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Influence of dissipation on stationary states
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Stationary states in model dynamical systems are studied with the aim of elucidating the role of dissipative
interactions. First, the influence of coupling to the surrounding medium via friction forces~solid or fluid! is
considered on the example of a mass falling in the gravitational field and interacting with a thermalizing base
~the corresponding stochastic boundary condition at the base is derived!. The nature of deviations from the
Maxwell-Boltzmann distribution is discussed based on rigorous analytic approach combined with numerical
analysis. The effect of inelastic binary collisions, relevant to the theory of fluidized granular matter, is studied
for a column ofN colliding masses subject to gravity and absorbing energy from the base. In the case, where
the rebound velocity distribution is centered on a single value, remarkably simple periodic states are observed.
Analytic construction of the stationary distribution is presented forN52. For N.2, a rigorous necessary
condition for the existence of periodic states is derived, showing the relevance of parameterg5(12a)N,
wherea is the restitution coefficient of inelastic collisions. Computer simulations for two inelastically colliding
masses in the presence of a thermalizing base are described, indicating important differences in the stationary
distribution with respect to that caused by friction.@S1063-651X~99!14902-X#
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I. INTRODUCTION

The aim of this paper is to study the influence of dissip
tion on the nature of stationary states occurring in open s
tems. The idea is first to establish the physical situation
the absence of dissipation, and then derive modifications
duced by it. This program is followed here with simple e
amples relevant to the theory of fluidized granular matte

The system under consideration is a one-dimensional
umn of masses falling in a uniform gravitational field, a
being sent back into space owing to the energy provided
collisions with an underlying base. The source of dissipat
may be due to the coupling to the surrounding medi
through friction forces, or to the inelastic character of bina
collisions between the particles.

Theoretical, numerical, and experimental studies h
been already devoted to the dynamics of such a system.
forced systems, in which the kinetic energy is dissipa
without replenishment, have been studied both in the qu
elastic limit @1# and in the perfectly inelastic regime@2#. One
of the interesting features of one-dimensional granular s
tems is the so-called ‘‘inelastic-collapse’’@3,4#, where par-
ticles can collide infinitely often in finite time. Vibrated one
dimensional systems have also been studied theoretic
numerically, and experimentally in the limitN→`, whereN
is the number of beads@5–7#. In these references, the re
evance of parameterg5(12a)N, wherea is the restitution
coefficient of inelastic collisions, have been pointed out a
validated. The special caseN51, with purely inelastic colli-
sions with the base, proved to be an interesting dynam
system exhibiting a large variety of periodic states@8#. Fi-
nally, a recent experimental work was devoted to a study
the rebound velocity distribution of a vibrated on
dimensional system@9#, with the result that the rebound ve
PRE 591063-651X/99/59~2!/2192~11!/$15.00
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locity distribution function is proportional tov times the
Maxwell-Boltzmann distribution at high frequency.

However, the theory presented in most of the referen
cited above consisted essentially of analyzing and describ
the results of experimental data or numerical simulatio
and comparing them with predictions of some approxim
kinetic or Langevin-like equations. Also, a type of hydrod
namic approach, involving numerous approximations,
been proposed@10#.

In contradistinction to approximate approaches, the
sults reported here are based on a rigorous analysis of
dynamics, and thus contribute to a better understanding
the effects of dissipation. Although they could be obtain
only in some relatively simple cases, they help in clarifyi
the status of intuitive ideas, in particular of the concept
granular temperature@11#. In some cases computer simul
tions turned out to be of great utility in finding a way to a
exact solution of the equations of motion. We illustrate a
complete the analytic results by pictures of the dynam
emerging from simulations.

In Sec. II a discussion of the stochastic boundary con
tions at the energy providing base is presented. The form
the thermalizing rebound velocity distribution is derive
therein. Then comes an analysis of the stationary distribu
of a single mass subject, when falling in the gravitation
field, to a solidlike or fluidlike friction~Secs. III and IV!.

In Secs. V and VI we analyze stationary states of two
more masses falling freely in the gravitational field and d
sipating their energy through inelastic binary collisions. An
lytic results are described in Sec. V for the rebound distrib
tion centered on a single characteristic velocity. T
appearance of remarkably organized periodic states
yields a beautiful example for the reduction of the pha
space volume. A necessary condition for the existence
2192 ©1999 The American Physical Society
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PRE 59 2193INFLUENCE OF DISSIPATION ON STATIONARY STATES
these states is derived. Moreover, computer simulations
vide useful information on the stability of periodic orbit
Section VI contains a discussion of numerical results in
case of a thermalizing base. The paper ends with conclu
comments.

II. DISTRIBUTION OF THE REBOUND VELOCITY

Consider the one-dimensional motion of a particle
massm falling in vacuum with accelerationg. Its position
and velocity will be denoted byz and v, respectively~Fig.
1!. At the level z50, the particle encounters a base whi
sends it back into space with the rebound velocityw. The
distribution of the stochastic variablew will be characterized
by some probability densityf(w). It is thus assumed that n
correlations occur between the velocities before and a
collision with the base. In this situation, what will the st
tionary distribution of the particle look like? In order to a
swer this question we consider the kinetic equation for
probability densityf (z,v;t) for finding the particle in the
state (z,v) at time t. It reads

S ]

]t
1v

]

]z
2g

]

]v D f ~z,v;t !

