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Ponderomotive force of quasiparticles in a plasma
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We derive the force exerted on the background plasma by an arbitrary distribution of noninteracting quasi-
particles, corresponding to either collective excitations of the plagstesmons and phonon®r dressed
particles(photons and neutringsOur approach is based on the effective Hamiltonian describing the quasi-
classical dynamics of the individual particles in the presence of a background medium. We recover the usual
results for the relativistic ponderomotive force of a photon gas and a plasmon gas and we derive the force, due
to weak interactions, exerted by the electron neutrinos in a background medium containing electrons, positrons,
and neutrons with arbitrary distribution functions. Generalization to other background species and other neu-
trino flavors is also discusse[d51063-651X%99)04102-1

PACS numbds): 52.40.Mj

[. INTRODUCTION derived from either a classical or a quantum field theory. The
key point of our formalism is that by knowing the effective

The ponderomotive force of electromagnetic wajiles6) Hamiltonian describing a singlguasiparticledynamics, we
is a key concept in plasma physics8] and plays a central are then able to derive the force exerted by a gas of nonin-
role in our present understanding of intense laser-plasma irteracting elementary quanta in the background plasma: The
teractiong 9]. This force arises whenever a nonuniform os-dispersion relation, or the effective Hamiltonian, generates
cillating electric field is present in a dielectric and can bethe equations of motion of the quasiparticles and from con-
seen as a slow time scale effect, or the average effect, due s@rvation of momenturtaction and reactiont generates the
some nonuniformity of the high-frequency oscillations of theforce of the quasiparticles in the plasma.
electric field[10]. Even if the termponderomotive forcevas coined to de-

In general, the derivation of the ponderomotive force isscribe the forces acting on a dielectric in an arbitrary non-
based on the analysis of the single-particle dynamics ofiniform electric field, in this paper we generalize the concept
charged particles in the presence of the electric figldb] or  to the interaction of any nonuniform field with a background
in terms of the Maxwell equations for a macroscopic mediamedium. In fact, the force exerted in a background medium
[10]. By averaging the motion of the charged particle overdue to a nonuniform field can also be seen as the pressure
the fast time scale, corresponding to the high-frequency osggradient arising due to some inhomogeneity in the quasipar-
cillations of the field, the slow time scale dynamics of theticle distribution.
individual particles can then be calculated and the net effect We aim to achieve two objectives: to derive the pondero-
of the electromagnetic forces acting on the particle can benotive force solely based on the quasiparticle concept, thus
reduced to the ponderomotive force. In this paper we presemtroviding an easy tool to generalize and unify the concept
a different approach, which allows us not only to rederive thefor different physical scenarios, and to explicitly show the
previous results, but also to generalize, in a straightforwardelation between the ponderomotive force and the wave ac-
way, the concept of ponderomotive force to other physication density, or the quasiparticle number density. In particu-
conditions or otherquasiparticles besides photonde.g., lar, we will be mainly interested in determining the pondero-
dressedneutrinog, where the dynamics of a single electron motive force of an arbitrary distribution of neutrinéwith
is not easily described in terms of the classical force in thalifferent flavorg in an arbitrary background medium.
relativistic equations of motion. Our focus will be on the derivation of the force exerted by

The starting point of our treatment is a semiclassical dean arbitrary distribution ofquasiparticles In Sec. Il we
scription of the fields interacting with the plasma. The fieldspresent our formalism and the approximations involved in
are described by their equivaleqtiasiparticles or elemen-  our description. The general expression for the ponderomo-
tary quanta: photons for the electromagnetic field, plasmongve force is then derived and represented as a function of the
for the longitudinal electrostatic oscillations, phonons for theeffective Hamiltonian or dispersion relatiqdescribing the
ion acoustic oscillations, and dressed neutrinos for the newguasiclassical dynamics of tlygpiasiparticle$ and thequasi-
trino field interacting with the background medium. This is particle distribution function. In Sec. Il we apply our results
done by defining a distribution function for the particles fromto classical fields arising in a plasma. The ponderomotive
the field intensity. Such a description is very useful becauséorce exerted by a gas of photons in a plasma is rederived in
a kinetic equation can be derived for the correct quasipartithe relativistic regime, thus showing the equivalence be-
cles distribution. The kinetics or equations of motion for thetween our approach and the derivation of the ponderomotive
guasiparticlesin the plasma are described by the dispersiorforce found in the literature. We also derive the force due to
relation, or the effective Hamiltonian, for each one of thea gas of plasmons in a weakly relativistic plasma and the
fields or quasiparticles The effective Hamiltonian can be ponderomotive force of a gas of phonons in a dusty plasma.
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In Sec. IV we consider the interaction of a gas of neutrinos dk

