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Particle-core analysis of mismatched beams in a periodic focusing channel
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A method is derived for applying particle-core analysis to mismatched beams in a periodic focusing channel.
By carefully choosing the parameters to yield a favorable core frequency, a Pasuckree of section plot is
obtained. The plots for a periodic solenoid channel exhibit a striking resemblance to those in continuous
focusing cases, while those for an alternating-gradient channel exhibit a strong chaoticity which is not seen in
the corresponding continuous focusing situation. Only the breathing mode oscillation of a core has been
considered in solenoid focusing cases. On the other hand, the quadrupole mode oscillation of a core has also
been considered in the case of an alternating gradient channel. We examine the effects of both modes on the
test particle stability, and find that the quadrupole mode oscillation can also drive the particle-core resonance
and cause beam halo formation. The halo extent is also examined. The maximum halo width is found to be
about twice as large as the maximum core width in breathing oscillation cases in both periodic solenoid and
alternating-gradient channels. In quadrupole oscillation cases, the halo width exhibits density dependence, and
ranges from 1.2 to 2 times the maximum core width. These results give us a practical criterion to determine the
bore radius in designing high-intensity acceleratf8L063-651X%99)06502-3

PACS numbgs): 41.75-i, 29.27.Bd, 52.25.Wz

[. INTRODUCTION followed by test particles placed at given starting positions
can be obtained by the Poincaserface of section technique
In recent years, it has been proposed to use high-intensitipr this simple model. This non-self-consistent test particle
and high-power ion accelerators as a driver for a spallatiomethod gives us a clear insight into the halo formation pro-
neutron source, production of tritium, transmutation ofcess, while it is difficult to use it to explore the transport
nuclear waste, etd.1]. In designing these next-generation dynamics. That is, it is difficult to examine with this model
accelerators, it is extremely important to understand clearlyvhether the particles initially located inside a core can es-
space-charge-induced phenomena, such as structure-driveape from the core and form halos.
resonance, charge redistribution, equipartitioning, and beam An approach that also allows the transport dynamics to be
halo formation. It is especially essential to understand fullyinvestigated in the beam-halo study is a self-consistent simu-
the beam halo formation mechanism, because a small fradation using macroparticles. In self-consistent simulation
tion of beam loss causes serious radioactivation of the accestudies of continuously focused beams, features such as the
erator structure and prevents hands-on maintenance. separatrix and fixed point locations are found to be in good
From this point of view, halo formation in intense ion agreement with those obtained with the particle-core model
beams has been studied extensively in both theoretical ari@].
numerical ways. In these studies, the so-capladicle-core Halo properties in periodically focused cases were also
model[2,3] has frequently been used. In this model, we usustudied self-consistently. In that study, a close resemblance
ally consider a beam propagating in a continuous focusingo the continuous focusing cases was found for a periodic
channel, and assume that its core has a Kapchinskisolenoid channel, unless instability due to structure-driven
Vladimirskij (KV) distribution [4]. Initial beam-size mis- resonance is inducdd]. Though the role of the particle-core
match induces the oscillation of a core. Test particles initesonance in a periodic focusing situation can be directly
tially located outside the core execute betatron oscillatiorinvestigated by applying the particle-core model, very few
under the influence of the nonlinear space-charge field inattempts have been made to apply the model to mismatched
duced by the oscillating core. We examine the time evolutiorcases except for the pioneering work performed by Lagniel
of test particles, assuming that the core oscillation is nof8]. This is mainly due to the difficulty in finding the funda-
influenced by the motion of these test particles. The tune ofmental frequency of the system. In the particle-core analysis,
the betatron oscillation is amplitude dependent due to théhe Poincarenapping technique is an essential tool to exam-
nonlinearity of the space-charge field. Therefore, a test paiine the stability properties of test particles, and we need to
ticle is trapped at certain amplitude by the 2:1 resonanc&now the fundamental frequency of the system to use this
between core and test particle oscillation. Test particles witllechnique. It is generally difficult to know the fundamental
certain initial conditions gain excess energy through thedrequency in periodic focusing cases because there are two
resonance and form halos. When the beam density and tremurces of periodicity, namely, the external focusing field
degree of mismatch are higher than certain thresholds, resperiodicity and that due to initial beam-size mismatch. In
nance overlap and chad§] are observed in test particle fact, the solution of the envelope equation itself is known to
motion. The chaosity is thought to play a key role in enhancshow very complicated features including parametric reso-
ing the chance for the particles initially located just outsidenance and chad®]. The effect of the unstable behavior of
the core to be trapped by the resonance. A map of trajectoridhe envelope on halo formation is also an interesting subject.
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However, it seems to be reasonable to restrict our interest tmatch, and defined &d =[R(0)—Ry(0)]/Ry(0). It should
cases where core oscillation is stable, taking into account thike noted thaR,(0) corresponds to the maximum radius of a
resemblance mentioned above and the fact that the envelopeatched beam since the origin of the coordinais located

