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Painleve analysis of the coupled nonlinear Schrdinger equation for polarized optical waves
in an isotropic medium
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Using the Painlevanalysis, we investigate the integrability properties of a system of two coupled nonlinear
Schralinger equations that describe the propagation of orthogonally polarized optical waves in an isotropic
medium. Besides the well-known integrable vector nonlinear ®ithger equation, we show that there exists
a set of equations passing the Painlésst where the self and cross phase modulational terms are of different
magnitude. We introduce the Hirota bilinearization and thekBand transformation to obtain soliton solutions
and prove integrability by making a change of variables. The conditions on the third-order susceptibility tensor
x® imposed by these integrable equations are explaii&63-651%99)05502-4

PACS numbds): 42.65.Tg, 42.81.Dp, 02.30.Jr, 41.20.Jb

I. INTRODUCTION group theory which preserves the integrability structure. This
gives rise to various integrable, coupled NLS equations
The coupling between copropagating optical pulses in amongN scalar fieldsy; ;i=1, ... N with specific set of

nonlinear medium has led to many important applications ircoupling parameters. F?=2, the vector NLS equation is
optical fiber systems such as optical switching and solitonthe only nontrivial integrable equation in the group theoretic
dragging logic gategl]. The governing equation for the construction. However, it is not known whether there can be
propagation of two orthogonally polarized pulses in a mono-other cases of the integrable coupled NLS equationNor
mode birefringent fiber is given by the coupled nonlinear=2 with nonlinear coupling terms as in E€l) except for
Schralinger (NLS) equation, where the nonlinear coupling the vector NLS equation.

terms are determined by the third-order susceptibility tensor In this paper, using the Painlewnalysis we investigate
x® of the fiber. In an isotropic medium, the tenggd?f) has  the integrability properties of the coupled NLS equation rel-
three independent component§) ., x).., and x{3) and evant to the propagation of orthogonally polarized optical

, con vy Xxyxy: Xyy ; ) ; ! i
the nonlinear polarization components that account for tha&vaves in an isotropic medium. Motivated by Ed), we
nonlinear coupling terms take the form consider the general form of the coupled NLS equation such
that
360
P.=—I[( 3 1+ B3 43 yE 2_|_( (3) —
X7 H oy T Xy Xy B™ oy 1901= 9201+ 01( 71 Q1|+ 2| 02| + ¥30} a5+ v4a7as
2
+ X5 | Ey P TExt Xy EvEx ] —
R T 1) 19927 Bt Aa(¥2ldal* + yal6al?) + 7503 a1+ va20T
P —ﬁ[[( 3 xS+ E, |2+ (xS where 3=+ 1 signify the relative sign of the group-velocit
Y Xxxyy™ Xxyxy Xxyyx) y Xxxyy - g g g _p O¢ y
dispersion terms and we use the notationd/ dz,9=dl 9z.
+ X i) [EXIPIEy + Xih EZES T. We find that the system passes the Painl®st whenever

