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Soliton interaction for a nonlinear discrete double chain

A. Bülow, D. Hennig, and H. Gabriel
Fachbereich Physik, Institut fu¨r Theoretische Physik Arnimallee 14, Freie Universita¨t Berlin, 14195 Berlin, Germany

~Received 13 November 1997; revised manuscript received 30 April 1998!

We investigate solution behavior with an emphasis on the localization of a double chain built up from two
coupled one-dimensional Ablowitz-Ladik~AL ! lattices. Whereas each one-dimensional AL lattice is com-
pletely integrable, the AL-type coupling between them causes the system to become nonintegrable. With
regard to the stationary system we present a rigorous proof of its nonintegrability by means of the Melnikov
method. Concerning stationary localized states, we identify the parameter regions for which the origin of the
stationary map represents a hyperbolic equilibrium point. We show the existence of transversal intersections of
the stable and unstable manifolds of the hyperbolic point. The associated homoclinic orbit is used to excite
standing bright two-soliton-like excitations on the double chain. We compute both, analytically as well as
numerically, the dynamical energy exchange rate between the two AL strings when on each of them a single
AL soliton is launched. It is shown that the soliton interaction depends on the distance between the solitons and
their mutual phase relation. There exist distinct energy exchange regimes ranging from suppressed to pro-
nounced energy exchange. In the latter case directed energy flow from one chain into the other takes place.
Eventually almost all energy is stored in a single chain in the form of a breather solution showing a bias toward
one-dimensional coherent excitation patterns. In general, the single solitons from the integrable limit with no
mutual coupling survive as moving breathers under the action of the nonintegrable coupling, and thus experi-
ence no lattice pinning. The only pinned solution we obtained resulted from the homoclinic orbit derived from
the stationary system. As an interesting dynamical feature we observe that a single soliton may split into two
moving breathing states of different amplitudes as well as different velocities.@S1063-651X~99!07702-8#

PACS number~s!: 41.20.Jb, 63.20.Pw, 63.20.Ry
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I. INTRODUCTION

Discrete nonlinear lattice systems have attracted consi
able interest in the last years@1–25#. By now it is well es-
tablished that nonlinear lattice systems may exhibit s
localized excitations, e.g., in the form of solitons
breathers, viz. spatially localized and time-periodic solutio
While for exact soliton solutions the integrability of the co
responding lattice system is required, breather solutions
also found in nonintegrable lattice systems. Recently, rig
ous results have been obtained concerning the existence
stability of breathers in nonlinear lattices@18,26,27#. Intrin-
sic localized modes have been observed experimentally i
electric network@28#. Many investigations, mostly of a nu
merical nature, have been performed to explore the stat
ary and dynamical properties of self-localized states. Ho
ever, most studies focused on systems extending in
spatial direction only, while less has been done with resp
to lattice systems with more than one spatial dimension.
dynamics of two coupled~111!-dimensional nonlinear con
tinuum Schro¨dinger equations were studied in the context
nonlinear optics, where they describe pulse propagatio
birefringet optical fibers@29–32#. Furthermore, in Refs.@33–
35# the dynamics of a system consisting of two coup
chains of masses representing a DNA model were inve
gated.

In the present paper we study a discrete double ch
consisting of two coupled one-dimensional Ablowitz-Lad
~AL ! lattice strings. Choosing the AL system as the ba
bone for the double chain was also motivated by the fa
that it realizes a possible discretization of a partial differe
PRE 591063-651X/99/59~2!/2380~13!/$15.00
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tial equation, namely, the continuum nonlinear Schro¨dinger
~NLS! equation, as a model of significant physical relevan
The latter represents a completely integrable equation,
finds application in numerous physical contexts ranging fr
optical pulse propagation in nonlinear fibers to conden
matter physics, fluid mechanics, and biophysics. In parti
lar, soliton solutions as self-localized states play an imp
tant role. The one-dimensional AL system is also integrab
and supports soliton solutions which are essentially the
crete version of the NLS solitons@36–38#. However, for
many physical contexts the 111 description is insufficient,
and more than one spatial extension has to be taken
account. There is yet another aspect making the study
coupled AL systems worthwhile, namely, the question
whether integrability is provided only in the one-dimension
case. In other words: Do coupled AL systems maintain in
grability and exhibit self-localized states in the form of so
tons? We know from the inverse scattering transformat
that the solutions of one-dimensional AL systems do
interact in nonlinear spectral space@36,37#. Therefore,
coupled AL systems offer a possibility to address the issue
soliton interaction, for instance in the situation when eithe
chain is initiated with an exact AL soliton.

In the current paper we undertake a detailed discussio
the stationary and dynamical properties of the AL dou
chain with an emphasis on the excitation of localized so
tions. In Sec. II we introduce the model of the double cha
An investigation of the stationary system is performed
Sec. III. The latter can be formulated in terms of a sympl
tic four-dimensional map. We study its equilibrium poin
and their stability properties in Sec. IV. As long as the m
2380 ©1999 The American Physical Society
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PRE 59 2381SOLITON INTERACTION FOR A NONLINEAR . . .
origin represents a hyperbolic equilibrium, the formation
stationary bright solitonlike solutions on the double chain
possible. However, the four-dimensional map is nonin
grable, which is shown rigorously by means of the Melnik
method in Sec. V. We exploit the homoclinic orbit associa
with the intersecting stable and unstable manifolds of
unstable map origin to create apinnedtwo-soliton-like state
on the double chain. In Sec. VI we study the dynami
energy exchange between the two AL strings, when on e
of them an exact AL soliton is launched. We demonstr
that the exact AL solitons sustain weak nonintegrable in
chain couplings asmovingbreathers not experiencing a pin
ning potential.

