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Quadratic fluctuation-dissipation theorem for multilayer plasmas

Kenneth I. Golden
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The author establishes the dynamical and static quadratic fluctuation-dissipation thé@iebBs for
multilayer classical one-component plasmas in the absence of external magnetic fields. Areal densities and
spacings between layers need not be equal. The static QFDT is used to derive the lowest-awigoling
parameter Mayer cluster expansion for the layer-space matrix elements of the equilibrium three-point corre-
lation function.[S1063-651X99)08301-4

PACS numbegps): 05.20-y

I. INTRODUCTION (29) below]. Such QFDT relations have been formulated
[14-18 and implemented in novel kinetic theory approaches
Interest in correlated multilayer plasmas over the past de-19—-21] to the calculation of the dielectric response function
cade has been stimulated by activities in two different area@ind plasmon structure in three-dimensional O@B] and
In the area of strongly coupled plasma physics, there are thieinary-ionic-mixture(BIM) plasmag20,21].
compelling experiments of Bollinger and co-workes] The main goal of the present paper is to establish the
where laser-cooled ions in a trap form a realistic model of slynamical and static QFDT relations for the unmagnetized
|ayered classical one-component p|as|’(@CF§ in its multilayer OCP; areal densities and Spacings between adja-
strongly coupled liquid and crystalline phassge Ref[2] cent layers need not be equal. It is also of interest to apply
for a summary and theoretical descripﬁom the area of the static QFDT to the calculation of the lowest-ordarthe
condensed matter plasmas, advances in modern semicond@@upling parametgMayer expansion linking the matrix el-
tor nanotechnology have made it possible to routinely fabriements of thek-space equilibrium ternary and pair correla-
cate multiple-quantum-well structures of parallel electrontion functions.
layers in a strongly correlated liquid phas. The plan of the paper is as follows. Matrix elements of
Theoretical efforts pertaining to static properties havetwo- and three-point current correlatié8) and structurgS)
been primar"y directed at questions of ||qu|d-so||d phasefunctions are defined in Sec. Il. In Sec. Ill two kinds of linear
boundaries in multiple-quantum-well structufe@g, at iden-  and quadratic response functions are introduced: external re-
tification of structural phases in the classical bilayer liquidsponse functions which portray the system response to exter-
[5] and Wigner crystal phas¢6], and at adapting the clas- nal potential perturbations and totascreenejl response
sical hypernetted-chaifHNC) approximation to the compu- functions which portray the response to totpblarization
tation of pair correlation and static structure functions for thePlus external perturbing potentials. The dynamical QFDTs
bilayer electron liquid[5]. Efforts pertaining to dynamic are established in Sec. 1V, first in the time domain and then
properties have concentrated on frequency-moment-sufi the frequency domain with the results displayedCag
rules[7] and on the dielectric response tensor and collectivénd S-x relations (¢ and x are symbols for the external
mode behavior in strongly correlated bilayer and superlatticéonductivity and density-response function matricés Sec.
plasmag8-13]. V the static form of the QFDT is established. This is fol-
Central to the description of the static and dynamic proplowed by a derivation of the lowest-order Mayer cluster ex-
erties of multilayer plasmas are the density-response an@ansion for the matrix elements of the equilibrium three-
structure function layer-space matrices and the hierarchy gyoint correlation function. Conclusions are drawn in Sec. VI.
fluctuation-dissipation theorem@&DTs) which link these
guantities. The linear conventional FDT has already been
established 7,13 for the infinite, type-1 superlattice model Il. CURRENT CORRELATION AND STRUCTURE
consisting of a large stack oN, equally spaced two- FUNCTIONS
dimensional2D) electron plasma monolayers of equal areal
densityn.=Ng/A. It is a relatively easy task to recast the

linear FDT in a compact matrix form that applies to more but bounded ared and parallel to they plane. The two-
general classical OCP multilayers whe\e is arbitrary and dimensional OCP in a typical monolayAr(A=i 2.3,.) is
where the areal densities and spacings between adjacent la Gmprised ofN, classical point electrons in a 'néu’t.rlélizing

ers need not be the same. This is done in the present paper en. " ; A
. . ; uniform positive background. Fourier components of the mi-

route to pursuing the main goal described below. croscopic charge and current densities are given b