the parameters belong to one of the following four classes;
In the case of silicar fiberg(3), ~ xS ~x D andthe non- () B=1y1=7,,73=y4=0, (i) B=1, 7,=2y1,73=
linear terms above have a ratio of 3:2:1. However, when the- y,, yjarbitrary , (i) B8=1,7,=27v1,v3=71,742=0 and
fiber is elliptically birefringent with the ellipticity angl®  (iv) 8=—1,y1=—y,,y3=y4=0. Case(i) [and(iv)] is the
~35°, and also the beat length due to birefrigence is muchvell-known vector NLS equation. The integrability of cases
smaller than the typical propagation distances, the couplefl) and(iv) have been demonstrated by Zakharov and Schul-
NLS equation takes the form of the vector NLS equation theman by deriving an appropriate inverse scattering formalism
nonlinear terms of which have a ratio of 1:1®)], which is  [4,7]. However, casesii) and (iii) are new as far as we
known to be integrable via the inverse scattering methodknow. In particular, caséi) corresponds to the propagation
[3,4]. In general, the coupled NLS equations with arbitraryin the isotropic nonlinear medium with the property that
coefficients are not integrable. Mathematically, there exists &3, xiyk,= — 2x3yx- We find the Hirota bilinearization
systematic way of generalizing the NLS equation to the mul-and the Baklund transformation of case8g) and (iii), and
ticomponent cas€$] and to the higher-order casgd using  compute soliton solutions. As for the integrability of cases
(i) and (iii), we prove that they are essentially identical to
two independent NLS equations. This implies that in the case
*Electronic address: gpark@nms.kyunghee.ac.kr (i), there are no physical interactions between two optical
Electronic address: hjshin@nms.kyunghee.ac.kr pulses with opposite circular polarizations. We also show
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that our Painlevanalysis is consistent with the group theo- sy
retical method of generalizing the integrable NLS equations Yit+ yas+2+ yx=— Y3y
when the group theoretical method is combined with the re-
duction procedure. (6)
. SX
Il. PAINLEVE ANALYSIS OF THE COUPLED yit+ ¥+ 2+ yy=—y3—.
NLS EQUATION y

The Painleveanalysis for a partial differential equation
was first introduced by Weiss, Tabor, and Carnej@lavho  Each pair can be combined to givex<{y)[y,— yst(x
defined that a partial differential equation has the Painlevety)/xy]=0, and &—y)[ y4— ysS(x+y)/xy]=0. One can
property if its general solution is single valued about thereadily check that solutions of these equations can be classi-
movable singularity manifold. This method is to seek a sofied in seven different cases:
lution of a given differential equation in a series expansion in
terms of ¢(z,z) =z— ¥(z), where(z) is an arbitrary ana-
lytic function of z and ¢ =0 defines a noncharacteristic mov-
able singularity manifold. Then, the equation has the Pain-
leve property, thus becomes integrable, if there exists a
sufficient number of arbitrary functions in the series solution.
For B=1, we postulate a solution of the form

(case l X=Yy, y1=7v2F V3,
(case 2 x=y, t=x,

. (case 3 x=y, t=-—x,
0= 2 Re(2)(z=)"",

¢ tX~|—y
— case =S, = oo
0= 3, Su@z= 9", (cased =8 mamwelsy
()
0= 2 T2 (=)™ ", (cased x=-Yy, ¥4=0, y,=yi+y3t+s=-2ly,
m=0

_ - (case § y3=1vy,=0, s=t=—2/y1+7v,),
*: U _ m 0'.
a5 = 2 Un(2)(z=4)

Substituting thesé\nsaze into Eq. (2) and looking at the  (case 7 y3=v,=0, 71=v,, t+s=-2.
leading order behavior, we find that=1 and the following

equations should be satisfied:
For each case, we check the powers, so called resonances,

at which the arbitrary functions can arise in the series solu-
tion. Equating coefficients of thez¢ )2 term in Eq.(2)
with the ansie in Eq.(3), we obtain a system of four linear

71T3Uo+ v,RoSeTo+ y3R§U0+ 74T(2>50+2To=0, algebraic equations inR;,S;,T;,U;) which are given in a
) matrix form by

¥1R5So+ ¥2RoToUo+ ¥3T5So+ ¥4R5U o+ 2Ry =0,

y1U5To+ 72RoSoUo+ ¥3S5To+ ¥aU§Ro+2Up=0,

R F
2 2 2 _ S; G,
Y1SoRo+ ¥2SToUot ¥3UoRo+ v4SpTo+25,=0. ol 2= @)
T H;
In order to facilitate solving Eq.(4), we define x U; K;
=UgRy, V=TS, t=RySy, s=UyTy so that the first
two equations in Eq4) can be written as
The 4X4 matrix
ty
Y15+ Yot + 2+ yux=— Y3y
1 2
(5) o QY Q7
tx sz(J_l)(J_2)|4><4+ Q(g) Q(4)
715+72t+2+74y=—737, : :

while the last two as has block components:
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271RoSp+ ¥2ToUo+2¥4RoUg y1R5+v3Th
y1S6+ v3U§ 271RoSo+ ¥2ToUo+ 2745 To

