xn=(Xn,Un,Yn,Un) €R

and the matrix

e W 1 0 map lie on the unit circle, i.e]\|=1 [48,49.) The eigen-
1+ ux? values\ of the tangent map are determined by the charac-
" teristic polynomial
w
- - — 0o -1 _ —
A 1+ pu2 . (19 de{DA—A\I)=0, (16)
1 0 0 0 and the Jacobian matrix is given by

0 1 0o o0 p(x) -« -1 0

—a pu 0 -1
The map A is initiated with the starting values (DA)=[ 1 0 0o 0| 17

(X1,uq,Y1,v1) corresponding to the two pairs of stationary
amplitudes &4 1,b0 1), €.9., at the left ends of the two chains,
respectively. With each forward iteration step of the map
A"*1 one generates the amplitudas, ; andb,.; at sites  with
that are the neighbors to the right of those of the preceding
stepA". Conversely, iterating the inverse map* generates — ,uwxﬁ+ lw

amplitude patterns to the left of the starting sites. The map p(x)= Tt wd? (18
is volume preserving because the condition D&f=1 is K2

fulfilled for all vectorsx, andDA is the Jacobi matrix oA.

Being interested in the excitation of localized states on the p(u)=
double chain, we recall that such localized stationary lattice (1+,uuﬁ)2
solutions correspond to map orbits lying on the stable and
unstable manifolds of hyperbolic equilibrja7]. Therefore, Due to the symplectic property of the map)1li5 also an
Sec. IV deals with an analysis of the equilibrium positions ofeigenvalue. Ifix|#1 and Im) #0 the eigenvalues appear
the mapA. In particular, we locate the fixed points Afand  as symmetric 4-tuplesk, \*, 1\, 1M\*. If Im(A)=0,
investigate their stability and bifurcation behavior. then a pair\, 1/\ exists on the real axis and the orbit is

0 1 0 0

2
—pouit+lo
/7 - (19)
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unstable. Finally, if\|=1 then there is a paik, A\*=1/\,  The solutions
and the orbit is stable. The characteristic polynomial corre-

sponding to the tangent mdpA is p12= =1K+\iK?—L+2 (29
de(DA—IN)=P(\)=A*—KA3+LN?—KA+1=0, are related tg by
(20)
+\p’—4
with Nio= % . (25)
[Tr(DA)]?—Tr(DA)? _ . : : : ,
K=Tr(DA) and L= > . (21 Since stability requires the eigenvalues to lie on the unit

circle, i.e.,|\|=1, the inequality

Tr(DA) is the trace of the tangent map. Using Eds) and p|<2 (26)
(19), the coefficientK andL are given by

must hold. Using Eq(21), the stability indices are deter-
mined by

Instead of studying the quartic characteristic polynomial, it is
more convenient to investigate the reduced characteristic p :px+pui \/
polynomial that is quadratic in the stability indgx=A\ 12 2

+1/\:

K=p,+p, and L=p,p,—a?+2. (22

PPy PPy,
4 2

(27)

Finally, according to Eq(25) the four eigenvalues of the
Q(p)=p%?—Kp+L—2=0. (23) tangent maDA are given by

1 px+pu_\/; ?
)\1,221 px+pu+\/£i2 —4+ _T , (28

Naa=— [px+|ou V2 \/ ( pX+p2”+[) ] (29

with (i) A pair of complex conjugate eigenvalues moves to
(—1,0) and separates along the negative real axis which is
7=4a?%+ pﬁ+ pi—zpupx, (30) called period doubling bifurcation. This happens when

The eigenvalues depend on the coordinates of the periodic L<—-2K-2, (33
orbit X as well as on the system parameters, thak {$,3 4

=\1234Xg ;). The parameter range in which the equi- which is fulfilled if

libria of the mapA are stable can be determined from

IN(Xg ,a,®)|=1. However, upon parameter variations bifur- a> = \2(pyt Py) + PePut+ 4. (34)

cations may occur for which the stability can al{d®,50.