is known to be stable with a reasonable choice of parameterat the center of a focusing solenoid.

From that point of view, we have tried to obtain the funda- With the use of the smooth approximation, we can move
mental frequency of stable core oscillation, and apply theo the corresponding constant focusing situation simply put-
particle-core model to mismatched beams in a periodic foting 9(7)=o3 [10]. Therefore, Eq(2) can be rewritten in

cusing channel. the smooth approximation as
In Sec. Il, we present the method of applying the particle-
core model to mismatched beams in a periodic channel. Then d?Rg ) r 1
we apply the method to mismatched beams in a periodic a2 TooRs— ﬁS_R—ng ()

solenoid channel. In this case, we assume that the beam and

external focusing field have an axial symmetry, and, hencgynereR_is the scaled beam radius in the approximation. The
only the breathing mode oscillation can be excited. In Secequilibrium solution of Eq(3) is given bngzll\/E, which

Ill, we apply the same method to mismatched beams in anrresponds to the matched radius for the equivalent continu-

alternating-gradient focusing channel. As a test channel, we : : :
. o us focusing channel. Here we introduce a mismatch param-
employ a FODO channel with a 50% filling factor, each ceIIeter which is defined, in an analogous way with periodic

B T TPl magnel 410 @ s, . [R(0)— R
: " In weakly mismatched cases, the phase advance of the

the beam and external focusing field have no axial symme: ; o !
try, and, hence, both the breathing and quadrupole mode c)g)_reathlng mode oscillation of the envelope can be approxi-
cillation can be excited. In Sec. IV, we estimate the maxi-mate‘j by
mum halo extent in periodic focusing channels. After
discussions, a summary is given in Sec. V. In the present Tm=\2(1+ 79)+3(1+97%)MZay, (4)
study, we will restrict our treatment to test particles with zero

angular momentum and an unbunched core with the KV diswhere we use a combination of a simple perturbation method

tribution. and an averaging methofl1]. Note here that only the
breathing mode oscillation can be excited in this case be-
Il. AXIALLY SYMMETRIC CHANNEL cause of the assumed axial symmetry of the beam and exter-
nal focusing field.
A. Numerical method Here we assume that the oscillation of a core can be ap-

Assuming axial symmetry of the beam and an externaProximated by a simple composition of two oscillation
focusing field, the time evolution of a beam envelope is gov/Modes: one is excited by the initial beam-size mismatch

erned by the envelope equation (mismatch mode and the other is excited by the periodic
nature of a focusing structugstructure mode Based on the
d’R, g? smooth-approximation analysis above, the phase advance of
a2 +(S)Rp— R_b_ ﬁg =0, (D the mismatch mode is expected todg. On the other hand,

the fundamental period of the structure mode is apparently
whereR, is the beam radiusg(s) is the periodic function sync_hronized yvith thg focusing structure..Thus, it is obvious
representing the external focusing field strendthjs the  that if /277 is a rational number; that isr,/27 can be
generalized perveance,is the rms emittance of the beam, expressed by two relatively prime integens and n as
and the independent variabkeis the distance measured 9m/277=n/m, the mismatched envelope is exactly periodic
along the beam line. Then we transform the envelope equd? 7 With the period ofm [12]. Note here that, recalling Eq.
tion to a dimensionless form using the following dimension-(4), We can makev /27 rational by choosing appropriate
less parameters and variables=s/S for the independent Vvalues fory andMs. We can easily obtain a Poincaser-
variable, 9(7)=S%«(s) for the dimensionless focusing face 'of section plot m_such cases by pI_ottlng test particle
strength function] =K S/e for the scaled space-charge per- locations everym focusing periods. That is our strategy to

