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Nutrient competition as a determinant for cancer growth
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Competition for available nutrients is known to be crucial for cancer development. Based on this fact, a
model is proposed that can describe the manifold of morphologies and growth rates characteristic of tumoral
growth. The formulation of a consistent set of rules governing the microscopic interactions leads to a system
of coupled nonlinear iteration equations. These equations contain both deterministic and stochastic terms and
are amenable to direct numerical simulation. They allow us to test the effects of such parameters as the
availability, diffusivity, and binding rate of nutrients and the mobility, death, and multiplication rates of cancer
cells on tumor morphology and development. Detailed numerical solutions are presented.
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PACS number~s!: 87.10.1e, 02.60.Cb
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I. INTRODUCTION

The understanding of the dynamics of tumoral growth
one of the great challenges of modern science. The inte
of the problem has led to the formulation of numero
growth models. On the experimental side, new techniq
are continuously enriching our knowledge of the pheno
enology of this growth and, consequently, imposing ad
tional constraints on the models being developed. An ex
lent survey of the state of the art in tumor modeling can
found in a recent book edited by Adam and Bellomo@1#. The
initial stages of tumor evolution have been described us
the deterministic diffusion-controlled growth of spheroid
One of the first steps in this direction was Burton’s mod
@2#. Burton considered a spherically symmetric tumor gro
ing under conditions of diffusive equilibrium, and was ab
to obtain formulas for the radii of the tumor and its necro
core.

A few years later, Glass introduced a growth inhibitor in
model of one-dimensional growth, showing how it cou
lead to a bounded tumor@3#. An extension of this model to
three dimensions was due to Shymko and Glass@4#. These
authors found that, depending on the choice of paramete
was possible to obtain both limited and unlimited spheroi
growth. The effect of nonsymmetric perturbations was inv
tigated by Greenspan@5#. More recently@6#, Chaplain and
co-workers addressed the issue of nonlinear diffusion, sh
ing that it leads to results similar to those obtained by ass
ing the existence of a nonlinear source term. One of the m
sophisticated mathematical descriptions of the various sta
of cancer growth, including angiogenesis and the vasc
stage, is that presented by Chaplain@7#.

In this paper we propose a model whose philosophy
completely different from that of previous mathematic
models. Rather than trying to obtain analytical solutions t
mimic the kinetics of cell population growth, we pay clo
attention to the local evolution and to the role of a set
relevant parameters characterizing cell proliferation. A co
puter simulation is used to generate specific predictions. T
PRE 591063-651X/99/59~2!/2206~12!/$15.00
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procedure allows us to model, without any parameter fitti
some of the crucial events taking place at the cellular leve
is also capable of taking into account fluctuations and irre
larities in the nutrient distributions and in the cell popul
tions. It seems clear to us that, except in its very early sta
or in a very homogenous and controlled environment
growing tumor will seldom preserve a shape that can be
equately described by any manageably simple set of ana
cal functions.

Nutrients introduced with the diet are carried through t
vascular system by the blood, cross the vessel walls,
diffuse through the tissue towards the individual cells. Ess
tial nutrients for eukaryotic cells include some amino aci
glucose, and transition metals such as iron, zinc, and cop
Oxygen is a limiting factor for many cellular functions, in
cluding differentiation, respiration, and mechanical work, b
it does not significantly restrict cell proliferation, which
supported by anaerobic glycolysis and does not involve
zymatic steps requiring oxygen@8#. When the amount of an
essential nutrient is limited within a specific environme
the growth rate of a given cell population is controlled by
ability to compete for it. We will show how the manifold o
cancer morphologies emerges from a model that prop
accounts for the competition for nutrients among the vario
cell populations.

The high proliferation rate of cancer cells makes the
especially vulnerable to nutrient deprivation. For this reas
behind a rapidly evolving tumoral front, a necrotic cor
composed mostly of dead cells, usually develops. As a c
sequence, we need to consider at least three different
populations coexisting in the tumor-affected tissue: heal
cells, cancer cells, and dead cells.

