
PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Yang-Lee zeros of one-dimensional quantum many-body systems

Xian-Zhi Wang and Jai Sam Kim
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

~Received 9 July 1998!

We obtain a generic formula for the distribution of Yang-Lee zeros of one-dimensional quantum many-body
systems solvable by the Bethe ansatz and the Yang-Yang thermodynamic formalism. We find that the zeros are
located on the negative real axis of the complex fugacity plane and thus prove that no phase transition occurs
in these one-dimensional systems, as proved by others using different methods.@S1063-651X~99!08101-5#

PACS number~s!: 05.30.2d, 71.10.2w
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I. INTRODUCTION

In 1952 Yang and Lee@1# proposed a general theory o
phase transitions. They observed that for a real interac
gas, the pair interaction has a hard core. For such a syste
a finite volume, the grand partition function can be expres
as a polynomial of the fugacity. They introduced the zeros
the polynomial and showed that in the thermodynamic lim
the zero distribution can touch the positive real axis to
velop the singularity of the thermodynamic potential. T
occurrence of the positive real roots corresponds to the
gularity of the thermodynamic potential. Yang and Lee
troduced a lattice gas model and showed that the zeros o
model are located on a unit circle in the complex fugac
plane. They also made a successful application to the fe
magnetic Ising model and showed that the zeros of the
tion function of the ferromagnetic Ising model on any latti
are located on a unit circle in the complex magnetic fi
plane. Since then, the circle theorem has been extende
many ferromagnetic systems, such as the higher-spin I
model@2,3#, Ising models with multiple spin interactions, th
quantum Heisenberg model@4#, the classicalXY and Heisen-
berg model@5#, and some continuous spin systems@6#.

In 1965 Fisher@7# studied the zeros of the partition func
tion in the complex temperature plane for the square lat
Ising model. Since then, there have been many studies a
the zero distribution in the complex temperature plane,
cluding the Ising model on many lattices@8#, the Potts
model@9#, and the Hubbard model@10#. Recently, we found
that for the Ising model on square, triangular, and hon
comb lattices, introducing the zeros of the Ising partiti
function on the elementary cycle of these lattices, we can
some useful information@11#.

There have been many studies on the zero distributio
the grand partition function in the complex fugacity pla
since Yang and Lee’s pioneering work. The circle theor
has been proved to be valid for hard-core binary lattice ga
by Runnels and Lebowitz@12#. For the one-dimensional~1D!
classical hard rod gas@13,14#, the 1D gas with very weak
repulsion of very long range@13#, and the monomer-dime
system@15#, the zeros are located on the negative real a
For the classical many-body systems with repulsive inter
tions, the zeros are located on the real axis@16#. In addition,
for some physical systems such as van der Waals
@14,17#, the lattice gas models with more complicated int
actions @18#, the hard hexagon model@19#, and the 1D
PRE 591063-651X/99/59~1!/222~6!/$15.00
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plasma model@20#, the zeros are investigated. However,
the case of quantum gas, to our knowledge, the distribu
of Yang-Lee zeros is not clear. This is the theme of t
paper.

The first model of the 1D quantum many-body syste
solved, to our knowledge, is the quantum hard rod gas@21#.
In 1963 Lieb and Liniger@22# studied a gas of 1D Bose
particles with a repulsived-function interaction. Using the
Bethe ansatz, they diagonized the Hamiltonian and obtai
the ground state energy. In 1967 Yang@23# solved the 1D
electron system with ad-function interaction and discovere
the Yang-Baxter equation. In 1968 Lieb and Wu@24# solved
a lattice version of this model~the 1D Hubbard model!. In
1969 Yang and Yang@25# developed a thermodynamic for
malism for dealing with those interacting systems who
Hamiltonian can be diagonalized with the use of the Be
ansatz. This formalism has been used to determine the t
modynamics of many problems: the 1D quantum many-bo
system @26#, the 1D Hubbard model, the 1D Heisenbe
model, and the Kondo model.

