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Influence of dissipation on stationary states

Thierry Biben
Laboratoire de Physique (URA 1325 du CNRS), Ecole Normalérupe de Lyon, 46 Alle d’ltalie 69364 Lyon Cedex 07, France

Jarostaw Piasecki
Institute of Theoretical Physics, University of Warsaw, 868, 00 681 Warsaw, Poland
(Received 10 August 1998

Stationary states in model dynamical systems are studied with the aim of elucidating the role of dissipative
interactions. First, the influence of coupling to the surrounding medium via friction f@sodisl or fluid) is
considered on the example of a mass falling in the gravitational field and interacting with a thermalizing base
(the corresponding stochastic boundary condition at the base is deriMeel nature of deviations from the
Maxwell-Boltzmann distribution is discussed based on rigorous analytic approach combined with numerical
analysis. The effect of inelastic binary collisions, relevant to the theory of fluidized granular matter, is studied
for a column ofN colliding masses subject to gravity and absorbing energy from the base. In the case, where
the rebound velocity distribution is centered on a single value, remarkably simple periodic states are observed.
Analytic construction of the stationary distribution is presentedMer2. For N>2, a rigorous necessary
condition for the existence of periodic states is derived, showing the relevance of paramdter a)N,
whereq is the restitution coefficient of inelastic collisions. Computer simulations for two inelastically colliding
masses in the presence of a thermalizing base are described, indicating important differences in the stationary
distribution with respect to that caused by fricti¢81063-651X99)14902-X]

PACS numbd(s): 05.20.Dd

I. INTRODUCTION locity distribution function is proportional t@ times the
Maxwell-Boltzmann distribution at high frequency.

The aim of this paper is to study the influence of dissipa- However, the theory presented in most of the references
tion on the nature of stationary states occurring in open syseited above consisted essentially of analyzing and describing
tems. The idea is first to establish the physical situation irthe results of experimental data or numerical simulations,
the absence of dissipation, and then derive modifications inand comparing them with predictions of some approximate
duced by it. This program is followed here with simple ex- kinetic or Langevin-like equations. Also, a type of hydrody-
amples relevant to the theory of fluidized granular matter. namic approach, involving numerous approximations, has

The system under consideration is a one-dimensional cobeen proposefil0].
umn of masses falling in a uniform gravitational field, and In contradistinction to approximate approaches, the re-
being sent back into space owing to the energy provided bgults reported here are based on a rigorous analysis of the
collisions with an underlying base. The source of dissipatiordynamics, and thus contribute to a better understanding of
may be due to the coupling to the surrounding mediumthe effects of dissipation. Although they could be obtained
through friction forces, or to the inelastic character of binaryonly in some relatively simple cases, they help in clarifying
collisions between the particles. the status of intuitive ideas, in particular of the concept of

Theoretical, numerical, and experimental studies havegranular temperaturgl1]. In some cases computer simula-
been already devoted to the dynamics of such a system. Utions turned out to be of great utility in finding a way to an
forced systems, in which the kinetic energy is dissipatedexact solution of the equations of motion. We illustrate and
without replenishment, have been studied both in the quastomplete the analytic results by pictures of the dynamics
elastic limit[1] and in the perfectly inelastic reginig]. One  emerging from simulations.
of the interesting features of one-dimensional granular sys- In Sec. Il a discussion of the stochastic boundary condi-
tems is the so-called “inelastic-collaps€3,4], where par- tions at the energy providing base is presented. The form of
ticles can collide infinitely often in finite time. Vibrated one- the thermalizing rebound velocity distribution is derived
dimensional systems have also been studied theoreticallyherein. Then comes an analysis of the stationary distribution
numerically, and experimentally in the limit—oo, whereN  of a single mass subject, when falling in the gravitational
is the number of bead$—-7]. In these references, the rel- field, to a solidlike or fluidlike friction(Secs. Il and V.
evance of parameter=(1— a)N, wherea is the restitution In Secs. V and VI we analyze stationary states of two or
coefficient of inelastic collisions, have been pointed out andnore masses falling freely in the gravitational field and dis-
validated. The special cadé= 1, with purely inelastic colli- sipating their energy through inelastic binary collisions. Ana-
sions with the base, proved to be an interesting dynamicdytic results are described in Sec. V for the rebound distribu-
system exhibiting a large variety of periodic staf8& Fi- tion centered on a single characteristic velocity. The
nally, a recent experimental work was devoted to a study ofppearance of remarkably organized periodic states here
the rebound velocity distribution of a vibrated one- yields a beautiful example for the reduction of the phase
dimensional systerf@], with the result that the rebound ve- space volume. A necessary condition for the existence of
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z If the freely accelerated motion starts from
m [z(—1),v(—1)], the particle will reach the state,p) after
g ®(z) time t. Equation(2) is thus equivalent to

f(zv;t)=f(z(—1),v(-1);0)

t
+J'OdT(S(Z(—T))d)(v(—T))V(t—T). (4)

z=0
Notice that the loss term due to collisions in Efj). does not
contribute to Eq(4). Indeed, the conditions imposed by the
FIG. 1. Schematic representation of the syste(w) is the  5(z—0+) distribution and the step functiof{ —v) exclude
rebound velocity distribution. the possibility of reaching the pointzt0,u) through colli-

i ) ) . sionless motion starting frofz(— 7)=0, v(— 7)<0]. Tak-
these states is derived. Moreover, computer simulations P'9hg thet— o limit causes the term involving the initial con-
vide useful information on the stability of periodic orbits. yition to disappear. So, the stationary stafg(z,v)
Section VI contains a discussion of numerical results in the_ im,_..f(z,0:t) satisfies the equation
case of a thermalizing base. The paper ends with concluding =~ '
comments.