2 ( Y2RoUo+2y3T Sy ¥2RoTo+ ¥4R3 )
' ¥2S0Uo+74S5  ¥2SoTo+2y3UgRy)’

(1) =
]

®
3_ ¥2ToSo+2¥3RoUg  ¥2RoTo+ 74T} )
. ¥2UoSo+ vaU§ ¥2RoUo+273T0So)
@ _ ( 21 ToUo+ ¥2R0So+274S0To 71 To+ ¥3RG
! y1Ug+ 7385 271 ToUo+ 72RoSo+274UoRo)’
|
and where + and — sign correspond to case 2 and case 3, re-

spectively. Substituting these solutions into the resonance

I+m+n=j ... . .
. condition de®;=0, we find that the resonance valugs
Fij=- OS,%K]- (71RIRmSh+ 2R TnlUn + 735 T Tn - 1,0,1,1,2,2,3],4 occur whep,=2y,,v3==*y4+y;. The
resonancg= —1 is related with the arbitrariness ¢f while
+¥sRR\Up) +iR{_,—i(j—2) 'Ry, the resonancg=0 is related with the arbitrariness &.
_ The recursion relation in Eq7) determine®R;,S;,T,,U4 in
Hrmin=) terms ofRy,Sy, To,Uyg,#. The degree of multiplicity of the
GJE_N%KJ. (71SSmRat 72SUmTh + v3RUnU, resonancg =1 is two and it turns out that there exist two
o arbitrary functions consistently only #,= 0. Therefore, the
T Y4SSnTn) —iS{_,+i(j—2)¢'S 1, case wherey,=27y,,y3=y; and y,=0 passes the Painleve
_ 9) test:
I+m+n=j
Hi= =2, (T TaUnt 22TiRnS:+ sUiRnR, Case 4: t=s, yaxy=7at(X+y).
+ y4T|TmSn)+iTj'_2—i(j —2)¢'T; 1, Equation (4) together with the conditiont=s, vy,xy
= y,t(X+y) results in
I+m+n=j
Kj 0s|,§n:,n<j (72UilUmTat 72U1SpRat 73T1S0S; t= 2 S x= ﬂim t,
Y1t ¥2— v3+ (il va) 23
+y4UlUnR) —iU{ o +i(j—2)¢'Uj_;. (12

The resonances occur when@gt0. Now, we compute the and
resonance values and check the Painiesaperty of Eq.(2)
for each seven cases as introduced above. t2 1 t X
So=7 7 Up=7, Ro=7To. (13
To t
Case 1: x=Y, y1=v>,+7v3.
In this case, we can solve fdr,,R, such that When we substitute these solutions into the resonance con-
dition deQQ;=0, we obtain
—2U, -25,

To= 2 2 , Ro= 2 2 .
+Ug) + U +Ug)+ U
Y1(Sg o)+ 74SUo Y1(Sg IR ZE (100) (-8 -3)j(j+1)

2 2
5 Ya— 473
93]+ 2 75—
Ya— Y3t Y2¥3t ¥3v1

When we substitute these solutions into the resonance con-
dition, deQ;=0, we find that the resonances do not occur at X
the integer values gf Therefore, this case does not pass the
Painlevetest for integrability:

A 295+ 27,73 2173

. Y
j?-3j+2 72
Ya— Y3t y2vat yivs

)=o. (14)

Note that the Painleévéest requires the resonanceso be
integers and the degeneracy of resonancie=dl to be one
since there is only one arbitrary functidfy as in Eqg.(13).
We have solutions This requirement leads to the resuf=21v,,y3=—y; and
5 1 v, arbitrary, so that resonances gre—1,0,1,1,2,2,3,4. The
— . Ty=%R,, (11 recursion relation in Eq(7) determinesTl,,U,,T,,U, such
Y1t 72+ v3* 74 Ro as

Case 2 and Case 3: x=y, t==*x.