with a dense plasma, also containing other species of bary- nq(r,t):gsqf —3fq(r,k,t), 2
onic matter(such as neutrons, protons, and positjofifie (2m)

ponderomotive force exerted in the background medium by

the neutrinos is then derived. In our derivation we assume )

that each one of the species in the medium has an arbitrary | ip(r D) :gqu Wfq(r’k’t)Hem ©)
distribution function, thus generalizing previous results only 7

valid for cold plasmag$11]. Finally, in Sec. V the results of

this paper are summarized. |¢(k,t)|2=9sqf dr fo(r.k,t)He, (4)

Il. GENERAL CONSIDERATIONS wheren, is the quasiparticle number densityy(r,t)|? is the
. . . ) ) ) spatial energy density, an@(k,t)|? is the spectral energy
Consider a gas of noninteractingasiparticleSQP9 in @ yengity so that the second term on the right-hand side of Eq.

background medium. Byjuasiparticleswe mean not only (1) represents the total free energy due to the presence of
elementary collective excitations of the background medium Ps.g., is the QP statistical weight and it accounts for spin
such as plasmons and phonons, but also dressed photons geneqracy of the QPs.

dressed neutrinos. Our formalism is independent of the enti- \ya now generalize the procedure described in IRid]

ties we are considering as QPs, but we assume that the ig; eectromagnetic waves. Let us assume that an isothermal
teractionbetweerthem is negligible. This corresponds 10 €i- yetormationu of the background infinite medium occurs. If

tEer co_nS||de_>r|ng COIII'S'Ofn t:requenme@q rguch smallerthan - yhe gistribution of quasiparticles exerts a forc@ver the
the typical time scale of the process under stadilute ga? ‘medium, workéW will be done by that force such that
or simply assuming that the interaction between quasiparti-

cles can be discarded. Furthermore, we consider that the dy-
namics of a single QP is governed by the effective Hamil- 5W=J drf-u, 5
tonian H, which is not only a function of the dynamical

variables of the single QEmomentum and positiorbut is  \heref has the dimensions of force per unit volume. We
also dependent of the properties of the medium where thgonsider that this force will act only on the electrons of the
QPs propagate. background medium. The ponderomotive force experienced
Using in a direct way the results already known for thepy the jons can be discarded since itnis/m; smaller than
ponderomotive force of electromagnetie.m) waves in & the ponderomotive force experienced by the electromsig
d|elect.r|c in terms of a gradient in the_laser intensity, Wetne electron rest mass amd; is the ion mass However,
could immediately propose an expression for the pondergciysion of other background species is straightforwai.

motive force, written as a function of the number of photons.ca, pe related with the change in the free energy for the same
This approach would not show, however, the connection bedisplacememu since SW=— 8(F—F,). Returning to Eq.

tween the effective interaction experienced by a single Ql?l) we easily obtain
and the expression of the ponderomotive force, thus prevent-
ing the generalization to other physical conditions. Also, the

dk
dependence of the ponderomotive force on the wave action oF = 5Fo(p,T)+gSqf er —
density, or QP number density, would not be clearly stated (2m)
for nontrivial QP distribution functions. Therefore, a differ- X [HegdfoF k1) + Fo(r.K, 1) SH . ®)

ent path must be followed. By determining the free energy of
the system, we can relate the changes in the free energy Wilye \yjil assume a quasistatic distribution of quasiparticles,

the work performed by the force exerted by the distribution, hich means that a displacement of the background medium
of particles an_d from that derive the ponderomotive force. will not affect the distributiorf . Furthermoref is a func-
We can write the total free energy as the sum of Woon oniy of the dynamical variables. Hence the second term

contributions: the free energy of the background medium N the inte : ; :
. gral in Eq(6) is zero. The effective enerdy s of
the absence of QP$() and the additional free energiora o501y QP will be affected by the isothermal background de-

given temperature and densitiesulting from the presence formation sinceH o depends not only on the dynamical vari-

