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Yang-Lee zeros of one-dimensional quantum many-body systems
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We obtain a generic formula for the distribution of Yang-Lee zeros of one-dimensional quantum many-body
systems solvable by the Bethe ansatz and the Yang-Yang thermodynamic formalism. We find that the zeros are
located on the negative real axis of the complex fugacity plane and thus prove that no phase transition occurs
in these one-dimensional systems, as proved by others using different me®baE3-651X99)08101-3

PACS numbdps): 05.30—d, 71.10—w

I. INTRODUCTION plasma mode]20], the zeros are investigated. However, in
the case of quantum gas, to our knowledge, the distribution
In 1952 Yang and Le¢l] proposed a general theory of of Yang-Lee zeros is not clear. This is the theme of this
phase transitions. They observed that for a real interactingaper.
gas, the pair interaction has a hard core. For such a system in The first model of the 1D quantum many-body system
a finite volume, the grand partition function can be expressegolved, to our knowledge, is the quantum hard rod [@ds.
as a polynomial of the fugacity. They introduced the zeros ofn 1963 Lieb and Liniger{22] studied a gas of 1D Bose
the polynomial and showed that in the thermodynamic limit,particles with a repulsives-function interaction. Using the
the zero distribution can touch the positive real axis to deBethe ansatz, they diagonized the Hamiltonian and obtained
velop the singularity of the thermodynamic potential. Thethe ground state energy. In 1967 Yaj®p] solved the 1D
occurrence of the positive real roots corresponds to the sirglectron system with a-function interaction and discovered
gularity of the thermodynamic potential. Yang and Lee in-the Yang-Baxter equation. In 1968 Lieb and \\24] solved
troduced a lattice gas model and showed that the zeros of ttelattice version of this moddthe 1D Hubbard modgl In
model are located on a unit circle in the complex fugacity1969 Yang and Yan{i25] developed a thermodynamic for-
plane. They also made a successful application to the ferrgnalism for dealing with those interacting systems whose
magnetic Ising model and showed that the zeros of the pat#amiltonian can be diagonalized with the use of the Bethe
tion function of the ferromagnetic Ising model on any lattice ansatz. This formalism has been used to determine the ther-
are located on a unit circle in the complex magnetic fieldmodynamics of many problems: the 1D quantum many-body
plane. Since then, the circle theorem has been extended &stem[26], the 1D Hubbard model, the 1D Heisenberg
many ferromagnetic systems, such as the higher-spin Isingiodel, and the Kondo model.
model[2,3], Ising models with multiple spin interactions, the ~ This paper is organized as follows. In Sec. Il we discuss
quantum Heisenberg modgel], the classicaKY and Heisen- the Yang-Lee theory of the phase transition. In Sec. IlI the
berg mode[5], and some continuous spin systeff$ zeros of an ideal Fermi gas in any dimension are determined.
In 1965 Fishef7] studied the zeros of the partition func- In Sec. IV the Bethe ansatz and Yang-Yang thermodynamic
tion in the complex temperature plane for the square latticéormalism are reviewed. The general formula of Yang-Lee
Ising model. Since then, there have been many studies abo#€ros is given. In Sec. V the Yang-Lee zeros of a quantum
the zero distribution in the complex temperature plane, inhard rod gas are determined. In Secs. VI and VIl the Yang-
cluding the Ising model on many latticd8], the Potts Lee zeros of the Sutherland model and the Sutherland model
model[9], and the Hubbard mod§10]. Recently, we found With a hard core are determined. In Sec. VIII the Yang-Lee
that for the Ising model on square, triangular, and honeyzeros of a Bose gas with a repulsigefunction interaction
comb lattices, introducing the zeros of the Ising partitionare determined. In Sec. IX a summary of this paper is given.
function on the elementary cycle of these lattices, we can get
some useful informatiofil1]. Il. YANG-LEE THEORY OF PHASE TRANSITION
There have been many studies on the zero distribution of o .
the grand partition function in the complex fugacity plane In the original Yang-Lee approach, the existence of zeros
since Yang and Lee’s pioneering work. The circle theoreniS guaranteed by the hard-core interaction
has been proved to be valid for hard-core binary lattice gases

by Runnels and Lebowitz 2]. For the one-dimension&lD) V(r)=« (r<a)
classical hard rod gajsl3,14], the 1D gas with very weak
repulsion of very long ranggl3], and the monomer-dimer #0 (r>a), 1)

system[15], the zeros are located on the negative real axis.