S(): iUO:
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Ti= (VYo 4= y) (2R +i Y2~ 4Toihy), theory with anomalous dispersive terfdl]. The Painleve
analysis for theB= —1 case can be done in the same way as

for the =1 case. Thus, we suppress the details of analysis

i Wy ; ) A
U.=—21/+2—4+ P R— and simply state the results. The leading order equation is
1 (Vs 74)( 1 WTO given by
\/2— 139 ty
va—4 To S+ yot =2+ YX= — y3—
To=2(NYa=4=v2)| Ret—5 (Tol//>%+2|w) , ysT Y2 v %
i [ 19T +yt—2+ X
. 0 YiST Yol= T Ya¥Y=—~7¥Y3 7 »
Uo= (Vv 4+ 72) —682+—f(—x+2|—z—) : y
sy

Similarly, Rs,T3,U; are determined in terms of YAl oS+ 2+ yX==ys 30,

¥, T9,R1,51,R,,S,. In the same way, we can check that
there exists one arbitrary function at the 4 resonance and SX
no more arbitrary functions in higher levels. All these facts Yt yost 2+ yy=— 737,
have been confirmed with the symbolic manipula}ion pro-
gram MACSYMA. Thus, the system passes the Painle&  he solutions of which can be grouped into five distinct
when y,=2vy,;,y3=—1v; and y, arbitrary. We show that 5qes:
this case is indeed integrable in Sec. Il
(case ]l x=y,
Case 5: x==Y, y,=0; y,=y1+v3, t+s=—2/y;,.

_ _ . (case 2 y4=0, x=—y, y3=y1+ vz,
In this case, the resonances are jat—1,0,0,3,3,4

+\9+16y3/y;, which in turn requires thaty,= (case 3 y,=0, x=-y, t=-5,
—2vy3, 7Y»=—73. But inconsistency among the four
equations in Eq(7) arises at thg=2 level, so that the Pain- (case 4 y3=1v,=0, y1=—1,,

leve test fails.
(case b y3=7y,=0, t=-—s.
Case 6: y3=y,4=0, s=t==2/(y,+v,). .

- . Here, only case 4 passes the Painlésgt. In this case,
The resonance condition @t=0, leads to the following gs= (ToUo—2)/R, and resonances afe= —1,0,0,0,3,3,3,4.
solutions: This is the integrable system found by Zakharov and Schul-
mann [4]. All other cases lead to inconsistenciesjatl
level thus failing the Painleveest.

1
j=-1,0,0,3,3,4 i—)J257§+ 18y, y,— 775

2(y1ty2
(16) I1l. HIROTA BILINEARIZATION AND SOLITONS
The integer resonances occur(if y,=3v,, or (i) y,= One of the main results of the Painletest is to find a
— y,. The first casdi) leads to inconsistencies among four New case of coupled NLS equation in E&) with param-
equations in Eq(7) at j =2, while the second cag@) simi-  €ters given byy,=2vy;,y3=—y; and y, arbitrary. With an
larly leads to inconsistency &t 0. Therefore, the Painléve appropriate scaling, we can always set the nonzgr one.
test fails in this case. Also, as we show in Sec. IV, we can sgt to zero. From
now on, we restrict ourselves to the case=(1,y,=1,y,
Case 7: ys=74=0, y,=7v,, t+s=—2. =2,v3=—1,,=0) and analyze its solution and integrabil-

ity structures. It is well known that the Painlea@alysis in
This case corresponds to the well-known integrable vectothe preceding section can be related to thekBand trans-
NLS equation considered by Zakharov and Schulrfdn  formation (BT). In order to derive the BT, we truncate the
Together with the parametery; = v,,y3=7v,=0, Eq. (4) series in Eq.(3) up to a constant level term and substitute

reduces to (z—¢) by an arbitrary functiong(z,z) to be determined
later. Then, the corresponding BT is given by
2+ y1(ToUo+ RpSp) = 0. (17
Ro To