This paper is organized as follows. In Sec. II we discu
the Yang-Lee theory of the phase transition. In Sec. III
zeros of an ideal Fermi gas in any dimension are determin
In Sec. IV the Bethe ansatz and Yang-Yang thermodyna
formalism are reviewed. The general formula of Yang-L
zeros is given. In Sec. V the Yang-Lee zeros of a quant
hard rod gas are determined. In Secs. VI and VII the Ya
Lee zeros of the Sutherland model and the Sutherland m
with a hard core are determined. In Sec. VIII the Yang-L
zeros of a Bose gas with a repulsived-function interaction
are determined. In Sec. IX a summary of this paper is giv

II. YANG-LEE THEORY OF PHASE TRANSITION

In the original Yang-Lee approach, the existence of ze
is guaranteed by the hard-core interaction

V~r !5` ~r<a!

Þ0 ~r .a!, ~1!

wherea is the radius of the hard core. For a given volumeV,
the maximum numberM of particles that can be cramme
into the volume is limited by the size of hard core, i.e.,M
;V/a3. The grand partition function can be expressed a
polynomial of fugacityz5exp(m/T),
222 ©1999 The American Physical Society
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J5 (
n50

M

znQn /n! 5)
l 51

M S 12
z

zl
D , ~2!

whereQn is the partition function of the system withn par-
ticles in the volumeV. The rootszl are never positive real
The root distribution can touch the positive real axis only
the thermodynamic limit and give the transition point. T
singularity of the thermodynamic potential is connected w
the positive real root.

The hard core approximation is quite reasonable for a
gas. However, in some cases, the hard core does not exis
noted a long time ago by Hauge and Hemmer@13#, for a 1D
classical system with weak long-range repulsion and no h
core, the Yang-Lee zeros are still present and located on
negative real axis. From this example they speculated
the Yang-Lee theory is applicable even in the absence of
condition of a hard core. We consider that their speculat
is viable. We shall show several examples where the Ya
Lee approach still works under a relaxed condition that
r→0, the two-body potentialV(r )→1`. For such a system
one can envision an effective hard core whose radius is t
perature dependent so that the Yang-Lee zeros exist.

III. IDEAL FERMI GAS

For simplicity, let us consider an ideal Fermi gas in a
dimension. For an ideal Fermi or Bose gas, no direct in
action exists. However, quantum effects act as indirect in
actions. As shown by Uhlenbeck and Gropper@27#, the quan-
tum gas can be treated as a classical interacting gas w
statistical interparticle potentialVs(r ),

Vs~r !52T ln@16exp~22pr 2/l2!#, ~3!

wherel5(4p/T)1/2 is the thermal wavelength. Througho
this paper, we use the units\5kB51 and 2m51 (m is the
mass of one particle!. The sign6 corresponds to Bose an
Fermi statistics, respectively. Asr→0,

Vs~r !5H 2T ln~2pr 2/l2!→1` ~Fermi statistics!

2T ln 2 ~Bose statistics!.
~4!

Therefore, we expect that for an ideal Fermi gas, Yang-
zeros should exist and for a Bose gas, the zeros should
exist.

Let us check this directly. For an ideal Fermi gas, t
grand partition function is given by

J5)
k

F11
z

exp~k2/T!G , ~5!

wherek denotes the quantum state with energyk2. We can
easily identify that the zeros exist on the negative real a

zk52exp~k2/T!. ~6!

For an ideal Bose gas, the grand partition function is giv
by

J215)
k

F12
z

exp~k2/T!G . ~7!
al
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No zeros exist in this case, as expected.

IV. YANG-LEE ZEROS OF A 1D SYSTEM

A. Bethe ansatz

We consider a 1D quantum gas of either fermions
bosons interacting via a two-body potentialV(ux12x2u). The
potential is restricted such that no bound states exist.
two-body Schro¨dinger equation reads

F2
]2

]x1
2 2

]2

]x1
21V~ ux12x2u!Gc~x1 ,x2!5Ec~x1 ,x2!.