veance, an®R=R, /=S for the scaled beam radius, wish apply the particle-core method to mismatched beams in a

the length of a focusing cell. In terms of new variables, Eq Periodic channel. , _
(1) becomes Finally, we write down the equation of motion for a test

particle. Assuming that the core has a KV distribution and

d?r r 1 test particles have no angular momentum, the equation of
W"‘ H )R- R ﬁzo. (20 motion in terms of the dimensionless variables is given by
. . d?x r
The function &(7) is related to the zero-current phase ad- PJFQ(T)X_ ?x:o (|x|<R) (5)

vanceo,, andl is related to the tune depressignthat is,
the ratio of the space-charge depressed phase advance to the
zero-current phase advance. The matched soliRjpof Eq. and
(2) can be obtained with the help of an optimization code. P r
For later reference, here we introduce a mismatch parameter X
' A ; ; —+ ——= >R).
which is a measure of the degree of initial beam-size mis- dr? RIS X 0 (x>R) ©)
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FIG. 1. Time evolution of the scaled beam envelope in a peri- FIG. 3. Time evolution of the scaled beam envelope in a FODO
odic solenoid channel. The parameters are ser§e-45°, » channel(breathing oscillation cageThe parameters are set &
=0.5, andM =0.3 to yieldo,,=72°. The solid line represents the =45°, »=0.5, andM,=0.3 to yieldo,,=72°. The solid and bro-
scaled beam radius obtained by numerically solving ). while ken lines, respectively, represent the scaled beam half-width for the
the broken line represents the solution for the corresponding corhorizontal and vertical directions.
tinuous channel.

caseg?2]. There is no smearing of the Poincget as would
Numerically integrating Eqs2), (5) and(6), we can obtain  occur if o,/27 were irrational.
the time evolution of the test particles. In the integration, the
fourth-order symplectic integration algorithipfd3] is em- IIl. ALTERNATING-GRADIENT CHANNEL
ployed.
A. Numerical method

B. Numerical results This strategy is also applicable to the beams in channels
Here let us show an example in which we consider aVithout axial symmetry such as FODO channels. Assuming
periodically interrupted solenoid channel haviog=45° that the zero-current phase advance and emittance are the

and a 50% filling factor. The beam parameters are set to bedMe in the horizontal and vertical directions, the envelope
7=0.5 andM=0.3. These parameters are determined tgquations are given in terms of dimensionless variables as

yield o,,=360/5=72° by Eq.(4) with the help of an opti- 2y oT

mization code[14]. As shown in Fig. 1, the fundamental —+H1)X— —<——3=0 (7
period of the core oscillation coincides with five focusing dr X+Yy X

periods with a very good accuracy. We can also see in Fig. 1

that the core oscillation is almost dominated by the mismatci"

mode, and that the contribution from the periodic nature of 2 1

focusing field is fairly small. Plotting test particle positions = HT)Y— o——— =3 =0, (8)
every five focusing periods, we successfully obtain the Poin- dr Xty Y

caresurface of section plot shown in Fig. 2. In this figure, the ) )
test particle position divided bR, =R(0) is taken as the whereX aqu are, respect_lvely,_ the.scaled beam half-width
abscissa, and the strobe time is takerra® mod 5. Figure for the horizontal and vertical directions. The matched solu-

2 exhibits a striking resemblance with continuous focusing!on o @ndY, can be obtained numerically. The mismatch
parameters for the horizontal and vertical directions can be
defined as M,=[X(0)—X(0)]/Xo(0) and M,=[Y(0)
—Yo(0)]/Yo(0), respectively. It should be noted thég(0)
and Y(0), respectively, correspond to the maximum and
minimum of the beam half-width of a matched beam since
the origin of the coordinate is located at the center of a
focusing quadrupole magnet.

