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Quadratic fluctuation-dissipation theorem for multilayer plasmas

Kenneth I. Golden
Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05401-1455

~Received 10 August 1998!

The author establishes the dynamical and static quadratic fluctuation-dissipation theorems~QFDTs! for
multilayer classical one-component plasmas in the absence of external magnetic fields. Areal densities and
spacings between layers need not be equal. The static QFDT is used to derive the lowest-order~in coupling
parameter! Mayer cluster expansion for the layer-space matrix elements of the equilibrium three-point corre-
lation function.@S1063-651X~99!08301-4#

PACS number~s!: 05.20.2y
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I. INTRODUCTION

Interest in correlated multilayer plasmas over the past
cade has been stimulated by activities in two different are
In the area of strongly coupled plasma physics, there are
compelling experiments of Bollinger and co-workers@1#
where laser-cooled ions in a trap form a realistic model o
layered classical one-component plasma~OCP! in its
strongly coupled liquid and crystalline phases~see Ref.@2#
for a summary and theoretical description!. In the area of
condensed matter plasmas, advances in modern semicon
tor nanotechnology have made it possible to routinely fa
cate multiple-quantum-well structures of parallel electr
layers in a strongly correlated liquid phase@3#.

Theoretical efforts pertaining to static properties ha
been primarily directed at questions of liquid-solid pha
boundaries in multiple-quantum-well structures@4#, at iden-
tification of structural phases in the classical bilayer liqu
@5# and Wigner crystal phases@6#, and at adapting the clas
sical hypernetted-chain~HNC! approximation to the compu
tation of pair correlation and static structure functions for
bilayer electron liquid@5#. Efforts pertaining to dynamic
properties have concentrated on frequency-moment-
rules@7# and on the dielectric response tensor and collec
mode behavior in strongly correlated bilayer and superlat
plasmas@8–13#.

Central to the description of the static and dynamic pr
erties of multilayer plasmas are the density-response
structure function layer-space matrices and the hierarch
fluctuation-dissipation theorems~FDTs! which link these
quantities. The linear conventional FDT has already b
established@7,13# for the infinite, type-I superlattice mode
consisting of a large stack ofNL equally spaced two-
dimensional~2D! electron plasma monolayers of equal are
densityne5Ne /A. It is a relatively easy task to recast th
linear FDT in a compact matrix form that applies to mo
general classical OCP multilayers whereNL is arbitrary and
where the areal densities and spacings between adjacen
ers need not be the same. This is done in the present pap
route to pursuing the main goal described below.

Next in the FDT hierarchy is the quadratic fluctuatio
dissipation theorem~QFDT! which, in its most useful
frequency-domain form, connects a single three-point
namical structure function to a triangle-symmetric combin
tion of three quadratic-density-response functions@see Eq.
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~29! below#. Such QFDT relations have been formulat
@14–18# and implemented in novel kinetic theory approach
@19–21# to the calculation of the dielectric response functi
and plasmon structure in three-dimensional OCP@19# and
binary-ionic-mixture~BIM ! plasmas@20,21#.

The main goal of the present paper is to establish
dynamical and static QFDT relations for the unmagnetiz
multilayer OCP; areal densities and spacings between a
cent layers need not be equal. It is also of interest to ap
the static QFDT to the calculation of the lowest-order~in the
coupling parameter! Mayer expansion linking the matrix el
ements of thek-space equilibrium ternary and pair correl
tion functions.

The plan of the paper is as follows. Matrix elements
two- and three-point current correlation~C! and structure~S!
functions are defined in Sec. II. In Sec. III two kinds of line
and quadratic response functions are introduced: externa
sponse functions which portray the system response to e
nal potential perturbations and total~screened! response
functions which portray the response to total~polarization
plus external! perturbing potentials. The dynamical QFDT
are established in Sec. IV, first in the time domain and th
in the frequency domain with the results displayed asC-ŝ
and S-x̂ relations ~ŝ and x̂ are symbols for the externa
conductivity and density-response function matrices!. In Sec.
V the static form of the QFDT is established. This is fo
lowed by a derivation of the lowest-order Mayer cluster e
pansion for the matrix elements of the equilibrium thre
point correlation function. Conclusions are drawn in Sec.