Fzo)=u=) [ aro@-mee-m),  ®)

Il. DISTRIBUTION OF THE REBOUND VELOCITY

ofwhere 1(«) denotes the asymptotic value of the collision
frequency(2). The § distribution permits one to perform the
time integration in Eq.5). Then using the normalization

pcondition

Consider the one-dimensional motion of a particle
massm falling in vacuum with acceleratiog. Its position
and velocity will be denoted by andv, respectively(Fig.
1). At the levelz=0, the particle encounters a base whic
sends it back into space with the rebound velogity The .
distribution of the stochastic variable will be characterized f dzf dv F(z,v)=1
by some probability densitg(w). It is thus assumed that no 0
correlations occur between the velocities before and after
collision with the base. In this situation, what will the sta- we arrive at the final formula
tionary distribution of the particle look like? In order to an-

swer this question we consider the kinetic equation for the _ d(\v?+2z9)
probability densityf(z,v;t) for finding the particle in the F(zv)=v(=) o2t 229 (6)
state ¢,v) at timet. It reads
with
J J J ‘ t
e e LG : 9 -
o) = T~ 11 1<
Y= Tawwlew)

=68(z—0+) q’;(v)fiodw|wlf(0+ Wi t)

Formula (6) is quite convenient to discuss the physically
relevant boundary conditions. In particular, it tells us that in
order to obtain the Maxwell-Boltzmann equilibrium distribu-

~lolo(=v)f(0+.vit) tion with temperaturdl, one has to choose

. (1)

On the left hand side of Eq1), densityf(z,v;t) is acted
upon by the generator of a free motion with acceleratian

On the right hand side one finds the usual balance between
the gain and loss of velocity through collisions with the whereé(v) is a unit step function.

base az=0. The loss of memory at the encounters is shown It is interesting to note that the density of the fo(& has

mu mv2
¢(U)=¢T(U)59(U)|(B—TGX%—H). 8

by the fact that in the gain term the densififv) is multi-  been found experimentally to reproduce faithfully the distri-
plied by the total collision frequency bution of the rebound velocity of a particle suffering inelastic
collisions with a sinusoidally oscillating base at sufficiently

0 _ high frequency of oscillationg9]. In this case the introduc-
v(t)= f_xdw|w|f(0+ Wit). 2 tion of an effective granular temperature was well founded,

as the insertion of Eq8) into Eq.(6) predicts the Maxwell-

Equation(1) can be rewritten in an equivalent integral form Boltzmann equilibrium state
in terms of the trajectories of collisionless motion followed

backward in time _gm / m o m o,
FT(z,v)—kBT —zkaTexr{ 2kBT[v +2z49]].
z2(—t)=z—vt—3gt?, v(—-t)=v+gt. 3 9
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The thermalizing rebound velocity distributiaty will be  and then fall down with acceleratio{ «) to the altitude
adopted in the next two sections. The object of the investiz, obtaining the required negative velocity. The energy con-
gation will be then the nature of deviations from the equilib-servation implies the relations
rium distribution (9) caused by dissipative coupling of the )
particle to the surrounding medium. W*=2(g+ @) Zmax,

(13
2_ _ _
I1l. DISSIPATION THROUGH SOLIDLIKE FRICTION v7=2(g~ @) (Zmax~2).

We begin by considering the simplest dissipation mechaS°lving these, we find
nism supposing that the motion in the gravitational field is T
accompanied by energy losses due to solidlike friction. This W= \/2(g+ w)z+ g *2 (14)
means that in addition to acceleratigrthe particle is con- -
stantly acted upon by a stopping forge sgng)mea], with
a<g. So, the kinetic equatiofil) has to be modified since
the magnitude of the acceleration depends now on the orie

Hence, the time integration in E@ll) here gives a term
rp_roportional to

tation of the velocity. It must be noted that we do not con-
sider the static counterpart of solid friction in this study, but gta ,
we will discuss this point below. The new expression for the bt v+2z(g+a)
kinetic equation is g—«a (15
+a
9.9 J \/g v2+22(g+a)
5—1—115—[94—(0(0)—0(—0))a]5)f(z,v,t) g—a
0 Now using the explicit form of the rebound dens{8), we
=06(z—0+) ¢(v)f_ dw|w|f(0+,w;t) find the relation

—|v|8(—v)F(0+,0;1)|. (10) F(zv;a)=2n(z;a)| P, 6(v)$™(v;T)