~8!

If we introduce the relative coordinater 5(x12x2)/2 and the
center of mass coordinateR5(x11x2)/2, Eq. ~8! becomes

F2
]2

]r 2 12V~2r !Gc~r !5k2c~r !, ~9!

whereE5k2/2. The condition that there are no bound sta
implies that in ther→` limit, the wave function asymptoti-
cally approaches

c~r !→sinFkr2
1

2
u~k!G , ~10!

whereu(k) is the two-body phase shift and is odd ink.
The N-body wave function is given by the Bethe ansat

c~x1 ,x2 , . . . ,xN!5(
P

A~P!expS i( kP jxj D , ~11!

where the coefficientsA(P) are determined solely by th
two-body phase shift

A~ . . . ,k8,k, . . . !/A~ . . . ,k,k8, . . . !

52exp@2 iu~k2k8!#. ~12!

The energy is given byE5( i 51
N ki

2 . The periodic boundary
condition is imposed so that thek’s satisfy

kL52pI k1(
k8

u~k2k8!, ~13!

whereI k is an integer ifN is odd andI k1 1
2 is an integer ifN

is even. The numbersI are quantum numbers for the prob
lem.

B. Yang-Yang thermodynamic formalism

In order to extend the Bethe ansatz to the finite tempe
ture case, Yang and Yang@25# introduced the distribution
functions for particles and holes

152p~r1rh!1E u8r~k8!dk8, ~14!

whereu8[du(k2k8)/dk. The energy and number of pa
ticles are, respectively, given by
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E5LE
2`

`

r~k!k2dk, ~15!

N5LE
2`

`

r~k!dk. ~16!

Yang and Yang envisioned the system as an ideal gas c
posed of particles and holes. So the entropy for given dis
bution r andrh is given by

S5LE
2`

`

dk@~r1rh!ln~r1rh!2r ln r2rhln rh#.

~17!

The thermodynamics is obtained by minimizing the free
ergy density f 5E/N2TS/N with the particle densityn
5N/L held constant, namely,2mdN1dE2TdS50. Defin-
ing an auxiliary parameterrh /r[exp@e(k)/T#, Eq. ~14! be-
comes

152pr~k!$11exp@e~k!/T#%1E u8r~k8!dk8. ~18!

From the extremum condition, we obtain

e~k!52m1k21
T

2pE2`

`

u8ln@11e2e~k8!/T#dk8. ~19!

The pressureP is given by

P5
T

2pE2`

`

dk ln~11e2e~k!/T!. ~20!

C. Yang-Lee zeros

The grand partition function of a 1D system is given b

J5exp~PL/T!5expF L

2pE2`

`

dk ln~11e2e~k!/T!G
5)

k
@11e2e~k!/T#[)

k
S 12

z

zk
D , ~21!

wherez5exp(m/T). In the last equality of Eq.~21! we have
identified the Yang-Lee zeros as

zk52zee~k!/T52ek2/Tel~k,T!/T, ~22!

where we used Eq.~19! in the last equality and defined a
interaction-dependent parameterl(k,T). We find that for a
one-dimensional quantum many-body systems solvable
the Bethe ansatz and the Yang-Yang thermodynamic form
ism, the Yang-Lee zeros are located on the negative real
and are determined by the parametere(k).

The thermodynamic properties of the system are de
mined completely by the distribution of the Yang-Lee zer
Since no positive real root exists, according to the Yang-L
theory of phase transition, no phase transition exists i
one-dimensional system solvable by the Bethe ansatz an
Yang-Yang thermodynamic formalism. For some spec
cases, the nonexistence of phase transition has been pr
m-
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y
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.
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by Yang and Yang@25# for V(r )52cd(r ) and by Sutherland
@26# for V(r )5g/r 2 using different methods. Thus we hav
proved the absence of a phase transition for a general
dimensional quantum gas even with a long-range force
the following we discuss several models.

