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Ponderomotive force of quasiparticles in a plasma
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We derive the force exerted on the background plasma by an arbitrary distribution of noninteracting quasi-
particles, corresponding to either collective excitations of the plasma~plasmons and phonons! or dressed
particles~photons and neutrinos!. Our approach is based on the effective Hamiltonian describing the quasi-
classical dynamics of the individual particles in the presence of a background medium. We recover the usual
results for the relativistic ponderomotive force of a photon gas and a plasmon gas and we derive the force, due
to weak interactions, exerted by the electron neutrinos in a background medium containing electrons, positrons,
and neutrons with arbitrary distribution functions. Generalization to other background species and other neu-
trino flavors is also discussed.@S1063-651X~99!04102-1#

PACS number~s!: 52.40.Mj
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I. INTRODUCTION

The ponderomotive force of electromagnetic waves@1–6#
is a key concept in plasma physics@7,8# and plays a centra
role in our present understanding of intense laser-plasma
teractions@9#. This force arises whenever a nonuniform o
cillating electric field is present in a dielectric and can
seen as a slow time scale effect, or the average effect, du
some nonuniformity of the high-frequency oscillations of t
electric field@10#.

In general, the derivation of the ponderomotive force
based on the analysis of the single-particle dynamics
charged particles in the presence of the electric field@1–6# or
in terms of the Maxwell equations for a macroscopic me
@10#. By averaging the motion of the charged particle ov
the fast time scale, corresponding to the high-frequency
cillations of the field, the slow time scale dynamics of t
individual particles can then be calculated and the net ef
of the electromagnetic forces acting on the particle can
reduced to the ponderomotive force. In this paper we pre
a different approach, which allows us not only to rederive
previous results, but also to generalize, in a straightforw
way, the concept of ponderomotive force to other physi
conditions or otherquasiparticles besides photons~e.g.,
dressedneutrinos!, where the dynamics of a single electro
is not easily described in terms of the classical force in
relativistic equations of motion.

The starting point of our treatment is a semiclassical
scription of the fields interacting with the plasma. The fie
are described by their equivalentquasiparticles, or elemen-
tary quanta: photons for the electromagnetic field, plasm
for the longitudinal electrostatic oscillations, phonons for t
ion acoustic oscillations, and dressed neutrinos for the n
trino field interacting with the background medium. This
done by defining a distribution function for the particles fro
the field intensity. Such a description is very useful beca
a kinetic equation can be derived for the correct quasipa
cles distribution. The kinetics or equations of motion for t
quasiparticlesin the plasma are described by the dispers
relation, or the effective Hamiltonian, for each one of t
fields or quasiparticles. The effective Hamiltonian can b
PRE 591063-651X/99/59~2!/2273~8!/$15.00
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derived from either a classical or a quantum field theory. T
key point of our formalism is that by knowing the effectiv
Hamiltonian describing a singlequasiparticledynamics, we
are then able to derive the force exerted by a gas of no
teracting elementary quanta in the background plasma:
dispersion relation, or the effective Hamiltonian, genera
the equations of motion of the quasiparticles and from c
servation of momentum~action and reaction! it generates the
force of the quasiparticles in the plasma.

Even if the termponderomotive forcewas coined to de-
scribe the forces acting on a dielectric in an arbitrary no
uniform electric field, in this paper we generalize the conc
to the interaction of any nonuniform field with a backgrou
medium. In fact, the force exerted in a background medi
due to a nonuniform field can also be seen as the pres
gradient arising due to some inhomogeneity in the quasip
ticle distribution.

We aim to achieve two objectives: to derive the ponde
motive force solely based on the quasiparticle concept, t
providing an easy tool to generalize and unify the conc
for different physical scenarios, and to explicitly show t
relation between the ponderomotive force and the wave
tion density, or the quasiparticle number density. In parti
lar, we will be mainly interested in determining the ponder
motive force of an arbitrary distribution of neutrinos~with
different flavors! in an arbitrary background medium.