The integral equation determining the stationary state +P_6(—v) /g+_a ¢>M(U;T,1)}, (16)
F(z,v;a) is again of the form5), g-«a

wheren(z; «) is the normalized spatial density

F(20;0)= w(;a) f:dra(z<—r>)¢T(v(—r>), (11
Can

m m
n(z,a)= ﬁ(g+ a)ex;< — ﬁ(g+a)z

where [z(— 7),v(—7)] denote the collisionless trajectory B B
traced back from the initial pointz(v) during the time in-
terval 7>0, and the stationary collision frequenefw;a) is

given by m my?
M(, T — _
0 PTOT= NGt ex’“( 2kBT)’ (18

v(oo;a)=f_xdwlw|F(z,w;a).

oM denotes the Maxwell velocity distribution,

and thea-dependent temperatufie, is given by

The & distribution in Eq.(11) permits to reformulate the

dynamical problem in the following way: what must be the To=
value of the rebound velocitwy=v(—7)>0 atz(—7)=0 to

find the particle after time at the levelz with velocityv? If  The constant®, andP_ denote the probabilities for finding
v>0, the situation is completely analogous to that of a fric-a particle with a positive and negative velocity, respectively.
tionless motion, the role of acceleratignbeing played by Clearly, P, + P_=1. Moreover, whereas the particle start-
(g+a). In this case, ing from z=0 with some positive velocity>0 reaches the

5 ) 5 highest pointz,, after a time
w=+2(g+a)z+v*°,

and, in accordance with E@6), the time integration in Eq.
(11) yields a term proportional to

Jg—«a

g+ta T. (19)

w

T:
t gt+ta’

it subsequently falls down during the time interval

$r(\v®+22(g+ @) (12
Ww2+2z(g+a) tl:%_
g —«

However, whernv <0, a modified behavior occurs. Indeed,
the particle has first to attaiy,,, Where its velocity vanishes, This means that
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Finally, let us note that although the velocity distribution

06 T @ is not symmetric, it satisfies the condition

(w)= [ v(wia=o,

04t

which reflects the vanishing of the particle curréat any
altitude in the stationary state.

As mentioned at the beginning of this section, the static
part of solid friction has not been included in the model. This
would lead to a static friction threshole,> «, wherea is
. . . the dynamic coefficient introduced above. A particle initially
-2.0 0.0 20 40 at rest cannot move as long as the force acting on it stays

u below the threshold. In the model presented above we con-
sider a single particle dissipating its energy through solidlike

D(u;a)

02|

0.0
240

FIG. 2. Velocity distribution®(v;«) for various values of the

friction coefficienta, according to Eq(21). It must be noted that
this probability density is independent of the altiturleThe vari-
ableu=v(m/kgT)*? is the dimensionless velocity.

friction. The theory presented above correctly describes the
stationary state provided)> ag,.. Conversely, wheng
< agy the particle stops at the top of its trajectory and stays

at rest forever. In this case, it is clear that the theory pre-
sented above should not apply. When several particles are
present in the system the situation becomes more compli-
cated. We can expect low-energy collisions to be strongly
affected by a static friction threshold when one of the two
colliding particles is initially at rest. But a simple model of
instantaneous collisions cannot account for this effect since
the force felt by the colliding particles is not defined in this
case. The question of whether the system can reach the sta-
tionary solution where all particles are at rest is then raised
wheng<agy.

P, tf

g—a

g+a

P_ !
The above relations yield the following result fBr, :

- V9T«
B Vg+a+ g—a.

In this way we arrive at the final formula

P (20)

F(zv;a)=n(Z,a)®(v;a)
IV. EFFECTS OF FLUID FRICTION

2n(z; a) M . .
=————F———[0(v)Vg—ad" (v;T) Let us now suppose that, _betvveen collisions vx_nth the ba;e,
Vgtatvg—a the falling mass dissipates its energy by suffering the fluid

friction (—av). The force exerted by the surrounding fluid
is proportional to the magnitude of the velocity, and acts in

+0(—v)Vg+ag" (v;T,)].
The structure of stat€1) is quite simple, as there are no the opposite direction. The generator of collisionless motion
’ takes thus the form

correlations between the position and velocity of the particle.
This property of equilibrium(9) survives the action of the
dissipation. However, the velocity distribution is changed in
an important way. It is a linear combination of two halves of
the Maxwell density(18): for positive velocities with tem-
peratureT, and for negative velocities with a different tem- It vanishes on the backward trajectd(—t),v(—t)] given
peratureT,, defined in Eq.(19). One could thus introduce by
here an anisotropic temperature, depending on the orienta-

x| )1

m

g p(a ) mg
expg —=t|——.
m a

(21)

(23

mg

_ _m mg
(—t)y=z+ at >

U+7 (=1

temperature is not a microscopic quantity. On the other hand,
the so-called “granular temperature” defined by the relation
kBTgr=<mv2> turns out to be the geometric meanfand

tion of the velocity, but it would not make much sense as th
m
v+ —
a

(24)

-

The Jacobian of transformatia24) equals expgt/m). So,

for the forward in time evolution we would obtain the factor
exp(—at/m). It measures the contraction of the phase space
Clearly, for a sufficiently strong frictiorie close tog) the ~ Volume accompanying the dissipative evolution. This must
temperatureT,, deviates substantially from both tempera- P€ taken into account when writing the kinetic equation. In-
tures shown in Eq(21), especially from that characterizing dged, in the absence of CO||ISIOnS. W!thI Fhe base, the distribu-
the ascending motion. By definition it represents the mea#on f(z,v;t) would be related to its initial value by

kinetic energy, but the use of the notion of temperature is
rather misleading. To illustrate this last point, a graphical
representation of the velocity distribution is given in Fig. 2.