II. AL DOUBLE CHAIN

We introduce the model of the AL double chain built u
from two coupled one-dimensional AL lattice chain
~strings!, each infinitely extended along the horizontal dire
tion. Vertically opposite sites on the two chains are coup
to each other via the interchain coupling parametera. The
coupling along each chain~horizontal coupling! is governed
by the parameterV. The system of coupled equations rea

i
]Fn

]t
52V~11muFnu2!~Fn111Fn21!

2a~11muFnu2!Cn , ~1!

i
]Cn

]t
52V~11muCnu2!~Cn111Cn21!

2a~11muCnu2!Fn . ~2!

~The nonlinearity parameterm can be set to unity due to th
scaling property of the AL system.! The corresponding
Hamiltonian is determined by

H52V(
n

~FnFn11* 1Fn* Fn11!

2V(
n

~CnCn11* 1Cn* Cn11!

2a(
n

~Fn* Cn1Cn* Fn!

[H0
~1!~F!1H0

~2!~C!1H int~F,C!. ~3!

Using the deformed Poisson brackets@42–44#

$Fn ,Fm* %5 i ~11muFnu2!dn,m , ~4!

$Fn ,Fm%5$Fn* ,Fm* %50, ~5!

the equations of motion can be derived from Hamiltonian~3!
as
f
s
-

d
e

l
ch
e
r-

-
d

Ḟ5$H,F%, Ċ5$H,C%, ~6!

yielding the~deformed! canonical equations

i Ḟn5
]H

]Fn*
~11muFnu2!,

i Ċn5
]H

]Cn*
~11muCnu2!. ~7!

With our choice of nonlinear coupling both the horizont
and vertical couplings are of AL type. This symmetric co
pling type has to be distinguished from other nonlinear c
plings arising in the optical fiber models@29–32#. Note that
for vanishing horizontal couplingsV50 the system of equa
tions ~1! and ~2! decouples into integrable AL dimers
whereas for zero vertical couplingsa50 it decomposes into
two one-dimensional integrable AL chains. The on
dimensional AL lattice is completely integrable@36–38#, and
exhibits soliton solutions. These solitons can travel along
lattice chain keeping their form invariant.~For studies of
problems related with the AL equation, see Refs.@38–46#.!
On the other hand, we know that most nonlinear lattice s
tems are nonintegrable. For illustration we consider the o
dimensional AL lattice corresponding to Eq.~1! in the ab-
sence of the coupling term, i.e.a50. Adding then for
instance a local cubic nonlinear termguFn(t)u2Fn(t) to the
right-hand side~rhs! of Eq. ~1! renders this one-dimensiona
generalized discrete nonlinear Schro¨dinger ~GDNLS! equa-
tion into a nonintegrable system@42,44,47#. Due to the non-
integrability, exact soliton solutions are no longer support
When launching an AL soliton on the GDNLS lattice on
observes that it may become pinned under the influenc
the periodic lattice potential@9,44,47#, preventing solitary
waves from propagating along the GDNLS lattice. Since
AL double chain consists of two integrable AL strings al
coupled through an AL term, the interesting question ari
of whether the coupled system of Eqs.~1! and ~2! is still
integrable and has soliton solutions. Perturbational meth
become applicable in the case of weak couplings. We use
case of weak interchain couplings for whicha is taken to be
small compared to the horizontal coupling strengthV.

Remarkably, the associated stationary system of
coupled AL double chain is nonintegrable, which is demo
strated rigorously further below~see Sec. V!. In connection
with the nonintegrable stationary map the existence of
moclinic orbits can be shown. Taking the points of the lat
as the initial condition for the time-dependent system
standing localized solitonlike solutions on the AL doubl
chain is excited. As will be shown, for each parameter
there is one and only one set of initial conditions leading
such an exact standing localized eigenstate. On the o
hand, the dynamical solitons of the one-dimensional AL s
tems generally ‘‘survive’’ as breathing solitonlike excitation
movingalong the two AL strings.

III. STATIONARY SYSTEM

We are interested in stationary solutions of the system
equations~1! and ~2! and make the ansatz
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Cn~ t !5ane2 ivt, Fn5bne2 ivt, ~8!

with a uniform rotation frequencyv. In Ref. @47# it was
shown that to obtain localized solutions one has to rely
real-valued amplitudesan ,bnPR. Substituting Eq.~8! into
Eqs. ~1! and ~2! we arrive at two coupled second-order d
ference equations

van52V~11man
2!~an111an21!2abn~11man

2!, ~9!

vbn52V~11mbn
2!~bn111bn21!2aan~11mbn

2!.
~10!

~For the sake of simplicity we setV[1 in the following.!
With the help of the substitutions

an5xn , an215yn , bn5un , bn215vn , ~11!

we cast the difference system of equations~9! and~10! into a
four-dimensional mapA: R4→R4 obeying the iteration
rules

xWn115A xWn
T , ~12!

with the amplitude vector

xWn5~xn ,un ,yn ,vn!PR4 ~13!

and the matrix

A5S 2
v

11mxn
2

2a 21 0

2a 2
v

11mun
2

0 21

1 0 0 0

0 1 0 0

D . ~14!