II. CURRENT CORRELATION AND STRUCTURE
FUNCTIONS

Consider a multilayer plasma model consisting of a sta
of two or more electron-plasma monolayers, each of la
but bounded areaA and parallel to thexy plane. The two-
dimensional OCP in a typical monolayerA (A51,2,3,...) is
comprised ofNA classical point electrons in a neutralizin
uniform positive background. Fourier components of the m
croscopic charge and current densities are given by

rk
A~ t !52enk

A~ t !52e(
i 51

NA

e2 ik•xi
A

~ t !, ~1a!
228 ©1999 The American Physical Society
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j k
A~ t !52e(

i 51

NA

vi
A~ t !e2 ik•xi

A
~ t !, ~1b!

where xi
A and vi

A are the position and velocity of thei th
electron in layerA; k is a wave vector in thexy plane.

We first define longitudinal~with respect to in-plane wave
vectors k,k8,k9! two- and three-point current correlatio
functionsCAB andCABC :

CAB~k,t !dk2k85
1

Akk8
^@k• j k

A~0!#@k8• j2k8
B

~2t !#&~0!,

~2!

CABC~k8,t8;k9,t9!dk2k82k95
1

2Akk8k9

3^@k• j k
A~0!#@k8• j2k8

B
~2t8!#@k9• j2k9

C
~2t9!#&~0!. ~3!

The ^ & (0) denote averaging over the equilibrium ensem
characterized by the macrocanonical distributionV (0)

}exp(2bH(0)); b is the inverse temperature~in energy units!
andH (0) is the Hamiltonian of the equilibrium system. Two
and three-point layer-space structure functions are next in
duced in the customary way in terms of microscopic fluc
ating densitiesdnk

A5nk
A2NAdk , dnk

B5nk
B2NBdk ,... :

~NANB!1/2SAB~k,t !dk2k85^dnk
A~0!dn2k8

B
~2t !&~0!

5^nk
A~0!n2k8

B
~2t !&~0!

2NANBdkdk8 , ~4!

~NANBNC!1/3SABC~k8,t8;k9,t9!dk2k82k9

5^dnk
A~0!dn2k8

B
~2t8!dn2k9

C
~2t9!&~0!

5^nk
A~0!n2k8

B
~2t8!n2k9

C
~2t9!&~0!

2NA~NBNC!1/2dkdk81k9SBC~k8,t92t8!

2NB~NANC!1/2dk8dk2k9SAC~k,t9!

2NC~NANB!1/2dk9dk2k8SAB~k,t8!

2NANBNCdkdk8dk9 . ~5!

Continuity of charge then requires that the temporal Fou
transforms of Eqs.~2!–~5! satisfy

k2CAB~k,v!5e2
~NANB!1/2

A
v2SAB~k,v!, ~6!

k8k9uk81k9uCABC~k8,v8;k9,v9!

52e3
~NANBNC!1/3

2A
v8v9~v81v9!

3SABC~k8,v8;k9,v9!. ~7!

III. RESPONSE FUNCTIONS

We begin with Ohm’s law for the longitudinal extern
conductivity matrices linking the first- and second-order a
e

o-
-

r

-

erage current density responses in layerA to driving external
scalar potentials acting at layersB51,2,... :

j A
~1!~k,t !52 ik(

B
E

2`

`

dt8ŝAB~k,t8!F̂B~k,t2t8!, ~8!

j A
~2!~k,t !52

1

A (
k8

k8k9(
B,C

E
2`

`

dt8E
2`

`

dt9

3ŝABC~k8,t8;k9,t9!F̂B~k8,t2t8!

3F̂C~k9,t2t9! ~k95k2k8!. ~9!

We next introduce external response matrices linking
first- and second-order average particle density response

layer A to theF̂B ,F̂C ,... driving external potentials:

nA
~1!~k,t !52e(

B
E

2`

`

dt8x̂AB~k,t8!F̂B~k,t2t8!,

~10!

nA
~2!~k,t !5

e2

A (
k8

(
B,C

E
2`

`

dt8E
2`

`

dt9x̂ABC~k8,t8;k9,t9!

3F̂B~k8,t2t8!F̂C~k9,t2t9! ~k95k2k8!.

~11!

Comparison of the temporal Fourier-transformed Eqs.~8!
and~9! with their respective Fourier-transformed counterp
Eqs.~10! and ~11! then yields the useful matrix relations

ve2x̂AB~k,v!52 ik2ŝAB~k,v!, ~12!

~v81v9!e3x̂ABC~k8,v8;k9,v9!