Our focus will be on the derivation of the force exerted
an arbitrary distribution ofquasiparticles. In Sec. II we
present our formalism and the approximations involved
our description. The general expression for the pondero
tive force is then derived and represented as a function of
effective Hamiltonian or dispersion relation~describing the
quasiclassical dynamics of thequasiparticles! and thequasi-
particle distribution function. In Sec. III we apply our result
to classical fields arising in a plasma. The ponderomot
force exerted by a gas of photons in a plasma is rederive
the relativistic regime, thus showing the equivalence
tween our approach and the derivation of the ponderomo
force found in the literature. We also derive the force due
a gas of plasmons in a weakly relativistic plasma and
ponderomotive force of a gas of phonons in a dusty plas
2273 ©1999 The American Physical Society
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In Sec. IV we consider the interaction of a gas of neutrin
with a dense plasma, also containing other species of b
onic matter~such as neutrons, protons, and positrons!. The
ponderomotive force exerted in the background medium
the neutrinos is then derived. In our derivation we assu
that each one of the species in the medium has an arbi
distribution function, thus generalizing previous results o
valid for cold plasmas@11#. Finally, in Sec. V the results o
this paper are summarized.

II. GENERAL CONSIDERATIONS

Consider a gas of noninteractingquasiparticles~QPs! in a
background medium. Byquasiparticleswe mean not only
elementary collective excitations of the background mediu
such as plasmons and phonons, but also dressed photo
dressed neutrinos. Our formalism is independent of the e
ties we are considering as QPs, but we assume that th
teractionbetweenthem is negligible. This corresponds to e
ther considering collision frequenciesnqq much smaller than
the typical time scale of the process under study~dilute gas!
or simply assuming that the interaction between quasipa
cles can be discarded. Furthermore, we consider that the
namics of a single QP is governed by the effective Ham
tonian Heff , which is not only a function of the dynamica
variables of the single QP~momentum and position! but is
also dependent of the properties of the medium where
QPs propagate.

Using in a direct way the results already known for t
ponderomotive force of electromagnetic~e.m.! waves in a
dielectric in terms of a gradient in the laser intensity, w
could immediately propose an expression for the ponde
motive force, written as a function of the number of photo
This approach would not show, however, the connection
tween the effective interaction experienced by a single
and the expression of the ponderomotive force, thus prev
ing the generalization to other physical conditions. Also,
dependence of the ponderomotive force on the wave ac
density, or QP number density, would not be clearly sta
for nontrivial QP distribution functions. Therefore, a diffe
ent path must be followed. By determining the free energy
the system, we can relate the changes in the free energy
the work performed by the force exerted by the distribut
of particles and from that derive the ponderomotive force

We can write the total free energy as the sum of t
contributions: the free energy of the background medium
the absence of QPs (F0) and the additional free energy~for a
given temperature and density! resulting from the presenc
of the field elementary excitations. Therefore, the free ene
is written as

F5F0~r,T!1gsqE drE dk

~2p!3
f q~r ,k,t !Heff , ~1!

wherer is the density of the medium,T is the temperature o
the medium, f q describes the QP distribution function
phase space (r ,k), r describes the QP position, andk is
related to the QP momentumpq by k5pq /\. For the sake of
completeness we state here the most important propertie
f q :
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nq~r ,t !5gsqE dk

~2p!3
f q~r ,k,t !, ~2!

uc~r ,t !u25gsqE dk

~2p!3
f q~r ,k,t !Heff , ~3!

uf~k,t !u25gsqE dr f q~r ,k,t !Heff , ~4!

wherenq is the quasiparticle number density,uc(r ,t)u2 is the
spatial energy density, anduf(k,t)u2 is the spectral energy
density, so that the second term on the right-hand side of
~1! represents the total free energy due to the presenc
QPs.gsq is the QP statistical weight and it accounts for sp
degeneracy of the QPs.

We now generalize the procedure described in Ref.@10#
to electromagnetic waves. Let us assume that an isothe
deformationu of the background infinite medium occurs.
the distribution of quasiparticles exerts a forcef over the
medium, workdW will be done by that force such that

dW5E dr f •u, ~5!

where f has the dimensions of force per unit volume. W
consider that this force will act only on the electrons of t
background medium. The ponderomotive force experien
by the ions can be discarded since it isme /mi smaller than
the ponderomotive force experienced by the electrons (me is
the electron rest mass andmi is the ion mass!. However,
inclusion of other background species is straightforward.dW
can be related with the change in the free energy for the s
displacementu since dW52d(F2F0). Returning to Eq.
~1!, we easily obtain

dF5dF0~r,T!1gsqE drE dk

~2p!3

3@Heffd f q~r ,k,t !1 f q~r ,k,t !dHeff#. ~6!