The map A is initiated with the starting value
(x1 ,u1 ,y1 ,v1) corresponding to the two pairs of stationa
amplitudes (a0,1,b0,1), e.g., at the left ends of the two chain
respectively. With each forward iteration step of the m
An11, one generates the amplitudesan11 and bn11 at sites
that are the neighbors to the right of those of the preced
stepAn. Conversely, iterating the inverse mapA21 generates
amplitude patterns to the left of the starting sites. The maA
is volume preserving because the condition det(DA)51 is
fulfilled for all vectorsxW , andDA is the Jacobi matrix ofA.

Being interested in the excitation of localized states on
double chain, we recall that such localized stationary lat
solutions correspond to map orbits lying on the stable
unstable manifolds of hyperbolic equilibria@47#. Therefore,
Sec. IV deals with an analysis of the equilibrium positions
the mapA. In particular, we locate the fixed points ofA and
investigate their stability and bifurcation behavior.
n

p

g

e
e
d

f

Taking the limit a50 the four-dimensional mapA is
equivalent to a pair of two-dimensional AL maps, each c
responding to a stationary one-dimensional AL lattice. F
v,22 the origin of such a two-dimensional map represe
an unstable hyperbolic point@47#. The coinciding stable and
unstable manifolds of the hyperbolic point at (0,0) form
perfect separatrix which is manifested as a standing br
soliton on the~one-dimensional! AL lattice. ~For the inte-
grable one-dimensional AL lattice such a standing soli
can be moved with any desired velocity through a Gali
boost @37#.! When both two-dimensional AL maps becom
coupled fora.0, it is of particular interest which of the
parameters that sets the origin is a hyperbolic equilibriu
Orbits on its invariant stable and unstable manifolds s
support stationary solitonlike solutions of the coupled A
double chain. Finally, we remark that the symplecticity
the mapA is a readily proven property helpful for a stabilit
analysis of periodic orbits.

IV. EQUILIBRIUM POSITIONS
AND LINEAR STABILITY ANALYSIS

We investigate the equilibrium positions ofA and their
corresponding stability properties. The mapA possesses pe
riodic points of orderk if the condition

A kxWF5xWF , kPN ~15!

holds and the pointsxWF determine a periodic orbit. To deter
mine the stability of such orbits we make use of the fact t
for symplectic maps linear stability implies spectral stabili
~A periodic orbit is linearly stable if all small perturbation
of it remain bounded for the evolution of the tangent ma
Spectral stability means that all eigenvalues of the tang
map lie on the unit circle, i.e.,ulu51 @48,49#.! The eigen-
valuesl of the tangent map are determined by the char
teristic polynomial

det~DA2lI !50, ~16!

and the Jacobian matrix is given by

~DA!5S p~x! 2a 21 0

2a p~u! 0 21

1 0 0 0

0 1 0 0
D , ~17!

with

p~x!5
2mvxn

211v

~11mxn
2!2

, ~18!

p~u!5
2mvun

211v

~11mun
2!2

. ~19!

Due to the symplectic property of the map, 1/l is also an
eigenvalue. IfuluÞ1 and Im(l)Þ0 the eigenvalues appea
as symmetric 4-tuples:l, l* , 1/l, 1/l* . If Im( l)50,
then a pairl, 1/l exists on the real axis and the orbit
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unstable. Finally, ifulu51 then there is a pairl, l* 51/l,
and the orbit is stable. The characteristic polynomial cor
sponding to the tangent mapDA is

det~DA2Il!5P~l!5l42Kl31Ll22Kl1150,
~20!

with

K5Tr~DA! and L5
@Tr~DA!#22Tr~DA!2

2
. ~21!

Tr(DA) is the trace of the tangent map. Using Eqs.~18! and
~19!, the coefficientsK andL are given by

K5px1pu and L5pxpu2a212. ~22!

Instead of studying the quartic characteristic polynomial, i
more convenient to investigate the reduced character
polynomial that is quadratic in the stability indexr5l
11/l:

Q~r!5r22Kr1L2250. ~23!
od
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The solutions

r1,25
1
2 K6A 1

4 K22L12 ~24!

are related tor by

l1,25
r6Ar224

2
. ~25!

Since stability requires the eigenvalues to lie on the u
circle, i.e.,ulu51, the inequality

uru<2 ~26!

must hold. Using Eq.~21!, the stability indices are deter
mined by

r1,25
px1pu

2
6Apx

21pu
2

4
2

pxpu

2
1a2. ~27!

Finally, according to Eq.~25! the four eigenvalues of the
tangent mapDA are given by
l1,25
1

4
H px1pu1Az62A241S 2

px1pu2Az

2
D 2J , ~28!

l3,45
1

4
H px1pu2Az62A241S 2

px1pu1Az

2
D 2J , ~29!
to
h is

on
with

z54a21pu
21px

222pupx . ~30!

The eigenvalues depend on the coordinates of the peri
orbit xWF as well as on the system parameters, that is,l1,2,3,4

5l1,2,3,4(xWF ;a,v). The parameter range in which the equ
libria of the map A are stable can be determined fro
ul(xWF ,a,v)u51. However, upon parameter variations bifu
cations may occur for which the stability can alter@49,50#.
With regard to the stability loss of a stable fixed point of t
double AL chain, we distinguish two possible situations d
pending on how the eigenvalues move away from the u
circle as parameters are changed.