5d~z201 !Ff~v !E
2`

0

dwuwu f ~01,w;t !

2uvuu~2v ! f ~01,v;t !G . ~1!

On the left hand side of Eq.~1!, density f (z,v;t) is acted
upon by the generator of a free motion with acceleration2g.
On the right hand side one finds the usual balance betw
the gain and loss of velocityv through collisions with the
base atz50. The loss of memory at the encounters is sho
by the fact that in the gain term the densityf(v) is multi-
plied by the total collision frequency

n~ t !5E
2`

0

dwuwu f ~01,w;t !. ~2!

Equation~1! can be rewritten in an equivalent integral for
in terms of the trajectories of collisionless motion followe
backward in time

z~2t !5z2vt2 1
2 gt2, v~2t !5v1gt. ~3!

FIG. 1. Schematic representation of the system.f(v) is the
rebound velocity distribution.
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If the freely accelerated motion starts fro
@z(2t),v(2t)#, the particle will reach the state (z,v) after
time t. Equation~1! is thus equivalent to

f ~z,v;t !5 f „z~2t !,v~2t !;0…

1E
0

t

dtd„z~2t!…f„v~2t!…n~ t2t!. ~4!

Notice that the loss term due to collisions in Eq.~1! does not
contribute to Eq.~4!. Indeed, the conditions imposed by th
d(z201) distribution and the step functionu(2v) exclude
the possibility of reaching the point (z.0,v) through colli-
sionless motion starting from@z(2t)50, v(2t),0#. Tak-
ing the t→` limit causes the term involving the initial con
dition to disappear. So, the stationary stateF(z,v)
5 limt→` f (z,v;t) satisfies the equation

F~z,v !5n~`!E
0

`

dt d„z~2t!…f„v~2t!…, ~5!

where n~`! denotes the asymptotic value of the collisio
frequency~2!. Thed distribution permits one to perform th
time integration in Eq.~5!. Then using the normalization
condition

E
0

`

dzE dv F~z,v !51

we arrive at the final formula

F~z,v !5n~`!
f~Av212zg!

Av212zg
, ~6!

with

n~`!5
g

*dwuwuf~ uwu!
. ~7!

Formula ~6! is quite convenient to discuss the physica
relevant boundary conditions. In particular, it tells us that
order to obtain the Maxwell-Boltzmann equilibrium distribu
tion with temperatureT, one has to choose

f~v !5fT~v ![u~v !
mv
kBT

expS 2
mv2

2kBTD , ~8!

whereu(v) is a unit step function.
It is interesting to note that the density of the form~8! has

been found experimentally to reproduce faithfully the dist
bution of the rebound velocity of a particle suffering inelas
collisions with a sinusoidally oscillating base at sufficien
high frequency of oscillations@9#. In this case the introduc
tion of an effective granular temperature was well found
as the insertion of Eq.~8! into Eq. ~6! predicts the Maxwell-
Boltzmann equilibrium state

FT~z,v !5
gm

kBT
A m

2pkBT
expS 2

m

2kBT
@v212zg# D .

~9!
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The thermalizing rebound velocity distributionfT will be
adopted in the next two sections. The object of the inve
gation will be then the nature of deviations from the equil
rium distribution ~9! caused by dissipative coupling of th
particle to the surrounding medium.

III. DISSIPATION THROUGH SOLIDLIKE FRICTION

We begin by considering the simplest dissipation mec
nism supposing that the motion in the gravitational field
accompanied by energy losses due to solidlike friction. T
means that in addition to accelerationg the particle is con-
stantly acted upon by a stopping force@2sgn(v)ma#, with
a,g. So, the kinetic equation~1! has to be modified since
the magnitude of the acceleration depends now on the or
tation of the velocity. It must be noted that we do not co
sider the static counterpart of solid friction in this study, b
we will discuss this point below. The new expression for t
kinetic equation is

S ]

]t
1v

]

]z
2@g1„u~v !2u~2v !…a#

]

]v D f ~z,v;t !

5d~z201 !Ff~v !E
2`

0

dwuwu f ~01,w;t !

2uvuu~2v ! f ~01,v;t !G . ~10!

The integral equation determining the stationary st
F(z,v;a) is again of the form~5!,

F~z,v;a!5n~`;a!E
0

`

dt d„z~2t!…fT„v~2t!…, ~11!

where †z(2t),v(2t)‡ denote the collisionless trajector
traced back from the initial point (z,v) during the time in-
terval t.0, and the stationary collision frequencyn~`;a! is
given by

n~`;a!5E
2`

0

dwuwuF~z,w;a!.

The d distribution in Eq. ~11! permits to reformulate the
dynamical problem in the following way: what must be t
value of the rebound velocityw5v(2t).0 atz(2t)50 to
find the particle after timet at the levelz with velocity v? If
v.0, the situation is completely analogous to that of a fr
tionless motion, the role of accelerationg being played by
(g1a). In this case,

w5A2~g1a!z1v2,

and, in accordance with Eq.~6!, the time integration in Eq
~11! yields a term proportional to

fT„Av212z~g1a!…

Av212z~g1a!
. ~12!