We will assume a quasistatic distribution of quasiparticl
which means that a displacement of the background med
will not affect the distributionf q . Furthermore,f q is a func-
tion only of the dynamical variables. Hence the second te
in the integral in Eq.~6! is zero. The effective energyHeff of
each QP will be affected by the isothermal background
formation sinceHeff depends not only on the dynamical var
ables but also on the properties of the background medi
The change inHeff has two contributions:~i! d (1)Heff , due to
the fact that particles from the background medium
pushed fromr2u to r , and~ii ! d (2)Heff , due to the change
of the distribution function, or density, of the backgroun
medium in positionr . The first contribution fordHeff is

d~1!Heff52u•¹Heff . ~7!

For the remaining contribution, we first use the fact that
relative change in the volume element of the backgrou
medium isdV/V5¹•u. Therefore, the change in the numb
density nbg is dnbg52nbg¹•u, where nbg is the number
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density of the background particles affected by the ponde
motive force ~in our case, just the electrons!. In the same
way, the change in the distribution function of the bac
ground medium particles f bg(r ,p) is d f bg(r ,p,t)5
2 f bg(r ,p)¹•u, wherep is the momentum of the backgroun
particles ~we also assume that the isothermal deformat
does not impart momentum to the medium!. Therefore,
d (2)Heff can be written as either

d~2!Heff52S ]Heff

]nbg
D

T

nbg¹•u ~8!

if Heff is a function ofnbg or

d~2!Heff52S ]Heff

] f bg
D

T

f bg~r ,p!¹•u ~9!

for a more general dependence ofHeff on the distribution
function of the background mediumf bg. Inserting Eqs.~7!
and ~8! in Eq. ~6!, we obtain

dF2dF0~r,T!52gsqE drE dk

~2p!3
f q~r ,k,t !

3Fu•¹Heff1S ]Heff

]nbg
D

T

nbg¹•uG .

~10!

Performing an integration by parts over the second term
the right-hand side of Eq.~10! results in

dF2dF0~r,T!52gsqE drE dk

~2p!3
u• f q~r ,k,t !¹Heff

1gsqE drE dk

~2p!3
u•¹

3F f q~r ,k,t !S ]Heff

]nbg
D

T

nbgG . ~11!

Therefore, the ponderomotive force, per unit volume, act
on the medium is

f~r ,t !5gsqE dk

~2p!3
f q~r ,k,t !¹Heff

2gsqE dk

~2p!3
¹F f q~r ,k,t !S ]Heff

]nbg
D

T

nbgG . ~12!

A similar expression can also be derived whenHeff depends
on the distribution function of the background mediumf bg.
This will be discussed for the particular case of the ponde
motive force due to neutrinos in a plasma. For a linear
pendence ofHeff on nbg, i.e., nbg(]Heff /]nbg)5Heff , Eq.
~12! can be further simplified to

f~r ,t !52gsqE dk

~2p!3
Heff¹ f q~r ,k,t !. ~13!
o-

-

n

n

g

-
-

Equation ~12!, as well as the appropriate definition o
Heff , is the starting point of our discussion of the ponde
motive force due to different types of QPs propagating in
plasma. It also represents a generalization for arbitrary fie
of the Landau-Lifshitz arguments@10#.

III. PONDEROMOTIVE FORCE OF PHOTONS,
PLASMONS, AND PHONONS

Having determined the general expression for the p
deromotive force of a gas of noninteracting QPs, we n
proceed by evaluating Eq.~12! for different classical fields or
classical QPs. We first consider the ponderomotive force
to a distribution of photons characterized byf q[N(r ,k,t).
The number of photonsN obeying the properties~2!–~4! can
be obtained from the Wigner function of the electromagne
field @12#. The concept of the number of photons was intr
duced in the plasma physics literature in the 1960s, ass
ated with the random phase approximation@13#. We point
out, however, that a proper definition of the number of ph
tons based on the Wigner function can describe any e
field configuration~see the Appendix for a detailed discu
sion of this problem!. For the number of photonsN, the role
of the effective HamiltonianHeff is played by\v(r ,k,t)
[\vk , where the frequencyvk is obtained from the disper
sion relation for the electromagnetic waves propagating
the plasma. This is equivalent to assuming that each sin
photon obeys the dispersion relation for plane electrom
netic waves. Since we are considering an arbitrary distri
tion of photons, the relativistic mass correction must also
included in the dispersion relation for circularly polarize
electromagnetic plane waves:

vk
25k2c21

vpe
2 ~r ,t !