~i! A pair of complex conjugate eigenvalues encounter
the point (1,0) and separates along the positive real a
This so-called tangent bifurcation occurs for

L,2K22, ~31!

and gives the condition

a.6A22~px1pu!1pxpu14 ~32!

for the coupling parametera.
ic

-
it

t
is.

~ii ! A pair of complex conjugate eigenvalues moves
(21,0) and separates along the negative real axis whic
called period doubling bifurcation. This happens when

L,22K22, ~33!

which is fulfilled if

a.6A2~px1pu!1pxpu14. ~34!

The task now is to locate the periodic orbits ofA and to
determine their stability properties. We focus interest
period-1 orbits, viz. fixed points. Inserting xWF
5(xF ,uF ,yF ,vF) in Eq. ~15! results, for k51, in the
coupled system

2xF52
v

11mxF
2 xF2auF ,

~35!

2uF52
v

11muF
2 uF2axF .

This can be solved forxF to give
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05axF1
mxF

3~21v12mxF
2 !2

a~11mxF
2 !2

2
2mxF

3~21v12mxF
2 !3

a3~11mxF
2 !3

2
~21v!xF~21v12mxF

2 !

a~11mxF
2 !

5P~xF!.

The roots of this polynomialP(xF) yield the location of the
fixed points ofA. We immediately see thatxWF50W is always a
fixed point. The remaining roots ofP(xF) can be found nu-
merically with the help of a Newton procedure. The numb
of roots~fixed points! ranges from one up to nine dependin
on the parameter values. Figure 1 shows the locationxF of
the fixed point versus the coupling parametera for v5
23. Fora,0.46 there exist nine fixed points. Their numb
diminishes to five fora.4.6. A further reduction occurs a
a51, and three stable equilibria survive. Eventually, fora
.1.4, only one stable elliptic fixed point at the origin r
mains. In the context of the present paper—that is, to st
solitonlike solutions—the stability property of the fixed poi
at the origin deserves closer inspection. As long as the la
is of hyperbolic stability type, the orbits on its associat
invariant stable and unstable manifolds support bright s
tonlike lattice solutions~also see Sec. V!.

The eigenvalues of the tangent map at (0,0,0,0) are g
by

l1,25
1
2 „v1a6A~a2v!224…, ~36!

l3,45
1
2 „v2a6A~a2v!224…, ~37!

and depend on the parametersv and a. We determine the
border lines for stability in thev2a2parameter plane a
follows.

If

a.Av214v14 and a.Av224v14 ~38!

hold, the fixed point is unstable.
If

a,Av214v14 and a,Av224v14, ~39!

FIG. 1. Location of the fixed pointsxF vs a. Parametersv5
23, m51, andV51. Stability as indicated.
r

y

er

i-

n

the range in which the fixed point is elliptic is given by

uv6au<2. ~40!

A hyperbolic point exists if

uv6au.2. ~41!

If

a,Av224v14, a.Av214v14, and uv1au<2
~42!

are satisfied, the fixed point is elliptic.
Fora.1 the origin is converted into a stable elliptic fixe

point. In this case, when vertical coupling and horizon
coupling exceeds„(a/V).1…, the excitation of bright soli-
tonlike solutions on the AL strings is impossible due to t
lack of a hyperbolic point at (0,0,0,0).

Figures 2~a! and 2~b! illustrate the complex behavior o
the mapA, the orbits of which are projected on thex-y
subplane. For comparison, Fig. 2~a! displays the integrable
two-dimensional AL map ofa50 for v523 and V51.
The perfect separatrix associated with the hyperbolic poin
the origin yields a stationary soliton on the AL lattice. F
a.0 this separatrix is broken and is surrounded by a cha
layer @see Fig. 3~b!#. Theu-v subplane shows a similar fea
ture of nonintegrable map dynamics.

V. NONINTEGRABILITY OF THE STATIONARY AL
DOUBLE CHAIN AND MELNIKOV ANALYSIS

In this section we apply the Melnikov method to sho
rigorously the nonintegrability of the stationary AL doub
chain. The Melnikov method represents an analytical too
prove transversal intersections of manifolds invariant to
perbolic equilibria@49–52#. It applies to maps of the form

xWn115AxWn5FxWn1eGxWn , ~43!

whereA is decomposed into an integrable partF and a weak
perturbational partG, with e!1 regulating the strength o
the perturbation. The integrable mapF possesses a hype
bolic equilibrium point located at the origin. The stable a
unstable manifolds of this hyperbolic point coincide formin
a separatrix on which the solution is known explicitly.

For the four-dimensional coupled AL mapxWn115FxWn

1aGxWn , the integrable part is determined by

F~xWn!5S 2vxn

11mxn
2

2yn

2vun

11mun
2

2un

xn

un

D , ~44!

and the nonintegrable perturbation arising from the~weak!
interchain coupling reads as
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G~xWn!52S un

xn

0

0

D . ~45!

The map origin represents a hyperbolic fixed point
v,22. The corresponding unperturbed homoclinic orbit
a50 is parametrized by

xWn
0~s,t !5

1

Am
sinh~b!S sech~ t2nb!

sech~s2nb!

sech„t2~n11!b…

sech„s2~n11!b…

D PR4,

~46!