For the classical many-body systems with repulsive interacwherea is the radius of the hard core. For a given voluwhe
tions, the zeros are located on the real #%#J. In addition, the maximum numbeM of particles that can be crammed
for some physical systems such as van der Waals gasto the volume is limited by the size of hard core, i,
[14,17, the lattice gas models with more complicated inter-~V/a®. The grand partition function can be expressed as a
actions [18], the hard hexagon modégll9], and the 1D polynomial of fugacityz=exp/T),
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z No zeros exist in this case, as expected.
Z|) ’

M M
E=2 2'Q./n=]]
n=0 I=1

IV. YANG-LEE ZEROS OF A 1D SYSTEM

whereQ,, is the partition function of the system withpar-
ticles in the volumeV. The rootsz, are never positive real. ) ] ]
The root distribution can touch the positive real axis only in We consider a 1D quantum gas of either fermions or
the thermodynamic limit and give the transition point. TheP0Osons interacting via a two-body potenté{]x; —x,|). The
singularity of the thermodynamic potential is connected withPotential is restricted such that no bound states exist. The
the positive real root. two-body Schrdinger equation reads

The hard core approximation is quite reasonable for a real

A. Bethe ansatz

. . 2 g2
gas. However, in some cases, the hard core does not exist. As | — — — — 1 V(|x;—X,|) | (X1, X2) = E(Xq,X5).
noted a long time ago by Hauge and Hemi8], for a 1D Xy OXg

classical system with weak long-range repulsion and no hard 8

core, the Yang-Lee zeros are still present and located on the . )

negative real axis. From this example they speculated thdf We introduce the relative coordinate=(x, —X)/2 and the
the Yang-Lee theory is applicable even in the absence of thgenter of mass coordinaf=(x, +x,)/2, Eq.(8) becomes

condition of a hard core. We consider that their speculation

o 9?
is viable. We she}ll show several examples Wher'e' the Yang- — o+ 2V(21) | (1) =K2y(r), ©)
Lee approach still works under a relaxed condition that as ar

r—0, the two-body potentiaV(r) — +. For such a system

one can envision an effective hard core whose radius is temwhereE=k?/2. The condition that there are no bound states

perature dependent so that the Yang-Lee zeros exist. implies that in ther — limit, the wave function asymptoti-
cally approaches

Ill. IDEAL FERMI GAS

For simplicity, let us consider an ideal Fermi gas in any h(r)— sin
dimension. For an ideal Fermi or Bose gas, no direct inter-
action exists. However, quantum effects act as indirect intefgyhere g(k) is the two-body phase shift and is oddkn
actions. As shown by Uhlenbeck and Gropfgf], the quan-  The N-body wave function is given by the Bethe ansatz
tum gas can be treated as a classical interacting gas with a
statistical interparticle potentidg(r),

1
kr—zﬁ(k) , (10

. (1D

(X1, X, .. ,xN)=Z A(P)exr{iz KpjX;
Vo(r)=—TIn[1+exp —27r2/\?)], ®) P

where\ = (47/T)¥? is the thermal wavelength. Throughout where the coefficienté\(P) are determined solely by the
this paper, we use the units=kg=1 and Zn=1 (misthe two-body phase shift
mass of one particje The sign*+ corresponds to Bose and

Fermi statistics, respectively. As—0, A(... kKK . OIAC. .. kKK, L)
v —TIn(27r2\%)—+o (Fermi statistics =—exd —io(k—k")]. (12
(M=) _ TIn2 (Bose statistics

@ The energy is given bE=3N ,k?. The periodic boundary
condition is imposed so that thés satisfy
Therefore, we expect that for an ideal Fermi gas, Yang-Lee

z)e(ir;)ts should exist and for a Bose gas, the zeros should not KL=271,+> o(k—K'), (13)
. k!
Let us check this directly. For an ideal Fermi gas, the
grand partition function is given by wherel is an integer ifN is odd and ,+ 3 is an integer ifN
. is even. The numbersare quantum numbers for the prob-
= lem.
==1111 ok /T)}’ ©

. B. Yang-Y th d ic f li
wherek denotes the quantum state with enekjy We can ang-vang thermogynamic formaiism

easily identify that the zeros exist on the negative real axis, In order to extend the Bethe ansatz to the finite tempera-
ture case, Yang and Yar@5] introduced the distribution
7= —exp(k?/T). (6)  functions for particles and holes

For an ideal Bose gas, the grand partition function is given S
by 1=2m(p+pp)+ | 0'p(k")dk’, (14)