g
, ~14!

where vpe
2 (r ,t)54pe2ne(r ,t)/me is the local electron

plasma frequency andne(r ,t) is the electron number density
g is the relativistic mass correction factor, which is a fun
tion of the electric field intensity and the energy distributi
function of the electrons in the background plasma. For
sake of clarity, we will not write down the explicit expres
sion forg since it will not add any additional features to o
derivation. We note that in Eq.~14!, k, r , andt are indepen-
dent variables. Furthermore, Eq.~14! is valid in the limits of
the geometrical optics approximation@14#, i.e.,

vk

2p
@ U ]

]t
ln ne~r ,t !U, uku

2p
@u¹ ln ne~r ,t !u. ~15!

These limits establish the conditions under which this
proach is valid: Whenever two very different time scales
present, we can treat the high-frequency perturbations
gas of quasiparticles propagating in a background with s
density modulations.

Using Eq.~14! in Eq. ~12! and the fact that

S ]Heff

]nbg
D

T

nbg[S ]\vk

]vpe
2 D

T

vpe
2 5

\vpe
2

2vkg
~16!

and
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¹Heff[¹\vk5
\

2vk
¹

vpe
2

g
, ~17!

we obtain, after some algebra, the ponderomotive force
to a photon distributionN:

fph~r ,t !52
vpe

2

2g
gph¹E dk

~2p!3
\
N
vk

, ~18!

where gph51 (2) for circular ~linear! polarization. For
plane electromagnetic waves,N5(uE0u2/8gphp\v0)d(k
2k0), with E0 the electric field amplitude andv0(k0) the
frequency~wave number! of the electromagnetic field@12#.
In this case, the ponderomotive force acting on a single e
tron reduces to the more familiar form

fph~r ,t !52
e2

2meg
¹A2, ~19!

whereA is the high-frequency vector potential. It is straigh
forward to see that ponderomotive force effects can arise
to two different conditions: inhomogeneity in the number
photons distribution functionN and/or spatial-dependent fre
quency. The present understanding of ultraintense short l
pulse propagation in plasmas is based on the different r
played by these two contributions@15#. Equation~19! agrees
with previous derivations of the relativistic ponderomoti
force for circularly polarized photons@1,2,4–6#. For linearly
polarized plane electromagnetic waves, the dispersion r
tion ~14! is no longer valid; a different expression for th
relativistic ponderomotive force appears@3#, which under
certain conditions reduces to Eq.~19!. As far as we know,
Eq. ~18! is the first derivation of the relativistic ponderom
tive force, using solely the number of photons concept. Al
Eq. ~18! is valid for any e.m. field configuration, as long a
N is defined using the proper definition of Wigner functio
for an arbitrary e.m. field~see the Appendix!.

For a gas of plasmons~electron plasma oscillations!, an
expression similar to Eq.~18! can also be derived in a simila
manner, but now the dispersion relation is

vk
25vpe

2 S 12
5

2

kBTe

mec
2D 13k2

kBTe

me
, ~20!

where Te is the plasma electron temperature and we h
included the first relativistic correction to the dispersion
lation, valid under the conditionsvk /k@AkBTe /me and
kBTe!mec

2 @16#. The ponderomotive force of the gas
plasmons, described byNplasmon, acting on the plasma elec
trons is

fpl~r ,t !52
vpe

2

2 S 12
5

2

kBTe

mec
2D ¹E dk

~2p!3
\
Nplasmon

vk
.

~21!