FIG. 2. Orbits of the mapA given in Eqs.~12! projected on the
x-y subplane for the following parameters:~a! No interchain cou-
pling a50. The integrable two-dimensional AL map. Note the p
fect separatrix.~b! Interchain couplinga50.1. The separatrix is
broken due to nonintegrability of the mapA.
r
r

and consists of the two two-dimensional separatrices
signed to the upper and lower AL strings. The connect
betweenb andv is given by

coshb52
v

2
. ~47!

The parameters (t) determines the position on the separat
of the integrable upper~lower! AL string, and hence the
lattice position of the soliton on the corresponding on
dimensional lattice.~In Sec. VI the parameterss5x0 and t
5y0 are used to fix the initial lattice positions of the movin
solitons.! The question now is: How does string couplinga
.0 affect these single solitons on each of the two A
strings?

As is well known under nonintegrable perturbations, t
stable and unstable manifolds invariant to the hyperbo
point are no longer identical and rather may intersect e
other transversally, thus forming a homoclinic tang
@49,50#. Based on geometrical arguments, a Melnikov fun
tion was developed measuring for nonintegrable planar m
(N52) the distance between the stable and unstable m
fold under the action of perturbations@52#. Using analytical
techniques developed in Refs.@53,54#, the Melnikov method
has been extended to treat maps with dimensionsN>2 as
well @53–56#, and the~scalar! Melnikov function is replaced
by a Melnikov vector ofN components related to the grad
ents of the integrals of the unperturbed system. The com
nents of the Melnikov vector are defined by

Mi~s,t !5a (
n52`

`

qW̃ n11
~ i ! G„xWn

0~s,t !…, i 51,2. ~48!

-

FIG. 3. AmplitudesM1,2 of the two components of the Melni
kov vector vs the separatrix parameterss and t. The values on the
line s5t have been scaled by a factor 100.
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Isolated zeros (s* ,t* ) of the components exist for

Mi~s* ,t* !50, ~49!

detDMW Þ0, ~50!

implying the existence of transversal intersections of the
variant manifolds yielding homoclinic orbits.~For details,
see Ref.@56#.!

To derive the vectorqW̃ n11
( i ) appearing in Eq.~48!, we first

have to solve a variational problem@56# associated with the
unperturbed system:

qW n115DnqW n . ~51!

Dn is the Jacobi matrixDn5DF(xWn
0). The adjoint variational

problem then providesqW̃ n11 :

qW̃ n115qW̃ nDn
21 . ~52!

It is possible to calculate the components of the vectorsqW n
(1)

andqW n
(2) through the partial derivatives of the separatrix e

pression„xWn
0(t,s)… taken with respect to its separatrix param

eterss and t:

qW n
~1!5

]xWn
0~ t,s!

]t
, qW n

~2!5
]xWn

0~ t,s!

]s
. ~53!

The results are

qW n
~1!~ t !5

1

AmS sech(bn2t) tanh(bn2t)

0

sech„b(n11)2t) tanh„b(n11)2t…

0

D ,

~54!

qW n
~2!~s!5

1

AmS 0

sech~bn2s! tanh~bn2s!

0

sech„b~n11!2s… tanh„b~n11!2s…

D .

~55!

For the ease of notation we introduce the abbreviations

Sn~ t !5sech~nb2t !, Tn~ t !5tanh~nb2t !, ~56!
-

-

C5
1

Am
sinhb. ~57!

The vectorsqW n
( i ) thus take the following forms

qW n
~1!~ t !5C„Sn~ t !,Tn~ t !,0,Sn11~ t !,Tn11~ t !,0…, ~58!

qW n
~2!~s!5C„0,Sn~s!,Tn~s!,0,Sn11~s!,Tn11~s!…. ~59!

The vectorsqW̃ n11
( i ) demanded for the computation of th

Melnikov vector are obtained via the adjoint variation
equation@53,56#:

qW̃ n11
~ i ! 5qW̃ n

~ i !
•@DF~xWn

0!#21 ~60!

5qW̃ n
~ i !
•Dn

21 . ~61!

We then find

qW̃ n11
~1! 5C„Sn~ t !Tn~ t !,0,Sn11~ t !Tn11~ t !2pxSn~ t !Tn~ t !,0…

~62!

and

qW̃ n11
~2! 5C„0,Sn~s!Tn~s!,0,Sn11~s!Tn11~s!

2puSn~s!Tn~s!…. ~63!

The perturbation vectorG„xWn
0(t,s)… can be presented as

G„xWn
0~ t,s!…52C„Sn~s!,Sn~ t !,0,0…. ~64!

Finally, the components of the Melnikov vectorMW
5(M1 ,M2) are given by

M1~ t,s!5a (
n52`

`

qW̃ n11
~1! G„xWn

0~ t,s!…

52aC2 (
n52`

`

Sn~s!Sn~ t !Tn~ t !, ~65!

and correspondingly

M25a (
n52`

`

qW̃ n11
~2! G„xWn

0~ t,s!…

52aC2 (
n52`

`

Sn~s!Sn~ t !Tn~ t !. ~66!