J—«a

T gra

a=T (22

flz(—t),v(—t);t=0]. (25

f(zv;t)=ex —
(z,v;t)=ex ﬁt
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The exponential factor compensates for the contraction oprobability densityf(z,v;t). It follows that the kinetic equa-
the phase space volume, preserving the normalization of thi#on in the presence of the fluid friction takes the form

f(z,v;t)=6(z—0+)

J [o% J 16% J
g m Yoz \9"mY) 5

¢T(v)fj)mdw|w|f(0+ Wit)—|v|0(—v)f(0+,v;t)|.  (26)

As a consequence, E(L1) for the stationary state is to be modified, and reads

F(zv,a)=v(»;a) j:drex%%r) 8z(—71))prw(—1)). (27)

In order to pursue the determination of the stationary state we have to insert traj@ztpiyto Eq. (27). We then find the

explicit formula
F(z.0; —de P 2r-1
(zyv;a)= . Tex -7 ex el bt

where the collision frequency(>;a) is to be calculated from the normalization condition.

First of all, let us note thaf (z,v; «) vanishes fov <v,,= —mMd«, as the argument of th&distribution is always positive
in this region.v i, is the asymptotic value of the velocity of the falling particle corresponding to mutual compensation of the
gravitational and the friction forces. Clearly, this excludes the Gaussian distribution.

It will be convenient for the further analysis to use dimensionless variables

_ mg _ /[ m o« 29
g“—kB—Tz, u= kB—Tv, X_ET. ( )

The normalized stationary distribution turns out to depend on the ratio of the thermal velgsitykg T/m and the minimum
velocity |v min|=mga. Putting

m m

9 mg
Z+t —7— —
a a

vt —
@

m9 ex;{ﬁT) - %‘] v(e;a), (28

ur

€=, (30)
|Umin|
we find, from Eq.(28),
F(L,U;€)=v(oe; e)f dx €€28(e?(+x—(eu+1)(e*—1))p(u+ e HeX—e™ D), (31
0
where the rebound distribution takes the simple f¢see Eq.(8)]
u2
gb(u):uexy{ —;). (32
The probability density for finding the particle with velocityequals
@(u;e)zf dgF(g,u;e)=f dxe‘0((eu+1)(e*—1)—x)p(u+ e H)eX—e (= e). (33
0 0
|
Whenu>0, the step functiord does not impose any re- Integrating formula(33) over the whole velocity space
striction, and a straightforward calculation with the use ofyields the relation
Eq. (32) yields the formula
1= (i) [ duxuigw) @9
N ev(o;€) u®
U (u; €)= eu+1 &H~ 3 (34 wherex(u; ) represents the unique solution of the equation

(eu+1)(e*—=1)=xe" (36)
Equation(34) explicitly shows the nature of deviation from
the Maxwell distribution during the ascending motion. Relation(35) determines the normalizing factefew;e).
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FIG. 3. Velocity distribution at different altitudes foe FIG. 4. Global velocity distribution for various values af

=v1/|vmin/=1. Herevr=(kgT/m)¥? is the thermal velocity, and

Umin=—Mdea. The dimensionless position and velocity are defined, . . L . -
by =mgksT, u=v/vr. indicating the position of the maxima. However, it is clear

that the velocity distribution stays strongly different from a

Coming back to the general formul81), we see that Gaussian density. _ _ . .
owing to thed distribution the integration therein reduces to 1€ building up of a singularity at low altitude for=0 is

finding the pointx,=x,(¢,u; €), which solves the equation 0 be noticed in Fig. 3. This occurs because {ez1 the
ascending velocities are practically unaffected by friction,

€20+ X,=(eu+1)(e*o—1). (37) and their distribution induced by the base is Gaussian,
whereas the negative velocities have a completely different
Performing the integration in Eq31) thus yields the for- distribution, entirely controlled by friction. It is then not sur-
mula prising that the two different halves join together st 0
with different slopes. This kind of discontinuity is smoothed
o(Uy) out after integration over the position space, and is not seen
X"u— 0(Xo), (38 in the global probability densitgp(u; €), as shown in Fig. 4.
Figure 4 shows the variation of the velocity probability den-
whereu,=(u+ e 1)e*o— 1. One can check that the defi- sity ®(u;e) when the dimensionless frictionvaries from 0

nition of u, and Eq.(37) imply the relationx,= e(u,—u to 1. In the absence of frictiongé 0) we find the equilib-.
—e). As a result, for the thermalizing rebound velocity UM Maxwell state. Not surprisingly, the effect of the fluid