Next in the FDT hierarchy is the quadratic fluctuation- P 9 9 y
dissipation theorem(QFDT) which, in its most useful
frequency-domain form, connects a single three-point dy- N
. . ) i X el A
r)am|cal structure func_:t|on to_a triangle symmet.rlc combina p{j(t)= —er{j(t): _92 e ik (), (1a)
tion of three quadratic-density-response functipsse Eq. i=1

Consider a multilayer plasma model consisting of a stack
of two or more electron-plasma monolayers, each of large
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Na o erage current density responses in lageo driving external
je(t)= —eigl VAGEEURICE (1b)  scalar potentials acting at layeBs=1,2, ... :
where x* and vi* are the position and velocity of thih 1Okt =—ikD f At G ap(k,t ) Dg(k,t—t'), (8)
electron in layerA; k is a wave vector in thay plane. B J-=

We first define longitudinalwith respect to in-plane wave

vectors k,k’,k”) two- and three-point current correlation 2 1 o o
functionsCag andCagc: in (k,t)=—K > k’k”BSé dt’J dt”
k/ , — 00 — o0
1 A ; B (0) ~ Y " ogn T ! !
Can(k, 1) S =77 ([K-JROTK -2, (—0) D, X Fapc(K’ /K" ) Dg(k’ t—t')
(2) Xé)c(kfflt_tll) (k!/:k_k!)' (9)
1

Cagclk’ t" ;K" t") Sy = We next introduce external response matrices linking the

first- and second-order average particle density responses in
X([k~jﬁ(0)][k"jB_k,(—t’)][k”-jfk,,(—t”)])(o). 3) layer A to thedg,d,... driving external potentials:

2AKK k"

The ( }(© denote averaging over the equilibrium ensemble Ry f“ e A .
characterized by the macrocanonical distributig® (k.= ezg: %dt Xag(k,U') Pg(k,t=t7),
xexp(—BHO); Bis the inverse temperatuti energy units (10
andH( is the Hamiltonian of the equilibrium system. Two-

and three-point layer-space structure functions are next intro- e2 w o

duced in the customary way in terms of microscopic fluctu- N (k,t)= N > > dt'j dt"Yasc(k’,t";K",t")
ating densitiessnf=nf—Npd,, nE=nZ—Ngéy.,... : k' BC o o

X Dg(k! t—t)Pe(K" t—t") (K"=k—kK').
(11

(NaNg)2S5g(k, 1) Sk =(8n(0) 8n° ,(—1))(©

=(ng(0)n®,(—1))®
Comparison of the temporal Fourier-transformed E@.
and(9) with their respective Fourier-transformed counterpart
Egs.(10) and(11) then yields the useful matrix relations

~NaNgdidic , (4)

(NANgNc)*3Spg (K’ K" ") S s —ir

=(8nf(0)8n®,(—t")8n®,,(—t")© we’yap(K,0)=—ik?Gap(K, 0), (12)
=(NROINZ,, (=t)NC (~t")© (0'+0")exapck’ 0’ K", 0")
—NA(NgNe) Y288y 10 Spe(k’ 1" —t") =k'K'[k'+K"|Gapc(k’ 0" K", @"). (13
_ 1/2 "
Ne(NaNe)™dic G-t Sac(k, ") The constitutive relations for the total particle-density-
—Ng(NaNg) Y28 8 Sap(k,t") response functions are
—NANBN05k5k,5ku. (5) o
o , ok =—eX J dt' xas(k,t )P (k,t—t"),
Continuity of charge then requires that the temporal Fourier B J-o
transforms of Eqs(2)—(5) satisfy (14
(N N )1/2 -
kZCAB(k,w):ezATBwzsAB(k,w), (6) n;\2>(k,t)=—e§ f_wdt’XAB(k,t’)Cngz)(k,t—t’)
rn !+ n ! ey n n e2 e} o0
k'K |k K |CABC(k y W rk , W ) +Kz 2 J’ dt/J' dt”XABC(k’,t’;k”,t”)
5 (NaNaNc)™ @ Be ST A
=€ — 7 w,w”(w, +w”) D/ ’ Dy " ” ’
2A X® (k" t—t") D (K" t—1t") (k"=k-k'),
X Sagclk’ 0" K", @"). (7) (15

where @5 and @ are total (screened potentials. For the

case of an equal-densitp{=N,/A=N,/A) two-layer sys-
We begin with Ohm’s law for the longitudinal external tem, a physically transparent relationskifpom the point of

conductivity matrices linking the first- and second-order av-view of dynamical screenindetween the external and total