The computation of the sums in Eqs.~65! and~66! proceeds
along the lines given in Refs.@47,52#. After some lengthy
computations theM1 component of the Melnikov vector fo
sÞt is obtained as
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M152a
2

mb
sinh2bH cosech~s2t !Xcoth~s2t !F2EK~ t2s!

b
1KES amF2Ks

b G D2~ t2s!2KES amF2Kt

b G D G
2

2K2

b
dn2S 2Kt

b D1
2KE

b
21CJ. ~67!
nd

a

rix
e

w

0.

er-
ted
he

n-
le

ap
me
ns-
he

he
m-

A
ary

L

dy-
be

c

r-
e

The second component is simply given by

M252M1 . ~68!

K and E are the complete elliptic integrals of the seco
kind, and am is a Jacobian elliptic function@57#. The modu-
lus of these functions is defined by

q5exp~2z!5expS 2p
K8~k!

K~k! D . ~69!

For s5t the two-component Melnikov vector reduces to
scalar functionM15M2[M sym, explicitly given by

M sym52aC2
]

]t
S~ t,t,b!

52aC2
16K3m

b3
cnS 2Kt

b DdnS 2Kt

b D snS 2Kt

b D .

~70!

In Fig. 3 we plot the amplitudes of the two componentsM1,2
of the Melnikov vector as a function of the two separat
parameterss and t. We recall that the latter determine th
positions on the unperturbed separatrix~46! and thus the
position of the unperturbed single soliton on each of the t
AL strings. To be distinguishable, the values of Eq.~70!
~valid on the lines5t) have been scaled by a factor of 10
We recognize the following features.

FIG. 4. First windings of the homoclinic tangle of the hype
bolic equilibrium point at (0,0,0,0) for the mapA. Parameters:v
524, m51, V51, anda50.2.
o

~i! For values ofs andt very distant from the lines5t the
Melnikov vector is~almost! identically zero, excluding iso-
lated zeros ofM1,2. Moreover, forsÞt the componentsM1
andM2 have no common simple zeros and thus no transv
sal intersections of the invariant manifolds can be detec
~at least to first-order perturbational computation of t
Melnikov vector considered here!.

~ii ! Condition ~48! can be satisfied only on the lines5t.
Simple zeros of the Melnikov functionM sym occur. The cor-
responding homoclinic tangling on thex-y plane is depicted
in Fig. 4.

Based on the results for the Melnikov analysis we co
clude that, only for symmetric excitation of the AL doub
chain, i.e., for opposite solitons of equal positionss5t, the
existence of homoclinic chaos in the four-dimensional m
is proven. As a consequence both single solitons beco
pinned. Their lattice amplitudes are determined by the tra
versal intersection points of the invariant manifolds of t
hyperbolic equilibrium (0,0,0,0) on the mapA. Such a sta-
tionary amplitude profileuFn(t)u2 of the stationary soliton-
like excitation on the upper string is shown in Fig. 5. T
lower string exhibits an equal excitation pattern. We co
puted the energy Hpinned52(n(FnFn11* 1Fn* Fn11)
2(a/2)(nuFnu2 of the pinned soliton on the upper string.
comparison showed that the energy of the single station
AL soliton given by Hsoliton524 sinhb lies above the
pinned state energies. The energy differenceDH5Hpinned
2Hsoliton may be interpreted as the pinning energy of the A
double chain due to its nonintegrability feature.

On the other hand, for unequal soliton positionssÞt ho-
moclinic chaos cannot be proven. Nevertheless, as the
namical studies reveal, the AL double chain appears to
nonintegrable~see Sec. VI!. Note that the case of symmetri
soliton excitation ofs5t with its established homoclinic

FIG. 5. The amplitude profile of the stationary bright solitonlik
solution on the upper string. The homoclinic orbit of the mapA has
been used as the initial conditions for system~71!. Parameters:v
523, V51, m51, anda50.1.
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chaos allows for a construction method of standing solit
being opposite on the AL double chain. Since opposite s
tons imply identical initial conditionsFn(0)5Cn(0) the AL
double chain degenerates to two one-dimensional GDN
equations

i
]Fn

]t
52V~11muFnu2!~Fn111Fn21!

2a~11muFnu2!Fn ~71!
s
i-

S

i
]Cn

]t
52V~11muCnu2!~Cn111Cn21!

2a~11muCnu2!Cn , ~72!

the soliton construction proceeds as described in Ref.@47# by
exploiting the knowledge on the homoclinic orbit. We sket
the procedure in the following flow diagram.
site (

rtically
-
ense we

f Sec. V
less, for
excited
In conclusion, excitation of an exact two-soliton stationary state of the AL double chain is only possible for oppos
5t) single solitons. Finally, in the extreme case of very distant soliton positionss andt, the~stationary! solitons do not affect
each other and significant ‘‘soliton interaction’’ should not appear~see Sec. VI!.

We close this section by emphasizing that the Melnikov analysis is not restricted to an AL double chain of two ve
coupled strings. It rather applies to a~genuine! two-dimensional stationary AL arrayextended arbitrarily both in the longitu
dinal and vertical directions such that each array site is coupled to its left, right, lower, and upper neighbors. In this s
are able to prove rigorously the nonintegrability of a stationary two-dimensional AL array.