F(Z,u;e)=€v(>w;e)e

distribution (32), F(¢,u; €) takes the simple form friction is to concentrate the velocity distribution around the
minimum velocity — 1/e. This behavior of®(u;e) at large
Ug+1 ug values ofe contrasts with the previously encountered situa-
F(g,u;e):eu(oc;e)—exp( - —) tion where the solid friction produced a discontinuity Lat
eu+i 2 =0, but the two halves ofb(u;e) preserved the Gaussian
X 0(Uo—u—€)B(Uy), (390  shape(see Fig. 2
The density profilesi({;e) are shown in Fig. 5. Away
andu, satisfies from e=0, they deviate substantially from the barometric
exponential law. Let us recall that the barometric formula
€uy+1 was still valid in the case of the solid frictidsee Eq(17)],
=exf e(Uo—u—€f)]. (400 provided one used the renormalized magg=m(1+a/g).

eu+1

U, represents the value of the rebound velocity sending the
particle at altitude/ with velocity u, andx, is the collision
time with the base. For each value ofand ¢, u, can be
extracted numerically from Eq40), whereasy(x=;e) is de-
termined by the normalization condition. The results ob-
tained in this way are shown in Figs. 3-5.

Figure 3 illustrates the behavior of the probability density
F(¢{,u;€) for e=1, when the thermal velocity is equal to the
minimum velocity. This value o€ clearly reflects the com-
petition between the thermalizing base and the fluid friction.
The variation of the velocity distribution with the altitude
can be observed in Fig. 3. We can note the vanishing of
F({,u;€) whenu<u,,=—1/e, and the strong asymmetry
of the velocity distribution. This asymmetry progressively
reduces with increasing altitude, as shown by the solid line FIG. 5. Logarithmic plot of the density profiles.

In[n(G;e)]
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The analysis presented up to now provided a descriptioflere the term
of how friction forces affected the stationary distribution,
which for freely falling particles would have a Maxwell-
Boltzmann shape. This problem is not purely academic. In-  R(z;,v1;Z5,05;:1)
deed, solid friction usually occurs in experimental setups
confining particles to move along a given axis. An estimation =8(zy)
of the influence of the air drag on granular temperature, de-
scribed in a thorough analysis of experimental data in Ref.
[9], stressed the importance of the fluid friction.

5(U1_W)I dw|w|6(—w)f(0W;zp,0,;t)

+v10(—v1)f2(001:2;,05;1)

V. DISSIPATION VIA INELASTIC BINARY COLLISIONS:

THE CASE OF A SINGLE REBOUND VELOCITY . .. . .
describes the collisions of particle 1 with the baseat.

Dissipative coupling through macroscopic friction had theThe Liouville operatolL ,(12) equals
advantage of reducing the dynamic problem to the motion of
a single particle in ataticfield of velocity dependent forces.

The continuously acting friction inducedsgstematiceduc- Lo(12)=Lo(12)+T,(12), (43
tion in the particle energy during its flight, which resulted in
a strong anisotropy of the velocity distributidgsee Fig. 3.

In a granular fluid material, dissipation occurs only atwherelL(12) generates free motion in the gravitational field,
binary inelastic collisions between the particles. Their trajec-
tories are thus piecewise parabolic, which reduces the anisot-
ropy in the velocity distribution. We now turn to a study of L (19)= i+ 9 [ d N KB
the effects of inelastic binary collisions. The simplest pos- o(12=lva5 - +v27-—g 90,
sible system is one composed of two masses moving in a
gravitational field. Their states will be denoted ® (v4)
and (z,,v,), respectively. Particle 1 will be supposed to beandT,(12) is the binary collision operator:
closer to the base:9z,<z,. This linear ordering is pre-
served by the dynamics.

Postponing the discussion of thermalizing boundary con- T,(12)= 8(Zy)|v1d[ @ 20(vap)bia™ ) — B(v1)].
ditions [Eg. (8)] to Sec. VI we shall assume here that the 4
rebound velocity is always taking the same characteristic
value w>0. The corresponding probability density is thus s .
H(v)= (v —Ww). The factorq in Eq. (45) compensates for the contraction

When a binary collision between masses 1 and 2 occurélue to the inelasticity of collisions: one power of * can-
their velocities are instantaneously transformed according t6€lS the effect of the Jacobian of transformati@d), and

Jv 1 ' (44)

the laws another one provides the correct value for the precollisional
relative velocity vi,/a. Of course, the stationary state
1+« F(z1,v1:;2,,v,) represents the time-independent solution of
v1— b)) (vy)=v,— 5 Ui the kinetic equatior{42).
(41) We determined the explicit analytic form &f owing to
1+ a information which we obtained after visualizing the dynam-
vo—Dbi(a)(vy)=v,+ 5 Va2 ics with the help of a computer. It turned out that after the

disappearance of some initial effects, the two particles
moved in a periodic orbit in a remarkably synchronized way,
the binary collision always occurring at the same altitude.
¥Ve could thus immediately conclude that the enelgyof
particle 2 stayed constant all the time. Clearly, in the case of
particke 1 a distinction was necessary between the energy
E]=mw?/2 of ascending motion, and the enerBy with
which it moved back to the base after colliding with particle
2. The collision law(41) implies the following transforma-
tions of energies:

wherev,=v,—v>.