The ponderomotive force of the gas of plasmons in
weakly relativistic regime can then describe the coupling
the electrostatic oscillations with the low-frequency, lon
wavelength ion acoustic oscillations@13#.
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We now consider the ponderomotive force due to a ga
elementary collective ion excitations. Due to the limits of o
formalism @see Eq.~15!#, this gas of ion oscillations mus
interact with even lower-frequency and longer-wavelen
plasma perturbations. In an unmagnetized electron-
plasma, such a physical condition cannot be verified. Ho
ever, dusty plasmas support oscillations with characteri
frequencies~wavelengths! much lower~longer! than those of
ion oscillations~ion acoustic waves or ion plasma wave!
@17#. The picture of a gas of ion oscillations in a dus
acoustic oscillation is then reasonable. The general lin
dispersion relation for ion oscillations is@8#

vk
25k2

g ikBTi

mi
1k2

gekBTe

mi

1

11gek
2le

2
. ~22!

with Ti the ion temperature,ge (g i) the electron~ion! adia-
batic index, andle5(kBTe /4pnee

2)1/2 the electron Debye
length. Denoting the number density of QP excitations c
responding to ion collective motions byNion qp, we obtain
from Eq. ~12!, using Eq.~22!, the force

f ion qp~r ,t !52
mi

kBTe

le
2

2
¹E dk

~2p!3

\Nion qp

vk

3S k2gekBTe

mi

1

11le
2k2ge

D 2

. ~23!

In the limit of g iTi /mi!geTe /mi , the dispersion relation
~22! can be approximated byvk

2.k2gekBTe /mi(1
1le

2k2ge) and Eq.~23! reduces to

f ion qp~r ,t !52
mi

kBTe

le
2

2
¹E dk

~2p!3
\Nion qpvk

3. ~24!

Two opposite physical scenarios can now be explored
the limit of kle!1, corresponding to ion acoustic oscilla
tions, the dispersion relation isvk.kcs , with the sound
speedcs5AgekBTe /mi . Thus the ponderomotive force du
to a distribution of ion acoustic waves, or a gas of ion aco
tic phonons, is

fIAP~r ,t !52
1

2

cs
3

vpi
2

¹E dk

~2p!3
\k3NIAP , ~25!

with the ion plasma frequencyvpi5vpeAme /mi . On the
other hand, in the limit ofkle@1, the dispersion relation
~22! describes ion plasmas waves such thatvk

2.vpi
2 . In this

case, the ponderomotive force verifies

fIPW~r ,t !5vpi¹E dk

~2p!3
\NIPW2

3

2
¹E dk

~2p!3
\vkNIPW.

~26!

We then see that the ponderomotive force associated
ion collective excitations@Eqs.~25! and~26!# is significantly
different from that associated with photons@Eq. ~18!# or
plasmons@Eq. ~21!#. This derivation must now be verified
using the standard plasma physics methods. The coup
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between the ion collective motions and the background
dium can play a significant role in the~de!stabilization of
dust-acoustic oscillations in a dusty plasma. Both these
tures will be explored in a future work.

IV. PONDEROMOTIVE FORCE OF NEUTRINOS
IN DENSE PLASMAS

We now turn to the central result of this paper: the po
deromotive force of neutrinos in a plasma. This force c
provide the coupling mechanism responsible for the ano
lous scattering of neutrinos and the consequent depositio
the plasma of some part of the neutrino energy released
supernova explosion@11,18#. This energy deposition plays
key role in the present understanding of supernovae ex
sions@19#. An intuitive picture of the ponderomotive force
immediate: If in a given region the energy density in t
neutrinos is higher than in other regions, a force will
exerted in the background medium by the neutrinos, towa
the regions of lower neutrino energy density. This cor
sponds to the physical picture of the neutrinos trying to p
their way into regions of lower energy density.

In order to derive the ponderomotive force due to t
electron neutrinos (ne) propagating in a background mediu
we first write down the effective Hamiltonian for a sing
electron neutrino in an unmagnetized background of e
trons characterized by the electron distribution funct
f e(r ,pe ,t) @20#:

Heff5Apn
2c21mn

2c41gseE dpe

~2p!3
Veff~r ,pe ,t !, ~27!

with Veff given by

Veff~r ,pe ,t !5gVA2GFf e~r ,pe ,t !S 12
pe• k̂n

Ee
D , ~28!

where GF is the Fermi constant of weak interaction,gV
51/212 sin2uW.1 is the effective vector coupling consta
in the standard model,uW is the Weinberg mixing angle
pn5\k is the electron neutrino momentum,k̂n

5pn /upnu, Ee is the electron energy~a function of the elec-
tron momentumpe), andmn is the neutrino mass, which ca
be set to zero for massless neutrinos.gse52 is the statistical
weight for the electrons, corresponding to spin 1/2, and
pears because of spin degeneracy. Also,f e(r ,pe ,t) satisfies

ne~r ,t !5gseE dpe

~2p!3
f e~r ,pe ,t !. ~29!