Although the model is formulated taking into account t
presence of many nutrients, solutions are obtained by ass
ing that crucial processes are controlled by a single crit
nutrient. There are reasons to believe that iron can often p
this role. In fact, beyond its well-known role in oxygen tran
port in many redox reactions, including mitochondrial ele
tron transport, in all the hydroxylase reactions, and in
2206 ©1999 The American Physical Society
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synthesis of uric acid, it is used, in the form of an iron-sul
complex, in the synthesis of deoxyribonucleotides from rib
nucleotides. Since deoxyribonucleotides are essential
DNA synthesis and, therefore, for reproduction, iron is
requisite nutrient for the reproduction of all living organism
@9#. Indeed, it is known that a cancer cell, like any other c
reproduces when enough iron is available; furthermore, c
treated with iron chelators detach and die@10#, the interme-
diate reaction to a sharp iron deficiency being detachm
and diffusion @11#. On the other hand, the organs whe
metastatic cancer cells more often come to a stop are th
like bone marrow, liver, and lung, whose iron concentrat
is highest.

Iron uptake is mediated by siderophores, special carr
whose synthesis is regulated by the actual cellular nee
iron. On the basis of the pattern and amount of sideropho
produced by the cells@12# and of the number of correspond
ing receptors, it is possible to forecast the growth of the c
population under study, by assuming that the iron availabi
in the selected environment and the ability of the compet
populations to produce siderophores and receptors are kn
@13#.

Since the complexity of the problem requires that for
nontrivial cases we obtain our solutions numerically,
write the equations defining our model directly in their d
cretized forms. For simplicity, all of our examples a
worked out in two dimensions. This restriction on the dime
sionality is not really important, since the manifold of ev
lution patterns arising in two dimensions seems vast eno
to capture all the important features of a general descrip
of cancer growth. If the geometry of a given problem r
quired an explicit three-dimensional solution, our formalis
could be extended without difficulties.

The problems of cancer growth, and, more generally
cell motion and cell pattern formation, have been larg
ignored in the physics literature. Perhaps this situation
starting to change@14–17#. Two papers, one theoretical an
the other experimental, containing elements closely rela
to some of the ingredients used in our model, have appe
very recently. Schweitzer, Ebeling, and Tilch have inves
gated the motion of Brownian particles that have the abi
of storing energy in an internal depot, transporting it alo
and transforming it into kinetic energy@16# ~in our model
cancer cells transport the bound nutrient along!. Halvorsrud
and Wagner have performed a careful study of the growth
the plasmodium stage of the slime mold Physarum on a s
strate containing a nonuniform nutrient distribution@17#. The
plasmodial behavior was found to comprise a feeding ph
characterized by nutrient absorption and plasmodi
growth, and a searching phase characterized by the migra
of the plasmodial front in a non-nutrient area.

In the next section we present our model, assuming
several nutrients are simultaneously relevant for tumor e
lution. A detailed numerical study of the model solutions
given in Sec. III, where we will consider a single cruci
nutrient and determine the importance of various envir
mental parameters. Finally, in Sec. IV we conclude by s
gesting some possibilities for future work.

II. MODEL

In this section we develop our model. We start by desc
ing nutrient absorption and transport in healthy tissu
r
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where we later introduce a cancer seed. We then state
rules for its evolution and write the set of coupled nonline
equations that describe the system.

A. Nutrients in healthy tissue

First, we consider a cancer-free tissue slab, in whichM
nutrients originate from one or more sources, diffuse, and
consumed by healthy cells. These cells are assumed t
uniformly distributed in the region under consideration. T
nutrient concentrationspk(rW,t) (k51, . . . ,M ) satisfy
reaction-diffusion equations. To write these equations,
discretize the diffusion space using a two-dimensional squ
grid with (2I 11)3(2J11) node points. Each node poin
~i,j! represents a volume element that will generally cont
many cells and nutrient molecules.

Let ak , gk , andSk(t) be, respectively, the diffusion rat
for nutrientk, its absorption rate by each healthy cell, and
input rate~from external sources!. Assuming that the nutri-
ents are noninteracting, we can easily write the equation
isfied by the free nutrient concentrationpk at node pointiW:

ṗk~ iW,t !5(
i 8

NN

ak@pk~ iW8,t !2pk~ iW,t !#2gkpk~ iW,t !h1Sk~ iW,t !.

~2.1!

Here the first term on the right-hand side corresponds
nutrient diffusion from and to the nearest neighbors ofiW, the
second term accounts for the free nutrient absorption b
populationh of healthy cells, and the last term correspon
to the nutrient sources. In prevascular stages, these sou
may be considered as time independent, simply providin
fixed nutrient concentration in some tissue regions.

There areM uncoupled equations for the various nut
ents. These equations are valid provided that~i! nutrient dif-
fusion is homogeneous and isotropic and~ii ! the absorption
of the various nutrients proceeds independently of the p
ence of other nutrients. The relaxation of assumption~i!
would involve the introduction of either local or direction
dependenta’s, while the relaxation of assumption~ii ! would
require the introduction of coupling terms between the eq
tions for the different nutrients.