It is to be noted that two types of mismatch mode oscil-
lation can be excited in a FODO channel. One is the breath-
ing mode oscillation which was also considered in Sec. Il.
The other is the quadrupole mode oscillation, where the os-
cillation for the horizontal and vertical directions are 180°
out of phase. The frequency of the breathing mode oscilla-
tion can be obtained again by E@). The frequency of the
guadrupole mode oscillation is given by

Om= \/1+3772+5772M§0'0, 9
FIG. 2. Poincaresurface of section plot for a beam in a periodic

solenoid channel. The same parameters as in Fig. 1 are adoptéfhich is obtained in an analogous way with E4).
The test particle positions are plotted every five focusing periods, As we assume that there is no coupling between the hori-
taking the strobe time as=0 mod 5. zontal and vertical motion except for the space-charge force,

dx/dt
(=]
|
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dx/dt
dx/de

0 . .
XIXmax max

FIG. 4. Poincaresurface of section plots for beams wii=0.5. The cores executing breathing mode oscillation in FODO channels have
been considered. Three different mismatches, Mg+=0.3, M,=0.1, andM,=0.05, have been applied. The test particle positions are
plotted every five focusing periods, taking the strobe timera® mod 5. Zero current phase advances are séfjter,=45°, (b) o
=45.3°, and(c) 0g=45.4°, respectively, to yield,,=72°.

the beam ellipse remains to be upright in real space. Further- B. Numerical results for breathing mode oscillation cases

more, we only consider the test particles which have no an- irst we will consider the cases where breathing mode
gular momentum. Therefore, the motion of the test particlegscillation of a core is excited. Figure 3 shows an example in
initially located on the horizontal or vertical plane is re- which we consider a FODO channel haviag=45° and a

stricted on that plane. 50% filling factor. The beam parameters are set tozbe
Thus the equations of motion for the test particle initially — g 5 and M,=0.3. These parameters are determined to
located on the horizontal plane can be writf@nl5] as yield o= 360/5=72° using an optimization code and Eq.
(4). We can see in Fig. 3 that the modulation of core oscil-
2y or lation due to the periodic nature of the focusing field is much
g2 Honx= mxzo (Ix|=X), (10)  larger than in periodic solenoid cases. Plotting test particle

positions every five focusing periods, we successfully obtain
a Poincaresurface of section plot.
and Fixing the tune depression as=0.5, three different ini-
tial mismatches, i.eM,=0.3,M,=0.1, andM,=0.05, are
oT considered in Fig. 4. In this figure, the particle position
x=0 (|x>X). scaled byX,,=X(0) is taken as the abscissa, and the strobe
X2+ x| VX2 +Y2— X2 time is taken ag=0 mod 5. Figure 4 exhibits strong chao-
(1) ticity, which is a striking contrast to solenoid focusing cases.

d?x

P'Fﬁ(T)X_

max

FIG. 5. Poincaresurface of section plots for beams with,=0.3. The cores executing breathing mode oscillation in FODO channels
have been considered. Two different tune depressionsyi=0,.3 and 0.7, have been considered. The test particle positions are plotted every
five focusing periods, taking the strobe time &s0 mod5. Zero current phase advances are sdBtaro=48° and(b) o(=40.2°,
respectively, to yieldr,,=72°.
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lower density cases exhibit a remarkable difference from the
7n=0.5 case. A sudden decrease of chaotic area is occurred at
aroundn=0.5~0.6. Note here that, in spite of the decrease
of chaosity, the global chaos which is expected to increase
halo intensity is seen even in the low density case wijth
=0.7.

C. Numerical results for quadrupole mode oscillation cases

‘ ' ' ' ! Second, we will consider the cases where quadrupole
T mode oscillation of a core is excited. Figure 6 shows the time

FIG. 6. Time evolution of the scaled beam envelope in a FODOeVOIUIion of a core ex_ecuting a quadrupole n_n_)de oscillation.
channel (quadrupole oscillation caseThe parameters are set to A FODO channel having,=52° and a 50% filling factor is
00=52.75°, 7=0.5, andM = 0.3 to yieldo,,= 72°. The solid and ~ considered, and the beam parameters are set t9=h@.5
broken lines, respectively, represent the scaled beam half-width faand M, =0.3. These parameters are determined to yield
the horizontal and vertical directions. =360/5=72° using an optimization code and HE).