The case ofa=1 is that of elastic collisions, where the
particles simply exchange their velocities. The Jacobian o
transformation41) is equal toa. So, when < a<1, inelas-
tic collisions contract the volume of the velocity space. Let
us notice that the operatdr;(a 1) performs the inverse
transformation to that defined Hy;,(«) in Eq. (41). This
means that the velocities {,v,) occur after collision if the
precollisional velocities ar®;(a 1) (v1),b(a 1) (v,).

We denote byf,(z;,v1;2,,v5;t) the two-particle prob-
ability density for finding the system at tintein the state

N : o - + —a?
(z4,v1;25,v5). The exact kinetic equation satisfied Wby El:l aET+ L aEz— e mw2
reads ) 8 12
(46)
d
E+La(12))fz(zl,vl;zz,vz;t)zR(zl,vl;zz,vz;t). 1—a 4o 1—a? ¥
42) Eo=—p Bot 5 Bim g mwi,
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wherew;,=w;—w, and (w,,w,) denote the precollisional For consistency, the equation

velocities of particles 1 and 2, respectively. The second re-

lation expresses the fact that the energy of particle 2 is not 1+ a SE!

changed at collision. In fact, its velocity is just reversed, so —2W,=W— Wi+ p—— (48)
[see again Eq41)] we also have 2 m

Wt Y (47, must thus hold.
22 T Equations(46)—(48) suffice to determine entirely the pa-
. . _ o ) rameters of the stationary state. We find
Finally, the timer between consecutive collisiofigeriod of

the motion) must be the same for both particles. In the case 2
. . N . mw? 1+3a
of particle 2 we simply havgr=—2w,. Particle 1 moves Elz_’ Eiz El ,
up during the timer' needed to attain the precollisional ve- 2 3ta
locity w;) (49)
g7 —w—w B £l 1+14a+a?
" Wizm g B R i )
and then reaches back to the base after timeluring which
the postcollisional velocity attains the valtey2Ej/m: Taking into account the normalization condition and the fact
T that the relative velocity after collision is equal toaw;,,
2E; _ lta ! we eventually find the explicit formula for the stationary
"N W1 5 Wim g7
m 2 state
c _ B mg’ S (1+14a+ a?®) mw?
(21,01,221112)—‘9(21)‘9(221)T 1ta (zp,07)— (3+a) 2
5 S| e mw? 5 S| 1+3a)?mw?
X190\ viam 3w (zyv1) = —— |+ 6| vzt 3 W (v)—\375] 2|1
(50)

where the notatiofE(z,v)=[mgz+ mv?/2] has been used. After collision, particlej acquires the velocity;ji(zj), and

The probability density50) is highly singular. It involves  reaches the altitudg, _, after timerjl given by
products ofé distributions confining the stationary state to a
one-dimensional manifold in the four-dimensional phase grji=vjl(zj)—vjl(zj_1).
space. It can be checked by a straightforward calculation that
formula (50) provides the solution to the kinetic equation The equality of the periods of motion for neighboring par-
(42). For a two-particle system, staté0) turns out to be ticles thus imposes the constraint
stable, attracting any initial condition.

In principle, analogous periodic states could exist for a v} (Zj—1)—v](z)+v{(z)~v}(z-1)
column ofN>2 masses, and we could indeed observe them. _ g ! o
The particles keep oscillating within adjacent volumes in the =0j41(Z) ~vj41(Zj+ 1) T vj11(Z5+1) —vj11(Z).
position space in a remarkably synchronized way, suffering (51
inelastic collisions with their nearest neighbors, always at the
same fixed altitudes. The visualization of this motion is quiteNow applying the inelastic collision law41), we find the
impressive. However, wheN>2, one cannot expect to ob- recurrence relation
serve this simple periodic motion for any values af In L
order to clarify this interesting point we shall derive a rigor- Wi j+1= 2 (Wisgje2tWjogy) (52
ous necessary condition for the existence NMparticle
single-period states described above.

We denote byz; the altitude at which particleg and
(j+1) collide. Consider one period of motion of partigle W=l (z)—vba(2)
It starts moving upward at leve| _; with velocityv}(zj_l). LT UjLE) T alg)