_of the_: field elementary excitations. Therefore, the free energ¥nies but also on the properties of the background medium.
IS written as The change iH ¢ has two contributions) &;)Herr, due to
the fact that particles from the background medium are
dk pushed fronr —u to r, and(ii) d)Hes, due to the change
F:FO(P-THgqu drf Wfq(r'kvt)Heﬁ* (1) of the distribution function, or density, of the background
m medium in positiorr. The first contribution forSH o is

wherep is the density of the mediunT, is the temperature of SyHer= —U- VHeg. (7

the medium,f, describes the QP distribution function in

phase spacer(k), r describes the QP position, akdis  For the remaining contribution, we first use the fact that the
related to the QP momentupy by k=p,/%. For the sake of relative change in the volume element of the background
completeness we state here the most important properties ofedium isdV/V=V -u. Therefore, the change in the number
fq: density nyg is SNpg= —NpgV - U, where nyg is the number



PRE 59 PONDEROMOTIVE FORCE OF QUASIPARTICLES IN A PLASMA 2275

density of the background particles affected by the pondero- Equation(12), as well as the appropriate definition of
motive force(in our case, just the electrondn the same Hg, is the starting point of our discussion of the pondero-
way, the change in the distribution function of the back-motive force due to different types of QPs propagating in a
ground medium particles f,(r,p) is Sfpy(r,p,t)= plasma. It also represents a generalization for arbitrary fields
—fug(r,p) V- u, wherep is the momentum of the background of the Landau-Lifshitz argumen{4.0].

particles (we also assume that the isothermal deformation

does not impart momentum to the medjunTherefore, lIl. PONDEROMOTIVE FORCE OF PHOTONS,
d2)Hetr CaN be written as either PLASMONS, AND PHONONS
5(2)Heﬁ=—(%) MgV - U (8) Having determined the general' expre;sion for the pon-
IMNpg/ ¢ deromotive force of a gas of noninteracting QPs, we now

proceed by evaluating EL2) for different classical fields or
if Hegr is @ function ofny,g or classical QPs. We first consider the ponderomotive force due
to a distribution of photons characterized by=Mr k,t).
The number of photon&” obeying the propertie®)—(4) can
be obtained from the Wigner function of the electromagnetic
field [12]. The concept of the number of photons was intro-
for a more general dependence 8f; on the distribution duced in the plasma physics literature in the 1960s, associ-
function of the background mediufiy,y. Inserting Egs(7) ~ ated with the random phase approximatidg]. We point
and(8) in Eq. (6), we obtain out, however, that a proper definition of the number of pho-
tons based on the Wigner function can describe any e.m.
dk field configuration(see the Appendix for a detailed discus-
OF = 6Fo(p,T)= _gsqf drf ——fq(r.kt) sion of this problem For the number of photon¥, the role
(2m) of the effective HamiltoniarH; is played byZw(r,k,t)

JH
O He= — —= fog(r,p)V-u 9
@) dfpg 9
T

IH ot =hwy, Where the frequency, is obtained from the disper-
X u-VHeﬁ+(aT) NpgV - U|. sion relation for the electromagnetic waves propagating in
bg/ T the plasma. This is equivalent to assuming that each single

(100  photon obeys the dispersion relation for plane electromag-
netic waves. Since we are considering an arbitrary distribu-
Performing an integration by parts over the second term otion of photons, the relativistic mass correction must also be

the right-hand side of Eq10) results in included in the dispersion relation for circularly polarized
electromagnetic plane waves:
dk
OF—6Fy(p,T)=— fdrf—u-f (r,k,t)VH 2 (rt
otp Osq (2m)3 1 of wi=k2c?+ %) (14)
dk 2 2 i
+gsqf er—au.V where wp (r,t)=4meng(r,t)/m, is the local electron
(27) plasma frequency amii(r,t) is the electron number density.

