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Nonequilibrium phase transition in the kinetic Ising model:
Existence of a tricritical point and stochastic resonance
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The dynamic phase transition has been studied in the two-dimensional kinetic Ising model in the presence of
a time varying(sinusoidal magnetic field by Monte Carlo simulation. The natgeentinuous or discontinu-
ous of the transition is characterized by studying the distribution of the order parameter and the temperature
variation of the fourth-order cumulant. For the higher values of the field amplitude the transition observed is
discontinuous and for lower values of the field amplitude it is continuous, indicating the existence of a
tricritical point (separating the nature of transitjoon the phase boundary. The transition is observed to be a
manifestation oftochastic resonancéS1063-651X%99)07801-0

PACS numbeds): 05.50+q

I. INTRODUCTION not reported any precise phase boundary. Acharyya and
Chakrabarti[ 2] studied the nonequilibrium dynamic phase
The kinetic Ising model in the presence of an oscillatingtransition in the kinetic Ising model in the presence of an
magnetic field gives rise to various interesting dynamicaloscillating magnetic field by an extensive MC simulation.
response§l]. The dynamic phase transition, hysterdi They[2] have successfully drawn the phase boundary for the

- ; .. dynamic transition and predicted a tricritical point on it. It
andstochastic resonandé] are the most important dynamic : . ; .
responses of recent interest. Tome and de Olivifaob- was also noticed by thefi2] that this dynamic phase transi

. . e i tion is associated with the breaking of the symmetry of the
served and studied the dynamic transition in the kinetic 'S'n%lynamic hysteresis loop. In the dynamically disordefte
model in the presence of a sinusoidally oscillating magneti¢a|ue of order parameter vanisheshase the corresponding
field. They solved the mean field dynamic equation of mo-hysteresis loop is symmetric and in the ordered phase it loses
tion (for the average magnetizatipf the kinetic Ising its symmetry(giving a nonzero value of the dynamic order
model in the presence of a sinusoidally oscillating magnetiparametex

field. By defining the order parameter as the time averaged Recent studies that reveal the thermodynamic nature of
magnetization over a full cycle of the oscillating magneticthe dynamic transition are on the temperature variations of ac
field they showed that the order parameter vanishes depengusceptibility[2], the relaxation behavior of the dynamic or-
ing upon the value of the temperature and the amplitude of€" Parameter and the divergence of the time sgaiéical

the oscillating field. In the field amplitude and temperature>IOWing down [6], the scaling of the distribution of dynamic

lane thev have drawn a ph boundar rating dvn order parameter and the divergence of the length 4Gdle
plane In€y have drawn a phase boundary separating dynaiyy o, the temperature variation of the dynamic correlation
ordered(nonzero value of the order parametand disor-

dered(the order parameter vanishgshases. They4] have Although the existence of a TCP has been predicted from
also predicted #icritical point (TCP), separating the nature the temperature variations of the average order parameter
(discontinuous/continuouisof the transition on the phase [2,4], a detailed and systematic study has not yet been per-
boundary line. However, such a transition, obsefgdrom formed to detect the natufeontinuous/discontinuoysf the

the solution of the mean field dynamical equation, is notdynamic transition along the dynamic phase boundary. In
truly dynamic. This is because, for the field amplitude lesghis paper the statistical distribution of the dynamic order
than the coercive fiel@at temperature less than the transition parameter has been studied to detect the nature of the tran-
temperature without any fieldthe response magnetization Sition, by Monte Carlo simulation in a two-dimensional ki-
varies periodically but asymmetrically even in the zero fre-netic Ising model in the presence of an oscillating magnetic
quency limit; the system remains locked to one well of thefield. The temperature variation of the fourth-order cumulant

free energy and cannot go to the other one, in the absence bj] (0f the distribution of the dynamic order paramgteas
noise or fluctuations. also been studied to characterize the transition. The relation

Lo and Pelcovitd5] attempted to study the dynamic na- between the stochastic resonaf8gand dynamic transition

ture of this phase transitiofincorporating the effect of fluc- [2] is also discussed. The paper s orggnlzed as foIIows.. In
tuationg in the kinetic Ising model by Monte Carl(MC) Sec. Il the ”_‘Ode' and the MC s_|mulat_|on scheme are dis-
simulation. In this case, the transition disappears in the Zeroqussed. Se_ct|0n lll contains the S|mula_t|onal results. The pa-
frequency limit: due to the presence of fluctuations, the magPe' €nds with a summary of the work in Sec. IV.