Equation~2.1! must be complemented by suitable initi
and boundary conditions.

B. Rules for cancer growth

We assume that at timet50 a cancer seed appears at t
center of an otherwise completely healthy slab. At later tim
we will have three coexisting cell populations, which w
shall labelh( iW,t) ~healthy cells!, c( iW,t) ~cancerous cells!,
andd( iW,t) ~dead cells!. The distribution of the cells occupy
ing a given node point will change in time, but we assum
that the total node population is conserved:

h~ iW,t !1c~ iW,t !1d~ iW,t !5n, ~2.2!

where n is the total cell population at any node point, a
sumed to be the same everywhere.
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Since the amounts of free and bound nutrients per n
determine the triggering of the different growth process
they must be considered separately: they will be labeledpk
andqk , respectively.

We could formulate the model in such a way that the ti
evolution of these concentrations and of the cell populati
was described by first-order~in time! differential equations.
However, since a numerical procedure is, in any case,
quired to obtain solutions, we will formulate our equatio
directly in their time-discretized forms.

Next we state the rules that govern the behavior of
cancerous cells, omitting, for brevity, to write explicitly th
time dependence, wherever not strictly necessary.

(1) Feeding.Free nutrients are transformed into bou
nutrients by cancer cell uptake at the rate

g̃k~ iW !5g̃k
as$12exp@2G̃pk~ iW !/PN#%, ~2.3!

whereG̃ is an iron affinity parameter andPN a proper nor-
malization factor, andas denotes the asymptotic value fo
Pk( i )→`. Equation~2.3! expresses the dependence of t
binding rate on the nutrient availability. It must be propo
tional to the nutrient concentration at low concentratio
while it is likely to saturate at higher concentrations. By
proper choice of units we can impose, for simplicity,G̃
5PN . An equation similar to Eq.~2.3! should also be writ-
ten, of course, for healthy cells. Since, however, their ir
affinity parameterG!G̃, a first-order approximation to Eq
~2.3!, as included in Eq.~2.1!, is sufficient.

(2) Consumption.Bound nutrients are consumed by ca
cer cells at the rate

b̃k~ iW !5b̃k
as$12exp@2qk~ iW !/c~ iW !#%, ~2.4!

where again a saturation in the consumption rate is assum
The factorc( iW) has been included in the denominator of t
exponent of Eq.~2.4!, since a cell can consume only its ow
bound iron, i.e., on the average,qk( iW)/c( iW), while it has
access to the whole amountp( iW) of free iron.

(3) Death.If the average amount of a bound nutrient p
cancer cell in a given nodeiW, qk( iW)/c( iW), falls below a
thresholdQk,D , a random number of cancer cells,r k( iW)
,c( iW), starve and die in the following step. The number
dying cells depends on the importance of the nutrient s
cies, but if the concentration of more than one nutrient
gone at a given time below the corresponding death thre
old, the conditionSr k( iW),c( iW) must be satisfied.

(4) Mitosis.The availability of sufficiently high quantities
of bound nutrients may trigger cancer cell division.
qk( iW)/c( iW) becomes larger than an upper thresholdQk,M for
each nutrientk, a properly defined random number of ca
cerous cells,r 8( iW),h( iW), replace healthy cells.

(5) Migration. If too little of a free nutrient is available
cancerous cells tend to migrate to neighboring nodes look
for a more suitable environment. Of course, the result
cellular diffusion rateãk depends on the nutrient speciesk,
since the number and efficiency of the sensors put out by
cancer cell to register nutrient abundance in the environm
depends on the nutrient species. For simplicity, we ass
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that only the nutrientk51, which is likely to be iron, is
crucial for determining cancer cell migration. Hence we a
sume that ifp1( iW)/c( iW),PD , a random number of cance
cells, r 9( iW),c( iW), migrate to neighboring nodes. We no
that the migrating cancer cells take their bound nutrie
along. We also remark that healthy cells must be presen
the target node to permit the displacement of the cancer c
We also assume thatQk,D,PD,Qk,M . Therefore the mode
allows for a quiescent status of the cancer cells. What h
pens with the healthy cells when the node in which they
located is invaded by cancer cells? Since they are less mo
and aggressive than cancer cells, and they are generally
weakest element in their competition against them, we
sume that they are eliminated when cancerous cells ente
node, in such a way that Eq.~2.2! is preserved.