The dependence of the phase space topology on the de-
The chaotic region surrounds both the core and the 2:1 resgree of mismatch is shown in Fig. 7, where three different
nance islands, and such a kind of chaotic region is thought timitial mismatches, i.e.M,=0.3, M,=0.1, andM,=0.05,
enhance halo intensity. As such strong chaosity is observesre considered fixing the tune depressionsss0.5. The
only with higher beam density in solenoid focusing cases, iimost interesting feature shown in Fig. 7 is the existence of
can be concluded that the global chaos is observed in widawo wide chaotic regions formed around the central core.
parameter space in alternating-gradient focusing cases tha@ne is the chaotic region surrounding the core and the 2:1
in solenoid focusing cases. Actually, we have observed theesonance islands, which is also seen in breathing oscillation
global chaos even with a mismatch of 10% in the case otases. As readily seen in Fig. 7, the distance between the
7=0.5, as shown in Fig.(®). As the degree of mismatch is core boundary and the stable fixed points of the 2:1 reso-
decreased, some invariant curves are restored at a certaiance is shorter than in breathing oscillation cases. This re-
threshold and separate the chaotic region into several stgults in a decrease of the chaotic area surrounding the 2:1
chastic layers. As a result, the global chaos which contributegesonance islands. The other is the wide chaotic band sur-
to the enhancement of the halo intensity disappears. We haveunding the inner chaotic region, which is observed only in
found that the threshold exists betwedy=0.05 and 0.1 in  quadrupole oscillation cases. A closer look reveals that these
the case ofp=0.5. In fact, Fig. 4c) shows that the particles two chaotic regions are separated by an invariant curve in all
initially located in the vicinity of the core are confined by an three cases in Fig. 7. Because of the existence of the invari-
invariant curve and cannot escape to orbit around the 2:&nt curve, the particles initially located in the vicinity of the
resonance islands in the case of 5% mismatch. core are confined into the inner chaotic region. Note here

Figure 5 shows Poincareurface of section plots for that, as shown in Fig. (¢), these chaotic regions are ob-
beams with lower and higher tune depressions, #&=0.3  served even in the slightly mismatched case with 5% mis-
and 0.7, but the same initial mismatch, i.81,=0.3. As  match in contrast to breathing oscillation cases.
shown in Fig. %a), the Poincarelots for beams with higher The density dependence of Poincatets is shown in Fig.
beam density are similar to that for the=0.5 case. Con- 8, where two different tune depressions, ix= 0.3 and 0.7,
versely, as can be clearly seen in Fih)5the results for the are considered, fixing the mismatch factor Mg=0.3. As

dx/dt
dx/dt
dx/dt

x/X

max

FIG. 7. Poincaresurface of section plots for beams wiif=0.5. The cores executing quadrupole mode oscillation in FODO channels
have been considered. Three different mismatchesM.g=0.3,M,=0.1, andM,=0.05 have been applied. The test particle positions are
plotted every five focusing periods, taking the strobe timera® mod 5. Zero current phase advances are sé)to(=52.75°, (b) o
=54°, and(c) 0¢=54.25°, respectively, to yield,=72°.
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dx/dt
o
I

XX pax XX o

FIG. 8. Poincareurface of section plots for beams with,=0.3. The cores executing quadrupole mode oscillation in FODO channels
have been considered. Two different tune depressionsyize0,.3 and 0.7, have been considered. The test particle positions are plotted every
five focusing periods, taking the strobe time &s0 mod 5. Zero current phase advances are sébter,=61.5° and(b) oy=44.8°,
respectively, to yieldr,,=72°.

shown in Fig. 8a), as the beam density is increased, thetinuous focusing cases, the maximum radius can be easily
invariant curve separating the chaotic region into two chaoti@btained by making a Poincargot with the strobe time
regions is destroyed, and a large chaotic sea is formed. THaken when the core radius is minimum. In that way, the
threshold at which the invariant curve is destroyed is locatednaximum halo radius is found to be approximately twice as
betweens=0.4 and 0.5 in the case 8 ,=0.3. Conversely, large as the maximum core radit].