netization flips to the direction of the magnetic field and the

. . Il. DESCRIPTION OF THE MODEL AND THE
dynamic order parameter vanishes. However, tf§yhave

SIMULATION SCHEME

The Hamiltonian of an Ising modéWith a ferromagnetic
*Electronic address: muktish@thp.uni-duisburg.de nearest-neighbor interactibin the presence of a time vary-
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ing magnetic field can be written as % . . —y 20J/kB
20 () ho =2.0J ]
15 - 1
- —J<Z> sisj—h(t)Z S 21 PO, [ j
ij
s H ]
Heres; (= £1) is the Ising spin variable]>0 is the ferro- 0 ! ! !
magnetic spin-spin interaction strength, ar(d) is the sinu- -1.8 -1 08 S 05 ! 15
soidally oscillating(in time but uniform in spagemagnetic 95
field. The time variation oh(t) can be expressed as 2 Lo ' ' ' T= 02.2(§'jl/k3 ' |
Q — 4.
h(t)=hycoq wt), (2.2 P(Q)iz B 7
where hy is the amplitude andv (=2#f) is the angular 51 H J .
frequency of the oscillating field. The system is in contact 0 L e .
with an isothermal heat bath at temperatiire L8 ! 05 5 0 ! L
T

A square latticéwith periodic boundary conditigrof lin-

ear sizel (=100) is considered. The initial condition is that zz L) T =0.30J/ks ]
randomly 50% of all spins are upt1). At any finite tem- ho =2.0J |
peraturerl, the dynamics of this system has been studied hereP(Q)
by Monte Carlo simulation using Metropolis single spin-flip i
dynamics[9]. The transition rate is specified as . o | ]
. 01 5 -1 -0.5 1} 0.5 1 1.5
W(si— —s;)=Min[1,exgd — AH/kgT)], 2.3 Q
2
where AH is the change in energy due to spin flig,-& 22 L@ ' ' I;{:—Oz (;)J/kB ' |
—s;) andkg is the Boltzmann constant. Any lattice site is 5L 0T )
chosen randomly and the spin variab&)(is updated ac- P(@) | |
cording to the Metropolis probability.? such updates con- |
stitute the time unifMonte Carlo step per spifMCSS)] , , , . ,
here. The magnitude of the fiell(t) changes after every -1.5 -1 0.5 0 0.5 1 15
MCSS following Eq.(2.2). The instantaneous magnetization ¢
(per sitg m(t)=(1/L?) ;s has been calculated. FIG. 1. Histograms of the normalized distributions of the dy-
The time averagetover the complete cycle of the oscil- namic order parameterQ for different temperatures T(
lating magnetic fieldd magnetizationQ=(1/7)¢m(t)dt de-  =0.2Q/kg,0.28/kg,0.3W/kg, and 0.40/kg) and for the fixed

fines the dynamic order parametfer]. The frequency isf value of the field amplituddny. All the figures are plotted in the
=0.001 (kept fixed throughout the stugflySo one complete same scales.

cycle of the oscillating field takes 1000 MC%tsme period . .
7=1000 MCSS). A time series of magnetization(t) has developed. As the temperature increases sliglitig. 1(c)],

been generated up to 40ACSS. This time series contains the strength of the third peak increases compared to that of

10 (since 7=1000 MCSS) cycles of the oscillating field. the two other(equivalen} peaks. Above the transitigtFig.

The dynamic order parametérhas been calculated for each .1(d)] only one peak is observed centered around zero. This

such cycle. So the statisti¢dlistribution of Q) is based on indicateq 9] that the transition is first order or discontinuous.