C. Equations describing cancer growth

The above stated rules lead to a set of coupled nonlin
equations for the cell populations and nutrient concen
tions. At each time step we must first ascertain if one or m
of the thresholds defined above have been overcome,
suitably modify the corresponding cell population to accou
for mitosis or cell death. A suitable algorithm is

c~ iW,t !→c~ iW,t !H 12(
k

r k~ iW !Q@Qk,Dc~ iW !2qk~ iW !#

1)
k

r 8~ iW !Q@qk~ iW !2c~ iW !Qk,M#J . ~2.5!

HereQ is Heaviside’s step function. The second and th
terms on the right-hand side represent, respectively,
modifications introduced in the cancer cell populations
death and mitosis. The corresponding equation for the d
cell population is

d~ iW,t !→d~ iW,t !1c~ iW,t !(
k

r k~ iW !Q@Qk,Dc~ iW !2qk~ iW !#.

~2.6!

The concentration of healthy cells is then recalculated
ensure conservation:

h~ iW,t !5n2c~ iW,t !2d~ iW,t !. ~2.7!

After these transformations, we must compute t
changes undergone as time advances of one step. The u
ings are performed as follows.

~i! Cancer cell population. The population at a no
changes because of migration to and from the node. T
migration is assumed to be proportional to the population
healthy cells at the target site. Therefore cancer cells m
from node iW8 to node iW at a rateh( iW)ã1c( iW8), each cell
carrying a fractionqk( iW8)/c( iW8) of bound nutrientk. Thus
the iteration equation for the cancer cell population is
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c~ iW,t1t!5c~ iW,t !1tFh~ iW !(
iW8

NN

ã1~ iW8!c~ iW8!

2ã1~ iW !c~ iW !(
iW8

NN

h~ iW8!G , ~2.8!

whereã1( iW)5ãQ@c( i )PD2p1( iW)#, t is the time discretiza-
tion step, and all functions on the right-hand side must
evaluated at the timet. Of course, since the migration of
cancer cell depends not only on the local diffusivity but a
on the state of the target site, Eq.~2.8! is not the discrete
counterpart of a simple diffusion equation.

~ii ! Dead cell population. Cells in the necrotic core a
static. Thus

d~ iW,t1t!5d~ iW,t !. ~2.9!

~iii ! Healthy cell population. Again, we use cell numb
conservation and write

h~ iW,t1t!5n2c~ iW,t1t!2d~ iW,t1t!. ~2.10!

~iv! Free nutrient concentration. The equation describ
the time evolution of thekth free nutrient concentration is

pk~ iW,t1t!5pk~ iW,t !1tH ak(
iW8

NN

@pk~ iW8!2pk~ iW !#1Sk~ iW !

2gkpk~ iW !h~ iW !2g̃k~ iW !c~ iW !J . ~2.11!

The last two terms in this equation account for nutrie
absorption by the healthy and cancer cells, respectively. B
populations compete to feed on the available free nutri
The ratesg̃k( iW) depend, of course, onpk( iW), as indicated in
Eq. ~2.3!.

~v! Bound nutrient concentration. The bound nutrient co

centration is given by res
e

g

t
th
t.

-

qk~ iW,t1t!5qk~ iW,t !1t

3F g̃k~ iW !c~ iW !2b̃kc~ iW !1h~ iW !

3(
iW8

NN

ã1~ iW8!qk~ iW8!2ã1~ iW !qk~ iW !(
iW8

NN

h~ iW8!G ,

~2.12!

where the term proportional tob̃k represents the bound nu
trient that is being consumed by the cancer cells and the
two terms stand for the nutrient that is transported along
the migrating cancer cells.

Some numerical solutions for this system of coupled n
linear equations are presented in the next section. Aside f
the explicit solutions, it may be useful to find the times
which crucial events, such as the death of an organ or
onset of metastasis, occur. This has to be specifically defi
for the particular organ and cancer type under considerat
In relation to organ death, it may be meaningful to find t
time at which a given portionK of the cells becomes eithe
cancerous or dead~eventA!. For the case of metastasis w
find instead the time at which a proportionH of cells has
migrated into the blood vessel~eventB!. Only cancer cells
are allowed to enter the blood vessel and the migration o
few cancer cells into it does not necessarily mean metast
since the survival probability for cancer cells in the bloo
stream is very low@18#. We use absorbing boundary cond
tions for the cancer cells entering the vessel: any cancer
arriving at the vessel wall is instantly incorporated into t
bloodstream. It may sometimes be necessary to consider
the vessel wall forms a barrier against cell invasion. T
inclusion of this barrier in our model and the analysis of
effects, which could have some bearing on eventB, would be
relatively simple. However, since this is not the main po
of our paper and we do not want to introduce too ma
parameters in this presentation of our model, we have om
ted a discussion of this problem here.