With regard to the stability loss of a stable fixed point of the

double AL chain, we distinguish two possible situations de- The task now is to locate the periodic orbits Afand to

pendlng on how the eigenvalues move away from the umgetermlne thelr stab|I|ty propertles We focus mterest on
(i) A pair of complex conjugate e|genvalues encounters at (X U YF, UF) in Eq (15 results, for k= 1, in the

the point (1,0) and separates along the positive real axigoupled system

This so-called tangent bifurcation occurs for

w
L<2K-2, (32) 2Xp=— 1+—M2XF—OIUF,
35
and gives the condition 39
w
2u|:= - —UF_ CYXF .
a>i\/_2(px+pu)+pxpu+4 (32 1+Mul2:

for the coupling parametet. This can be solved foxg to give
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the range in which the fixed point is elliptic is given by

— |w*a|<2. (40)
unstable 4
stable

A hyperbolic point exists if

lw*a|>2. (41)

If

a<Jo’—4w+4, a>\w’+dw+4, and |w+a|S2

(42

« are satisfied, the fixed point is elliptic.

For «>1 the origin is converted into a stable elliptic fixed
point. In this case, when vertical coupling and horizontal
coupling exceed$(a/V)>1), the excitation of bright soli-
tonlike solutions on the AL strings is impossible due to the

FIG. 1. Location of the fixed pointsg vs a. Parameterso=
—3, =1, andV=1. Stability as indicated.

N MXE(2+ o+ 2uxE)? B 2uxp(2+ 0 +2uxE)® lack of a hyperbolic point at (0,0,0,0).
F a(1+ px2)? a3(1+ px2)3 Figures 2a) and 2b) illustrate the complex behavior of
the mapA, the orbits of which are projected on they
(24 w)Xp(2+ w+2MX§) subplane. For comparison, Fig(a® displays the integrable

2 two-dimensional AL map ofa=0 for w=—3 andV=1.
a(l+ uxg) The perfect separatrix associated with the hyperbolic point at
=P(xp). the origin yields a stationary soliton on the AL lattice. For
a>0 this separatrix is broken and is surrounded by a chaotic
The roots of this polynomiaP(xg) yield the location of the layer[see Fig. 8)]. Theu-v subplane shows a similar fea-

fixed points ofA. We immediately see that-=0 is always a  ture of nonintegrable map dynamics.

fixed point. The remaining roots ¢f(xg) can be found nu-

merically with the help of a Newton procedure. The number V. NONINTEGRABILITY OF THE STATIONARY AL
of roots(fixed pointg ranges from one up to nine depending DOUBLE CHAIN AND MELNIKOV ANALYSIS
on the parameter values. Figure 1 shows the locatjoof
the fixed point versus the coupling parameterfor w=
—3. For @< 0.46 there exist nine fixed points. Their number
diminishes to five fora>4.6. A further reduction occurs at
a=1, and three stable equilibria survive. Eventually, éor
>1.4, only one stable elliptic fixed point at the origin re-
mains. In the context of the present paper—that is, to stud i >
solitonlike solutions—the statF;iIity proserriy of the fixed point g Xn1= AXn=FXn G, (43

at the origin deserves closer inspection. As long as the Iatt%hereA is decomposed into an integrable parand a weak
is of hyperbolic stability type, the orbits on its assoc'atedperturbational parG, with e<1 regulating the strength of

invariant stable and unstable manifolds support bright soli3, . perturbation. The integrable m&ppossesses a hyper-

ton_:JEe "”?“'CE SIOIUUO"E?]'SO see Sec. M __bolic equilibrium point located at the origin. The stable and

o e eigenvalues of the tangent map at (0,0,0,0) are give(}nsiapie manifolds of this hyperbolic point coincide forming
y a separatrix on which the solution is known explicitly.

A= o+ ar(a—w)?-4), (36) For the four-dimensional coupled AL mag,;=FXx,

+ aG;(n, the integrable part is determined by
N3s=3(0—ax\(a—w)*~4), 37

In this section we apply the Melnikov method to show
rigorously the nonintegrability of the stationary AL double
chain. The Melnikov method represents an analytical tool to
prove transversal intersections of manifolds invariant to hy-
perbolic equilibrial49-532. It applies to maps of the form

— WX,

and depend on the parametessand «. We determine the 1+MXﬁ ~Yn
border lines for stability in thew— a— parameter plane as
follows. (5 — Uy —u ad
a>\Jw’+4w+4 and a>\w’—4o+4 (39 Xn
un

hold, the fixed point is unstable.
If
and the nonintegrable perturbation arising from theak
a<Jw’+dw+4 and a<Jw’-4w+4, (39 interchain coupling reads as
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¥ -0.1

-0.2

0.5

FIG. 3. AmplitudesM , of the two components of the Melni-
kov vector vs the separatrix parametsrandt. The values on the
line s=t have been scaled by a factor 100.