5k8k9uk81k9uŝABC~k8,v8;k9,v9!. ~13!

The constitutive relations for the total particle-densit
response functions are

nA
~1!~k,t !52e(

B
E

2`

`

dt8xAB~k,t8!FB
~1!~k,t2t8!,

~14!

nA
~2!~k,t !52e(

B
E

2`

`

dt8xAB~k,t8!FB
~2!~k,t2t8!

1
e2

A (
k8

(
B,C

E
2`

`

dt8E
2`

`

dt9xABC~k8,t8;k9,t9!

3FB
~1!~k8,t2t8!FC

~1!~k9,t2t9! ~k95k2k8!,

~15!

where FB and FC are total ~screened! potentials. For the
case of an equal-density (ne5N1 /A5N2 /A) two-layer sys-
tem, a physically transparent relationship~from the point of
view of dynamical screening! between the external and tota
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particle-density-response matrix elements can be readily
tablished. Introducing the dielectric matrix

eAB~k,v!5dAB2(
C

xAC~k,v!fCB~k!, ~16!

where f11(k)5f22(k)5f2D(k)52pe2/k and f12(k)
5f21(k)5f2D(k)e2kd ~d is the separation distance!, and
observing that

FA
~1!~k,v!5(

B
@e21~k,v!#ABF̂B~k,v!, ~17!

comparison of the temporal Fourier-transformed Eqs.~10!
and~11! with their respective counterpart Eqs.~14! and~15!
yields

x̂AB~k,v!5(
C

@e21~k,v!#ACxCB~k,v!, ~18!

x̂ABC~k8,v8;k9,v9!

5 (
A8,B8,C8

@e21~k81k9,v81v9!#AA8

3xA8B8C8~k8,v8;k9,v9!

3@e21~k8,v8!#B8B@e21~k9,v9!#C8C . ~19!

Equation~18!, in fact, holds for multilayer OCPs, where a
eal densities and spacings between adjacent layers nee
be equal. The matrix dielectric screening depicted by
~19! for the equal-density bilayer plasma mirrors the sca
dielectric screening structure reported for the one-compon
plasma@14,19#.

In establishing the relations between the external
total-density-response-matrix elements, the matrix formu
tion becomes unwieldy for more than two layers. Howev
for a large numberNL of equally spaced OCP layers of equ
areal density, the periodic structure~for NL→`! of the con-
figuration allows one to introduce a Fourier transformat
along the superlattice axis, e.g.,

e~k,kz ,v!5(
A

eAA8~k,v!e2 ikzd~A2A8!, ~20!

whered is the spacing between layers. For the infinite sup
lattice, comparison is made between the temporal- and la
space Fourier-transformed Eqs.~10!, ~11! and their respec-
tive Fourier transformed counterpart Eqs.~14!, ~15!. With
the stipulation that the external charge perturbation is c
fined to the lattice planes, the desired relations

x̂~k,kz ,v!5
x~k,kz ,v!

e~k,kz ,v!
, ~21!

x̂~k8,kz8 ,v8;k9,kz9 ,v9!

5
x~k8,kz8 ,v8;k9,kz9 ,v9!

e~k81k9,kz81kz9 ,v81v9!e~k8,kz8 ,v8!e~k9,kz9 ,v9!
~22!
s-

not
.
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then follow from Poisson’s equation, the constitutive relati
~40! of Ref. @22# linking external and induced charge dens
ties, and thex-e relation ~18! of Ref. @7#.

IV. DYNAMICAL FLUCTUATION-DISSIPATION
RELATIONS

We come now to the main point of the paper: the form
lation of the dynamical QFDT for the unmagnetize
multilayer OCP; areal densities and spacings between a
cent layers need not be equal.

The unperturbed state of the multilayer system is char
terized by the macrocanonical distribution functionV (0)

}exp@2bH(0)#. Then following the well-known statistical
mechanical perturbation-theoretic method of Kubo@23#, I
calculate the first- and second-order current density respo
in layer A to the weak perturbing Hamiltonian

Ĥ~ t !5
1

A (
B

(
k

F̂B~k,t !r2k
B ~23!

by ensemble averaging over the perturbed first- and sec
order Liouville distribution functions. The lengthy procedu
parallels the one carried out some time ago by Lu and my
@18# for binary ionic mixture plasmas and it suffices here
proceed directly to the principal results. Though the focus
primarily on the QFDT relations, their linear companion r
lations are also displayed to better elucidate the structur
the FDT hierarchy. The results are presented in the orde
which they have been derived beginning with the exter
conductivity-current correlation relations:time domain:

ŝAB~k,t !5bCAB~k,t !u~ t !, ~24!