III. RESULTS AND DISCUSSION

One of the most striking properties of cancer cells is th
ability to proliferate, following a huge range of multiplica
tion rates and generating a wide variety of shapes. Thi
true even for small variations in the environmental con
tions. However, clinical data point to some common featu
5
5
5

TABLE I. List of the parameters used for the various cases~Figs. 1–8!.

Figure a g ã b̃ g̃ P0 QM QD PD

1 0.25 0.0002 0.1 0.08 0.12 1 0.5 0.12 0.2
2 0.25 0.0002 0.004 0.08 0.12 1 0.5 0.12 0.2
3 0.25 0.0002 0.02 0.07 0.1 0.45 0.12 0.3
4 0.25 0.0002 0.01 0.08 1.3 0.4 0.12 0.2
5 0.25 0.0002 0.025 0.07 0.5 0.12 0.2
6 0.25 0.0002 0.025 0.07 0.5 0.12 0.2
7 0.25 0.0002 0.09 0.15 0.5 0.12 0.2
8 0.25 0.0002 0.01 0.08 0.1 1.5 0.4 0.2
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FIG. 1. Snapshots of the growing tumor, at different times. Lightest tones represent the most active regions~highest cancer cell
concentrations!. The dark region at the center represents the necrotic core. Due to the high cancer cell mobility (ã50.1) the growth is almost
isotropic.
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~e.g., the eventual catastrophic growth of neoplastic tissue! in
the evolution of tumor structures@19#. Moreover, as is often
the case in biological systems, a chaotic behavior seem
be the general rule. The analysis of the effects of variati
of the relevant parameters is the first step to test the vali
of the model, which must be capable of predicting a la
variability in the growth rates and morphology without d
stroying those features that are common to cancer gro
Changes in some properties that characterize the cancer
~e.g., the thresholds for multiplication, death, and diffusio!
are of course determinant. However, we also expect tum
behavior to be strongly dependent on the environmental c
ditions. In this section we try to determine how changes
the environment influence the evolution of the system.

To simplify the presentation of the results, we assume
there is a single relevant nutrient, which, for the reas
expounded in the Introduction, we take to be iron. Since
to
s

ty
e

h.
pe

al
n-
n

at
s
e

consider a single nutrient, we omit all subscripts in the f
lowing. After an extensive study we find that the iron affini
(g̃) and the diffusion coefficient (ã) of the cancer cells, and
the iron supply~which we assume to be given by the iro
concentrationP0 at the location of a blood vessel! are the
most critical parameters for the characterization of tumo
evolution. Next we use different representations to prese
few of the most significant results obtained in our analys
The parameters chosen for the simulations are reporte
Table I for all figures.

We assume that att50 the nutrient distribution has
reached a steady state consistent with the boundary co
tions. At that instant, a cancer seed is introduced at the n

IW, located at the center of the sample. No dead cells
present as yet. Therefore the initial conditions for our pro
lem are
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FIG. 2. As in Fig. 1, except that hereã50.004 leads to a strongly anisotropic growth.
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c~ iW,0!5c0d~ iW2 IW !, ~3.1!

d~ iW,0!50, ~3.2!

q~ iW,0!5q0d~ iW2 IW !, ~3.3!

wherec0 and q0 represent the initial number of cancero
seed cells and the corresponding amount of bound nutr
respectively. The free nutrient concentrationp( iW,0) is taken
to be that corresponding to the steady state of the hea
tissue. The initial amount of bound nutrient per cell,q0 /c0 ,
is assumed to satisfyQD,(q0 /c0),QM . We also assume
that the total cell population at each node is normalized
that we taken51.

The sample we consider is a two-dimensional slab of
sue. The nutrient source is a vessel that runs along its
nt,

hy

o

-
ft

side. The iron concentration there is assumed to remain c
stant,p(t)5P0 . Periodic boundary conditions are used f
all quantities at the upper and lower boundaries. To de
mine p( iW,0) we find a stationary solution of the continuu
equivalent of Eq.~1!,

ṗ~x,t !5a
]2p~x,t !

]x2
2gp~x,t !, ~3.4!

where we have setS(t)50 and taken advantage of the tran
verse symmetry of the problem. It can be easily seen that
solution isp(x)5p0 exp(2Dx), whereD5Ag/a. Once dis-
cretized, the solution has the formp( i )5P0 exp(2iD),
wherei 50, . . . ,2I 11 runs along the lattice nodes.