VI. ENERGY EXCHANGE BETWEEN THE TWO AL STRINGS

In this section we investigate the energy exchange between the two strings of the AL double chain. The findings o
indicate that the AL double chain is nonintegrable, preventing the system from exhibiting exact soliton states. Nonethe
weak interchain coupling we can address the issue of soliton interaction. On each string an exact single AL soliton is
and the two chains are weakly coupled, i.e.,a!1. The change of energy of the upper string is determined by

dH0
~1!

dt
5a$H0

~1! ,H int%, ~73!

giving, with Eqs.~3! and ~5!,
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dH0
~1!

dt
5 ia(

n
~11muFnu2!@~Fn11* 1Fn21* !Cn2~Fn111Fn21!Cn* #

522a(
n

~11muFnu2!Im@~Fn11* 1Fn21* !Cn#. ~74!

An equivalent expression is derived for the change of energy of the lower chain. Since for small couplings ofa<0.1 the ratio
uH int /H0

(1,2)u is less than 1021, we neglect the contribution from the interaction partH1 for the energy balance. The change
energy of the second string follows directly from the one of the first string due to energy conservation. The energy e
rate per time unitT is given by

DH0
~1!522a

1

TET
dt(

n
~11muFnu2! Im@~Fn11* 1Fn21* !Cn#. ~75!

The ~unperturbed! one-soliton solutions on the two strings read as

Fn~ t !5
sinhb

Am
sech@b~n2ut2x0!#exp@2 i ~vt2un1s0!# ~76!

Cn~ t !5
sinhb

Am
sech@b~n2ut2y0!#exp@2 i ~vt2un1d0!# ~77!

v522 cosu coshb, u5b21 sinu sinhb, ~78!

wherebP@0,̀ ) anduP@2p,p#. Both solitons have equal parameters except for possibly different phasess0 andd0 as well
as soliton positionsx0 on the upper string andy0 on the lower string.~Note that for the stationary analysis of Sec. V we us
the separatrix parameterss and t to determine the positions of the standing solitons.!

For the energy exchange rate we obtain

DH0
~1!524a

sinh2b

m

1

TET
(

n
$11sinh2b sech2@b~n2ut2x0!#%$sech@b~n112ut2x0!# sech@b~n2ut2y0!# sin~Ds2u!

1sech@b~n212ut2x0!# sech@b~n2ut2y0!# sin~Ds1u!%, ~79!

with the phase differenceDs5s02d0 . For vanishingu and zero phase differenceDs50 the single solitons~76! and ~77!
become standing~stationary! solitons. From expression~79! we infer immediately that thenno energy exchangebetween the
two strings takes place regardless of the relative soliton positionsx0 andy0 . In particular, the latter fact seems remarkab
recalling that the excitation of an exact two-soliton stationary state of the AL double chain is only possible for op
solitons ofx05y0 ~see Sec. V!. Later we treat the energy exchange numerically.

Using the addition theorems we derive

DH0
~1!528a

sinh2b

m

1

TET
dt(

n

1

cosh@b~n2ut2y0!#H sinDs cosu
coshb

cosh@b~n2ut2x0!#

2 cosDs sinu
sinhb sinh@b~n2ut2x0!#

cosh2@b~n2ut2x0!#
J . ~80!

In computing the sums in Eq.~80! we note that the arguments of then-dependent terms are of the form (n2ut2x0) and
(n2ut2y0). Consequently, the sums in Eq.~80! are invariant undert translations, and thus actuallyt independent. We then
obtain

DH0
~1!528a

sinh2b

m (
n

1

cosh@b~n2y0!#H sinDs cosu
coshb

cosh@b~n2x0!#
2cosDs sinu

sinhb sinh@b~n2x0!#

cosh2@b~n2x0!#
J . ~81!
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Furthermore, for equal soliton positionsx05y0 the sums in
Eq. ~81! are invariant underx0 translations and thus indepen
dent of x0 . Then we assume that, whenever the s
(n52`

` F(n1x0) does not depend onx0 , it can be converted
into an integral@44#

(
n52`

`

F~n1x0!5E
2`

`

dx F~x!. ~82!

We obtain

DH0
~1!516a

sinh2b

bm
sinDs cosu coshb. ~83!

Apparently, for u56p/2 and/or Ds50,6p, there is no
energy exchange. On the other hand, the maximal en
exchange rate is achieved forDs56p/2 andu50,6p.

The general case ofx0Þy0 is illustrated in Fig. 6 forb
5arccosh(21.5) and u520.2. We setx050 and plot
DH0

(1) versusy0 for various values ofDs, as indicated. Due
to the choicex050 the initial position of the soliton on the
upper string is fixed at the siten50, while the initial position
of the soliton on the lower string is moved away from t
central lattice site withy0.0. In this wayy0 determines the
distancebetween the solitons. Interestingly, for undercritic
phase differencesDs<1.5 the graphs exhibit an extremu
for y0.0 corresponding to maximal energy exchange ra
With increasedDs the position of the maximum is shifte
toward smallery0 values. Simultaneously, the energy e
change rate for opposite solitons ofy050 increases. Even
tually, for Ds.1.5 maximum energy exchange occurs f
y050, and the now monotone curves decay with grow
y0 . When u is varied we obtain similar pictures and th
curves are only stretched in the vertical direction. Enhanc
b has the effect that the curves decay more rapidly w
growing distancey0 . The latter fact becomes plausible b

FIG. 6. The energy exchange rateDH0
(1) in dependence on the

soliton distancey0 for u52. We plot the expression forDH0
(1)

given in Eq.~81! divided by28a sinh2 b/m. The curve paramete
is the phase differenceDs as indicated.
gy

l

.

r
g

g
h

noting that the largeru is the smaller the width of a soliton
is, and, hence, their mutual influence diminishes with lar
distancesy0 .