IH o Y is the relativisf[ic mass corrt_ection factor, which _is a func-

fq(r,k,t)<—e) Npg|- (11) tion of the electric field intensity and the energy distribution
MNpg /| ¢ function of the electrons in the background plasma. For the

) ) ~ sake of clarity, we will not write down the explicit expres-

Therefore, the ponderomotive force, per unit volume, acting;jon for y since it will not add any additional features to our

on the medium is derivation. We note that in Eq14), k, r, andt are indepen-

dent variables. Furthermore, Ed.4) is valid in the limits of

the geometrical optics approximati¢h4], i.e.,

X

dk
f(r,t)zgsqj (ZT)qu(I',k,t)VHeff

s g, s v nngrt 15

dk &Heff 277 ﬁnne(rl ) ’ 277 | nne(r! )l ( )

—gsqf —— V[ fq(r.k,t) | Mgl (12 o _ - _ _
(2m) bg/ 1 These limits establish the conditions under which this ap-

o ] ] proach is valid: Whenever two very different time scales are
A similar expression can also be derived whtg; depends  present, we can treat the high-frequency perturbations as a
This will be discussed for the particular case of the ponderogensity modulations.
motive force due to neutrinos in a plasma. For a linear de- ysing Eq.(14) in Eq. (12) and the fact that
pendence oHg; ON Ny, i.€., Npg(IH e/ Ny =Herr, EQ.
(12) can be further simplified to (ﬁHeﬁ) (aﬁwk> ) ﬁwge
T

T = W = (16)
dk INpg &wge T P& 2w,y
f(r,t)z—gquWHeﬁqu(f,k,t)- (13 and
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3 wge We now consider the ponderomotive force due to a gas of
VH= VhwkzE 7 (17 elementary collective ion excitations. Due to the limits of our
k

formalism [see Eq.(15)], this gas of ion oscillations must
igteract with even lower-frequency and longer-wavelength
plasma perturbations. In an unmagnetized electron-ion
plasma, such a physical condition cannot be verified. How-
o2 dk N ever, du:_sty plasmas support oscillations with characteristic
for(r,t)=— Z_F;/egph f 5= (18 frequenciegwavelengthsmuch lower(longep than those of

we obtain, after some algebra, the ponderomotive force du
to a photon distributionV:

(2m)% ion oscillations(ion acoustic waves or ion plasma wayes
[17]. The picture of a gas of ion oscillations in a dust-
where gpn=1 (2) for circular (linean polarization. For acoustic oscillation is then reasonable. The general linear
plane electromagnetic Waves’,\/=(|Eo|2/8gph7-rhwo) o(k dispersion relation for ion oscillations 8]
—kg), with Eq the electric field amplitude andq(ky) the

frequency(wave number of the electromagnetic fielfi12]. 2 o vikgT; ) vekgTe 1
; ; ; ; g wi=k +k ) (22
In this case, the ponderomotive force acting on a single elec k m: M 1+ v K2\2
o [ i YeK“Ng
tron reduces to the more familiar form
5 with T; the ion temperaturey,(7y;) the electron(ion) adia-
f(r ) = — VA2 (199  batic index, a_nckez(kBTe/47mee2)_1’2 the electron Debye
2mey length. Denoting the number density of QP excitations cor-

responding to ion collective motions by, o, We obtain
whereA is the high-frequency vector potential. It is straight- from Eq. (12), using Eq.(22), the force

forward to see that ponderomotive force effects can arise due

to two different conditions: inhomogeneity in the number of m, A2 dk  Nion gp
photons distribution function and/or spatial-dependent fre- fion gl 1) = — KaT. 2 j 3

guency. The present understanding of ultraintense short laser Ble (2m) @k

pulse propagation in plasmas is based on the different roles K2 kT 1 2

played by these two contributiof&5]. Equation(19) agrees ( YefB'e ) (23
with previous derivations of the relativistic ponderomotive m; 1+)\§k279

force for circularly polarized photorid,2,4—@. For linearly o . . .
polarized plane electromagnetic waves, the dispersion reldd the limit of y;T;/m<y,Te/m;, the dispersion relation
tion (14) is no longer valid; a different expression for the (22 can be approximated by wf=k?yckgTe/m(1
relativistic ponderomotive force appedr3], which under +12k?y,) and Eq.(23) reduces to

certain conditions reduces to E(L9). As far as we know,

Eq. (18) is the first derivation of the relativistic ponderomo- m, A2 dk 3
tive force, using solely the number of photons concept. Also, fion g1 1) = — kB_T 2 j WﬁMon k- (24)
Eq. (18) is valid for any e.m. field configuration, as long as ¢ 7