However, whenv,0, a modified behavior occurs. Indee
the particle has first to attainzmax where its velocity vanishes
i-
-

-

is

n-
-
t
e

e

-

and then fall down with acceleration (g2a) to the altitude
z, obtaining the required negative velocity. The energy c
servation implies the relations

w252~g1a!zmax,
~13!

v252~g2a!~zmax2z!.

Solving these, we find

w5A2~g1a!z1
g1a

g2a
v2. ~14!

Hence, the time integration in Eq.~11! here gives a term
proportional to

fTSAg1a

g2a
v212z~g1a!D

Ag1a

g2a
v212z~g1a!

. ~15!

Now using the explicit form of the rebound density~8!, we
find the relation

F~z,v;a!52n~z;a!FP1u~v !fM~v;T!

1P2u~2v !Ag1a

g2a
fM~v;Ta!G , ~16!

wheren(z;a) is the normalized spatial density

n~z;a!5
m

kBT
~g1a!expS 2

m

kBT
~g1a!zD , ~17!

fM denotes the Maxwell velocity distribution,

fM~v;T!5A m

2pkBT
expS 2

mv2

2kBTD , ~18!

and thea-dependent temperatureTa is given by

Ta5S g2a

g1a DT. ~19!

The constantsP1 andP2 denote the probabilities for finding
a particle with a positive and negative velocity, respective
Clearly, P11P251. Moreover, whereas the particle sta
ing from z50 with some positive velocityw.0 reaches the
highest pointzmax after a time

t↑5
w

g1a
,

it subsequently falls down during the time interval

t↓5
w

Ag22a2
.

This means that
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P1

P2
5

t↑

t↓
5Ag2a

g1a
.

The above relations yield the following result forP1 :

P15
Ag2a

Ag1a1Ag2a
. ~20!

In this way we arrive at the final formula

F~z,v;a!5n~z;a!F~v;a!

5
2n~z;a!

Ag1a1Ag2a
@u~v !Ag2afM~v;T!

1u~2v !Ag1afM~v;Ta!#. ~21!

The structure of state~21! is quite simple, as there are n
correlations between the position and velocity of the partic
This property of equilibrium~9! survives the action of the
dissipation. However, the velocity distribution is changed
an important way. It is a linear combination of two halves
the Maxwell density~18!: for positive velocities with tem-
peratureT, and for negative velocities with a different tem
peratureTa , defined in Eq.~19!. One could thus introduce
here an anisotropic temperature, depending on the orie
tion of the velocity, but it would not make much sense as
temperature is not a microscopic quantity. On the other ha
the so-called ‘‘granular temperature’’ defined by the relat
kBTgr5^mv2& turns out to be the geometric mean ofT and
Ta :

Tgr5TAg2a

g1a
. ~22!

Clearly, for a sufficiently strong friction~a close tog! the
temperatureTgr deviates substantially from both temper
tures shown in Eq.~21!, especially from that characterizin
the ascending motion. By definition it represents the m
kinetic energy, but the use of the notion of temperature
rather misleading. To illustrate this last point, a graphi
representation of the velocity distribution is given in Fig.

FIG. 2. Velocity distributionF(v;a) for various values of the
friction coefficienta, according to Eq.~21!. It must be noted that
this probability density is independent of the altitudez. The vari-
ableu5v(m/kBT)1/2 is the dimensionless velocity.
.
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Finally, let us note that although the velocity distributio
F is not symmetric, it satisfies the condition

^v&5E vF~v;a!50,

which reflects the vanishing of the particle current~at any
altitude! in the stationary state.

As mentioned at the beginning of this section, the sta
part of solid friction has not been included in the model. Th
would lead to a static friction thresholdastat.a, wherea is
the dynamic coefficient introduced above. A particle initia
at rest cannot move as long as the force acting on it s
below the threshold. In the model presented above we c
sider a single particle dissipating its energy through solidl
friction. The theory presented above correctly describes
stationary state providedg.astat. Conversely, wheng
,astat, the particle stops at the top of its trajectory and sta
at rest forever. In this case, it is clear that the theory p
sented above should not apply. When several particles
present in the system the situation becomes more com
cated. We can expect low-energy collisions to be stron
affected by a static friction threshold when one of the tw
colliding particles is initially at rest. But a simple model o
instantaneous collisions cannot account for this effect si
the force felt by the colliding particles is not defined in th
case. The question of whether the system can reach the
tionary solution where all particles are at rest is then rai
wheng,astat.

IV. EFFECTS OF FLUID FRICTION

Let us now suppose that, between collisions with the ba
the falling mass dissipates its energy by suffering the fl
friction (2av). The force exerted by the surrounding flu
is proportional to the magnitude of the velocity, and acts
the opposite direction. The generator of collisionless mot
takes thus the form

F ]

]t
1v

]

]z
2S g1

a

m
v D ]

]vG . ~23!