as can be readily seen in Figb3, the chaotic region is not However, the maximum halo extent in a periodic channel

present in cases with lower beam density. The chaotic regiofi@nnot be obtained generally in an analogous way. As an
disappears at aroungi=0.5~0.6. example, let us show a Poincapiot in Fig. 9a), where the

strobe time is taken to be=2.5mod 5 and other parameters
are set to be the same with Figa# In Fig. 9a), the 2:1
fixed points are located on the abscissa, and the core half-
In the usual particle-core analysis, test particles lockedvidth is minimized. However, the width of the separatrix
into the 2:1 resonance are considered to be halo particledoes not reach the maximum because the core half-width is
The oscillation amplitude of these particles is known to betoo small at the strobe time due to strong external focusing
self-limited due to the amplitude dependence of oscillatiorforce. In fact, it is easily seen that the separatrix width in Fig.
frequency. Thus, to estimate the maximum halo radius, w&(a) is smaller than that in Fig.(4). This means that halo
simply examine the maximum radius of the particle which iswidth is not always maximized when the core width is at a
located on the separatrix of the 2:1 resonance island. In comminimum in periodic focusing cases. Tracking the particle

IV. HALO EXTENT

dx/dt

dx/dt
o
I

-2 -

-3

FIG. 9. Poincaresurface of section plots for a breathing beam in a FODO channel. The strobe times are té®en-a&.5 mod 5 and
(b) 7=2 mod 5, respectively. Other parameters are taken to be the same as ifiafrig. 4
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[BREATHING MODE] [QUADRUPOLE MODE]
2.0 Core Oscillation 2.0 7
Core Oscillation
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FIG. 10. Resonance lines of the 2:1 and higher order particle-core resonances in the weak mismatch limit. The resonance frequency
scaled by the single particle zero-current betatron frequency is taken as the ordinate. The cores executing breathing and quadrupole mode
oscillations are considered. The core frequency for those modes is calculated big)Earsd (9). The maximum and minimum betatron
frequencies of the test particles are also shown.

which is initially located in the vicinity of the separatrix, we ing cases. The strong core modulation due to the external
find that the halo width reaches a maximum at around focusing field in an alternating-gradient channel is thought to
=2mod 5 orr=3 mod 5 in this case. A Poincafgot is  be a main cause of this difference. The phase advance of
shown in Fig. 9b), where the strobe time is taken as each test particler, is amplitude dependent, and takes a
=2mod 5. We readily see in Fig(I9 that the maximum 51ye petweenjo, ando,. As shown in Fig. 10, resonance
halo width is approximately twice as large as the MaxiMUMjjpeg of the 2:1 and higher order particle-core resonance exist

core width. This is roughly the same size as those in contmj},| this range. Test particles whose betatron frequency is suf-

ous focusing cases. Similar results are found in general fof. .
breathing oscillation cases in both periodic solenoid and'Ci€ntly near to the resonance frequency are trapped by the

FODO channels. resonance. Furthermore, there must be resonance driven by

The results for quadrupole oscillation cases show soméhe external focusing periodicity. That is, there exists reso-
more complicated features. First, let us consider the caseance between the test particle oscillation and the external
where the global chaos is not seen, as is the case in fg. 8 focusing periodicity which satisfy the conditions; /27
In this case, we can consider only the particles locked intc=n/m and no,< o< o,. Because the order of thmarticle-
the 2:1 resonance as halo patrticles. It is readily seen that th@rycture resonancés usua”y h|gh, the effect of the reso-
maximum halo width is much smaller than in breathing 0S-nance itself is expected to be small. However, the resonance
cillation cases, because the fixed points of the 2:1 resonan%enap between the particle-structure resonance and

are located nearer to the core boundary. In fact, the typic article-core resonance can modify the phase space topology,

halo width in this case is found to be about 1.2 times as larg : . X
as the maximum core width. Second, we consider the cas%nd result in global c.haot|C|ty. The effec_t of the partlcl_e—

where the global chaos emerges, but it is divided by an inStrUCtUreé resonance is much stronger in an alternating-
variant curve into two chaotic regions as is the case in Fig. 79radient channel because of the strong core modulation due