The time 'TJ-T neec_ied to gtte_lin the precollisional velocity for The recurrence equatioris2) are simply solved by
the encounter with particlej ¢+ 1) equals

for relative precollisional velocities of particleg and
(j+1):

i
a7 =v)(z_1) —v](z). Wj,j+1=(1_N)Wo,1- (53
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The value ofwg ; can be calculated by considering the periodThe period of motionr= ro+ rjl is easily extracted from

of motion of the lowest-lying particle 1. One can then readilythese last two expressions, and is obviously independent of

check that Eq(52) for j=1 reads the labelj of the particle:
Wi o= 3 (Wp 3+ Wq 1), B 6(1+a)
_ 97 W aNT (1—a)(2NZ+1)’ (60
with
Although, from Eqs(59) and(60), 7 and TjL are always posi-
" _ 2(w+ y2Ei/m) 54 tive, the positivity of7] for all j leads to the condition
01—~ 1. -
1+« N N—2 -
The condition we are looking for can now be derived by TN+

considering the energies of the particles. We denoteEby
and EJ-l the energy of particl¢ during its upward and down-
ward motion, respectively. The collision lapl) implies 1-a<3—y. (62
energy transformations of the forms

which can be rewritten in the equivalent form, introducing

When N—oo, at fixed y, the periodic state ceases to exist

o lta l-a_ | 1- a? W2 when y reaches the valug.= 3. Interestingly, this value also
Ej= 2 Sl 2 S 8 MWi—1» corresponds to the collapse of the heap against the plane
(55) [3,7].
1+ a 1— a 1—a? We have checked, on the basis of molecular dynamic
Eji1 > EJ-T+ 5 S mejz'jﬂ. simulations forN<12, that the periodic orbit presented

above is stable when conditidfl) is satisfied. Approaching
the boundarya=(N—2)/(N+1), the stability decreases,

summing up these relations frof=1 to j=(N—1), one and the periodic orbit eventually turns to a more complicated

finds periodic state, or, possibly, to a nonperiodic state. Inside the
W 12Nl stability region defined by conditio(61), the periodic orbit

Eizm_ _ @ 2 MW . presented above can exceptionally coexist with a more com-

2 4 = i+t plicated periodic state. We could observe such a situation for

N=5 and «=0.65. Below the boundaryr=(N—2)/(N
Then inserting result$53) and (54), and performing the +1), the situation is more complicated. We can observe
summation, we arrive at the relation transitions between different periodic states, depending on
the values ofa andN. Interestingly, nonperiodic states are
exceptions. In fact, nonperiodic states are difficult to identify
' (56) since we can never be sure that we do not observe a transient
regime, or that the period is larger than the simulation time.

o . Even at large values dfl, for which part of the system is
Clearly, Eq.(56) cannot be satisfied unless the right handclumped close to the wall, the motion of the particles re-

side is a positive number smaller than 1. This condition can’__. odi le of h L be ob
be written as mains periodic. An example of such a situation can be ob-

tained forN=10 anda=0.7[see also Fig. 3%=3) of Ref.
1— a)2<6v—2+2 where v=(1—a)N. 5 [711. A'fuII Qescrlptlon of the phase c.ilagramlln termsl‘cbf
(1~a) yoey y=(1-a) ©7 and « is still lacking. It would certainly be interesting to
Our analysis caused a relevant parameter(1— )N to identify the stationary states and investigate the stability con-
appear. Its role has already been recognized in the study GII't'O.nS' However, such a .StUdY IS beyond our scope. To sum-
clustering transition in a column of beald. Inequality(57) marize, we h_ave shc_)wn in this section that for a smgle re-
is automatically satisfied fol=2. However, already foN bound 'velocny, ;tat|onary states play a key role. n the
=3 not all values ofa are admissible. Clearly, for large dynamical behavior of the system. The simplest periodic or-

values ofN, only at extremely small inelasticitya very bit ha_s been chara_c_terlzed explicitly, and we have Obta”?ed
impl@n existence condition that compares extremely well with

periodic motion. Moreover, the stability of this state be- simulation data.lln Sec. Vi, we shqw that for a thermalizing
’ wall, the dynamical behavior is quite different.

comes fragile, as could be observed by visualizing the com-

puter simulations. A more drastic inequality can be derived
from the positivity of the collision timeSrJT and le_ The VI. DISSIPATION VIA INELASTIC BINARY COLLISIONS:

. . T | THE CASE OF A THERMALIZING BASE
analytic expressions for; and r; are

w—+2Ei/m 1-a
W+ 2Ei/m 1+a

2N 1
3 "' 3N

6—2(1—a)(N—j+2) _ As we ha\_/e already mentioned,. in a granule_lr ﬂuid. mate-
gTj:WB NT(1—a)(2NZ+ 1)’ (58) rial, dissipation occurs only at binary inelastic collisions
aN+(1-a)( +1) which reduce the anisotropy in the velocity distribution as

, compared to the effects of friction. In the extreme case of
gri=w 6+2(1-a)(N—j—-1) (59) completely inelastic collisions, the final velocity of the col-
J 6aN+(1—a)(2N?+1)" liding pair coincides with that of their center of mass. So,
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FIG. 6. Local velocity  distribution G({,u;a)
=F({,u;a)In(¢; @) at various altitudes forr=0.5.

after a short relaxation time all the particles will stick to- ture T®f=T/4. Figure 8 shows the variations of the velocity
gether. The energy dissipation can then occur only at collidistribution close to the base. The complex behavior of the
sions with the base. The system becomes equivalent to maximum whena goes from 1 to 0 can be followed here.
single particle emitted at the base with an effective reboundror =1, the distribution is Gaussian, so the maximum is at
velocity distribution accounting for dissipation. As no dissi- u=0; for intermediate values, the maximum corresponds to