It vanishes on the backward trajectory@z(2t),v(2t)# given
by

z~2t !5z1
mg

a
t2

m

a S v1
mg

a D FexpS a

m
t D21G ,v~2t !

5S v1
mg

a DexpS a

m
t D2

mg

a
. ~24!

The Jacobian of transformation~24! equals exp(at/m). So,
for the forward in time evolution we would obtain the fact
exp(2at/m). It measures the contraction of the phase sp
volume accompanying the dissipative evolution. This m
be taken into account when writing the kinetic equation.
deed, in the absence of collisions with the base, the distr
tion f (z,v;t) would be related to its initial value by

f ~z,v;t !5expS a

m
t D f @z~2t !,v~2t !;t50#. ~25!
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The exponential factor compensates for the contraction
the phase space volume, preserving the normalization o
-
o

of
he
probability densityf (z,v;t). It follows that the kinetic equa-
tion in the presence of the fluid friction takes the form
of the
F ]

]t
2

a

m
1v

]

]z
2S g1

a

m
v D ]

]vG f ~z,v;t !5d~z201 !FfT~v !E
2`

0

dwuwu f ~01,w;t !2uvuu~2v ! f ~01,v;t !G . ~26!

As a consequence, Eq.~11! for the stationary state is to be modified, and reads

F~z,v;a!5n~`;a!E
0

`

dt expS a

m
t D d„z~2t!…fT„v~2t!…. ~27!

In order to pursue the determination of the stationary state we have to insert trajectory~24! into Eq. ~27!. We then find the
explicit formula

F~z,v;a!5E
0

`

dt expS a

m
t D dH z1

mg

a
t2

m

a S v1
mg

a D FexpS a

m
t D21G J fTH S v1

mg

a DexpS a

m
t D2

mg

a J n~`;a!, ~28!

where the collision frequencyn~`;a! is to be calculated from the normalization condition.
First of all, let us note thatF(z,v;a) vanishes forv,vmin52mg/a, as the argument of thed distribution is always positive

in this region.vmin is the asymptotic value of the velocity of the falling particle corresponding to mutual compensation
gravitational and the friction forces. Clearly, this excludes the Gaussian distribution.

It will be convenient for the further analysis to use dimensionless variables

z5
mg

kBT
z, u5A m

kBT
v, x5

a

m
t. ~29!

The normalized stationary distribution turns out to depend on the ratio of the thermal velocityvT5AkBT/m and the minimum
velocity uvminu5mg/a. Putting

e5
vT

uvminu
, ~30!

we find, from Eq.~28!,

F~z,u;e!5n~`;e!E
0

`

dx exe2d„e2z1x2~eu11!~ex21!…f„~u1e21!ex2e21
…, ~31!

where the rebound distribution takes the simple form@see Eq.~8!#

f~u!5u expS 2
u2

2 D . ~32!

The probability density for finding the particle with velocityu equals

F~u;e!5E
0

`

dzF~z,u;e!5E
0

`

dxexu„~eu11!~ex21!2x…f„~u1e21!ex2e21
…n~`;e!. ~33!
ion
Whenu.0, the step functionu does not impose any re
striction, and a straightforward calculation with the use
Eq. ~32! yields the formula

u~u!F~u;e!5
en~`;e!

eu11
expS 2

u2

2 D . ~34!

Equation~34! explicitly shows the nature of deviation from
the Maxwell distribution during the ascending motion.
f
Integrating formula~33! over the whole velocity space

yields the relation

15n~`;e!E du x~u;e!f~u!, ~35!

wherex(u;e) represents the unique solution of the equat

~eu11!~ex21!5xex. ~36!

Relation~35! determines the normalizing factorn~`;e!.
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Coming back to the general formula~31!, we see that
owing to thed distribution the integration therein reduces
finding the pointxo5xo(z,u;e), which solves the equation

e2z1xo5~eu11!~exo21!. ~37!

Performing the integration in Eq.~31! thus yields the for-
mula

F~z,u;e!5en~`;e!exo
f~uo!

uo
u~xo!, ~38!

whereuo5(u1e21)exo2e21. One can check that the defi
nition of uo and Eq.~37! imply the relationxo5e(uo2u
2ez). As a result, for the thermalizing rebound veloci
distribution ~32!, F(z,u;e) takes the simple form

F~z,u;e!5en~`;e!
euo11

eu11
expS 2

uo
2

2 D
3u~uo2u2ez!u~uo!, ~39!

anduo satisfies

euo11

eu11
5exp@e~uo2u2ez!#. ~40!

uo represents the value of the rebound velocity sending
particle at altitudez with velocity u, andxo is the collision
time with the base. For each value ofu and z, uo can be
extracted numerically from Eq.~40!, whereasn~`;e! is de-
termined by the normalization condition. The results o
tained in this way are shown in Figs. 3–5.