Time discretization allows us to solve the model equ
tions by successive iterations. The lattice size used in
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FIG. 3. Snapshots of a growing tumor for various values of the iron concentration at the blood vessel location. Since for brevity
maps at a single time~which is different for each plot! are reported, the complete time history of the relevant parameter is shown in the
plots below the maps.
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the
simulations is 1003100. For a more realistic study involvin
a specific tumor pathology, a much finer grid with a re
tively short time step would be required. Even in this situ
tion and in the case of three-dimensional~3D! simulations,
computer times and costs are quite affordable, especial
parallel processing is adopted@20#. In Figs. 1–4 we show
snapshots of the concentration of active cancer cells, the
crotic core usually being represented by a dark region
rounded by cancer cells. Higher concentrations of active c
cer cells are depicted in lighter gray tones. The linear p
represent the time evolution of the average concentration
cancerous and dead cells and of the total number of ca
cells that have migrated into the blood vessel. In all figur
-
-

if

e-
r-
n-
ts
of
er
,

the tumor seed is initially placed at the center of the spe
men with a concentrationc050.2. The nutrient source~the
‘‘vessel’’! located at the left edge of the specimen is also
sink for the cancer cells. Figures 1–4 clearly show that va
tions of a few biochemically relevant parameters within re
sonable bounds lead to a wealth of possibilities for neopla
development.

Comparing Figs. 1 and 2, we observe how the tum
shape is affected by the cancer cell diffusivityã. When the
tissue is very soft, i.e., whenã is high, the tumor grows
easily in all directions and the shape remains almost sph
cal. This can be seen in Fig. 1, whereã50.1. The tumor
center of mass moves very fast towards the vessel and
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FIG. 4. Snapshots of a growing tumor for various values of the iron binding rate. Since for brevity only the maps at a single time~which
is different for each plot! are reported, the complete time history of the relevant parameter is shown in the linear plots below the m
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necrotic region grows rapidly. From the linear plot, we s
that a large amount of dead cells is already present in
tissue when the cancer cells start migrating into the blo
vessel. The large growth attained by the tumor at that t
means that the survival chances of the tissue are prob
very low. Consequently, the arrival at a metastatic stag
unlikely.

A very different situation arises whenã is small: see Fig.
2, for which ã50.004. The tumor grows rather slowly, de
veloping a highly anisotropic shape. Only those cancer c
migrating towards the vessel find good conditions for rep
duction. They also shield from the iron flow the few canc
cells that moved in other directions. In addition to the hi
activity at the front tip, revealed by the lighter tones, it
interesting to note the jagged tumor edges, quite differ
from the smooth surface exhibited whenã is high ~see Fig.
1!. The strong directionality in the tumor development lea
to a very high probability of metastasis, since only a ve
e
e
d
e
ly

is

ls
-
r

nt

s
y

small portion of the tissue has become cancerous by the
cancer cells begin migrating into the vessel. These conditi
may lead to the formation, starting from a single initial co
of several tumor seeds, with the one closest to the ve
always the most active.

Strong variations in the tumor shape have also been
tained by changing other parameters. Snapshots for diffe
values of the iron availability, characterized byP0 , and of
the cancer cell iron binding rateg̃as, are reported in Figs. 3
and 4, respectively. Due to the different proliferation rat
the snapshots shown in the various plots refer to differ
times. In Fig. 3 we observe that the tumor cross-sectio
area~as seen from the vessel! decreases with a reduction i
the iron supply. Cancer cells respond to a supply reduc
with a stronger jump directionality; activity becomes large
confined to the front tumor end.

Figure 4 shows that cancer growth is very sensitive
siderophore efficiency. Indeed, cancer growth demand
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FIG. 5. Comparison of the timesT(K%) for eventsA andT(Hn) for eventsB as functions ofP0 for several values ofg̃as, K, andH.
In eventsA a portionK% of the cells becomes cancerous or dead. In eventsB a portionH of cells has migrated into the blood vessel.
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relatively high iron binding rate. If iron uptake is insufficien
the mitosis threshold is seldom reached and the tumor
mains latent.

As the linear plots show in all cases considered, o
cancerous cells start arriving at the vessel, their migra
rate reaches a steady state, leading to a linear growth o
total amount that has entered the bloodstream, while the
number of dead cells levels off. The number of cancer c
remaining in the tissue, on the other hand, reaches a m
mum and then starts to decrease once migration into
vessel has begun.