The resonances arp=-1,0,0,0,3,3,3,4, and it has been 4= TRy, 6= ) T (19
checked that the proper number of arbitrary functions exist.
Thus, this case passes the Painleast. where the setR;,T;) is a known solution of the coupled

So far, we have considered the case whgtel in Eq.  NLS equations, which we assume to be the trivial solution
(2). For B=—1, using the notion of the degenerate disper-R;=T;=0. In order for the new setq,q,) to be also a
sion law, Zakharov and Schulmann found another integrablgolution, the following equations should hdid]
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i )DRyp=i pD?Ryp— RyD?pp+ R2RY
+2RoToTs — RS T,

_ (20)
i¢DTohp=ipD?Todp—ToD?pp+T5T}
+2ToRoRE —TER3,
Here, Hirota’s bilinear® andD are defined by
promig—| L7 (22 mf(z?) (z',.2)|=Z
I A B
(21)

Equation(20) can be decoupled as
RoD%pd— (y1RGRE + ¥2RoToTg + ¥sRE T5) =N 1Rod &,
ToD?pd— (71 T5Tg + 72ToRoRS + ¥3TE RG) = N2 Tod b,
_ (22
iDRgp=D?Ryp— N\ 1Rob,

iDTop=D2Tyd—\,Tod.

Now, explicitN solitons can be constructed in the usual way

by solving ¢,Rg,Tg in terms of power series.

A. One-soliton

For one soliton solution, we choo3g=A,=0 and as-

sume solutions in a series form ia such that¢=1

+€?h, Ry=€R, To=€T. Then, by equating the coeffi-

cients of the polynomials to zero in ER2) and solving
them explicitly, we obtain

R=aexdi(a?2—b?)z+2abz+iaz+bz],
_ (23
T=pBexdi(a?—b?z+2abzt+iaz+bz],

where «,8 are arbitrary complex numbers whikgb are

arbitrary real numbersh is also obtained by solving the

third-order equation such that

a,* 2
laf2+2) g2 25

= 32 - exp(2bz+4abz). (24)

h

Consistency requires that phases of the complex numbers
andB should be either the same, or differ by2. In the case

of the same phase, we parameterizend 8 by

a=+/8bcoske* % pb=.8bsinke**? (25

in terms of arbitrary real numbeis, §,A. Then, the final
form of the one soliton solution is given by substitutiag

=1 in Eq.(19) such that

qy= \2b coske (3*~bH7+1az+10 sactih 7+ 2abz+ A),
_ I . (26)
0,=/2b sinke (@ ~PH7+iaz+i0 sectih 7+ 2abz+ A).

In the case where phases differ by2, « and 8 are given
by
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B=*ia==*i\8bel "’ (27)
Then, the corresponding one-soliton solution is
q,= \2be (@*-bI7+1az+10 seckih 7+ 2abz+ A),
(28)

q,=*+i2be (&> -PIztiazti0 sectihz+ 2abz+ A).

B. Two-soliton

The two-soliton solution can be obtained using the series
expansion ¢=1+¢€%h;+€*h,, Ry=ep;+ep,, To
=e7,+ €31,. Inserting these antze into Eq.(22), we ob-
tain solutions

,01:f+9, leipl; fEe—ik2;+kz+77f, gEe—i|2;+|Z+ng,
h,;=2 A + fo” + 9" + 9g° “
72 (k+K*)2 7 (k+H1%)2 7 (1+k*)2 7 (1+1%)?)

wherek,l, 7;, 74 are arbitrary complex numbers. Also, after
a lengthy but straightforward calculation we obtain

ff*g

p2:2(|_k)2 (k+k*)2(|+k*)2

vt =i
(k+1)2(1+1%)2) 727 iP2

(30)
4(1-K)(I* —k*)2ff*gg*

27 (kK 2T+ K2 (k+ )2 (T +1%)2°

Finally, the two-soliton solution is obtained by takieg 1
in the BT equatiorq;=Rgy/¢,q,=To/ .