Figure 3 illustrates the behavior of the probability dens
F(z,u;e) for e51, when the thermal velocity is equal to th
minimum velocity. This value ofe clearly reflects the com
petition between the thermalizing base and the fluid fricti
The variation of the velocity distribution with the altitud
can be observed in Fig. 3. We can note the vanishing
F(z,u;e) when u,umin521/e, and the strong asymmetr
of the velocity distribution. This asymmetry progressive
reduces with increasing altitude, as shown by the solid

FIG. 3. Velocity distribution at different altitudes fore
5vT /uvminu51. HerevT5(kBT/m)1/2 is the thermal velocity, and
vmin52mg/a. The dimensionless position and velocity are defin
by z5mgz/kBT, u5v/vT .
e

-

.

f

e

indicating the position of the maxima. However, it is cle
that the velocity distribution stays strongly different from
Gaussian density.

The building up of a singularity at low altitude foru50 is
to be noticed in Fig. 3. This occurs because forz!1 the
ascending velocities are practically unaffected by frictio
and their distribution induced by the base is Gaussi
whereas the negative velocities have a completely differ
distribution, entirely controlled by friction. It is then not su
prising that the two different halves join together atu50
with different slopes. This kind of discontinuity is smoothe
out after integration over the position space, and is not s
in the global probability densityF(u;e), as shown in Fig. 4.
Figure 4 shows the variation of the velocity probability de
sity F(u;e) when the dimensionless frictione varies from 0
to 1. In the absence of friction (e50) we find the equilib-
rium Maxwell state. Not surprisingly, the effect of the flu
friction is to concentrate the velocity distribution around t
minimum velocity21/e. This behavior ofF(u;e) at large
values ofe contrasts with the previously encountered situ
tion where the solid friction produced a discontinuity atu
50, but the two halves ofF(u;e) preserved the Gaussia
shape~see Fig. 2!.

The density profilesn(z;e) are shown in Fig. 5. Away
from e50, they deviate substantially from the baromet
exponential law. Let us recall that the barometric formu
was still valid in the case of the solid friction@see Eq.~17!#,
provided one used the renormalized massmeff5m(11a/g).

FIG. 4. Global velocity distribution for various values ofe.

FIG. 5. Logarithmic plot of the density profiles.
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The analysis presented up to now provided a descrip
of how friction forces affected the stationary distributio
which for freely falling particles would have a Maxwel
Boltzmann shape. This problem is not purely academic.
deed, solid friction usually occurs in experimental setu
confining particles to move along a given axis. An estimat
of the influence of the air drag on granular temperature,
scribed in a thorough analysis of experimental data in R
@9#, stressed the importance of the fluid friction.

V. DISSIPATION VIA INELASTIC BINARY COLLISIONS:
THE CASE OF A SINGLE REBOUND VELOCITY

Dissipative coupling through macroscopic friction had t
advantage of reducing the dynamic problem to the motion
a single particle in astaticfield of velocity dependent forces
The continuously acting friction induced asystematicreduc-
tion in the particle energy during its flight, which resulted
a strong anisotropy of the velocity distribution~see Fig. 3!.

In a granular fluid material, dissipation occurs only
binary inelastic collisions between the particles. Their traj
tories are thus piecewise parabolic, which reduces the an
ropy in the velocity distribution. We now turn to a study
the effects of inelastic binary collisions. The simplest po
sible system is one composed of two masses moving
gravitational field. Their states will be denoted by (z1 ,v1)
and (z2 ,v2), respectively. Particle 1 will be supposed to
closer to the base: 0<z1<z2 . This linear ordering is pre-
served by the dynamics.

Postponing the discussion of thermalizing boundary c
ditions @Eq. ~8!# to Sec. VI we shall assume here that t
rebound velocity is always taking the same characteri
value w.0. The corresponding probability density is th
f(v)5d(v2w).

When a binary collision between masses 1 and 2 occ
their velocities are instantaneously transformed accordin
the laws

v1→b12~a!~v1!5v12
11a

2
v12,

~41!

v2→b12~a!~v2!5v21
11a

2
v12,

wherev125v12v2 .
The case ofa51 is that of elastic collisions, where th

particles simply exchange their velocities. The Jacobian
transformation~41! is equal toa. So, when 0,a,1, inelas-
tic collisions contract the volume of the velocity space. L
us notice that the operatorb12(a

21) performs the inverse
transformation to that defined byb12(a) in Eq. ~41!. This
means that the velocities (v1 ,v2) occur after collision if the
precollisional velocities areb12(a

21)(v1),b12(a
21)(v2).

We denote byf 2(z1 ,v1 ;z2 ,v2 ;t) the two-particle prob-
ability density for finding the system at timet in the state
(z1 ,v1 ;z2 ,v2). The exact kinetic equation satisfied byf 2
reads

S ]

]t
1La~12! D f 2~z1 ,v1 ;z2 ,v2 ;t !5R~z1 ,v1 ;z2 ,v2 ;t !.

~42!
n

-
s
n
e-
f.

f

t
-
ot-

-
a

-

ic

s,
to

f

t

Here the term

R~z1 ,v1 ;z2 ,v2 ;t !

5d~z1!Fd~v12w!E dwuwuu~2w! f 2~0,w;z2 ,v2 ;t !