=-1 z
Ll

=11 {1_ —} ( where ’=df(k—k')/dk. The energy and number of par-
K exp(k*/T) ticles are, respectively, given by
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E=LJ p(k)k?dKk, (15)
Nsz p(k)dk. (16)

Yang and Yang envisioned the system as an ideal gas com-
posed of particles and holes. So the entropy for given distri-

bution p and py, is given by

S=Lfldk[(erph)ln(pﬂLph)—p In p—ppln pp].
(17)

The thermodynamics is obtained by minimizing the free en-

ergy densityf=E/N—TS/N with the particle densityn
=N/L held constant, namely; u SN+ SE— T 6S=0. Defin-
ing an auxiliary parametesy,/p=exd eK)/T], Eq. (14) be-
comes

1=27Tp(k){1+eX|:[6(k)/T]}+j 0'p(k")dk'. (18
From the extremum condition, we obtain
T (> ,
e(k)y=—u+ k2+ EJ 0’In[1+e’f(k )’T]dk’. (19
The pressuré® is given by

5 (20

T o0
P= —f dkIn(1+e™ /Ty,

C. Yang-Lee zeros

The grand partition function of a 1D system is given by

L )
E=expPL/T)= exp[zf dkln(1+e~<®/T)

(21)

z
=11 (e m=]I (1——),
K 3 Zy
wherez=exp(/T). In the last equality of Eq(21) we have
identified the Yang-Lee zeros as

2
20=— 2T = _ R¥ITAKT)IT (22)
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by Yang and Yang25] for V(r)=2cé(r) and by Sutherland
[26] for V(r)=g/r? using different methods. Thus we have
proved the absence of a phase transition for a general one-
dimensional quantum gas even with a long-range force. In
the following we discuss several models.

V. QUANTUM HARD ROD GAS

It is easy to determine the phase shiftk) =ka. From
Egs.(19) and(20) we obtain

e(k)=—pu+k*+aP, (23
P=— | dkin[1 pokC-ap 24
BEZZ S e R e
N= = (1-NalL Jw dk !
=ox (1" ) —wexg(KP+aP—w)/T]+1"
(29

We see that the quantum hard rod gas is an ideal Fermi gas,
with the lengthL —Na and the chemical potential —aP.
From Eq.(22) we identify the distribution of Yang-Lee zeros
as

2= — ekleeaP/T‘ (26)
At high temperature, the gas becomes a Boltzmanndas-
sical hard rod ggs The equation of state of the gas becomes
P(L—Na)=NT. The zero distribution becomeg=

— e}¥ITeNa/(L=Na)  gjnce| >>Na, the zero distribution be-

comesz, = —e/T. Hauge and HemmmdiL3] obtained a
different distribution using another method. Both distribu-
tions give the same pressure and density. When a system
does not have a phase transition, the distributions of Yang-
Lee zeros are often found to be not unique, although these
distributions give the same physical resutt8,14,17.

VI. SUTHERLAND MODEL

The two-body potential is given by(r)=g/r? (g>0).
Equation(9) becomes

9 gl2

S| D =K. @7

With the change of variables=kr and #(x) =x>2u(x), Eq.

where we used Eq19) in the last equality and defined an (27) is transformed into a Bessel equation

interaction-dependent parametefk, T). We find that for a
one-dimensional quantum many-body systems solvable by
the Bethe ansatz and the Yang-Yang thermodynamic formal-
ism, the Yang-Lee zeros are located on the negative real axis

and are determined by the parameték).

d? a?
d_XzLH—;d_XLH— 1—7)U:0, (28

where a=1(1+2g)¥2 Since y(x—0) is finite, we have

The thermodynamic properties of the system are deterd(X)=Ja(X) and g(r)=(kr)"2,(kr). Asr—,

mined completely by the distribution of the Yang-Lee zeros.
Since no positive real root exists, according to the Yang-Lee
theory of phase transition, no phase transition exists in a

(29

1/2' am
<//(r)—>(—) sm(kr—7+z.

v

one-dimensional system solvable by the Bethe ansatz and the
Yang-Yang thermodynamic formalism. For some specialSo we identify the phase shiff(k) = (k/|k|)(am— m/2).
cases, the nonexistence of phase transition has been prov€dus we obtain
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dé(k)

W=27T’y5(k),

(30

where y=a— 3>0. Substituting Eq(30) into Eq. (19), we
get
(eE/T)1+y(1+es/T)—7:e(—,u+k2)/T_ (31)