The effective potential in Eq.~28! has been derived usin
the methods of finite-temperature quantum field theory@21#.
Hence our approach here is clearly a semiclassical one:
assume that the interaction of the neutrinos with the electr
is governed by quantum processes~included inVeff) and we
take into account the Fermi statistics of the phase space
sity of the particle numbers, but the neutrino dynamics
determined by the classical Hamiltonian obtained using
equivalence principle, and we neglect the spins. This
proximation is valid as long as changes inVeff occur over
e-

a-

-
n
a-
in
a

o-

s
-
h

c-

-

e
ns

n-
s
e
-

length scales much longer than the neutrino de Broglie wa
lengthln52p/uku and no spin waves are considered.

We first analyze the contribution of the termpe• k̂n /Ee to
the effective Hamiltonian~27!. If the neutrinos propagate
along a precise direction and assuming an isotropic distr
tion for the electrons, the integral

E dpe

~2p!3
f e~r ,pe ,t !

pe• k̂n

Ee
~30!

averages to zero. Furthermore, if the neutrino distribution
isotropic, when integrating over the contribution of all th
neutrinos for the ponderomotive force, a zero average is
tained once again. Therefore, this term only gives a con
bution for both anisotropic neutrinoandelectron distribution
functions.

Since Eq.~27! is also a function of the distribution func
tion of the electrons in the background medium, Eq.~9! must
now be employed to obtain the expression for the ponde
motive force due to the neutrinos:

fn~r ,t !5gseE dk

~2p!3E dpe

~2p!3
f n~r ,k,t !¹Veff

2gseE dk

~2p!3E dpe

~2p!3

3¹F f n~r ,k,t !S ]Veff

] f e
D

T

f e~r ,pe ,t !G , ~31!

where f n(r ,k,t) is the neutrino distribution function, which
also verifies the normalization condition

nn~r ,t !5gsnE dk

~2p!3
f n~r ,k,t !, ~32!

wherenn(r ,t) is the neutrino number density andgsn51 is
the neutrino statistical weight@neutrinos are completely po
larized ~left! particles#. Since the effective potential has
linear dependence onf e(r ,pe ,t), then

S ]Veff

] f e
D

T

f e~r ,pe ,t !5Veff ~33!

and Eq.~31! reduces to

fn~r ,t !52gseE dk

~2p!3E dpe

~2p!3
Veff¹ f n~r ,k,t !. ~34!

Inserting Eq.~28! in Eq. ~34!, we obtain

fn~r ,t !52
A2

2
~114 sin2uW!GFgse

3E dk

~2p!3E dpe

~2p!3
f e~r ,pe ,t !¹ f n~r ,k,t !

1
A2

2
~114 sin2uW!GFgse
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3E dk

~2p!3E dpe

~2p!3
f e~r ,pe ,t !

pe• k̂n

Ee
¹ f n~r ,k,t !.

~35!

Using Eqs.~29! and ~32!, the first term in Eq.~35! can be
rewritten as

fn~r ,t !52
A2

2
~114 sin2uW!GFne~r ,t !¹nn~r ,t !. ~36!

Equation~35! represents the force per unit volume exert
by the neutrinos over the electrons contained in the unit v
ume. The second term, which accounts for the contributi
from anisotropies, is different from zero only when the ele
tron distribution functionand the neutrino distribution func-
tion are anisotropic. This means that even for a beamed
trino distribution, the second term vanishes for an isotro
plasma. From now on we will consider an isotropic electr
distribution function and hence we discard the contribut
of the second term in Eq.~35!. The first term in Eq.~35! @or
Eq. ~36!# is then responsible for the strong coupling betwe
the neutrinos and the electrons, as suggested before@18#.
From Eq. ~36! we can easily derive the force acting on
single electron due to the presence of the neutrino distr
tion:

fn2e52
A2

2
~114 sin2uW!GF¹nn~r ,t !. ~37!

We stress that Eq.~36! is valid for any neutrino or electron
distribution functions.

The generalization of Eqs.~35!–~37! for the force exerted
by neutrinos and antineutrinos over electrons, positrons
neutrons is also straightforward. Changing the effective
tential Veff @22# in order to include the weak interaction o
the electron neutrinos and antielectron neutrinos with e
trons ~positrons!, we obtain the ponderomotive force over
single electron~positron!

fnn̄2e1~e2!57
A2

2
~114 sin2uW!