-0.5 |

and consists of the two two-dimensional separatrices as-
signed to the upper and lower AL strings. The connection
betweenB and w is given by

coshp=— g (47)

FIG. 2. Orbits of the map given in Egs.(12) projected on the
x-y subplane for the following parameter®) No interchain cou-
pling a=0. The integrable two-dimensional AL map. Note the per-
fect separatrix(b) Interchain couplinga=0.1. The separatrix is
broken due to nonintegrability of the map

The parametes (t) determines the position on the separatrix
of the integrable uppetlower) AL string, and hence the
lattice position of the soliton on the corresponding one-
dimensional lattice(In Sec. VI the parameters=x, andt
=Yy, are used to fix the initial lattice positions of the moving

Un solitons) The question now is: How does string coupliag
>0 affect these single solitons on each of the two AL
R Xn strings?
G(Xn) =~ ol (45 As is well known under nonintegrable perturbations, the

stable and unstable manifolds invariant to the hyperbolic
0 point are no longer identical and rather may intersect each
other transversally, thus forming a homoclinic tangle
[49,50. Based on geometrical arguments, a Melnikov func-
. L _ tion was developed measuring for nonintegrable planar maps
The map origin represents a hyperbolic fixed point for N =) the distance between the stable and unstable mani-
w< —2. The corresponding unperturbed homoclinic orbit for¢o|q ynder the action of perturbatiofis2]. Using analytical
a=0 is parametrized by techniques developed in Ref§3,54], the Melnikov method
has been extended to treat maps with dimensNBes2 as
well [53-56, and the(scalajy Melnikov function is replaced

sechit—ng) by a Melnikov vector ofN components related to the gradi-
ents of the integrals of the unperturbed system. The compo-
. 1 sectis—ng) nents of the Melnikov vector are defined by
x2(s,t)= —=sinh B) eR%,
N seclt—(n+1)8)
sechis—(n+1)pB) o M;(s,t)= an;_m a6 2(s1), i=12. (48
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Isolated zerosg*,t*) of the components exist for

1
C= —=sinhg. (57
Vi
M;(s*,t*)=0, (49
The vectorgy (" thus take the following forms
detDM #0, (50)

Ga(1)=C(Sy(1), Ty(1),0,811(1), Tp11(1),0),  (58)

implying the existence of transversal intersections of the in-
variant manifolds yielding homoclinic orbit¢For details, 4.2(5)=C(0,5,(S), Tn(5),0,8111(S), Tns1(5)). (59)
see Ref[56].)

To derive the vectoqn(Ql appearing in Eq(48), we first ) _
have to solve a variational problef6] associated with the The vectorsqn+1 demanded for the computation of the
unperturbed system: Melnikov vector are obtained via the adjoint variational
equation[53,56]:

Ons1=Dndn- (51 = S T
me ar 1= [DF ()] (60
D, is the Jacobi matri®o,= DF()Zﬂ). The adjoint variational = qlgﬂ DrTl ] (61)
problem then providesq,,. ;
We then find
Gn+1=0nDy " 52 =~
qn+1 C(Sn(t)Tn(t) 0 Sn+1(t)Tn+l(t) pxsn(t)Tn(t)(O)
62)
It is possible to calculate the components of the veaigts
andq,(? through the partial derivatives of the separatrix ex-and
pression(ig(t,s)) taken with respect to its separatrix param-
eterss andt: 2= C(0,8,(9)Ta(9),0,8141(S) Tns 1(S)
0 -0 - puSn(S)Tn(S))- (63)
(1)_M *(Z)ZM (53 . ~0
Gn gt Un Js The perturbation vectoB(x,(t,s)) can be presented as

G(xX%(t,5))=—C(Sy(5),Sx(1),0,0). (64)
The results are

Finally, the components of the Melnikov vectoM

sech@@n—t) tanh(@n—t) =(M1,M) are given by
o= L ° Mi(t9)=a 2 APGOALS)
" Ji| sechB(n+1)—t) tanh(B(n+1)—t)
° (54) = —aCZn:E_w Sh(8)Sh(D) Th(1), (65)
and correspondingly
0
G2 (e)= | AN @ranTs) My=a_ S 3066
\/; 0 . £