IIl. RESPONSE FUNCTIONS
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particle-density-response matrix elements can be readily eshen follow from Poisson’s equation, the constitutive relation
tablished. Introducing the dielectric matrix (40) of Ref.[22] linking external and induced charge densi-
ties, and they- € relation(18) of Ref.[7].
eap(K,w)=6ag— K, k), 16
ask, @)= Ops ; Xack, @) bea(k) (16 IV. DYNAMICAL FLUCTUATION-DISSIPATION
RELATIONS

where  ¢13(K)= ¢2o(K) = hop(k) =27k and 1K) o _
= dor(K) = dop(K)e K9 (d is the separation distangeand _We come now to thg main point of the paper: the fo_rmu-
observing that lation of the dynamical QFDT for the unmagnetized

multilayer OCP; areal densities and spacings between adja-
@ . A cent layers need not be equal.
N (k'w)zé [e (K ,0)]aePs(k, @), 17 The unperturbed state of the multilayer system is charac-
terized by the macrocanonical distribution functiéh®

comparison of the temporal Fourier-transformed Eq®)  <exd—BH®]. Then following the well-known statistical-

and (11) with their respective counterpart Eq44) and(15) ~ Mechanical perturbation-theoretic method of Kulas], |
yields calculate the first- and second-order current density response

in layer A to the weak perturbing Hamiltonian

Yap(k,w)= e ko k,w), 18 . 1 ~
fap(k,0) =2 [€7H(k,0)]ackca(k,0),  (18) A= 3 S bukos®, 3
Xagclk' 0" K" ") by ensemble averaging over the perturbed first- and second-
order Liouville distribution functions. The lengthy procedure
= 2 [€ Yk +K" @' + ") an parallels the one carried out some time ago by Lu and myself
A'B',C’ [18] for binary ionic mixture plasmas and it suffices here to
proceed directly to the principal results. Though the focus is
primarily on the QFDT relations, their linear companion re-
X[ Yk, 0" )]gele HK" o) ]cc. (19 lations are also displayed to better elucidate the structure of
the FDT hierarchy. The results are presented in the order in
Equation(18), in fact, holds for multilayer OCPs, where ar- which they have been derived beginning with the external
eal densities and spacings between adjacent layers need mminductivity-current correlation relationstime domain:
be equal. The matrix dielectric screening depicted by Eg.

XXA/Blcr(k,,w,;k”,w”)

(19) for the equal-density bilayer plasma mirrors the scalar aas(k,t)=BCap(k,t)6(1), (24)
dielectric screening structure reported for the one-component ot im e a Cn "
plasma[14,19. oasc(k’ 1" K" t") = ocpalk’ t"—t"; —k,t")

In esta_blishing the relat_ions between the ex_ternal and X 0(t") = Fgac —k,t" K" t—t") 6(t")
total-density-response-matrix elements, the matrix formula-
tion becomes unwieldy for more than two layers. However, =B2Cppc(k’ t";K" 1) O(t") 6(1") (K"=k—K'),
for a large numbeN, of equally spaced OCP layers of equal (25)

areal density, the periodic structuifer N, —«) of the con-
figuration allows one to introduce a Fourier transformationfrequency domain:
along the superlattice axis, e.g.,

Re Gap(k,®)=3BChpp(k, ), (26)
_ — ik d(A—A")
e(k,kz,w)—; eAA,(k,w)e : , (20) Re{&ABC(k',w';k",w")-f-frCAB(—k,—w;k’,w')
whered is the spacing between layers. For the infinite super- +ogcak” 0" —k,—w)}
lattice, comparison is made between the temporal- and layer- Lo o
space Fourier-transformed Eq4.0), (11) and their respec- =3BCppck’, 0" K" 0")
tive Fourier transformed counterpart Eq44), (15). With , L )
the stipulation that the external charge perturbation is con- (k"=k=k', o"=0—-0"). (27)
fined to the lattice planes, the desired relations A(t). 6(t"). 6(t") are unit step functions. In Eq$26) and
x(K,K,, @) (27) only the(physically meaningfuldissipative parts of the

x(K,k,,w)= (21 conductivity matrix elements are displayed. We observe that

e(kkz,) the current correlation matrix eleme@igc(k’, 0’ ;k”,®")
2K Ko KK o) undergoes no net change in sign under simultaneous micro-
Mz TR Rz scopic time reversal and 2D space inversion so that
S imn Capc(k’,0";K",0"") must be real.
_ x(K' kg, 073K kg, ") The corresponding dynamical FDTs relating the external
ek’ +kK" K, +K 0"+ ") e(k’ k, ,0")e(k" K], 0") density response and structure function matrix elements