G(Lu;0=0)

1.5
— §=0.025
e (=0.175
----- =0.325
1.0+ ———- {=0475
=\ —— (=0.625
7
05 |
00 1 1 1 1 1
-15 -10 -05 00 05 1.0

u

1.5

2201

FIG. 7. Velocity distribution functiorG({,u; «) at various alti-

tudes fora=0.

pation can occur during the free flight, the velocity distribu-a negative value ofi, and it goes back to zero wher=0.

tion in this extreme case is again isotropic, although stronglyFinally, the density profiles are presented in Fig. 9. The loga-
rithmic plot indicates that the density follows reasonably
These points are illustrated in this section by consideringvell an exponential law in the limit of weak or strong inelas-

non-Gaussian.

the case of two particles acted upon by the gravitational fieldticity (« close to 1 or to D For intermediate values, devia-
suffering inelastic binary collisions, and interacting with ations from the barometric law are observed.

thermalizing base characterized by the rebound distribution
(8). The results described below have been obtained numeri-
cally using the fact that the free evolution in the gravitational
field could be simply determined from the equations of mo-
tion. If the restitution coefficienie=1, the collisions are
elastic and generate the Maxwell-Boltzmann distribution.
When a< 1, the velocity distribution turns out to depend on
the altitude, and it is convenient to consider the local velocity
distribution G(¢{,u; ) defined by

G({,u;a)=F({,u;a)/n({;a). (63

F denotes the position and velocity dependent stationary
state[the dimensionless variables have been defined in Eq.
(29)]. As beforen(¢; @) denotes the density profile. Figure 6
shows(for «=0.5) that the velocity distribution is strongly

symmetrical shape. However, the anisotropy persists even
for larger values of as can be seen by monitoring the po-
sition of the maxima in Fig. 6.

A comparison with Fig. 3 emphasizes qualitative differ-
ences between the effects of fluid friction and those of in-
elastic binary collisions. The extreme situation where 0
has been simulated using a special algorithm to account for
simultaneous collisions at the base. The results for
G(¢,u;@=0) have been grouped in Fig. 7. We observe a
symmetrical velocity distribution at any altitude, taking a
rather singular shape at the bdswen though the rebound
density(8) leads to the Maxwell-Boltzmann distribution for
a=1]. Again, the velocity distribution rapidly reaches its
asymptotic behavior for increasingg We noticed that this
asymptotic behavior waswumerically consistent with a
Maxwell-Boltzmann distribution with an effective tempera-

1.5

0.0
-2.0

: ' c ) FIG. 8. Velocity distribution functiorG({,u; @) at {=0.025 for
anisotropic at low altitudes, but rapidly converges to a moreyjtferent values ofw.

In[n(G;00]

4

FIG. 9. Logarithmic plot of the density profiles.
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VIl. CONCLUDING COMMENTS sis of this case predicteway from the bagea Gaussian
shape of the velocity distribution foir—0 (limit of high

The main conclusions of this paper concern the mﬂuenc?nelasticit)b, with an effective temperaturg®="T/4, where

of dissipative interactions on the structure of stationary state.? is the temperature at the base. The rigorous analysis based

in a system of masses falling in a gravitational field, andon the kinetic theory can be hopefully extended to this case
obtaining the energy for the upward motion from a base. The Y petUlly ex . '
The last comment concerns the one-dimensional nature of

action of the base was characterized by a given rebound ves .
locity distribution. he theory prgsent_ed above._ln the model we consider, a par-
The effect of solid friction reduced to split the Maxwell ticle can collide with two neighbors only, which clearlly fa-
vors correlated moves in the system. We can mention, for

distribution into two halves with different temperatures, and xample. the periodic states observed in the case of a single
to make appear an effective mass in the Boltzmann factof pie, b 9

describing the density profile. The fluid friction perturbed the;%Ol:ggvgzl?;'tgbrlizomg;eéi?;g%%i'ogﬁéquor;?Q;uT rgg:?ge
Maxwell-Boltzmann distribution even more, creating corre- gy

- - o - - he correlations between successive collisions, and periodic
lations between positions and velocities and introducing é P

cutoff in the velocity spectrum. The stationary non—Gaussiaﬁ;?,:gg \;V:ilsgiﬁgablgf Tﬁte ?,)gﬁ)tciny dlig?r?beurt.ignoxi\é%:),r:r;ﬁ &ree'
velocity distribution thus became strongly asymmetric. Py y

The effects of inelastic binary collisions could be studiedngfca; d;ﬁchllggohnis zlfre\ig)r/a?:gn&%?g{%i?qls?or:glegug;%-
analytically in the case of a single rebound velocity. The y

appearance of stratified organization of tNeparticle col- [12]. We then expect this last feature to be generic in higher

umn of masses has been investigated. Each particle then O%l_mensmns.

cillates between two fixed levels, the periods of motion being

the' same for all masses. The appearance of such an organi- ACKNOWLEDGMENTS
zation was shown to depend crucially on parameter
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