Figures 5–7 report the times required for eventsA or B
~defined in the last paragraph of the preceding section! as
functions of the model parametersP0 ~Fig. 5!, g̃as ~Fig. 6!,
and ã ~Fig. 7!. More specifically, we callT(K%) the time
needed for a portionK% of the cells to become either can
cerous or dead~event A! and T(Hn) the time at which a
numberH of ‘‘normalization units’’ n @as defined in Eq.~2!#
of cancerous cells has reached the blood vessel~eventB!.

Figures 5~a! and 5~b! show, for K5H520, that both
T(K%) andT(Hn) decrease with the iron concentration
the vesselP0 . For large values ofP0 , the curves approach
e-

e
n
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e

an asymptotic value, which can be evaluated analytica
Likewise, for any givenP0 , an increase in the iron affinity o
cancer cells implies a reduction in the event time, i.e.
higher proliferacy rate for the tumor.

The regularity of the curves in this figure suggests a fitt
of the form

T~K%!5u1k exp@1/~P02z!#, ~3.5!

whereu, k, andz are parameters which depend ong̃as andK.
The fitting is excellent not only for the reported plots but al
for many others~not reported here for brevity!. A similar
fitting is not possible for the curves of Fig. 5~b!, which ex-
hibit a more complex behavior. In fact, for large values
P0 , cancerous cells do not significantly diffuse, due to t
high iron concentration in the neighborhood. As a con
quence, migration is inhibited and the time required by
cancer cells to get into the bloodstream is increased.

In Figs. 5~c! and 5~d! the times for eventsA and B are
plotted as functions ofP0 for various values ofg̃as, K, and
H. It is interesting to notice that the curves forT(K%) are
above those forT(Hn) for low values ofP0 and, vice versa,
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they are below for high values ofP0 . The intersection points
separate regions of high likelihood of patient death, due
the growing cancer, from regions of more likely occurren
of metastasis. The values ofK andH that are relevant for a
meaningful comparison depend, of course, on the spe
details of the developing neoplasia.

In Fig. 6 we report the timeT(20%) of occurrence of
event A as a function of the nutrient binding rateg̃as for
several values ofP0 . We observe that, when the iron affinit
is large, the system behavior is weakly sensitive to the i
concentration, which becomes a critical parameter for l
iron affinity, as should be expected. Conversely, we see
the curve is rather flat forP0510, while there is a strong
dependence ong̃as when the iron availability is low
(P053.76). The family of curves of Fig. 6 again shows
interesting regularity that suggests a fitting with a hyperbo
function,

T~K%!5u81
k8

~ g̃as2g̃c
as!l , ~3.6!

whereu8, k8, g̃c
as , andl are parameters that depend onP0

and K. In particularu8 represents the asymptotic value
T(K%) for a very largeg̃as, while g̃c

as is a critical value of
g̃as. When this critical value is reached there is a transit
between the death of the patient and the latency of the tum
In fact, for g̃as5g̃c

as , T(K%)→`.
A simple argument may be used for an analytical eval

tion of g̃c
as . Let us assume that the tumor has reached a s

at the edge between latency and death. Under these eq
rium conditions, the amounts of absorbed and consumed
must be approximately equal. Likewise, diffusion becom
negligible. Then, from Eq.~2.12! it follows that

g̃k~ iW !5b̃k~ iW !, ~3.7!

which yields an estimate ofg̃c
as in excellent agreement with

the value obtained numerically.

FIG. 6. Time of occurrence of eventA as a function ofg̃as for
various values ofP0 . Solid lines correspond to a fitting with Eq
~3.6!.
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The dependence of the time of occurrenceT(20%) of
eventA on the diffusion coefficientã is reported in Fig. 7 for
several values ofP0 . For low values ofã the cancer growth
is strongly determined by the nutrient availability in th
blood vessel. On the contrary, when cancer cells can diff
easily, cancer growth is mostly dependent on the ability
the cells to move to regions where the lack of competit
allows them to find high concentrations of free iron. O
course, for high values ofã, since the availability of bound
iron for cancer cells that do not belong to the tumor perip
ery will rapidly decrease, the necrotic core will also gro
very fast.