V. QUANTUM HARD ROD GAS

It is easy to determine the phase shiftu(k)5ka. From
Eqs.~19! and ~20! we obtain

e~k!52m1k21aP, ~23!

P5
T

2pE2`

`

dk lnF11expS m2k22aP

T D G , ~24!

N5
L

2p
~12Na/L !E

2`

`

dk
1

exp@~k21aP2m!/T#11
.

~25!

We see that the quantum hard rod gas is an ideal Fermi
with the lengthL2Na and the chemical potentialm2aP.
From Eq.~22! we identify the distribution of Yang-Lee zero
as

zk52ek2/TeaP/T. ~26!

At high temperature, the gas becomes a Boltzmann gas~clas-
sical hard rod gas!. The equation of state of the gas becom
P(L2Na)5NT. The zero distribution becomeszk5

2ek2/TeNa/(L2Na). Since L@Na, the zero distribution be-
comeszk52ek2/T. Hauge and Hemmmer@13# obtained a
different distribution using another method. Both distrib
tions give the same pressure and density. When a sys
does not have a phase transition, the distributions of Ya
Lee zeros are often found to be not unique, although th
distributions give the same physical results@13,14,17#.

VI. SUTHERLAND MODEL

The two-body potential is given byV(r )5g/r 2 (g.0).
Equation~9! becomes

F2
]2

]r 2 1
g/2

r 2 Gc~r !5k2c~r !. ~27!

With the change of variablesx5kr andc(x)5x1/2u(x), Eq.
~27! is transformed into a Bessel equation

d2

dx2 u1
1

x

d

dx
u1S 12

a2

x2 Du50, ~28!

where a5 1
2 (112g)1/2. Since c(x→0) is finite, we have

u(x)5Ja(x) andc(r )5(kr)1/2Ja(kr). As r→`,

c~r !→S 2

p D 1/2

sinS kr2
ap

2
1

p

4 D . ~29!

So we identify the phase shiftu(k)5(k/uku)(ap2p/2).
Thus we obtain
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du~k!

dk
52pgd~k!, ~30!

whereg5a2 1
2 .0. Substituting Eq.~30! into Eq. ~19!, we

get

~ee/T!11g~11ee/T!2g5e~2m1k2!/T. ~31!

The particle distribution function is obtained from Eq.~18!
as

r~k!5
1

2p@ee~k!/T111g#
. ~32!

Finally, the chemical potentialm is determined by

N5
L

2pE2`

`

dk
1

ee/T111g
. ~33!

At high temperature, the gas becomes a Boltzmann
with ee/T5e(2m1k2)/T. The distribution of Yang-Lee zero
becomeszk52ek2/T.

In the low-temperature limit@26#, Eq. ~31! can be easily
solved fore to yield e52kf

21k2 for uku.kf ande5(2kf
2

1k2)/(11g) for uku<kf , wherekf
25m. Here kf is called

the Fermi momentum in the sense thatr(k)5const for uku
<kf andr(k)50 for uku.kf . From Eq.~33! we obtain the
chemical potentialAm5kf5p(11g)N/L. Therefore, the
Yang-Lee zeros are given byzk52ek2/T for uku.kf andzk

52ek2/Tegk2/(11g)Tegkf
2/(11g)T for uku<kf .

Equation ~31! should be solved numerically in genera
However, it can be solved analytically wheng
51/3,1/2,1,2,3. We list the solutions in the following.

~i! g51. From Eq.~31!, we get

ee/T5
b

2
1Ab1

b2

4
, ~34!

whereb5e(2m1k2)/T. Thus the zeros are given by

zk52ek2/TF1

2
1A1

4
1e~m2k2!/T G . ~35!

~ii ! g52. The parametere(k) is given by

ee/T5
b

3
1~R1D1/2!1/31~R2D1/2!1/3, ~36!

where D5Q31R25b2/41b3/27.0, R5(27b118b2

12b3)/54, andQ52(6b1b2)/9. So the Yang-Lee zero
are

zk52ek2/TF1

3
1

1

b
~R1D1/2!1/31

1

b
~R2D1/2!1/3G . ~37!