Surprisingly, there exists a different type two-soliton so-
lution that can be obtained by a simple linear superposition
of the left-polarized one-soliton with the right-polarized one-
soliton;

f N g f g

=—+—, =l——1—,

NWTe e e g,

where ¢, =1+2f*/(k+k*)2,p,=1+2gg*/(1 +1*)2. The

reason underlying the existence of such a linear superposi-
tion is explained in the following section.

(31)

IV. INTEGRABILITY

The Painleveest in Sec. Il suggests new integrable cases
of coupled NLS equations. As we have shown in the preced-
ing section, the coupled NLS equation with;=1,y,
=2,y3=—1,y,=0 possesses exact soliton solutions, which
reflects the integrability of the equation. Before proving the
integrability by deriving the corresponding Lax pair, we first
note that takingy,=0 is not essential. Make a change of
variables such that

Q2=Yy0;+X0,. (32

If (Q1,Q,) satisfy the coupled NLS equation in E®) with

y1=1,72=2,y3= —1,7,=0, then (;,q,) satisfy Eq.(2)
but with parametersy;=1,y,=2,y3=—1,y,=4xy/(x?

Q1=X0;+ydy,
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+y?). Thus, we sety, to zero without loss of generality. that this decoupling behavior is also reflected in the Painleve
The integrability and the Lax pair of the coupled NLS equa-analysis. Besides the solution of the leading order equation

tion in Eq. (2) with y;=1,9,=2,y3=*1,vy,=0 follows

(4) (case 4 in Sec. Jlwhich enables the present coupled NLS

from the observation that these equations can be embeddedjuation to pass the Painletest, for the set of parameters
in the integrable coupled NLS equation based on the symy,=2vy;,y3=— y1, we have another set of solutions of the

metric space SR)/U(2) given by[10]
[9y1=[02Y1+ 20307 + i3 + 205035,
[0W,=[ Pihot 200 + 20505 + 243t U5
+ 2434031, (33
|90a=[ 0 Pa+ 20505 + a3 + 20507 .
Consistent reductions can be made if we take= * i,

which are precisely the caseg=2,y,=4,y3=*+2,y,=0
in Eg. (2). Furthermore, Eq(33) arises from the Lax pair

leading order equatiofd),

—2T,

e —2R,
O T2+R3

T5+RS St
This has resonances gt —1,—1,0,0,3,3,4,4. This solution
also passes the test. Note that all resonances are double poles
and each poles are precisely those of the NLS equation. This
suggests that the systems under consideration are indeed two
independent NLS systems.

So far, we have restricted to the cg8e 1. For = —1,

our Painleveanalysis showed that the only integrable case is
the vector NLS equation considered by Zakharov and Schul-

mann,
LW=[9+E+\T]¥=0,

(34) oV =PW+WeW, —igé=d?E+EVE (39

=g (4 El1=9E)=\NE—=2)\2 -
LW =[o+(zlE, E]=0E)=AE=NT]¥=0, whereWV = (¢, 1) and&é=(x1,x2). Using the reductiorF
=P*A with A=("3) () and substituting q;= 1,9,

where the &4 matricesE andT are * ; ;
=45 , one can recover the vector NLS equation as in(2g.