(22 readily follow from Egs.(6), (7), (12), (13), (26), and(27):
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(NaNg)*?

o wSna(k.),

Im Xag(K,w)=—p8 (28

1 - ! ! n n
Re[m Xasc(k',@";K", ")

_mXCAB(_ka_w;k yo')

1
- 0o XBCA(k y @ !_ky_w)

(NANBNC)1/3 !’ ! n n
=B Saeck 0K @)

(k"=k—=k', o"=w—w').

(29

We observe that dynamical QFDT27) and(29) respect the

invariance ofC,gc andSygc With respect to rotation on the

triangle formed by the *“four”

(K" 2c,0"), (K,za, o), i.e.,

vectors K',zg,w'),

CAgc(k,,wl;k”,w”):CCAB(_k,_ w;k',w')

=Cpeak" 0", —k,~w), (303
Sapc(k’, 0" k" 0")=Scap(—k,~ ok, 0")
=Sgca(k”, 0", —k,—w) (30D

(za,zg,Z¢ locate the layers along theaxis). Note the struc-
tural likeness between Eg8) and(29) and their Ref[18]
counterpart Eqs(58) and (A7) for the 3D hinary-ionic-
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V. STATIC FLUCTUATION-DISSIPATION RELATIONS

An important ramification of linear FDT E(q28) is its
static form

(NaNg)*?

Re Xas(k,0=0)=—p A

Sap(k,t=0),
(32a

or equivalently,

Sas— R € 1(k,0=0)]ap

:§ ; (NaNG)Y2Sac(K,t=0) dca(k),

(32b

which links the Fourier-transformed equilibrium pair corre-
lation matrix elemengag(k) to the inverse static dielectric
matrix via

(NaNg)*?

Sas(K) = 6agt A gas(k). (33

The matrix elementpg(kK) =(2me?/k)exd —kd(A—B)] is
the Fourier transform of the layé—layerB Coulomb po-
tential. Equation(32b), which holds for multilayer plasmas
having unequal layer populations and unequal spacings be-
tween adjacent layers, is reported in REE2(b)] for the
equal-density bilayer. Its superlattice linear FDT counterpart
is reported in Refd.12(b),13].

The more involved derivation of the static form of QFDT
(29) calls for repeated application of the Kramers-Kronig
relations and use of the PoinceBertrand theorem

mixture plasmas; this is clearly a consequence of the one-td14,17,18,20,214 An essential element in the derivation is
one correspondence between the layer-space and specidise triangle symmetry requirement
space density-response-matrix formalisms for multilayer and

multispecies plasmas.

For the infinite superlattice comprised of equally spaced

2D layers of equal areal density, a Fourier transformation
of Eqg. (29 along the superlattice ax[per Eq.(20)] yields
the QFDT

1
Re{m XK'k, 0" ;K" K] ,@")
—mf((—k,—kz,—w;k’,ké,w')
1 ~ n " n

—mx(k Ky 0" =k, — Kk, —w)

=— 1B S(K k0" K" K], 0")

2
"=k—k', Kj=k—ki+ s,

o'=v—w';

s=0,+1,+2,...|. (31

Its companion linear FDTin the quantum domajnis re-
ported in Refs[7,12c),13].

Re X/ABC(k, ,O;k",O) =Re j\(CAB( - k,O,k' ,0)

=Re xgca(k”,0;,—k,0), (34

paralleling Eq.(30b). Applying the analysis of Ref.14] to
QFDT Eq.(31), | obtain

Re)A(ABC(k',w’=0;k",w"=0)

_ gz (NaNaNe) ™
2A

X Spagc(k’,t"=0;k",t"=0). (35
Again, note the structural likeness between QFDT &%)
and its Ref[18] binary-ionic-mixture counterpart, EG74).