1v1u~2v1! f 2~0,v1 ;z2 ,v2 ;t !

describes the collisions of particle 1 with the base atz50.
The Liouville operatorLa(12) equals

La~12!5L0~12!1Ta~12!, ~43!

whereL0(12) generates free motion in the gravitational fie

L0~12!5Fv1

]

]z1
1v2

]

]z2
2gS ]

]v1
1

]

]v2
D G , ~44!

andTa(12) is the binary collision operator:

Ta~12!5d~z21!uv12u@a22u~v21!b12~a21!2u~v12!#.
~45!

The factora22 in Eq. ~45! compensates for the contractio
due to the inelasticity of collisions: one power ofa21 can-
cels the effect of the Jacobian of transformation~41!, and
another one provides the correct value for the precollisio
relative velocity v12/a. Of course, the stationary stat
F(z1 ,v1 ;z2 ,v2) represents the time-independent solution
the kinetic equation~42!.

We determined the explicit analytic form ofF owing to
information which we obtained after visualizing the dynam
ics with the help of a computer. It turned out that after t
disappearance of some initial effects, the two partic
moved in a periodic orbit in a remarkably synchronized wa
the binary collision always occurring at the same altitud
We could thus immediately conclude that the energyE2 of
particle 2 stayed constant all the time. Clearly, in the case
particle 1 a distinction was necessary between the ene
E1
↑5mw2/2 of ascending motion, and the energyE1

↓ with
which it moved back to the base after colliding with partic
2. The collision law~41! implies the following transforma-
tions of energies:

E1
↓5

12a

2
E1
↑1

11a

2
E22

12a2

8
mw12

2 ,

~46!

E25
12a

2
E21

11a

2
E1
↑2

12a2

8
mw12

2 ,
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wherew125w12w2 and (w1 ,w2) denote the precollisiona
velocities of particles 1 and 2, respectively. The second
lation expresses the fact that the energy of particle 2 is
changed at collision. In fact, its velocity is just reversed,
@see again Eq.~41!# we also have

2w25w21
11a

2
w12. ~47!

Finally, the timet between consecutive collisions~period of
the motion! must be the same for both particles. In the ca
of particle 2 we simply havegt522w2 . Particle 1 moves
up during the timet↑ needed to attain the precollisional v
locity w1!

gt↑5w2w1 ,

and then reaches back to the base after timet↓, during which
the postcollisional velocity attains the value2A2E1

↓/m:

2A2E1
↓

m
5w12

11a

2
w122gt↓.
a
s
th
n

r
em
th
in
th
it
-

r-

or
-
ot
o

e

For consistency, the equation

22w25w2
11a

2
w121A2E1

↓

m
~48!

must thus hold.
Equations~46!–~48! suffice to determine entirely the pa

rameters of the stationary state. We find

E1
↑5

mw2

2
, E1

↓5E1
↑S 113a

31a D 2

,

~49!

w125
4

31a
w, E25E1

↑S 1114a1a2

~31a!2 D .

Taking into account the normalization condition and the f
that the relative velocity after collision is equal to2aw12,
we eventually find the explicit formula for the stationa
state
F~z1 ,v1 ;z2 ,v2!5u~z1!u~z21!
mg2

w S 31a

11a D dFE~z2 ,v2!2
~1114a1a2!

~31a!2

mw2

2 G
3H dS v122

4

31a
wD dS E~z1 ,v1!2

mw2

2 D1dS v121
4a

31a
wD dS E~z1 ,v1!2S 113a

31a D 2 mw2

2 D J ,

~50!
r-
where the notationE(z,v)[@mgz1mv2/2# has been used.
The probability density~50! is highly singular. It involves

products ofd distributions confining the stationary state to
one-dimensional manifold in the four-dimensional pha
space. It can be checked by a straightforward calculation
formula ~50! provides the solution to the kinetic equatio
~42!. For a two-particle system, state~50! turns out to be
stable, attracting any initial condition.

In principle, analogous periodic states could exist fo
column ofN.2 masses, and we could indeed observe th
The particles keep oscillating within adjacent volumes in
position space in a remarkably synchronized way, suffer
inelastic collisions with their nearest neighbors, always at
same fixed altitudes. The visualization of this motion is qu
impressive. However, whenN.2, one cannot expect to ob
serve this simple periodic motion for any values ofa. In
order to clarify this interesting point we shall derive a rigo
ous necessary condition for the existence ofN-particle
single-period states described above.

We denote byzj the altitude at which particlesj and
( j 11) collide. Consider one period of motion of particlej .
It starts moving upward at levelzj 21 with velocity v j

↑(zj 21).
The timet j

↑ needed to attain the precollisional velocity f
the encounter with particle (j 11) equals

gt j
↑5v j

↑~zj 21!2v j
↑~zj !.
e
at

a
.

e
g
e

e

After collision, particle j acquires the velocityv j
↓(zj ), and

reaches the altitudezj 21 after timet j
↓ given by

gt j
↓5v j

↓~zj !2v j
↓~zj 21!.

The equality of the periods of motion for neighboring pa
ticles thus imposes the constraint

v j
↑~zj 21!2v j

↑~zj !1v j
↓~zj !2v j

↓~zj 21!

5v j 11
↑ ~zj !2v j 11

↑ ~zj 11!1v j 11
↓ ~zj 11!2v j 11

↓ ~zj !.

~51!