0 0 Y1 with B=—1,y1=—v2,73= ¥4=0.
0 0 In a similar vein, we construct a new integrable equation
E— V2 Y3 with B=—1 that resembles the previous decoupling NLS
-¢yi —y¢; 0 O equation withB=1. We take
-5 —¢5 0 0 ok x
X1 X2 X1 X2
, (35 MI( B ) =l . x| (39
i2 0 0 0 X2 X1 X2 X1
T 0 iz 0 0 and define the coupled NLS equation by
0 0 -2 o0 _
: ioM=3’M—2MNM,
0O O 0 —il2 (40

_iAN= 92N —
By taking ¢, = = ¢ in Egs.(34) and(35), we obtain the Lax 1ON=3"N—2NMN.

pair for the coupled NLS equation in E() with y,=2,y,

We find that Eq.(40) arises from the Lax pair[L,,L7]
=4,y3=%2,y,=0.

:0 ,
More directly, the integrability can be shown by mapping )
the coupled NLS equation into two independétdcoupled 0 M N oo 0
NLS equations as follows; if we substitute L,=d+ +i= ,
N O 20 0 =y
Wi=q;+ig,,  Wo=0;-ig,, (36) (42)

_ , 3_( 0 &M) _(MN 0 ) )\(O M)
in the two independent NLS equationsg¥, =3V 2= 0= -1 _ -
+2|¥, ¥, ;k=1,2, we recover Eq(2) with y,=2,y, N0 0 NM N0
=4,y3=—2,v,=0. Similarly using the substitutior¥; i loyo 0

=q,+0,,¥Y,=0;—0q,, we obtain Eq.(2) with y;=2,y, —57\2< )
=4,y3=2,y,=0. This explains why the linear superposition
of two solitons was possible in the previous section. Thaf we substituteq;=y;,9,=x5, we have an integrable

decomposition of the coupled NLS equation into two inde-gquation with anomalous dispersion term and asymmetric
pendent NLS equations implies that the linear combinationyqpling,

of solutions according to Eq36) becomes a solution of the

coupled NLS equation. Group theoretically, such a decom- i3q1=52q1+ 2(|a1)%9:—2|9,/%a,— g3 Zq*{),

position corresponds to the embedding of symmetric spaces, (42)
[SU(2)/U(1)]X[SU(2)/U(1)]CSp(2)/U(2).According to ingz — 320+ 2(|95]205— 2| 04| 202 — 2q§).

the group theoretic construction of the NLS equation using

Hermitian symmetric spacdd4], the above embedding re- This equation does not belong to the coupled NLS equation
sults in two decoupled NLS equations. It is interesting to seén Eq. (2), which has been Painléevested.

0 _|2><2
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V. DISCUSSION equations, also maps two orthogonal linearly polarized lights
into the left and the right circularly polarized lights. Thus, in
such an isotropic medium, left and right circularly polarized
1?ights do not interact each other thereby preserving circular
polarizations. This case may be compared with a polarization
reserving fiber where only one particular polarization direc-
n is preserved. It would be interesting to know whether

B=1. () v2=2v1,73=—y1.7a aitrary, or (i) ¥2 pore exists nonlinear isotropic materials possessing this
=2vy1,Y3= v1,vs=0. Painlevaanalysis shows that these arerProperty

the only integrable cases except the vector NLS equatio
We have shown that these equations are essentially identical
to two independent sets of NLS equations. Physically, the
first case describes the propagation of optical pulses in an
isotropic nonlinear medium in which the third-order suscep- This work was supported in part by the Korea Science and
tibility tensor satisfies thag (3, + x\5,= — 2x\yx While  Engineering FoundatiotKOSEP under Grant Nos. 971-
the second case does not have a similar interpretation. TH#201-004-2 and 97-07-02-02-01-3, by the program of Basic
linear transformation in Eq36), which decouples the inter- Science Research, Ministry of Education under Grant No.
acting NLS equatiorfcase(i)] into two independent NLS BSRI-97-2442, and by KOSEF through CTP/SNU.

In this paper, we have performed a Painlewlysis for
coupled NLS equations with coherent coupling terms a
given in Eq.(2). Besides the well-known vector NLS equa-
tion (B==*1;y,==*1vy,,v3=74=0), we have found inte-
grable cases that are defined by the set of parameters wi
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