N.=1C? different values of. The fourth-order cumularg] What is the origin of this kind of first-order transition? To
(dsynamic order paramel)eisldefined as get the answer to this question the time variation of the mag-

netizationm(t) is studied(in Fig. 2) for several cycles of the
U, =1.0-(Q%/3(Q??, (2.4) oscillating magnetic fieldh(t), close to the transition. From
Fig. 2 it is clear that sometimes the system stays in the posi-
where (Q")=Q"P(Q)dQ and P(Q) is the normalized tive well (of the double well form of the free energand
[/P(Q)dQ=1] distribution of Q. The computational speed Sometimes it stays in the other well. It is obvious that the

recorded is 1.42 million updates per second on an RS600d®est time for the system to switch from one well to the other
43p of an IBM cluster. one is when the value of the field is optimytigood oppor-

tunity”) [3]. So if the system misses one good opportunity
Il RESULTS (first half period of the oscillating fieldto jump to the other
well it has to wait for a new chano@nother full period of
The statistical distributiof?(Q) of dynamic order param- the oscillating field. Consequently, it shows that the resi-
eter Q and its temperature dependence have been studiatbnce time(staying time in a particular wellcan only be
close to the phase boundary to detect the nature of the tramearly equal to an odd integer multiple of the half period
sition. Figure 1 shows the distributiorfat a fixed value of (half of the time period of the oscillating field3]. This
the field amplitudgfor three different values of temperature. leads to two consequences.
Below the transitior{Fig. 1(a)] the distribution shows only (&) The distribution of the dynamic order parameter
two equivalent peaks centered arouhd. Close to the tran- would be peaked around three valu€s: Q=0 when the
sition point[Fig. 1(b)] a third peak centered around zero is system utilizes the good opportunity and goes from one well
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FIG. 2. Time variation of the magnetic fielqt) (solid line) and
magnetization m(t) (dotted ling close to the transition T
:03]”(3 and h0:20])

to the other(marked A in Fig. 2), (i) Q~—1 when the

system misses the good opportunity to go from the negativ

well to the positive well and it stays for orer more full
period in the negative wellmarkedB in Fig. 2), and (iii)

Q= +1 when the system misses the good opportunity to g
from the positive well to the negative well and spends on

(or more full period in the positive wel(markedC in Fig.
2). As a result, the distribution @& would give three distinct
peaks centered at1, —1, and 0.

(b) The other consequence of this kind of time variatio

of magnetizatiorm(t) is the stochastic resonancdhis can
be detected from the distribution of the residence tithe
time the system spends in a particular wefirom Fig. 2 it is
clear that the distributiof, of the residence time, will be
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FIG. 4. TemperaturdT) variation of the fourth-order Binder
cumulant. A deep minimum indicates that the transition is first or-
der and the position of minimum is the transition point.

at the transition point. This will lead to a deep minimum
{with a large negative valyef the fourth-order cumuland

at the transition point. So the deep minimum corresponds to
the first-order transition and the position of minimum is re-

6ated to the transition pointFig. 4). From the above obser-

vations it is clear that the transitiqacross the upper part of
the dynamic phase boundarg first order and a manifesta-
tion of the stochastic resonance.

Figure 5 shows the distributions of the dynamic order

nParameterQ for three different values of the temperature.

Here the field amplitudl is quite low in comparison to that
used in the earlier cad€ig. 1). It shows that, in the ordered
region, this gives twdequivalent peaks[Fig. 5@] and as

the temperature increases these two peaks come close to each
other continuouslyFig. 5b)] and close to the transitio@and

multiply peaked around the odd integer multiple of the half
period [3]. One such distribution is shown in Fig. 3. The
distribution shows multiple peaks around the odd integer val-

also above jt [Fig. 5(c)] only one peak(centered around

ues (500, 1500, 2500, 3500, 4500, and 5500 MC8Sthe }:;‘j @ T = 1487k ]
half period (/2=500 MCSS of the driving fields The 1k B _:ng B -
heights of the peaks decrease exponentigiytted line in  P(@)28 ¢ . ]
Fig. 3 with the peak positions. This is the identifying char- 04 4
acteristic of stochastic resonand&. 02 .
The fourth-order cumulan{9] U, has been plotted s 1 05 0 0.5 1 15
against the temperature. In the case of a discontinuous tran @
sition, the simultaneous appearance of three péakshe 14F . T . T . -
distribution of dynamic order parametés responsible for a 12F (b) T = 1.50J/kg -
very high value of Q%) (compared to the value of{®2)?) P(Q)Olé C ho = 0.3J ]
0.6 i
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FIG. 3. Histogram of the normalizdd P,(7,)dr,=1] distribu-
tion [P,(7,)] of the residence time7{). The dotted line is the
exponential best fit of the envelope of the distribution.