N is defined using the proper definition of Wigner function 0 opposite physical scenarios can now be explored. In

for an arbitrary e.m. fieldsee the Appendix the limit of k\.<1, corresponding to ion acoustic oscilla-
For a gas of plasmonelectron plasma oscillationsan  {jons  the dispersion relation i®,=kc,, with the sound

expressmbn tS|m|Iarﬂt10 Iqu18) can alsc|> ?e d?”\/ed in a similar speedcs= \yekgTe/m;. Thus the ponderomotive force due
manner, but now the diSpersion refation 1S to a distribution of ion acoustic waves, or a gas of ion acous-

tic phonons, is
kgTe 20
me ' (20 1 ¢ dk .
fIAP(rat):___Vf fik*Map (25)

2 wgi (2m)°

2_ 2
W= w

2[_2keTe
pe 2 myc?

where T, is the plasma electron temperature and we have

included the first relativistic correction to the dispersion re-yth the jon plasma frequencypi= wpe /mo/m;. On the
lation, valizd under the conditionss, /k>\kgTe/me and  other hand, in the limit ok\.>1, the dispersion relation
kgTe<mec” [16]. The ponderomotive force of the gas of (27) describes ion plasmas waves such tat 2. In this

t)lasm_ons, described bYpiasmon acting on the plasma elec- case the ponderomotive force verifies
rons is

dk 3 dk

f dk ﬁNplasmon. fle(rat):winfWﬁMPW_EVJWﬁwkMPW-
(

27)3 Wk (26)
(21

2
1) 5 kgT
fpl(r,t>:——p9( —

2 | 173 mec?

We then see that the ponderomotive force associated with
The ponderomotive force of the gas of plasmons in thdon collective excitation$Eqgs.(25) and(26)] is significantly
weakly relativistic regime can then describe the coupling ofdifferent from that associated with photofiEqg. (18)] or
the electrostatic oscillations with the low-frequency, long-plasmongEq. (21)]. This derivation must now be verified
wavelength ion acoustic oscillatiof$3]. using the standard plasma physics methods. The coupling
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between the ion collective motions and the background melength scales much longer than the neutrino de Broglie wave-
dium can play a significant role in th@e)stabilization of length\ ,=2/|k| and no spin waves are considered.
dust-acoustic oscillations in a dusty plasma. Both these fea- \ye first analyze the contribution of the tepg-k, /E, to

tures will be explored in a future work. the effective Hamiltonian(27). If the neutrinos propagate
along a precise direction and assuming an isotropic distribu-
IV. PONDEROMOTIVE FORCE OF NEUTRINOS tion for the electrons, the integral
IN DENSE PLASMAS

14

We now turn to the central result of this paper: the pon- J ﬁfe(r,pe,t)pe (30
deromotive force of neutrinos in a plasma. This force can (2m)® Ee

provide the coupling mechanism responsible for the anoma- ) i o
lous scattering of neutrinos and the consequent deposition {AV€rages to zero. Furthermore, if the neutrino distribution is
the plasma of some part of the neutrino energy released in '§OOPIC, when integrating over the contribution of all the
supernova explosiofi.1,18. This energy deposition plays a neutrinos for the_ponderomotlve force, a zero average is op—
key role in the present understanding of supermovae expld@in€d once again. Therefore, this term only gives a contri-
sions[19]. An intuitive picture of the ponderomotive force is butlo_n for both anisotropic neutrirand electron distribution
immediate: If in a given region the energy density in thefunctions. , , o

neutrinos is higher than in other regions, a force will be . Since Eq.(27) is also a function of the distribution func-

exerted in the background medium by the neutrinos, towardton of the electrons in the background medium, &.must
the regions of lower neutrino energy density. This corre-"0W be employed to obtain the expression for the pondero-
sponds to the physical picture of the neutrinos trying to pusinotive force due to the neutrinos:
their way into regions of lower energy density.
In order to derive the ponderomotive force due to the f(rt)=g f dk J’ dpe f (k)Y
electron neutrinosx,) propagating in a background medium e *l em3) ez " ef
we first write down the effective Hamiltonian for a single
electron neutrino in an unmagnetized background of elec- g J dk J' dpe
se