Now applying the inelastic collision law~41!, we find the
recurrence relation

wj , j 115 1
2 ~wj 11,j 121wj 21,j ! ~52!

for relative precollisional velocities of particlesj and
( j 11):

wj , j 115v j
↑~zj !2v j 11

↓ ~zj !.

The recurrence equations~52! are simply solved by

wj , j 115S 12
j

NDw0,1. ~53!
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The value ofw0,1 can be calculated by considering the peri
of motion of the lowest-lying particle 1. One can then read
check that Eq.~52! for j 51 reads

w1,25
1
2 ~w2,31w0,1!,

with

w0,15
2~w1A2E1

↓/m!

11a
. ~54!

The condition we are looking for can now be derived
considering the energies of the particles. We denote byEj

↑

andEj
↓ the energy of particlej during its upward and down

ward motion, respectively. The collision law~41! implies
energy transformations of the forms

Ej
↓5

11a

2
Ej 21
↑ 1

12a

2
Ej
↓2

12a2

8
mwj 21,j

2 ,

~55!

Ej 11
↑ 5

11a

2
Ej
↑1

12a

2
Ej 11
↓ 2

12a2

8
mwj , j 11

2 .

Summing up these relations fromj 51 to j 5(N21), one
finds

E1
↓5

mw2

2
2

12a2

4 (
j 51

N21

mwj , j 11
2 .

Then inserting results~53! and ~54!, and performing the
summation, we arrive at the relation

w2A2E1
↓/m

w1A2E1
↓/m

5
12a

11a F2N

3
211

1

3NG . ~56!

Clearly, Eq. ~56! cannot be satisfied unless the right ha
side is a positive number smaller than 1. This condition c
be written as

~12a!2,6g22g2 where g5~12a!N. ~57!

Our analysis caused a relevant parameterg5(12a)N to
appear. Its role has already been recognized in the stud
clustering transition in a column of beads@7#. Inequality~57!
is automatically satisfied forN52. However, already forN
53 not all values ofa are admissible. Clearly, for larg
values of N, only at extremely small inelasticity~a very
close to 1!, one can expect the appearance of the sim
periodic motion. Moreover, the stability of this state b
comes fragile, as could be observed by visualizing the co
puter simulations. A more drastic inequality can be deriv
from the positivity of the collision timest j

↑ and t j
↓ . The

analytic expressions fort j
↑ andt j

↓ are

gt j
↑5w

622~12a!~N2 j 12!

6aN1~12a!~2N 211!
, ~58!

gt j
↓5w

612~12a!~N2 j 21!

6aN1~12a!~2N 211!
. ~59!
n

of

le

-
d

The period of motiont5t j
↑1t j

↓ is easily extracted from
these last two expressions, and is obviously independen
the labelj of the particle:

gt5w
6~11a!

6aN1~12a!~2N 211!
. ~60!

Although, from Eqs.~59! and~60!, t andt j
↓ are always posi-

tive, the positivity oft j
↑ for all j leads to the condition

a.
N22

N11
, ~61!

which can be rewritten in the equivalent form, introducingg :

12a,32g. ~62!

When N→`, at fixed g, the periodic state ceases to ex
wheng reaches the valuegc53. Interestingly, this value also
corresponds to the collapse of the heap against the p
@3,7#.

We have checked, on the basis of molecular dynam
simulations for N,12, that the periodic orbit presente
above is stable when condition~61! is satisfied. Approaching
the boundarya5(N22)/(N11), the stability decreases
and the periodic orbit eventually turns to a more complica
periodic state, or, possibly, to a nonperiodic state. Inside
stability region defined by condition~61!, the periodic orbit
presented above can exceptionally coexist with a more c
plicated periodic state. We could observe such a situation
N55 and a.0.65. Below the boundarya5(N22)/(N
11), the situation is more complicated. We can obse
transitions between different periodic states, depending
the values ofa and N. Interestingly, nonperiodic states a
exceptions. In fact, nonperiodic states are difficult to ident
since we can never be sure that we do not observe a tran
regime, or that the period is larger than the simulation tim
Even at large values ofN, for which part of the system is
clumped close to the wall, the motion of the particles
mains periodic. An example of such a situation can be
tained forN510 anda50.7 @see also Fig. 3 (g53) of Ref.
@7##. A full description of the phase diagram in terms ofN
and a is still lacking. It would certainly be interesting to
identify the stationary states and investigate the stability c
ditions. However, such a study is beyond our scope. To s
marize, we have shown in this section that for a single
bound velocity, stationary states play a key role in t
dynamical behavior of the system. The simplest periodic
bit has been characterized explicitly, and we have obtai
an existence condition that compares extremely well w
simulation data. In Sec. VI, we show that for a thermalizi
wall, the dynamical behavior is quite different.

VI. DISSIPATION VIA INELASTIC BINARY COLLISIONS:
THE CASE OF A THERMALIZING BASE

As we have already mentioned, in a granular fluid ma
rial, dissipation occurs only at binary inelastic collision
which reduce the anisotropy in the velocity distribution
compared to the effects of friction. In the extreme case
completely inelastic collisions, the final velocity of the co
liding pair coincides with that of their center of mass. S
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after a short relaxation time all the particles will stick t
gether. The energy dissipation can then occur only at co
sions with the base. The system becomes equivalent
single particle emitted at the base with an effective rebo
velocity distribution accounting for dissipation. As no diss
pation can occur during the free flight, the velocity distrib
tion in this extreme case is again isotropic, although stron
non-Gaussian.