FIG. 5. Normalized distributions of the dynamic order param-
eterQ (in second order and close to the transition region three
different temperaturesT(= 1.48)/kg,1.50)/kg, and 1.53/kg) and
fixed field amplitudehy=0.3J.
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0.7 T T T T T T T continuous and for lower values of the field amplitude it is
0.6 1 i continuous. This indicates that there is a tricritical point
e = 0.3] [separating the naturgontinuous/discontinuouf the dy-
051 ° 7 namic transition located on the dynamic phase boundary.
04 : These observations support the earlier predict{@y] of a
U 03l h TCP on the phase boundary. The residence time distribution
shows that the transition is a manifestation of a stochastic
0.2 7 resonance. A lengthy computational effort is required to find
0.1F - the precise location of the tricritical point. It would be inter-
ol h esting to know whether or not the TCP can act as a limit of
the stochastic resonancalong the first-order line An ex-
01 12 14 16  1s . 02 oa tensive investigation is currently under way in this direction
T[J/kB] and the results will be reported elsewhere.

The detailed finite-size study has been performed by Sides
et al.[7] and they have not observed any discontinuous tran-
sition. They studied the dynamic transition in the very-high-
frequency range. For a very high frequency, the tricritical
[Joint will shift towards the zero temperatdri0] (the region
of the first-order transition on the phase boundary will be
very shor). For this reason Sidest al. overlooked the part

FIG. 6. TemperaturéT) variation of the fourth-order cumulant
(U,) for a fixed value of the field amplitudehg=0.3J).

zerog is observed. This feature reveals the continuous o
second-order transitiof9]. The second-order transition is
also characterized by the temperature variation of the fourt

order cumulant, [Eq. (2.4)]. Figure 6 shows tha, con- f the dynamic phase boundary corresponding to the first-

tinuously decreasg; from 2/3 to zero revegllng the secon rder transition. The first-order region of the dynamic phase
order phase transitiof9]. It should be mentioned here that boundary can be observed clearly in the low-frequency
the temperature variation of the cumulant and the finite-siz?ange

study (in the continuous transition regiphas been made by Experimental evidencEL1] of the dynamic transition has
Sideset al. [7]; here it has been reexamined for complete-been found recently. Dynamical symmetry breakiagsoci-
ness. I.t is importa}nt to note that thEg] s’;udied the dynamic ated with the dyna.mic transitipnof the hysteresis loop
gﬁgs#'ecig tgn\/?ry'gg tfhe freqﬁen@eeﬁlng the tempe(rjaturrle across the transition point has been observed in highly aniso-

plitude ixed whereas the present study astropic (Ising like) and ultrathin Co/C(001) ferromagnetic
been dong by varying _the temperattﬂ_ﬁe;lng the frequency films by the surface magneto-optic Kerr effect. Dynamical
and amplitude c_)f the f|e_bd Hc_)wever, Itis behev_ed that the symmetry breaking of the hysteresis loop has also been ob-
results are qualitatively invariant under the choice of the tun'served[lz] in ultrathin Fe/W110) films. However, the de-
able parameter. tailed investigation has not yet been made to study the dy-

namic phase boundary and the natufeontinuous/
IV. SUMMARY discontinuous of the transition.

The nonequilibrium dynamic phase transition has been
studied in the kinetic Ising model in the presence of a time
varying (sinusoidal magnetic field by the Monte Carlo simu- Graduiertenkolleg for “Structure and Dynamics of Het-
lation. The nature of the transition is characterized by studyerogeneous Systems” is gratefully acknowledged for finan-
ing the distribution of the order parameter and the temperaeial support. The author would like to thank B. K. Chakra-
ture variation of the fourth-order cumulant. For the higherbarti, S. Libeck, U. Nowak, and K. Usadel for a careful
values of the field amplitude the transition observed is disteading of the manuscript and for comments.
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