We turn now to the final task of this paper: the application
of Eqg. (35 to the formulation of the lowest-order Mayer
cluster expansion linking the matrix elements of the equilib-
rium three-particle(ternary and pair correlation functions
for the equal-density multilayer OCfhe spacings between
adjacent monolayers need not be equal, howevére cal-
culation of the total-density-response matrices, which is car-
ried out in the random-phase approximati&PA), results in
the diagonal matrix elements

xae(K,0)|[rpa= — BNedag, (36)



232 KENNETH |. GOLDEN PRE 59

xasc(K',0:k",0)|rpa= % BPNeOagOac . (37)  expansion derived for the 3D OCP by Salp€i2$] using

equilibrium statistical mechanics and by O’Neil and Ros-
Now, the external-total-density-response function relatiortoker [26] and Lie and Ichikawd27] solving the Born-
(19), which is valid for the equal-density bilayer OCP at Bogoliubov-Green-Kirkwood-Yvon hierarchy equations.
arbitrary coupling, holds as well for the equal-density

multilayer OCP in the RPA. From Eq$18), (19), (329,
(36), and(37), one therefore obtains

Sag(k,t=0)|rpa=[€ (k,0) ]z, (39

&Asc<k’,o;k".0>|RpA=%ﬁzneg [€ (k,0)]ap
X[€ X(k’,0)]pel€ X(K",0)Ipc
(k=k’"+Kk"), (39
where

€ps(K,0)|rpa= gt Bnedap(K). (40

VI. CONCLUSIONS AND DISCUSSION

This paper establishes quadratic fluctuation-dissipation re-
lations for the unmagnetized, multilayer OCP in the classical
domain; layer populations and spacings between adjacent
layers need not be equal. The dynamical QFDT relations,
similarly to their OCP and BIM counterparts, connect the
layer-space matrix elements of a single equilibrium three-
point correlation function to triangle-symmetrjsee Egs.
(308, (30b)] combinations of three quadratic-response-
function matrix elements. The principal results are displayed
as dynamical QFDT relation§25), (27), and (29), static
QFDT (35), andk-space Mayer cluster expansiof@l) and
(43) (valid only for equal-density multilayersThe external
density-response-matrix elements in QF[ZO) [and (31)]

The desired cluster expression then results from substitutingan be traded for screened density-response-matrix elements;

Eq. (38) into Eqg.(39) and comparing with Eq(35):
Sasc(k’,t"=0;K",t"=0)|rpa

=§ Sap(k)Spe(k’)Spc(k”).  (41)

As an aside, we observe that the RPA expres&@exhib-
its the triangle symmetr{34). The structure functions in Eq.
(41) can be traded for equilibrium ternary and pair correla-

tion functions via Eq(33) and
Sapc(k’,t"=0;k",t"=0)
= OaOact Nedasdac(K”) +NedacPar(k’)
+Nedacgas(k) +NZhagc(k K, (42

where hpgc is a layer-space matrix element of the ternary
correlation function. Equation@1), (42), and(33) then give

hagc(K',K") =0gac(K)gsc(K") +9as(K)gcr(K”)
+9ga(k")gca(k”)

+§ Nedan(K)gep(k)gcn(K”)

(k=K'+Kk"). (43

for equal-density bilayer and superlattice plasmas, the trade
is made via Eqs(19) and (22).

Calculations based on the QFDT-VA@elocity-average
approximation kinetic equation formalisni20,21] for BIM
plasmas affirm the existence of a remarkable positive shift in
the plasma frequency predicted by B4@8] at weak cou-
pling and by Hansen, McDonald, and Vieillefosg29] at
strong coupling. The isomorphism between the multicompo-
nent plasma in three dimensions and the multilayer OCP
suggests that the latter should exhibit the same kind of
coupling-dependent positive shift—a long-wavelength en-
ergy gap—in the acoustic excitations. This correlation-
induced gap was predicted by Golden, Kalman, and co-
workers for type-I classical bilayer and superlattice plasmas
[12] using the quasilocalized charge approximatiQi.CA)

[30]. QFDT Eg. (29 now makes it possible to develop a
multilayer QFDT-VAA Kkinetic-equation-based approxima-
tion scheme for the purpose of confirming the existence of
thek=0 energy gap and providing new information about its
dependence on the interlayer and intralayer coupling
parameters—a vital detail that is missing in the QLCA de-
scription. The development of such an approximation
scheme is underwas1].
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