ŝABC~k8,t8;k9,t9!2ŝCBA~k8,t92t8;2k,t9!

3u~ t8!2ŝBAC~2k,t8;k9,t2t9!u~ t9!

5b2CABC~k8,t8;k9,t9!u~ t8!u~ t9! ~k95k2k8!,

~25!

frequency domain:

Re ŝAB~k,v!5 1
2 bCAB~k,v!, ~26!

Re$ŝABC~k8,v8;k9,v9!1ŝCAB~2k,2v;k8,v8!

1ŝBCA~k9,v9;2k,2v!%

5 1
2 b2CABC~k8,v8;k9,v9!

~k95k2k8, v95v2v8!. ~27!

u(t),u(t8),u(t9) are unit step functions. In Eqs.~26! and
~27! only the~physically meaningful! dissipative parts of the
conductivity matrix elements are displayed. We observe t
the current correlation matrix elementCABC(k8,v8;k9,v9)
undergoes no net change in sign under simultaneous m
scopic time reversal and 2D space inversion so t
CABC(k8,v8;k9,v9’ ’) must be real.

The corresponding dynamical FDTs relating the exter
density response and structure function matrix eleme
readily follow from Eqs.~6!, ~7!, ~12!, ~13!, ~26!, and~27!:
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Im x̂AB~k,v!52b
~NANB!1/2

2A
vSAB~k,v!, ~28!

ReH 1

v8v9
x̂ABC~k8,v8;k9,v9!

2
1

vv8
x̂CAB~2k,2v;k8,v8!

2
1

vv9
x̂BCA~k9,v9;2k,2v!J

52b2
~NANBNC!1/3

4A
SABC~k8,v8;k9,v9!

~k95k2k8, v95v2v8!. ~29!

We observe that dynamical QFDTs~27! and~29! respect the
invariance ofCABC andSABC with respect to rotation on the
triangle formed by the ‘‘four’’ vectors (k8,zB ,v8),
(k9,zC ,v9), (k,zA ,v), i.e.,

CABC~k8,v8;k9,v9!5CCAB~2k,2v;k8,v8!

5CBCA~k9,v9;2k,2v!, ~30a!

SABC~k8,v8;k9,v9!5SCAB~2k,2v;k8,v8!

5SBCA~k9,v9;2k,2v! ~30b!

~zA ,zB ,zC locate the layers along thez axis!. Note the struc-
tural likeness between Eqs.~28! and~29! and their Ref.@18#
counterpart Eqs.~58! and ~A7! for the 3D binary-ionic-
mixture plasmas; this is clearly a consequence of the one
one correspondence between the layer-space and spe
space density-response-matrix formalisms for multilayer
multispecies plasmas.

For the infinite superlattice comprised of equally spac
2D layers of equal areal densityne , a Fourier transformation
of Eq. ~29! along the superlattice axis@per Eq.~20!# yields
the QFDT

ReH 1

v8v9
x̂~k8,kz8 ,v8;k9,kz9 ,v9!

2
1

vv8
x̂~2k,2kz ,2v;k8,kz8 ,v8!

2
1

vv9
x̂~k9,kz9 ,v9;2k,2kz ,2v!J

52 1
4 b2neS~k8,kz8 ,v8;k9,kz9 ,v9!

S k95k2k8, kz95kz2kz81
2p

d
s,

v95v2v8; s50,61,62, . . . D . ~31!

Its companion linear FDT~in the quantum domain! is re-
ported in Refs.@7,12~c!,13#.
o-
ies-
d

d

V. STATIC FLUCTUATION-DISSIPATION RELATIONS

An important ramification of linear FDT Eq.~28! is its
static form

Re x̂AB~k,v50!52b
~NANB!1/2

A
SAB~k,t50!,

~32a!

or equivalently,

dAB2Re@e21~k,v50!#AB

5
b

A (
C

~NANC!1/2SAC~k,t50!fCB~k!,

~32b!

which links the Fourier-transformed equilibrium pair corr
lation matrix elementgAB(k) to the inverse static dielectric
matrix via

SAB~k!5dAB1
~NANB!1/2

A
gAB~k!. ~33!