The particle distribution function is obtained from E38)
as

1
P = e ™ 1157 32
Finally, the chemical potentigk is determined by
N= L fx dk ! 33
T2m) . e r14y (33

At high temperature, the gas becomes a Boltzmann gas

oT—e(~#tKT The distribution of Yang-Lee zeros

K2IT

with e
becomeg,=—e

In the low-temperature limif26], Eq. (31) can be easily
solved fore to yield e= —k?+k? for |k|>k; and e=(—k?
+k?)/(1+ ) for |k|<k;, wherek?=p. Herek; is called
the Fermi momentum in the sense thdk)=const for|k|
<k; andp(k)=0 for |k|>k;. From Eq.(33) we obtain the
chemical potential\/u=k;=m(1+y)N/L. Therefore, the
Yang-Lee zeros are given k= —e*'T for |k|>k; andz
— _ @PITAI(L NT @I+ NT for Ik|<k;.

Equation (31) should be solved numerically in general.
However, it can be solved analytically wheny
=1/3,1/2,1,2,3. We list the solutions in the following.

(i) y=1. From Eq.(31), we get

=2 \Jo+ 2 34
eT=> e (34
whereb=e(~#*¥)'T Thys the zeros are given by
1 1

__ AKAT T = au—KAHIT
Z e 5 + \/4 +e . (35

(i) y=2. The parametee(k) is given by

/T b 1/2\1/3 1/2\1/3

e* =§+(R+D )+ (R—DY9) (36

where D=Q%+R?=b?/4+b%/27>0, R=(27b+ 18b?
+2b%)/54, andQ=—(6b+b?)/9. So the Yang-Lee zeros
are

_ KT

1 1 1
e §+ B(R+ D1/2)1/3+ B(R_D1/2)1/3 ) (37)

Zk:

(iii) y=1/2. The parametee(k) is given by

eE/T:|

b=3./3/2
b<3./3/2,

2./3b cog 7/3),

38
D,+D,, 38
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where r=cos }(3/3/2b) and D;,D,=[b%2+ (b4
—b8/27)Y2]13, S0 the Yang-Lee zeros are

.

(iv) y=1/3. The real solution ofk3+4b3x—b®=0 is x
=D3+D,. Here D3,D,=[b%2+(640%27+b*%4)2]13
The parametee(k) is given by

X
2

The distribution of Yang-Lee zeros is

— 23 Tcog 7/3), b=33/2
—e/T[(D,+D,)/b], b<3y3/2.

X 1 1/2
-7+ E(x2+4b3)1/2} : (40)

1/2
= kz/T\ﬁ x 1 3y112
Z e 2+ 4+ 2( +4b*) b.
(41
(v) y=3. The parametee(k) is given by
w*—bw?—3bw?—3bw—b=0, (42)

wherew=e“"T. The solution is too lengthy to list.

VII. SUTHERLAND MODEL WITH A HARD CORE

Now we consider the Sutherland gas with a hard core.
The two-body potential is given by(r)=+« for r=<a and
V(r)=g/r? for r>a. From the preceding section we know
that the wave function is a linear combination of both kinds
of Bessel functions

g(r)= (k)" by, (kr)+byNy(kr)]. (43
The boundary condition ig(r=a/2)=0, so
b,J,(ka/2)+b,yN,(ka/2)=0. (44
In the limit r —o we have
2\12 b K amT T
P(r)— ; 1CO§ Kr 7 Z
bsinl kr— — — = 45
+ Db,Sin| Kr > "7l (45)

We define tam=—N,(ka/2)/J,(ka/2). Then we can ex-
press the phase shift as

8(K) = — 20+ (K/|K|) aﬂ'-l-g . (46)
For g=0, we have a=1/2 and thus tam=

—Ny(kar2)/J,5(ka/2)=cotkal2). Thusw=(k/|Kk|)(m/2)
—ka/2 and #=ka.

For g=—1/2, no bound state exists. In this case, the gas
has a classical limit. Therefore, we take=—1/2. Let us
investgate a simple casg=4 and soa=3/2. Thus tanm
= —Ngp(kal2)/d5n(ka/2). With a little bit of algebra we
obtain



226 XIAN-ZHI WANG AND JAI SAM KIM

w=(k/|k|);—ka/2+tan‘1(ka/2) (47)

and thus
6=ka—2 tan Y(ka/2) + (k/|k|) 7. (48
Substituting Eq(48) into Eqg. (19), we get

e=—p+k’+aP+TIn(1+e )

- ij dk';ln[ﬂe-dk’)”]
ma) o (202)%+ (k—K')2 '