trons characterized by the electron distribution function 2m3) (273
fo(r.Pe.) (200 (2 (2m)
IV et
XV|f,(rkt) of fe(r,pe,t) |, (31
e’T

dp
Heff: \/W‘ngef (2—§3Veff(rvpelt)1 (27)
K

wheref (r,k,t) is the neutrino distribution function, which

with Vg given by also verifies the normalization condition
Pe- Kk, B dk
Veﬁ(rvpe1t):gV\/§GFfe(r1pevt) 1- ’ (28) nV(r’t)_gSV —3fV(r’k’t)’ (32)
Ec (2m)

where Gg is the Fermi constant of weak interactiogy, ~ wheren,(r,t) is the neutrino number density agd,=1 is
=1/2+2 sirfgy~1 is the effective vector coupling constant the neutrino statistical weigliheutrinos are completely po-
in the standard model),, is the Weinberg mixing angle, larized (left) particled. Since the effective potential has a

p,=fk is the electron neutrino momentumk, linear dependence oi(r,pe,t), then

=p,/|p,|, Ee is the electron energga function of the elec- Py

tron momentunp,), andm,, is the neutrino mass, whi_ch can (Te”) fo(r,Pe,t) = Ve (33)
be set to zero for massless neutringg,= 2 is the statistical e |+

weight for the electrons, corresponding to spin 1/2, and ap-
pears because of spin degeneracy. Afs(r,p,,t) satisfies ~and Eq.(31) reduces to

dk [ dpe

dpe - | e
ne(r1t):gseJ#f9(rype,t)- (29) fu(r,t) gsej (277)3J' (277)3VEﬁVfV(r’k’t)' (34)

The effective potential in Eq28) has been derived using Inserting Eq.(28) in Eq. (34), we obtain
the methods of finite-temperature quantum field thd@tj. 2
Hence our approach here is clearly a semiclassical one: We (r t)= ——(1+4 sirf6,y) Gr0se
assume that the interaction of the neutrinos with the electrons 2

is governed by quantum processexluded inVyy) and we dk d

take into account the Fermi statistics of the phase space den- Xf f &f (r,Pe, D)V E (1K t)
sity of the particle numbers, but the neutrino dynamics is 2m3) (2m3 © ’
determined by the classical Hamiltonian obtained using the
equivalence principle, and we neglect the spins. This ap-
proximation is valid as long as changes\f; occur over

2
+£(1+4 Sinz@W)Gnge
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dk dpe Pe-k in a phenomenological way or the one derived by Hardy and
X J’ f ———f(r,pe,t) “VEL(rk,t). Melrose[ 23] using the methods of quantum plasmadynamics
(2m)®) (2m)? Ee [24]. The expression derived by Binghaghal. is based on
(350  the analogy between the ponderomotive force due to electro-
magnetic wavesas derived if10]) and the ponderomotive
Using Eqs.(29) and (32), the first term in Eq(35) can be  force due to the neutrinos and it is only valid in the limits of
rewritten as validity of the Landau-Lifshitz expression, i.e., as long as the
neutrino flux is assumed to be monochromatic and the en-
ergy (or frequency of the neutrinos is assumed to be con-
stant. In this particular physical scenario Efjl) in Ref.[11]
is equivalent to our Eq36). A comparison with the results
Equation(35) represents the force per unit volume exertedderived in Ref[23] shows that their results are equivalent to
by the neutrinos over the electrons contained in the unit volthgse presented here, in the limit of constant background
ume. The second term, which accounts for the contributiong|ectron/positron number density. The discrepancy is present
from anisotropies, is different from zero only when the elec-yhenever gradients of the background number density are
tron distribution functionand the neutrino distribution func- assumed and it arises from a misinterpretation of the pon-
tion are anisotropic. This means that even for a beamed neyeromotive force concept in Rgi23]. A correct interpreta-
trino distribution, the second term vanishes for an isotropiGjon of the results obtained by the quantum plasmadynamics
plasma. From now on we will consider an isotropic electronformalism gives the same expression for the ponderomotive
distribution function and hence we discard the Contributionforce of electron neutrinos in a background of electrons and
of the second term in Eq35). The first term in Eq(35) [or positrons as the one derived hégs).
Eqg. (36)] is then responsible for the strong coupling between |t must be stressed that a long-range interaction force be-
the neutrinos and the electrons, as suggested b¢l@e  tween neutrinos and electrons was identified before in the
From Eq.(36) we can easily derive the force acting on a context of a quantum kinetic treatment of neutrinos in a lep-
single electron due to the presence of the neutrino distribugn plasma. An expression equivalent to E86) is evident