The matrix elementfAB(k)5(2pe2/k)exp@2kd(A2B)# is
the Fourier transform of the layer-A–layer-B Coulomb po-
tential. Equation~32b!, which holds for multilayer plasmas
having unequal layer populations and unequal spacings
tween adjacent layers, is reported in Ref.@12~b!# for the
equal-density bilayer. Its superlattice linear FDT counterp
is reported in Refs.@12~b!,13#.

The more involved derivation of the static form of QFD
~29! calls for repeated application of the Kramers-Kron
relations and use of the Poincare´-Bertrand theorem
@14,17,18,20,24#. An essential element in the derivation
the triangle symmetry requirement

Re x̂ABC~k8,0;k9,0!5Re x̂CAB~2k,0;k8,0!

5Re x̂BCA~k9,0;2k,0!, ~34!

paralleling Eq.~30b!. Applying the analysis of Ref.@14# to
QFDT Eq.~31!, I obtain

Re x̂ABC~k8,v850;k9,v950!

5b2
~NANBNC!1/3

2A

3SABC~k8,t850;k9,t950!. ~35!

Again, note the structural likeness between QFDT Eq.~35!
and its Ref.@18# binary-ionic-mixture counterpart, Eq.~74!.

We turn now to the final task of this paper: the applicati
of Eq. ~35! to the formulation of the lowest-order Maye
cluster expansion linking the matrix elements of the equil
rium three-particle~ternary! and pair correlation functions
for the equal-density multilayer OCP~the spacings betwee
adjacent monolayers need not be equal, however!. The cal-
culation of the total-density-response matrices, which is c
ried out in the random-phase approximation~RPA!, results in
the diagonal matrix elements

xAB~k,0!uRPA52bnedAB , ~36!
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xABC~k8,0;k9,0!uRPA5 1
2 b2nedABdAC . ~37!

Now, the external-total-density-response function relat
~19!, which is valid for the equal-density bilayer OCP
arbitrary coupling, holds as well for the equal-dens
multilayer OCP in the RPA. From Eqs.~18!, ~19!, ~32a!,
~36!, and~37!, one therefore obtains

SAB~k,t50!uRPA5@e21~k,0!#AB , ~38!

x̂ABC~k8,0;k9,0!uRPA5 1
2 b2ne(

D
@e21~k,0!#AD

3@e21~k8,0!#DB@e21~k9,0!#DC

~k5k81k9!, ~39!

where

eAB~k,0!uRPA5dAB1bnefAB~k!. ~40!

The desired cluster expression then results from substitu
Eq. ~38! into Eq. ~39! and comparing with Eq.~35!:

SABC~k8,t850;k9,t950!uRPA

5(
D

SAD~k!SDB~k8!SDC~k9!. ~41!

As an aside, we observe that the RPA expression~39! exhib-
its the triangle symmetry~34!. The structure functions in Eq
~41! can be traded for equilibrium ternary and pair corre
tion functions via Eq.~33! and

SABC~k8,t850;k9,t950!

5dABdAC1nedABgAC~k9!1nedACgAB~k8!

1nedBCgAB~k!1ne
2hABC~k8,k9!, ~42!

wherehABC is a layer-space matrix element of the terna
correlation function. Equations~41!, ~42!, and~33! then give

hABC~k8,k9!5gAC~k!gBC~k8!1gAB~k!gCB~k9!

1gBA~k8!gCA~k9!

1(
D

negAD~k!gBD~k8!gCD~k9!

~k5k81k9!. ~43!

This is the equal-density multilayer matrix generalization
the lowest-order~in the coupling parameter! Mayer cluster
l-

J

tt
n

g

-

f

expansion derived for the 3D OCP by Salpeter@25# using
equilibrium statistical mechanics and by O’Neil and Ro
toker @26# and Lie and Ichikawa@27# solving the Born-
Bogoliubov-Green-Kirkwood-Yvon hierarchy equations.