3GF¹@nne~r ,t !2nn̄e~r ,t !#, ~38!

where the minus~plus! sign refers to electrons~positrons!,
nn̄e(r ,t) being the antielectron-neutrino number density. T
ponderomotive force over a single neutron can also be w
ten as

fnn̄2n5
A2

2
GF¹@nne~r ,t !2nn̄e~r ,t !#. ~39!

As before, we are assuming an unmagnetized backgro
medium and we are discarding the contribution of t
anisotropies of the electron/positron/neutron and neutr
antineutrino distribution functions. Generalization of t
ponderomotive force due to other neutrino flavors~t neutri-
nos or muon neutrinos! is straightforward as long as th
proper effective potentialsVeff are considered@22#.

It is now important to compare our expression of the po
deromotive force with that introduced by Binghamet al. @11#
l-
s
-

u-
c
n
n

n

u-

or
-

c-

e
it-

nd

o/

-

in a phenomenological way or the one derived by Hardy a
Melrose@23# using the methods of quantum plasmadynam
@24#. The expression derived by Binghamet al. is based on
the analogy between the ponderomotive force due to elec
magnetic waves~as derived in@10#! and the ponderomotive
force due to the neutrinos and it is only valid in the limits
validity of the Landau-Lifshitz expression, i.e., as long as
neutrino flux is assumed to be monochromatic and the
ergy ~or frequency! of the neutrinos is assumed to be co
stant. In this particular physical scenario Eq.~11! in Ref. @11#
is equivalent to our Eq.~36!. A comparison with the results
derived in Ref.@23# shows that their results are equivalent
those presented here, in the limit of constant backgro
electron/positron number density. The discrepancy is pre
whenever gradients of the background number density
assumed and it arises from a misinterpretation of the p
deromotive force concept in Ref.@23#. A correct interpreta-
tion of the results obtained by the quantum plasmadynam
formalism gives the same expression for the ponderomo
force of electron neutrinos in a background of electrons a
positrons as the one derived here@25#.

It must be stressed that a long-range interaction force
tween neutrinos and electrons was identified before in
context of a quantum kinetic treatment of neutrinos in a le
ton plasma. An expression equivalent to Eq.~36! is evident
in Eq. (188) of Ref. @26#. The long-range interaction force i
associated with an effective charge the neutrinos acquire
background of electrons@26,27#. Our results allow us to
clearly identify the long-range force in@26# as the pondero-
motive force due to the weak interaction of the neutrin
with a plasma.

V. SUMMARY

In this paper we have presented a general derivation of
ponderomotive force due to quasiparticles propagating i
background medium. In particular, the results for the rela
istic ponderomotive force of photons were recovered. W
have also derived the ponderomotive force of a gas of p
mons in a weakly relativistic plasma. The force of a gas
ion collective motions in the background plasma was a
presented. We then applied the same techniques to a g
neutrinos interacting with a background medium through
weak interaction force. The ponderomotive force due to
arbitrary distribution of neutrinos and antineutrinos intera
ing with either electrons, positrons, or neutrons was deriv

The ponderomotive force derived here is the force o
Lagrangian fluid element or on a single particle from t
background medium. It then provides the proper way
build a single-particle or a self-consistent kinetic theory
the interaction of QPs~neutrinos, photons, plasmons, an
phonons! with a background medium, which can be appli
as the foundation for the study of QPs driven instabilities
a plasma.
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APPENDIX

In order to clarify the meaning and scope of the num
of photons concept, we present a calculation of the num
of photonsN for several e.m. field configurations. This wi
allow us to connect this concept with previous definitio
found in the literature and to clearly point out that no rand
phase approximation is assumed when a proper definition
the number of photons is employed.

The number of photonsN obeys the general propertie
described by Eqs.~3! and~4! for the distribution functionf q .
The class of phase-space distribution functions that ve
these properties for a given wave field are usually denote
Wigner functions@28#. The most common representation
the Wigner function for the electric fieldE(r ,t) is

N~k,r ,t !5
1

8gphp\vk~r ,t !

3E ds E~r2s/2,t !•E* ~r1s/2,t !exp~ ik•s!,

~A1!

where vk(r ,t) is obtained from the dispersion relatio
D(v,k,r ,t)[0. For the wave field described byN, Eq. ~2!
defines the wave action density and Eq.~3! defines the field
energy density. The Wigner function exactly satisfies a
netic equation that reduces to a Vlasov equation in the sh
wavelength high-frequency approximation.