(49

At high temperature, the gas becomes a Boltzmann ga

The distribution of Yang-Lee zeros becongs: —e<'T.
tum k; such thate(k=k;)=0. When |k|>k;, €(k)>0;
when |k|<k;, e(k)<0. Equation(18) gives p=0 for |K|
>k; and p,=0 for |k|<k;. Equations(18) and (19) be-
come, for|k|<Kk;,

4 1
& 2 2%+ (k=K' )2

k
277p(k)=1—J " dK p(K')

+2776(k’—k)} (50)

and

2 (ks 1
—_ — 2 — - ! 1AW
e=—ut+ki+aP—e+ Waf K Gz iz <)

7kf
(51)

for |k|>Kk;,

2 k
6:—M+k2+ap+ %j

f
K Ry (w2 e
(52)

Let us consider the casg a<1. For|k|<k; we have

1 a2 a4 2 4
WNZ_E“(_'( ) +O((k—k ) )
(53
Thus Eq.(51) gives
a’p
2€:_M+k2 1+ T)‘FC]_, (54)

where C,;=k;a’/607. From Eq. (20) we obtain P
=(1/37T)kf3[1+(1/127r)(kf a)®]. Using e(k¢)=0, we de-
duce thatu =k 1+ (1/107)(k; a)®]. From Eq.(50) we get
4mp(k)=1—(aN/4L)k?— (a%/4)C,. Here C,=k/6m.
Using Eqg.(16) we obtain

27N Na 1
(kra)®.

1 2_
Lk, L 1 M o (55)
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Thus we obtain the distribution of Yang-Lee zeros, [kl
<Ks,

2 2/ _ 3
K2IT gk?(—1+aPI4)/2T g(u-+ Cy)/2T. (56)

Zk: —€e
VIIl. BOSE GAS WITH REPULSIVE 6-FUNCTION
INTERACTION

The two-body potential is given by(r)=2cés(r) (c
>0). The phase shift can be easily obtainef(k)=
—2 tan Y(k/c). Now Eqgs.(18) and(19) become

27rp(k)(1+ef”)=1+2cﬁ dk’p(k’)m

(57)

And

In the low-temperature limit, we define the Fermi momen-

Tc (= 1
— 2_ ’ —e(k")/T
e=—pu+k —Wf_xdk—czﬂk_k,)zln[lnLe 1.
(58)

Here e(k) is a monotonically increasing function &f.

At high temperature the gas becomes a Boltzmann gas.
The distribution of Yang-Lee zeros becongs- — e/

In the low-temperature limit, we define the Fermi momen-
tum k; such thate(k;)=0. So e(k)>0 for |k|>k; and
e(k) <0 for |k|<k;. Equations(57) and (58) give p=0 for
|k|>k; . For|k|<k;, we havep,=0 and thus

k¢ 1
27Tp(k)=1+2kafdk p(k )W (59
ande is given by
— e S ke ! k' 60
=outkr o) K e (60

If ki/c<1, then 1Jc?+ (k—k')?]=1/c?. Thus Eqs.(16),
(59), and (60) give p(k)=c/(2mc—4k;) and e=— u+k?
+D. Here D=(—2uki+2kd)/(mc—2k;), u=k?-D,
andk;=2mNc/(4N+2Lc). The Yang-Lee zero distribution
becomes, = — e“/Te®'T for [K|<k; .

IX. CONCLUSION

We have studied the Yang-Lee zeros for several 1D quan-
tum many-body systems. In the original Yang-Lee theory,
the existence of Yang-Lee zeros requires the condition of a
hard core. We have given a few popular examples, where the
Yang-Lee theory is valid with a relaxed condition that
V(r)— +o asr—0. We studied the ideal Fermi gas in any

dimension to find the zeros a=—e*'T, whereas for an
ideal Bose gas, we confirmed that the zeros do not exist. We
also considered the 1D quantum many-body systems solv-
able by the Bethe ansatz and the Yang-Yang thermodynamic
formalism. We have found that the zeros are giverzpy
—zexdek)/T]. Here z is the fugacity and e(k)
=TIn(p,/p). The zeros are located on the negative real axis.
No phase transition exists according to the Yang-Lee theory
of phase transitions. We conclude that these 1D quantum
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gases solvable by the Bethe ansatz and the Yang-Yang thewill approach the positive real axis and give the transition
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modynamic formalism, with finite or long-range force, do point. The elementary excitations are quite different.
not have phase transitions. We should point out that these

results are valid only for 1D systems.

In higher dimensions, quantum many-body systems have
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