SeCKB(n+ 1)_3) tanr(ﬂ(n‘f' l)_S)(Ss) - _ acZn;w Sn(S)Sn(t)Tn(t) (66)

The computation of the sums in Eq85) and(66) proceeds
along the lines given in Ref$47,52. After some lengthy
computations thé,; component of the Melnikov vector for
S, (t)=secling—t), Ty(t)=tanhng—t), (56 s#t is obtained as

For the ease of notation we introduce the abbreviations
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2EK(t—s) 2Ks 2Kt
o2 el

2
M;=—a —sinhzﬁ[ coseckis— t)(cotl‘(s— t)

upB B B
2K2dn2(2Kt)+ 2KE 1)} -
B B B '
|
The second component is simply given by () For values ok andt very distant from the lins=t the
Melnikov vector is(almos} identically zero, excluding iso-
Mp=—M;. (68) lated zeros oM, ,. Moreover, fors#t the component$/;

andM, have no common simple zeros and thus no transver-
K and E are the complete elliptic integrals of the secondsal intersections of the invariant manifolds can be detected
kind, and am is a Jacobian elliptic functiff7]. The modu- (at least to first-order perturbational computation of the

lus of these functions is defined by Melnikov vector considered here
(i) Condition (48) can be satisfied only on the liree=t.
K'(K) Simple zeros of the Melnikov functioM ¢, occur. The cor-
g=exp—2z)= exr{ - WW) ) (69)  responding homoclinic tangling on they plane is depicted
(k) in Fig. 4.

Based on the results for the Melnikov analysis we con-
For s=t the two-component Melnikov vector reduces to aclude that, only for symmetric excitation of the AL double
scalar functionrM ;=M ,=Myg,,, explicitly given by chain, i.e., for opposite solitons of equal positiast, the
existence of homoclinic chaos in the four-dimensional map
p is proven. As a consequence both single solitons become
Mgym= — aCZEE(t,t,,B) pinned. Their lattice amplitudes are determined by the trans-
versal intersection points of the invariant manifolds of the
hyperbolic equilibrium (0,0,0,0) on the majp Such a sta-
16K3m (ZKt) (ZKt) r(ZKt) tionary amplitude profilgd,(t)|? of the stationary soliton-
s B like excitation on Fhe upper string is ;hown in Fig. 5. The
lower string exhibits an equal excitation pattern. We com-
(70 pUtE‘d the energy I_!pinned: _.En((pnq):+1+q):q)n-f—l)
—(al2)2,|®,|? of the pinned soliton on the upper string. A
comparison showed that the energy of the single stationary
AL soliton given by Hggyion= —4 sinhB lies above the
pinned state energies. The energy differeddd =H ineq

B

B

—aC

In Fig. 3 we plot the amplitudes of the two componelts ,
of the Melnikov vector as a function of the two separatrix
parameters andt. We recall that the latter determine the ™ |, = v ioe ted as the pinni fthe AL
" i soliton May be interpreted as the pinning energy of the
pos!t!ons for;] the unpertt)u:jbe_d sleparlgtf%) and Lhufs rt]he double chain due to its nonintegrability feature.
gisglt?irr]l ost'?ouggecritigtrine uizlﬁgb?esq[rlltgnvglnuggcofOEE%O(; WO o the other hand, for unequal soliton positi@st ho-
(valid ongtﬁe lines=t) ha\?e been s,caled by a factor of 100 mocl_inic cha(_)s cannot be proven. Neverth_eless, as the dy-
W ize the following feat “namical studies reveal, the AL double chain appears to be
€ recognize the toflowing teatures. nonintegrablgsee Sec. \JI Note that the case of symmetric
soliton excitation ofs=t with its established homoclinic
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* FIG. 5. The amplitude profile of the stationary bright solitonlike

FIG. 4. First windings of the homoclinic tangle of the hyper- solution on the upper string. The homoclinic orbit of the nfapas
bolic equilibrium point at (0,0,0,0) for the maf. Parametersw been used as the initial conditions for systém). Parametersw
=—4, u=1, V=1, ande=0.2. =-3, V=1, u=1, anda=0.1.
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chaos allows for a construction method of standing solitons AR

being opposite on the AL double chain. Since opposite soli- I—== —V(1+p| ¥ ?) (P +Vo_g)

tons imply identical initial condition® ,(0)="¥,(0) the AL

double chain degenerates to two one-dimensional GDNLS —a(1+u|¥,|2)VP,, (72)
equations

. n
I——=—V(1+ m @) (@1 + Pyoy) the soliton construction proceeds as described in [R&f.by
exploiting the knowledge on the homoclinic orbit. We sketch
—a(1+u|® M) P, (71)  the procedure in the following flow diagram.