The different regimes of the energy exchange between
two strings are depicted in Fig. 7. We show the tempo
variations of the ~normed! energy difference @H0

1(t)
2H0

2(t)#/@2H0
(1)(0)# with H0

(1)(0)5H0
(2)(0) for three dif-

ferent soliton distancesy0 . According to Eq.~81! and Fig. 7,
maximal energy exchange between the two strings can
expected fory051.67. ~The main excitation pattern of th
exact AL soliton involves five lattice sites.! In fact, after a
short transient period of energy migration from the low
string into the upper string the energy difference exhib
small oscillations around the value 0.9, meaning that~ap-
proximately! 90% of the total energy is storaged in the upp
string. For a wider soliton distancey056.5 the energy ex-
change is not as pronounced as for the previous case. N
ertheless, eventually 65% of the total energy become sto
in the lower string. For a relative large soliton distancey0
514 there is virtually no interaction between the two string
as seen by the almost negligible variations of the ene
difference around zero. We remark that we find good agr
ment between the energy exchange rate computed ana
cally on the basis of expression~81! and the numerical re-
sults.

Figures 8~a! and 8~b! show, for the soliton distancey0
51.67, the amplitude profile of the upper and lower strin
respectively. One clearly sees how the upper chain ga
energy at the expense of the lower one. On the upper c
two breathing solitonlike states of distinct amplitudes a
created. Whereas the breather of small amplitudes fre
propagates along the lattice with a velocity equal to that
an unperturbed soliton, the breather of large amplitude
pears to be slow in comparison. The lower chain exhibit
breather having the same velocity as the small amplit
breather on the upper string. For comparison we illustrate
Figs. 9~a! and 9~b! the case of suppressed energy excha
for the large soliton distancey0514. On both strings we
observe breathers of equal~maximal and minimal! ampli-

FIG. 7. Temporal behavior of the normed energy differen
@H0

1(t)2H0
2(t)#/@2H0

(1)(0)# with H0
(1)(0)5H0

(2)(0). Parameters:
v523, m51, V51, and a50.1. ~a! Soliton distancey051.67
corresponding to maximal energy exchange between the
strings. After a short period of energy migration 90% of the to
energy is stored in the upper string.~b! Soliton distancey056.5%
and 65% of the total energy becomes stored in the lower string~c!
Soliton distancey0514. Suppressed energy exchange.
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tudes moving along the lattice with unique velocity belo
the one of an unperturbed soliton.

VII. SUMMARY

In the present paper we investigated the solution beha
of an AL double chain. The first part of the paper dealt w
the stationary system belonging to the double chain. We
lized a map approach to describe the stationary states. I
est is focused on the fixed point at the map origin, since
hyperbolic-type stability orbits on the associated invari
manifolds provide bright solitonlike lattice excitations. If th
strength of the vertical couplingsa exceeds those of th
horizontal couplingsV the map origin represents a stab
elliptic equilibrium. Hence the construction of exact standi
solitonlike solutions via homoclinic orbits is then impossib
Furthermore, it is shown that the stationary map is nonin
grable. This is achieved with the help of the Melniko
method assuring transversal intersections of the stable
unstable manifolds of hyperbolic points. The correspond
homoclinic orbit can be used as an initial condition to exc
a two-soliton-like pinned lattice state. This pinning effec
resulting from the nonintegrability of the double chain has
be distinguished from the solution behavior of an isola
one-dimensional AL lattice. The latter is completely int
grable. Its stationary solitons derived from the correspond
two-dimensional map can always be moved with any des
velocity through a Galileo boost.

The second part of the paper was devoted to an inve
gation of the dynamics of the energy exchange between
two ~weakly! coupled AL strings. We considered the situ
tion when on both strings an exact AL soliton is initial

FIG. 8. The amplitude profilesuFn(t)u2 and uCn(t)u2 of the
upper~a! and lower~b! strings, respectively. Parameters as in F
7~a!.
or
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excited. Depending on the initial distance between the s
tons as well as their mutual phase relations, there exist
tinct energy exchange regimes ranging from suppresse
pronounced exchange. Surprisingly, we found param
constellations for which maximum energy exchange occ
not for strictly opposite solitons but rather at a certain~non-
vanishing! distance between them. As expected, for su
ciently large soliton distances the soliton-soliton interact
vanishes, and energy exchange between the two string
suppressed. From our studies we conclude that the in
excitation of the single chains with exact AL solitons resu
in moving breathers under the action of the nonintegra
interchain coupling, regardless of the soliton amplitudes
well as their widths. Usually nonintegrability of the lattic
system may cause a pinning transition~depending on the
soliton parameters@9#! preventing solitonlike solutions o
breathers from being moved along the lattice. The o
pinned solution we obtained resulted from the homocli
orbit derived from the stationary system. As an interest
dynamical feature we observe that a single soliton may s
into two moving breathing states of different amplitudes
well as different velocities.
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FIG. 9. The amplitude profilesuFn(t)u2 and uCn(t)u2 of the
upper~a! and lower~b! strings, respectively. Parameters as in F
7~c!.
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