In this case, the maximum halo width is, again, found to bd© the external focusing force. That seems to be the reason
much smaller than in breathing oscillation cases, if we conWhy the strong chaoticity is observed in an alternating-
sider only the particles in the inner chaotic region as hald@radient channel. The existence of the strong chaoticity sug-
particles. Finally, as the beam density becomes higher than@gsts that the requirement on the degree of mismatch and
certain threshold, the invariant curve is destroyed and twdeam intensity to suppress halo may be severer in
chaotic regions merge into one large chaotic sea, as is th@ternating-gradient channels than in periodic solenoid chan-
case in Fig. 8). As the invariant curve disappears, the par-nels.
ticle initially located in the inner chaotic region starts to  Another interesting feature which has been found in this
diffuse, and this results in a sudden increase of halo extenstudy is the difference of the phase space topology between
Thus the halo extent is density dependent in the case of thereathing and quadrupole mode oscillation cases. In quadru-
quadrupole mode oscillation. The halo width is roughlypole oscillation cases, two chaotic regions are found with
twice as large as the maximum core width in the case whergertain beam density, as shown in Fig. 7. The inner chaotic
the invariant curve is destroyed. This is roughly the samgegion surrounds the core and the 2:1 resonance islands. The
size as those in breathing oscillation cases. outer chaotic band is formed around the inner chaotic region,
which is observed only in quadrupole mode oscillation cases.
V- DISCUSSION The existence of the outer chaotic region suggests that cer-
As shown in the preceding sections, stronger chaosity igain higher order particle-core resonances has more impor-
observed in alternating-gradient cases than in solenoid focusance than in breathing oscillation cases. As shown in Fig.
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10, there are many particle-core resonance lines and each wfismatched beam in a periodic focusing channel. The plots
them, more or less, affects the phase space topology. THer a periodic solenoid channel show a striking resemblance
degree of the influence on test particle motion is stronglyto those in continuous focusing cases. The focusing field
dependent on the order of the resonance and the fixed poiperiodicity does not play an important role in a periodic so-
location. In general, the particle-core resonance has narrolenoid case. This is consistent with the results obtained in
width and hardly affects test particle motion if the fixed point macroparticle simulations.
locations are too near to the core boundary. Conversely, a The same method is also applied to the beams in FODO
resonance whose fixed points are located too far from thehannels, where both breathing and quadrupole modes of the
core cannot affect the motion of the test particles which areore oscillation have been considered. Though some differ-
initially located in the vicinity of the core. As readily seen in ences of the phase space topology are observed between
Fig. 10, the resonance frequency of the 2:1 resonance is lareathing and quadrupole oscillation cases, stronger chaosity
little lower in quadrupole oscillation cases compared tois found to exist in both cases in a wider parameter space.
breathing oscillation cases. Accordingly, the fixed point lo-This suggests that the strong modulation of the core oscilla-
cation of the resonance becomes nearer to the core boundatign due to alternating-gradient focusing force affects the test
and the island width is decreased. Instead, the fixed points gfarticle stability and induces strong chaosity. The stronger
a resonance whose frequency is a little higher than the 2:thaosity is thought to cause an increase of halo intensity, and
resonance shift toward the core boundary. Then the effect ahakes the conditions imposed to suppress halo intensity un-
the resonance on test particle motion is increased. Thider a certain level more severe.
seems to be why certain higher order resonances have more The halo extent is examined. It is found that the maxi-
importance in quadrupole oscillation cases compared tonum halo width is about twice as large as the maximum core
breathing oscillation cases. width in breathing mode oscillation cases in both periodic
In this study, we have considered only cases where eithesolenoid and FODO channels. In quadrupole mode oscilla-
the breathing or quadrupole mode oscillation is excitedtion cases, the halo width is density dependent, and ranges
However, the initial mismatch, in general, induces bothfrom 1.2 to 2 times as large as the maximum core width. In
modes of oscillation in an actual machine. The simultaneoushort, in spite of the significant difference of the phase space
excitation of both modes increases the density of the resdopology from the corresponding continuous situation, the
nance lines. The resulting resonance overlap may caugeaximum halo width in a periodic focusing channel is
stronger chaosity in wider parameter space. Finally, it shouldmaller than or comparable with that obtained in continuous
be noted that the technique we use in this study is also agecusing cases. This gives us a practical criterion for deter-
plicable to investigate halo formation in a circular machine,mining the bore radius of an accelerating structure in design-
provided that the effect of the dispersion can be neglectethg high-current ion accelerators.
[16].
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