~iii ! g51/2. The parametere(k) is given by

ee/T5H 2A3b cos~t/3!, b>3A3/2

D11D2 , b,3A3/2,
~38!
as

where t5cos21(3A3/2b) and D1 ,D25@b2/26(b4/4
2b6/27)1/2#1/3. So the Yang-Lee zeros are

zk5H 22A3ek2/Tcos~t/3!, b>3A3/2

2ek2/T@~D11D2!/b#, b,3A3/2.
~39!

~iv! g51/3. The real solution ofx314b3x2b650 is x
5D31D4 . Here D3 ,D45@b6/26(64b9/271b12/4)1/2#1/3.
The parametere(k) is given by

ee/T5Ax

2
1F2

x

4
1

1

2
~x214b3!1/2G1/2

. ~40!

The distribution of Yang-Lee zeros is

zk52ek2/TFAx

2
1S 2

x

4
1

1

2
~x214b3!1/2D 1/2G Y b.

~41!

~v! g53. The parametere(k) is given by

w42bw323bw223bw2b50, ~42!

wherew5ee/T. The solution is too lengthy to list.

VII. SUTHERLAND MODEL WITH A HARD CORE

Now we consider the Sutherland gas with a hard co
The two-body potential is given byV(r )51` for r<a and
V(r )5g/r 2 for r .a. From the preceding section we kno
that the wave function is a linear combination of both kin
of Bessel functions

c~r !5~kr !1/2@b1Ja~kr !1b2Na~kr !#. ~43!

The boundary condition isc(r 5a/2)50, so

b1Ja~ka/2!1b2Na~ka/2!50. ~44!

In the limit r→` we have

c~r !→S 2

p D 1/2Fb1cosS kr2
ap

2
2

p

4 D
1b2sinS kr2

ap

2
2

p

4 D G . ~45!

We define tanv52Na(ka/2)/Ja(ka/2). Then we can ex-
press the phase shift as

u~k!522v1~k/uku!S ap1
p

2 D . ~46!

For g50, we have a51/2 and thus tanv5
2N1/2(ka/2)/J1/2(ka/2)5cot(ka/2). Thusv5(k/uku)(p/2)
2ka/2 andu5ka.

For g>21/2, no bound state exists. In this case, the g
has a classical limit. Therefore, we takeg>21/2. Let us
investgate a simple case:g54 and soa53/2. Thus tanv
52N3/2(ka/2)/J3/2(ka/2). With a little bit of algebra we
obtain
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v5~k/uku!
p

2
2ka/21tan21~ka/2! ~47!

and thus

u5ka22 tan21~ka/2!1~k/uku!p. ~48!

Substituting Eq.~48! into Eq. ~19!, we get

e52m1k21aP1T ln~11e2e/T!

2
2T

paE2`

`

dk8
1

~2/a!21~k2k8!2 ln@11e2e~k8!/T#.

~49!

At high temperature, the gas becomes a Boltzmann
The distribution of Yang-Lee zeros becomeszk52ek2/T.

In the low-temperature limit, we define the Fermi mome
tum kf such thate(k5kf)50. When uku.kf , e(k).0;
when uku,kf , e(k),0. Equation~18! gives r50 for uku
.kf and rh50 for uku,kf . Equations~18! and ~19! be-
come, foruku,kf ,

2pr~k!512E
2kf

kf
dk8r~k8!Fa2

4

a

1

~2/a!21~k2k8!2

12pd~k82k!G ~50!

and

e52m1k21aP2e1
2

paE2kf

kf
dk8

1

~2/a!21~k2k8!2 e~k8!;

~51!

for uku.kf ,

e52m1k21aP1
2

paE2kf

kf
dk8

1

~2/a!21~k2k8!2 e~k8!.

~52!