f(rt)=— §(1+4 SirfOy) Gene(r,t)Vn,(r,t). (36)

tion: in Eq. (18) of Ref.[26]. The long-range interaction force is
3 associated with an effective charge the neutrinos acquire in a

foom— (144 sirPOy) GV N (T .1). 3 backgrqund.of electron§26,27. Our results allow us to

vme 2 ¢ WGEVNL(T,1) S clearly identify the long-range force {26] as the pondero-

] ) ] motive force due to the weak interaction of the neutrinos
We stress that Eq36) is valid for any neutrino or electron \jth a plasma.

distribution functions.
The generalization of Eq$35)—(37) for the force exerted
by neutrinos and antineutrinos over electrons, positrons, or V. SUMMARY
PeL?rcl)r\}s 1S Zazlsc_) str?jlght:‘or_walr d('j C?hanglngktheteffect:_tlve F;O' In this paper we have presented a general derivation of the
ential Ver [22] in order to include the weak interaction o ponderomotive force due to quasiparticles propagating in a

:he eIectr_c;n neutr|nosbta_ndtgnnelec(:jtron netgtrlr}os with elecbackground medium. In particular, the results for the relativ-
rons (positrons, we obtain the ponderomotive force over a igsic nonderomotive force of photons were recovered. We

single electror(positron have also derived the ponderomotive force of a gas of plas-
mons in a weakly relativistic plasma. The force of a gas of

fV;_e+(e,)=;£(1+4 sirfoy) ion collective motions in the background plasma was also
2 presented. We then applied the same techniques to a gas of
X GeVN,o(F,t) —m(r,1)] (38) neutrinos interacting with a background medium through the
vell s vells 1

weak interaction force. The ponderomotive force due to an
where the minuip'us) Sign refers to e|ectr0n®ositron$, arbitrary distribution of neutrinos and antineutrinos interact-

nye(r,t) being the antielectron-neutrino number density. TheiNg With either electrons, positrons, or neutrons was derived.
ponderomotive force over a single neutron can also be writ- The ponderomotive force derived here is the force on a

ten as Lagrangian fluid element or on a single particle from the
background medium. It then provides the proper way to

J2 build a single-particle or a self-consistent kinetic theory for

frimn=" GeVINue(r,) = Me(r,H)]. (39  the interaction of QPsgneutrinos, photons, plasmons, and

phonon$ with a background medium, which can be applied

As before, we are assuming an unmagnetized backgrourﬁlﬁ the foundation for the Study of QPS driven instabilities in

medium and we are discarding the contribution of the2 plasma.

anisotropies of the electron/positron/neutron and neutrino/

antlneutrlno_ distribution functions. Ge_nerahzatlon of_ the ACKNOWLEDGMENTS
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through Grant No. BPD11804/97. R.B. acknowledges the fiwhereA,=k;—kqy and A ,= w;— wg. The presence of two
nancial support of PPAR@Jnited Kingdom and UCLA. photon beams associated with the two plane waves is obvi-
ous. Furthermore, a third beam is present, which results from
APPENDIX the interfgre_nce between the two plane waves, shovying the
characteristic slow modulation of the beat pattern. Using Eq.
In order to clarify the meaning and scope of the number3) We can immediately recover the usual energy density for
of photons concept, we present a calculation of the numbdwo interfering monochromatic planes waves. It is then clear
of photons\/ for several e.m. field configurations. This will that the number of photons, as described by &d.), al-
allow us to connect this concept with previous definitionsready contains the |r}for.mat|0n about any interference pattern
found in the literature and to clearly point out that no randompreﬁgrga'?if;h?h?Slepcgir:ﬁ gﬁlg.make a bridge to the usual defi
theaiirirt))grrog;n;ﬁg?gng i&;‘szlé‘n;ﬁ)c;;\:;en a proper definition foﬁitions, we consider the superposition of several monochro-