These points are illustrated in this section by consider
the case of two particles acted upon by the gravitational fi
suffering inelastic binary collisions, and interacting with
thermalizing base characterized by the rebound distribu
~8!. The results described below have been obtained num
cally using the fact that the free evolution in the gravitation
field could be simply determined from the equations of m
tion. If the restitution coefficienta51, the collisions are
elastic and generate the Maxwell-Boltzmann distributio
Whena,1, the velocity distribution turns out to depend o
the altitude, and it is convenient to consider the local veloc
distributionG(z,u;a) defined by

G~z,u;a!5F~z,u;a!/n~z;a!. ~63!

F denotes the position and velocity dependent station
state@the dimensionless variables have been defined in
~29!#. As before,n(z;a) denotes the density profile. Figure
shows~for a50.5! that the velocity distribution is strongly
anisotropic at low altitudes, but rapidly converges to a m
symmetrical shape. However, the anisotropy persists e
for larger values ofz as can be seen by monitoring the p
sition of the maxima in Fig. 6.

A comparison with Fig. 3 emphasizes qualitative diffe
ences between the effects of fluid friction and those of
elastic binary collisions. The extreme situation wherea50
has been simulated using a special algorithm to accoun
simultaneous collisions at the base. The results
G(z,u;a50) have been grouped in Fig. 7. We observe
symmetrical velocity distribution at any altitude, taking
rather singular shape at the base@even though the reboun
density~8! leads to the Maxwell-Boltzmann distribution fo
a51#. Again, the velocity distribution rapidly reaches i
asymptotic behavior for increasingz. We noticed that this
asymptotic behavior wasnumerically consistent with a
Maxwell-Boltzmann distribution with an effective temper

FIG. 6. Local velocity distribution G(z,u;a)
5F(z,u;a)/n(z;a) at various altitudes fora50.5.
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ture Teff.T/4. Figure 8 shows the variations of the veloci
distribution close to the base. The complex behavior of
maximum whena goes from 1 to 0 can be followed here
For a51, the distribution is Gaussian, so the maximum is
u50; for intermediate values, the maximum corresponds
a negative value ofu, and it goes back to zero whena50.
Finally, the density profiles are presented in Fig. 9. The lo
rithmic plot indicates that the density follows reasonab
well an exponential law in the limit of weak or strong inela
ticity ~a close to 1 or to 0!. For intermediate values, devia
tions from the barometric law are observed.

FIG. 7. Velocity distribution functionG(z,u;a) at various alti-
tudes fora50.

FIG. 8. Velocity distribution functionG(z,u;a) at z50.025 for
different values ofa.

FIG. 9. Logarithmic plot of the density profiles.
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VII. CONCLUDING COMMENTS

The main conclusions of this paper concern the influe
of dissipative interactions on the structure of stationary sta
in a system of masses falling in a gravitational field, a
obtaining the energy for the upward motion from a base. T
action of the base was characterized by a given rebound
locity distribution.

The effect of solid friction reduced to split the Maxwe
distribution into two halves with different temperatures, a
to make appear an effective mass in the Boltzmann fa
describing the density profile. The fluid friction perturbed t
Maxwell-Boltzmann distribution even more, creating corr
lations between positions and velocities and introducin
cutoff in the velocity spectrum. The stationary non-Gauss
velocity distribution thus became strongly asymmetric.

The effects of inelastic binary collisions could be studi
analytically in the case of a single rebound velocity. T
appearance of stratified organization of theN-particle col-
umn of masses has been investigated. Each particle the
cillates between two fixed levels, the periods of motion be
the same for all masses. The appearance of such an or
zation was shown to depend crucially on parameterg
5N(12a) ~a is the restitution coefficient!.

For two particles coupled to a thermalizing base the in
action via inelastic collisions produces a much weaker as
metry than the action of friction forces. The numerical ana
e

J

J.
e
s

d
e
e-

or

-
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os-
g
ni-

r-
-
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sis of this case predicts~away from the base! a Gaussian
shape of the velocity distribution fora→0 ~limit of high
inelasticity!, with an effective temperatureTeff5T/4, where
T is the temperature at the base. The rigorous analysis b
on the kinetic theory can be hopefully extended to this ca

The last comment concerns the one-dimensional natur
the theory presented above. In the model we consider, a
ticle can collide with two neighbors only, which clearly fa
vors correlated moves in the system. We can mention,
example, the periodic states observed in the case of a si
rebound velocity. In higher dimensions, momentum mixi
and moves in horizontal directions should strongly redu
the correlations between successive collisions, and peri
states will probably not exist any longer. However, the p
dicted anisotropy of the velocity distribution function in th
vertical direction has already been observed in molecular
namics simulations of vibrated two-dimensional syste
@12#. We then expect this last feature to be generic in hig
dimensions.
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