Let us consider the casekf a!1. For uku,kf we have

1

~2/a!21~k2k8!2 '
a2

4
2

a4

16
~k2k8!21O„~k2k8!4

….

~53!

Thus Eq.~51! gives

2e52m1k2S 11
a3P

4 D1C1 , ~54!

where C15kf
5a3/60p. From Eq. ~20! we obtain P

5(1/3p)kf
3@11(1/12p)(kf a)3#. Using e(kf)50, we de-

duce thatm5kf
2@11(1/10p)(kf a)3#. From Eq.~50! we get

4pr(k)512(a3N/4L)k22(a3/4)C2 . Here C25kf
3/6p.

Using Eq.~16! we obtain

2pN

Lkf
512

Na

12L
~kf a!22

1

24p
~kf a!3. ~55!
s.

-

Thus we obtain the distribution of Yang-Lee zeros, foruku
,kf ,

zk52ek2/Tek2~211a3P/4!/2Te~m1C1!/2T. ~56!

VIII. BOSE GAS WITH REPULSIVE d-FUNCTION
INTERACTION

The two-body potential is given byV(r )52cd(r ) (c
.0). The phase shift can be easily obtained,u(k)5
22 tan21(k/c). Now Eqs.~18! and ~19! become

2pr~k!~11ee/T!5112cE
2`

`

dk8r~k8!
1

c21~k2k8!2

~57!

and

e52m1k22
Tc

p E
2`

`

dk8
1

c21~k2k8!2 ln@11e2e~k8!/T#.

~58!

Heree(k) is a monotonically increasing function ofk2.
At high temperature the gas becomes a Boltzmann g

The distribution of Yang-Lee zeros becomeszk52ek2/T.
In the low-temperature limit, we define the Fermi mome

tum kf such thate(kf)50. So e(k).0 for uku.kf and
e(k),0 for uku,kf . Equations~57! and ~58! give r50 for
uku.kf . For uku,kf , we haverh50 and thus

2pr~k!5112cE
2kf

kf
dk8r~k8!

1

c21~k2k8!2 ~59!

ande is given by

e52m1k21
c

pE2kf

kf
dk8

1

c21~k2k8!2 e~k8!. ~60!

If kf /c!1, then 1/@c21(k2k8)2#'1/c2. Thus Eqs.~16!,
~59!, and ~60! give r(k)5c/(2pc24kf) and e52m1k2

1D. Here D5(22mkf1
2
3 kf

3)/(pc22kf), m5kf
22D,

andkf52pNc/(4N12Lc). The Yang-Lee zero distribution
becomeszk52ek2/TeD/T for uku,kf .

IX. CONCLUSION

We have studied the Yang-Lee zeros for several 1D qu
tum many-body systems. In the original Yang-Lee theo
the existence of Yang-Lee zeros requires the condition o
hard core. We have given a few popular examples, where
Yang-Lee theory is valid with a relaxed condition th
V(r )→1` as r→0. We studied the ideal Fermi gas in an
dimension to find the zeros atzk52ek2/T, whereas for an
ideal Bose gas, we confirmed that the zeros do not exist.
also considered the 1D quantum many-body systems s
able by the Bethe ansatz and the Yang-Yang thermodyna
formalism. We have found that the zeros are given byzk5
2z exp@e(k)/T#. Here z is the fugacity and e(k)
[T ln(rh /r). The zeros are located on the negative real a
No phase transition exists according to the Yang-Lee the
of phase transitions. We conclude that these 1D quan
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gases solvable by the Bethe ansatz and the Yang-Yang
modynamic formalism, with finite or long-range force, d
not have phase transitions. We should point out that th
results are valid only for 1D systems.

In higher dimensions, quantum many-body systems h
phase transitions in general. Hence the distribution of Ya
Lee zeros is quite different from the 1D case. In particular
the thermodynamic limit, the distribution of Yang-Lee zer
er-

se

e
-

n

will approach the positive real axis and give the transiti
point. The elementary excitations are quite different.
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