For simplicity, we will consider propagation in vacuum
meaning thatvk5ukuc. We now calculateN for different
electric fields. We first start with a monochromatic pla
wave,E(r ,t)5E0 expi(k0•r2v0t), v0 being the frequency
of the electric field andk0 the wave vector. The number o
photons is then simply written as

Nplane~k,r ,t !5
uE0u2

8gphp\ukuc
d~k2k0!, ~A2!

describing a monochromatic beam of photons, as expec
This is also the usual result present in the plasma phy
literature since the 1960s@29#. A test of the ability of Eq.
~A1! for the definition of the number of photonsN to de-
scribe the complete structure of the electric field arises wh
ever the electric field depicts an interference pattern. T
most simple case corresponds to an electric field
scribed by the superposition of two plane wavesE(r ,t)
5E0 expi(k0•r2v0t)1E1 expi(k1•r2v1t). The number
of photons for this electric field defined by Eq.~A1! is

NBW~k,r ,t !5
1

8gphp\ukucF uE0u2d~k2k0!1uE1u2d~k2k1!

1E0•E1* cos~Dk•r2Dvt !dS k2
k01k1

2 D G ,
~A3!
-

r
er

or

y
as

i-
rt-

d.
cs

n-
e
-

whereDk5k12k0 and Dv5v12v0 . The presence of two
photon beams associated with the two plane waves is o
ous. Furthermore, a third beam is present, which results f
the interference between the two plane waves, showing
characteristic slow modulation of the beat pattern. Using
~3! we can immediately recover the usual energy density
two interfering monochromatic planes waves. It is then cl
that the number of photons, as described by Eq.~A1!, al-
ready contains the information about any interference pat
present in the electric field.

To clarify this point and make a bridge to the usual de
nitions, we consider the superposition of several monoch
matic plane waves, also containing an additional rand
phase factorck . The electric field is then written asE(r ,t)
5(k8Ak8 expi(k8•r2vk8t1ck8). For this electric field Eq.
~A1! verifies

NRP~k,r ,t !5
1

8gphp\ukuc(k8
(
k9

Ak8Ak9
*

3expi ~Dk8k9•r2Dv8v9t1Dc8c9!

3dS k2
k81k9

2 D , ~A4!

where Dk8k95k82k9, Dv8v95v82v9, and Dc8c95ck8
2ck9 . Once again, the beat interference pattern observe
Eq. ~A3! is also present for the terms verifyingDk8k9Þ0 and
Dv8v9Þ0. Equation~A4! is the generalization of Eq.~A3!
for the superposition of an arbitrary number of plane wav
We stress that so far no assumptions have been made re
ing the properties of the phasesck . When the phasesck are
random, a phase averaging of Eq.~A4! can be performed.
This averaging corresponds to the well known random ph
approximation~RPA! @29#. Since the phase averaging is d
fined as the average of a statistical ensemble of systems
fering from one another only in the phaseck or Dc8c9 , it is
obvious that^expiDc8c 9&5d(k82k9), thus leading to the
RPA’s number of photons

NRPA~k,r ,t !5^NRP~k,r ,t !&

5
1

8gphp\ukuc(k8
(
k9

Ak8Ak9
*

3exp@ i ~Dk8k9•r2Dv8v9t !#d~k82k9!

3dS k2
k81k9

2 D
5

1

8gphp\ukuc(k8
uAk8u

2d~k2k8!. ~A5!

This is the conventional definition of the number of photon
valid only under the limits of the random phase approxim
tion. No interference pattern is present, thus describing in
pendent and noninterfering photon beams.

From this discussion it becomes evident that a definit
of the number of photons based on the Wigner function
rigorously describe different e.m. field configurations, i
cluding those where interference between different fi
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components is important. In the limit of the random pha
approximation, the usual definitions are recovered. It may
argued that the Wigner function presents some patholo
~it is not a positive-definite function!, which, at first sight,
s

.

-

e
e
es

could prevent its use. However, we stress that the quant
with straightforward physical meaning are the marginals
the Wigner function@Eqs. ~2!–~4!# and these possess th
correct physical properties.
ys.

-
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