I;ystem of coupled time-dependent lattice equations

4

l stationary system |

4

l two-dimensional map |

4
Ihyperbolic equilibrium of the map|

¢

| Transversal intersections of the stable and unstable manifolds]

4

|corresponding homoclinic orbit — initial conditions for time-dependent system]

4

| exact nonlinear eigenstate l

¢

[localization on AL double chain |

In conclusion, excitation of an exact two-soliton stationary state of the AL double chain is only possible for opposite (
=t) single solitons. Finally, in the extreme case of very distant soliton positiansit, the (stationary solitons do not affect
each other and significant “soliton interaction” should not appesae Sec. Vl

We close this section by emphasizing that the Melnikov analysis is not restricted to an AL double chain of two vertically
coupled strings. It rather applies tol@enuing two-dimensional stationary AL arragxtended arbitrarily both in the longitu-
dinal and vertical directions such that each array site is coupled to its left, right, lower, and upper neighbors. In this sense we
are able to prove rigorously the nonintegrability of a stationary two-dimensional AL array.

VI. ENERGY EXCHANGE BETWEEN THE TWO AL STRINGS

In this section we investigate the energy exchange between the two strings of the AL double chain. The findings of Sec. V
indicate that the AL double chain is nonintegrable, preventing the system from exhibiting exact soliton states. Nonetheless, for
weak interchain coupling we can address the issue of soliton interaction. On each string an exact single AL soliton is excited
and the two chains are weakly coupled, i®s1. The change of energy of the upper string is determined by

dHY
dt

= a{Hg¢" Hind, (73)

giving, with Egs.(3) and(5),
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dHY
T:ia; (1+,u|(I)n|2)[(CI):+l+CD:71)\Ifn—((I)n+1+<1)n71)\lf:]
=—2a§ (1+ p|® D) IM[(BF, , +D*_ )W, ]. (74)

An equivalent expression is derived for the change of energy of the lower chain. Since for small couplissg8.afthe ratio
|Hmt/H(§1'2)| is less than 10, we neglect the contribution from the interaction gdstfor the energy balance. The change in
energy of the second string follows directly from the one of the first string due to energy conservation. The energy exchange
rate per time unifl is given by

AHE= =202 [ 4SS (14 4IP3 M@}, + 3 )W) 79
s T/, dt2 JrAL S n+1 T Pn-1)%nl-

The (unperturbedl one-soliton solutions on the two strings read as

sinhB )
o, (D)= sechB(n—ut—xg)]exd —i(wt—0n+oyp)] (76)
Vi
sinhB )
v,(t)= sech B(n—ut—yg)lexd —i(wt—on+ &y)] (77
Vi
w=—2cos#coshB, u=pB lsindsinhpg, (79

whereBe[0,,) andf e[ — 7, 7]. Both solitons have equal parameters except for possibly different pbgsesl 5, as well
as soliton positionsg, on the upper string ang, on the lower string(Note that for the stationary analysis of Sec. V we used
the separatrix parametessandt to determine the positions of the standing solitpns.

For the energy exchange rate we obtain

sinfB 1
u T

AH{Y=—4a fE {1+ sink?B sech[ B(n—ut—xg)]}{sechi B(n+1—ut—x,)] sechi B(n—ut—yg)] sin(Ac— 6)
Tn

+sechB(n—1—ut—xp)] sechi B(n—ut—yg)]sin(Ac+ 6)}, (79

with the phase differencAo=0y— 6,. For vanishingd and zero phase differendes=0 the single soliton$76) and(77)
become standin¢stationary solitons. From expressiofr9) we infer immediately that theno energy exchangeetween the
two strings takes place regardless of the relative soliton posikigrady,. In particular, the latter fact seems remarkable,
recalling that the excitation of an exact two-soliton stationary state of the AL double chain is only possible for opposite
solitons ofxy=Yy, (see Sec. ¥ Later we treat the energy exchange numerically.