Th ber of photons/ ob h | " matic plane waves, also containing an additional random
€ number of pholonsv ODbeEYS the general properlies ,naqe tactory, . The electric field is then written &(r,t)

described by Eqg3) and(4) for the distribution functiorf, . =5, A expi(k’ - — wut+ o). For this electric field E
The class of phase-space distribution functions that verify(Alfvekriﬁesp( ot ). 4
these properties for a given wave field are usually denoted as

Wigner functiong 28]. The most common representation of

the Wigner function for the electric field(r,t) is Noo(K 1) = A AY
RP( (L] ) 8gphﬂ-h|k|C§ % kMg
1 .
= Xexpi(Agrr- T —Ayr ot + Ay yn
MK,r,t) B o0 pi( kl:_tk,, g )
_ X&(k— , (A4)
xJ dsE(r—s/2t)-E* (r+s2t)expik-s), 2

(Al) where Ak/ku:k,_k", Aw,wnzw’—w", and Ai//’i//’:l;bk’

. . . . . — . Once again, the beat interference pattern observed in
where w,(r,t) is obtained frpm the Q|sper5|on relation Eq. (A3) is also present for the terms verifyig,»# 0 and
D(w,k,r,t)=0. For the wave field described by, Eq. (_2) A, ,»#0. Equation(A4) is the generalization of EqA3)
defines the wave action density and E8). defines the field o the superposition of an arbitrary number of plane waves.
energy density. The Wigner function exactly satisfies a kiyye stress that so far no assumptions have been made regard-
netic equation that reduces to a Vlasov equation in the shortng the properties of the phaseég. When the phases, are
wavelength high-frequency approximation. random, a phase averaging of Eé&4) can be performed.

For simplicity, we will consider propagation in vacuum, This averaging corresponds to the well known random phase
meaning thatw,=|k|c. We now calculateV for different  approximation(RPA) [29]. Since the phase averaging is de-
electric fields. We first start with a monochromatic planefined as the average of a statistical ensemble of systems dif-
wave, E(r,t) =Eq expi(kqo- r — wot), wg being the frequency fering from one another only in the phagg or A, itis
of the electric field and, the wave vector. The number of obvious that(expiA, ,»=3&Kk"—k"), thus leading to the

photons is then simply written as RPA’s number of photons
|EO|2 NRpA(k,r,t):<NRp(k,r,t)>
Nplanék,r,t)—m d(k—Ko), (A2) )

:S—ﬁ|k|cz 2 Ak/A://
describing a monochromatic beam of photons, as expected. Yph k" K

This is also the usual result present in the plasma physics XexH i (AgprT— Ay ort) 18K —K")
literature since the 1960<L9]. A test of the ability of Eq.
(Al) for the definition of the number of photon§ to de-
scribe the complete structure of the electric field arises when-
ever the electric field depicts an interference pattern. The
most simple case corresponds to an electric field de- .
scribed by the superposition of two plane waveg,t) N 89ph77ﬁ|k|c
=Egexpi(kg-r— wgt) + E; expi(ky-r—wqt). The number

of photons for this electric field defined by E@\l) is

k' +K"
2

i

> |Au?ak=k").  (A5)
k!

This is the conventional definition of the number of photons,

valid only under the limits of the random phase approxima-

|Eo|26(k—kg) +|Eq|?8(k—ky) tion. No interference pattern is present, thus describing inde-
pendent and noninterfering photon beams.

} From this discussion it becomes evident that a definition

1
Nsw(k,r,t)zm

kot+kq
2

of the number of photons based on the Wigner function can
rigorously describe different e.m. field configurations, in-
(A3) cluding those where interference between different field

+Ep- E} COgA- r—Awt)é( k—
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components is important. In the limit of the random phasecould prevent its use. However, we stress that the quantities
approximation, the usual definitions are recovered. It may bevith straightforward physical meaning are the marginals of
argued that the Wigner function presents some pathologiegthe Wigner function[Egs. (2)—(4)] and these possess the
(it is not a positive-definite function which, at first sight, correct physical properties.
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