VI. CONCLUSIONS AND DISCUSSION

This paper establishes quadratic fluctuation-dissipation
lations for the unmagnetized, multilayer OCP in the classi
domain; layer populations and spacings between adja
layers need not be equal. The dynamical QFDT relatio
similarly to their OCP and BIM counterparts, connect t
layer-space matrix elements of a single equilibrium thr
point correlation function to triangle-symmetric@see Eqs.
~30a!, ~30b!# combinations of three quadratic-respons
function matrix elements. The principal results are display
as dynamical QFDT relations~25!, ~27!, and ~29!, static
QFDT ~35!, andk-space Mayer cluster expansions~41! and
~43! ~valid only for equal-density multilayers!. The external
density-response-matrix elements in QFDT~29! @and ~31!#
can be traded for screened density-response-matrix elem
for equal-density bilayer and superlattice plasmas, the tr
is made via Eqs.~19! and ~22!.

Calculations based on the QFDT-VAA~velocity-average
approximation! kinetic equation formalism@20,21# for BIM
plasmas affirm the existence of a remarkable positive shif
the plasma frequency predicted by Baus@28# at weak cou-
pling and by Hansen, McDonald, and Vieillefosse@29# at
strong coupling. The isomorphism between the multicom
nent plasma in three dimensions and the multilayer O
suggests that the latter should exhibit the same kind
coupling-dependent positive shift—a long-wavelength e
ergy gap—in the acoustic excitations. This correlatio
induced gap was predicted by Golden, Kalman, and
workers for type-I classical bilayer and superlattice plasm
@12# using the quasilocalized charge approximation~QLCA!
@30#. QFDT Eq. ~29! now makes it possible to develop
multilayer QFDT-VAA kinetic-equation-based approxim
tion scheme for the purpose of confirming the existence
thek50 energy gap and providing new information about
dependence on the interlayer and intralayer coupl
parameters—a vital detail that is missing in the QLCA d
scription. The development of such an approximati
scheme is underway@31#.

ACKNOWLEDGMENTS

The author thanks Gabor Kalman of Boston College
useful discussions. This work has been partially supported
the U.S. Department of Energy Under Grant No. DE-FG0
98ER54491.
t,

,

@1# J. J. Bollinger and D. J. Wineland, Phys. Rev. Lett.53, 348
~1984!; D. J. Wineland, J. C. Berquist, W. M. Itano, J. J. Bo
linger, and C. H. Manning,ibid. 59, 2935 ~1987!; L. R.
Brewer, J. D. Prestage, J. J. Bollinger, W. M. Itano, D.
Larson, and D. J. Wineland, Phys. Rev. A38, 859 ~1988!; S.
L. Gilbert, J. J. Bollinger, and D. J. Wineland, Phys. Rev. Le
.

.

60, 2022~1988!; M. G. Raizen, J. M. Gillgan, J. C. Berquis
W. M. Itano, and D. J. Wineland, Phys. Rev. A45, 6493
~1992!; J. J. Bollinger, D. J. Wineland, and D. H. E. Dubin
Phys. Plasmas1, 1403 ~1994!; J. N. Tan, J. J. Bollinger, B.
Jelenkovic, W. M. Itano, and D. J. Wineland, inPhysics of
Strongly Coupled Plasmas, edited by W. D. Kraeft and M.



ye
,

ev

ys
d

-
o

ef

B

.

R
1.

ev.

PRE 59 233QUADRATIC FLUCTUATION-DISSIPATION THEOREM . . .
Schlanges~World Scientific, Singapore, 1996!, p. 387.
@2# D. H. E. Dubin, Phys. Rev. Lett.71, 2753~1993!; in Physics of

Strongly Coupled Plasmas, edited by W. D. Kraeft and M.
Schlanges~World Scientific, Singapore, 1996!, p. 397.

@3# J. Jo, Y. W. Suen, L. W. Engel, M. B. Santos, and M. Sha
gan, Phys. Rev. B46, 9776~1992!; Y. W. Suen, M. B. Santos
and M. Shayegan, Phys. Rev. Lett.69, 3551~1992!.

@4# L. Swierkowski, D. Neilson, and J. Szymanski, Phys. R
Lett. 67, 240 ~1991!.

@5# V. I. Valtchinov, G. Kalman, and K. B. Blagoev, inPhysics of
Strongly Coupled Plasmas, edited by W. D. Kraeft and M.
Schlanges~World Scientific, Singapore, 1996!, p. 139; Phys.
Rev. E56, 4351~1997!.