Using the addition theorems we derive

AH{Y=—-8a

sini 1 1 I _ coshg
?L t; COSI‘[,B(n—ut—yO)]lSInAUCOSGCOSrﬁﬂ(n_Ut_Xo)]
sinhB sinH B(n—ut—xg)]

— COsSAosing cosR[A(N—ut—xg)] . (80)

In computing the sums in E480) we note that the arguments of thedependent terms are of the form-{ut—x,) and
(n—ut—yg). Consequently, the sums in E®O) are invariant undet translations, and thus actualliyndependent. We then
obtain

asinhz,B ! sinAacosﬁﬂ—cosAasin0Sinh'85inr['8(n_)(0)] . (81
p % coshB(n—yy)l|

(1) _
AHo 8 cosh B(n—xXo) ] cost[B(N—Xo)]



2390 A. BULOW, D. HENNIG, AND H. GABRIEL PRE 59

1.4 ‘ ‘ T - 1.0
Ao=1.55
0.8
1.2 F -
Ac=1.0 . 0.6
1.0 1 £ o4
8=2.0 cﬁa ool
~ 0.8 F 1 < :
=° Ao=0.5 = 0.0
<1 Pt
0.6 1 e -02
|
0.4 . = 04
T 06| .
0.2 | fAo=0 . -
-0.8} 1
0.0 ‘ : * : . ‘ ‘ -1.0 ‘ ‘
0 1 2 3 4 5 6 7 8 9 10 0 100 200 300

Yo FIG. 7. Temporal behavior of the normed energy difference

FIG. 6. The energy exchange rai¢i (¥ in dependence on the [Ho(t)—HJ(t)J/[2H{Y(0)] with Ho(l)(O)Z_HéZ)(O)- Parameters:
soliton distancey, for 6=2. We plot the expression fasH{Y ~ @=—3, u=1, V=1, anda=0.1. (& Soliton distancey,=1.67

given in Eq.(81) divided by —8a sinl? 8/u. The curve parameter corresponding to maximal energy exchange between the two
is the phase differencao as indicated. strings. After a short period of energy migration 90% of the total

energy is stored in the upper string) Soliton distance/,=6.5%
and 65% of the total energy becomes stored in the lower stfing.

Furthermore, for equal soliton positiong=yy the sums in Soliton distancey,= 14. Suppressed energy exchange.

Eq. (81) are invariant undex, translations and thus indepen-

dent of Xo. Then we assume that, whenever the SUMqiing that the larged is the smaller the width of a soliton
Zy-—=F(n+Xo) does not depend axy, it can be converted i and, hence, their mutual influence diminishes with larger
into an integral44] distancesy,.
The different regimes of the energy exchange between the
two strings are depicted in Fig. 7. We show the temporal
i En+ %)= f“ dx E 82 variations of the (normed energy difference[Hol(t)
2 F(ntxg)=| dxF(X). B2 {2t )r2H0(0)] with HEP(0)=H{2(0) for three dif-
ferent soliton distanceg,. According to Eq(81) and Fig. 7,
maximal energy exchange between the two strings can be
We obtain expected fory,=1.67. (The main excitation pattern of the
exact AL soliton involves five lattice sitgsln fact, after a
short transient period of energy migration from the lower
B string into the upper string the energy difference exhibits
sinA g cosé coshg. (83)  small oscillations around the value 0.9, meaning tfz-
B proximately 90% of the total energy is storaged in the upper
string. For a wider soliton distancg)=6.5 the energy ex-
] change is not as pronounced as for the previous case. Nev-
Apparently, for 6=+ 7/2 and/orAc=0,%, there is N0 ertheless, eventually 65% of the total energy become stored
energy exchange. On the other hand, the maximal energy the lower string. For a relative large soliton distarye
exchange rate is achieved fawr =+ /2 and§=0,* 7. =14 there is virtually no interaction between the two strings,
The general case ofy#Y, is illustrated in Fig. 6 forB8 a5 seen by the almost negligible variations of the energy
=arccosh(-1.5) and §=-0.2. We setx,=0 and plot gifference around zero. We remark that we find good agree-
AH Y versusy,, for various values o o, as indicated. Due ment between the energy exchange rate computed analyti-
to the choicex,=0 the initial position of the soliton on the cally on the basis of expressiq81) and the numerical re-
upper string is fixed at the site=0, while the initial position  sults.
of the soliton on the lower string is moved away from the  Figures 8a) and 8§b) show, for the soliton distancg,
central lattice site witty,>0. In this wayy, determines the =1.67, the amplitude profile of the upper and lower strings,
distancebetween the solitons. Interestingly, for undercritical respectively. One clearly sees how the upper chain gains
phase differenced oc=<1.5 the graphs exhibit an extremum energy at the expense of the lower one. On the upper chain
for yp,>0 corresponding to maximal energy exchange ratetwo breathing solitonlike states of distinct amplitudes are
With increasedA o the position of the maximum is shifted created. Whereas the breather of small amplitudes freely
toward smallery, values. Simultaneously, the energy ex- propagates along the lattice with a velocity equal to that of
change rate for opposite solitons y§=0 increases. Even- an unperturbed soliton, the breather of large amplitude ap-
tually, for Ac>1.5 maximum energy exchange occurs forpears to be slow in comparison. The lower chain exhibits a
Yo=0, and the now monotone curves decay with growingbreather having the same velocity as the small amplitude
Yo. When 6 is varied we obtain similar pictures and the breather on the upper string. For comparison we illustrate in
curves are only stretched in the vertical direction. Enhancingdrigs. 9a) and 9b) the case of suppressed energy exchange
B has the effect that the curves decay more rapidly witbfor the large soliton distancg,=14. On both strings we
growing distancey,. The latter fact becomes plausible by observe breathers of equé@haximal and minimal ampli-
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the one of an unperturbed soliton. FIG. 9. The amplitude profile§d,(t)|2 and |¥(t)|2 of the
upper(a) and lower(b) strings, respectively. Parameters as in Fig.
VIl. SUMMARY 7(0).