A different representation is used in Fig. 8, where we p
the temporal evolution of the concentrations of active a
necrotic cancer cells and of the number of cells that h
migrated into the vessel for several values of the cancer
death thresholdQD . We distinguish in the plots between a
initial stage, when the cancer starts growing, and a ‘‘matu
stage, when the cancer is already well developed. In the
tial stage, as can be more clearly seen from the inset, the
at first a fast growth region, followed by a plateau. Th
plateau is due to the onset of competition among the can
ous cells, which no longer have access to an unrestric
flow of nutrient. The irregular, almost chaotic behavior of t
growth in this initial stage is also remarkable. The fluctu
tions and the plateau are evident for large values of the d
threshold and disappear for lower values. The ‘‘matur
stage displays three well-defined regions~which can be
piecewise approximated by exponentials!. In the first of these
regions, cancer cell diffusion and reproduction are the do
nant phenomena and the total number of cancer cells gr
rapidly. The curve has a sudden change in slope when ca
cells start migrating into the vessel: this change of slo
corresponds to the first nonzero values in plot~c!. The maxi-
mum in the cancer cell concentration is reached when
whole region next to the vessel is invaded by the tum
Starting from this point, the number of cancer cells that ha
migrated into the bloodstream increases linearly. Finally,
system reaches a steady state: all active cells are prov
with enough iron, so that the growth of the necrotic co

FIG. 7. Time of occurrence of eventA as a function of the
cancer cell diffusion rateã for various values ofP0 .
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stops as shown in plot~b!, while newly generated cance
cells correspond to an additional influx into the bloodstrea

Another interesting feature of Fig. 8 is the presence
some accumulation points for the curves, which tend to c
verge to limit functions in the three plots. This is particular
evident in~c!, where the two curves for the lowest values
QD are superimposed. Note also how the positions of
‘‘breaking points’’ in ~a! collapse to the same time whenQD
decreases.

Latency is observed to occur for high values of the thre
old: note the large shift towards long times at the onse
growth in all curves whenQD50.1457~the plateau become
extremely long!. In this case, an interesting effect can
observed: the structure of the neoplastic tissue remains
most constant for a very long time, after which a catastrop
event occurs, leading to a fast growth of the tumor.

IV. CONCLUSIONS

Using a set of rules formulated on the basis of what
known about tumoral growth, we have developed a con
tent mathematical model for this process. Extensive num
cal simulations prove that the system described by our mo
is extremely sensitive to small variations in the values o

FIG. 8. Time dependence of~a! cancer cell concentration,~b!
necrotic cell concentration, and~c! number of cells that migrated
into the bloodstream for various values of the death thresholdQD .
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few relevant parameters. The solutions confirm that the p
cess of cancer growth is strongly related to the environm
tal conditions and, in particular, to the availability of bas
nutrients. Accordingly, a manifold of different morphologie
growth rates, and outcomes~death, metastasis, or latenc!
can emerge. Although we have considered iron as the lim
ing nutrient, other nutrients can also be included in t
model.

In the present contribution we have dealt only with tum
evolution in homogeneous media without specific anatom
constraints. Such homogeneous media can be taken to re
sent soft tissues, such as those in the brain. The morpho
cal correspondence of the result of our simulations with r
brain tumors is quite good@21#.

We are presently working in several directions to exte
and apply our model.

~1! Since immune system cells can develop a high affin
for nutrients, we will include the influence of leukocyte
They are an additional cell population that competes for
available resources.

~2! Anatomical constraints such as bone or cartilage
be easily incorporated, due to the local nature of our mo

~3! Our model already contains stochastic elements: m
direct stochasticity can be introduced to simulate tissue
homogeneities. For example, cancer cell diffusion into s
tissue regions can be modeled by randomly permitting
cancer cells to jump to more distant lattice sites. Figure
and 2 suggest that the random introduction of softer regi
~highera’s! in an otherwise hard tissue will favor spiderlik
morphologies.

~4! We are refining the criteria for quantitatively dete
mining tumor aggressiveness and its relation to tumor m
phology, tissue or organ death, and the likelihood of meta
sis.

~5! A very important addition will be the explicit inclu-
sion of vascularization. In fact, from our discussion it fo
lows that cancer cells are likely to emit an angiogenic sig
once their iron content (qi j ) falls below a certain threshold
QA.QD . Thus we will need to introduce in our equations
coupling between the variablesqi j and the nutrient source
@22#.

~6! Rapidly reproducing organisms are especially sen
tive to short-wavelength radiation. This is the reason w
some cancers are successfully treated using radiation.
model is ideally suited for incorporating at any given sta
~fixed t! any chosen flow of radiation~of specified frequency
and kind! or chemotherapeutical agents. Thus, once it
been sufficiently refined with the addition of all necessa
ingredients to make it realistic and reliable, it can be used
suggesting an optimization of therapy.
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