@6# G. Goldoni and F. M. Peeters, Phys. Rev. B53, 4591~1996!.
@7# K. I. Golden and De-xin Lu, Phys. Rev. A45, 1084 ~1992!;

Phys. Rev. E47, 4632~E! ~1993!.
@8# C. Zhang and N. Tzoar, Phys. Rev. A38, 5786~1988!.
@9# L. Swierkowski, D. Neilson, and J. Szymanski, Aust. J. Ph

46, 423~1993!; D. Neilson, L. Swierkowski, J. Szymanski, an
L. Liu, Phys. Rev. Lett.71, 4035~1993!; 72, 2669~E! ~1994!.

@10# A. Gold, Z. Phys. B86, 193 ~1992!; 90, 173 ~1993!; Phys.
Rev. B 47, 6762 ~1993!; A. Gold and L. Camels,ibid. 48,
11 622 ~1993!; A. Gold, Z. Phys. B95, 341 ~1994!; 97, 119
~1995!.

@11# K. Esfarjani and Y. Kawazoe, J. Phys.: Condens. Matter7,
7217 ~1995!.

@12# ~a! K. I. Golden and G. Kalman, Phys. Status Solidi B180,
533 ~1993!; ~b! G. Kalman, Y. Ren, and K. I. Golden, in Pro
ceedings of the VI International Workshop on the Physics
Nonideal Plasmas, edited by T. Bornath and W. D. Kra
@Contrib. Plasma Phys.33, 449 ~1993!#; ~c! K. I. Golden, in
Modern Perspectives in Many-Body Physics, edited by M. P.
Das and J. Mahanty~World Scientific, Singapore, 1994!, p.
315; ~d! G. Kalman, Y. Ren, and K. I. Golden, Phys. Rev.
-

.

.

f
t

50, 2031~1994!; ~e! De-xin Lu, K. I. Golden, G. Kalman, Ph
Wyns. L. Miao, and X.-L. Shi,ibid. 54, 11 457~1996!; ~f! K.
I. Golden, G. Kalman, L. Miao, and R. R. Snapp,ibid. 55,
16 349~1997!; 56, 9987~E! ~1997!; ~g! 57, 9883~1998!.

@13# K. I. Golden and G. Kalman, Phys. Rev. B52, 14 719~1995!.
@14# K. I. Golden, G. Kalman, and M. B. Silevitch, J. Stat. Phys.6,

87 ~1972!.
@15# A. G. Sitenko, Phys. Scr.7, 190~1973!; Fluctuations and Non-

linear Wave Interaction in Plasma~Pergamon, Oxford, 1980!;
A. G. Sitenko, Zh. Eksp. Teor. Fiz.75, 104~1978! @Sov. Phys.
JETP48, 51 ~1978!#.

@16# A. Yu. Kargin, Academy of Sciences of the Ukrainian SS
Institute for Theoretical Physics Report No. ITP-81-36E, 198

@17# G. Kalman and X.-Y. Gu, Phys. Rev. A36, 3399~1990!.
@18# K. I. Golden and De-xin Lu, J. Stat. Phys.29, 281 ~1982!.
@19# K. I. Golden and G. Kalman, Phys. Rev. A19, 2112~1979!.
@20# K. I. Golden, F. Green, and D. Neilson, Phys. Rev. A31, 3529

~1985!; 32, 1669~1985!.
@21# H. Zhang and G. Kalman, Phys. Rev. A45, 5946~1992!.
@22# A. L. Fetter, Ann. Phys.~N.Y.! 88, 1 ~1974!.
@23# R. Kubo, J. Phys. Soc. Jpn.12, 570 ~1957!; in Lectures in

Theoretical Physics, edited by W. E. Brittin and L. H. Dunham
~Interscience, New York, 1959!, Vol. 1; Rep. Prog. Phys.29,
263 ~1966!.

@24# N. I. Muskhelishvili, Singular Integral Equations~Noordhoff,
Groningen, 1953!, p. 57, Eq.~23.F!.

@25# E. E. Salpeter, Ann. Phys.~N.Y.! 5, 193 ~1958!.
@26# T. O’Neil and N. Rostoker, Phys. Fluids8, 1109~1965!.
@27# T. J. Lie and Y. H. Ichikawa, Rev. Mod. Phys.38, 680~1966!.
@28# M. Baus, Phys. Rev. Lett.40, 793 ~1978!.
@29# J.-P. Hansen, I. R. McDonald, and P. Vieillefosse, Phys. R

A 20, 2590~1979!.
@30# G. Kalman and K. I. Golden, Phys. Rev. A41, 5516~1990!.
@31# K. I. Golden and R. R. Snapp~unpublished!.