In the present paper we investigated the solution behaviggycited. Depending on the initial distance between the soli-
of an AL double chain. The first part of the paper dealt withtons as well as their mutual phase relations, there exist dis-
the Statlonal’y SyStem be|0nglng to the double Chain. We Utitinct energy exchange regimes ranging from Suppressed to
Iizeq a map approach to desc_ribe the stationar.y states. 'nt%ronounced exchange. Surprisingly, we found parameter
est is focused on the fixed point at the map origin, since fogonstellations for which maximum energy exchange occurs
hyperbolic-type stability orbits on the associated invariantyot for strictly opposite solitons but rather at a certéion-
manifolds provide bright solitonlike lattice excitations. If the vanishing distance between them. As expected, for suffi-
strength of the vertical couplinga exceeds those of the jently large soliton distances the soliton-soliton interaction
horizontal couplingsV the map origin represents a stable yanishes, and energy exchange between the two strings is
elliptic equilibrium. Hence the construction of exact Sta”dingsuppressed. From our studies we conclude that the initial
solitonlike solutions via homoclinic orbits is then impossible. excitation of the single chains with exact AL solitons results
Furthermore, it is shown that the stationary map is nonintein moving breathers under the action of the nonintegrable
grable. This is achieved with the help of the MelnikoV jnterchain coupling, regardiess of the soliton amplitudes as
method assuring transversal intersections of the stable ange|| as their widths. Usually nonintegrability of the lattice
unstable manifolds of hyperbolic points. The correspondin%ystem may cause a pinning transiticepending on the
homoclinic orbit can be used as an initial condition to exciteggjiton parameter$9]) preventing solitonlike solutions or
a two-soliton-like pinned lattice state. This pinning effect preathers from being moved along the lattice. The only
resulting from the nonintegrability of the double chain has topinned solution we obtained resulted from the homoclinic
be distinguished from the solution behavior of an isolatedorhit derived from the stationary system. As an interesting
one-dimensional AL lattice. The latter is completely inte- gynamical feature we observe that a single soliton may split

grable. Its stationary solitons derived from the correspondingnto two moving breathing states of different amplitudes as
two-dimensional map can always be moved with any desiregg|| as different velocities.

velocity through a Galileo boost.

The second part of the paper was devoted to an investi-
gation of the dynamics of the energy exchange between the
two (weakly) coupled AL strings. We considered the situa-  This work was supported by the Deutsche Forschungsge-
tion when on both strings an exact AL soliton is initially meinschaft via Sonderforschungsbereich 337.
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