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Monte Carlo simulation of a lyotropic first-order isotropic-nematic phase transition
in a lattice polymer model
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We present a Monte Carlo simulation of the bond-fluctuation lattice model, using a Hamiltonian which
introduces a change in the conformational statistics of the polymer chains from Gaussian behavior at high
temperatures to rigid rod behavior at low temperatures. We do not introduce any attractive interaction between
the chains. Upon cooling, the aspect ratio of the chains increases above the critical value for the density
employed in the simulation, and we observe an entropically driven phase transition into a nematic phase. We
examine this transition quantitatively by a careful finite size scaling study using an optimized cumulant
intersection method, and show that the transition is of first of@&063-651X99)12302-X]

PACS numbses): 61.25.Hq, 61.20.Ja, 61.36v, 64.70.Md

I. INTRODUCTION theoretical analysis started with the work of Flof%7],
whose theory predicted a first-order isotropic-nematic phase
Changing the stiffness and concentration of semiflexiblgransition when the flexibility of the lattice polymer chains
polymers in solution can introduce a rich liquid crystalline decreases below a certain threshold. It could, however, be
phase behaviof1-4]. Understanding and predicting this shown that Flory’s approximation of the configurational en-
phase behavior in terms of the intramolecular and intermotropy of the polymer chains is too drasfit8—21, and that
lecular interactions of the chains is at the same time of high? @n improved treatment the transition is removed to infinite
technological importance and a large fundamental challengétifiness. This agrees with the findings of lattice model simu-

If the polymer chains, or, in the limit of infinite stiffness, the [ations of the isotropic-nematic transitiof22,23, which
rigid rodlike molecules, interact through orientation- showed no phase transition but the occurrence of nematically

dependent attractive interactions which favor a parallel a"gn_ordgred domains of a size corre;spondmg to fu_IIy stret.ched
ment of the moleculefS], it is easy to visualize a transition chains. Only through an introduction of aligning interactions

from an isotropic solution at low concentrations to a nemati2CVVeen the chains could a phase transition be induced. Al

cally ordered solution at high concentrations. The molecule%er:;sc?l obss(,)(?\r/\;%tllgn\s/ezrareSic;n}ﬁilgttjelyllagitcgddgi rf‘:lzv;/e%eorag;/sl‘th
can lower their interaction energy upon ordering into the Y y P poly

nematic phase, and we obtain a so-called thermotropic neny2+29 which show a second-order phase transition into the

S phase anSROf. . Se he ploeering worof On- =74 PP From s comparton L der it he o
sager[ 7], we know, however, that an isotropic-nematic tran- yp b P

sition can also occur if there are only repulsive excludedattlce polymer models depend strongly on the details of the

volume interactions between the molecules. In this case th@odel(and the underlying .Iatti()ewhich.inﬂue_nce the subtle
transition is completely driven by the behaivior of the en_mterplay between translational and orientational entropy that

: : determines this phase transition.
tropy. The molecules lose orientational entropy upon order In the remainder of this paper we will show that the bond-

ing, but they gain translational entropy and this drives theﬂuctuation lattice model with a suitably chosen Hamiltonian,

phase transition. The theory of this so-called lyotropic nem-, at leads to an increasing stifiness of the chains upon cool-
atic phase transition, for instance, predicts that the value otp 9 P

the orientational order parameter at the transition should dé{%g tz:l;]ta(ijr?sesir?doéecc?ntglgsgggeztt;a(fzitr“s/te-c;?ctjirradrl]%gse t;f;\gseggn
pend on the density in contrast to the purely thermotropi ' P P

case. This has also been seen experimentalg], which %om an isotropic to a nematic phase. A typical snapshot of

shows that excluded volume effects also play a role in thisw g v(\)/rl(lj ?jre:‘ri]nghtehgerz?c:gl g:zs;ésssig%ﬁr;ig:] T(Ia%h%].i IgeSeScéCI!
phase transition in real systems. que.

Al theoretical treatments of the isotropic-nematic transi.tion !l will present some theoretial background on the finite

tion [10—14) of continuum models for semiflexible polymers size scaling analysis of a nematic phase transition. In Sec. IV

. . " . " we will discuss our results and present some conclusions.
predict a first-order phase transition. This transition has been P

analyzed by computer simulatiofs5,16], and in Ref[16] it
was shown that the analytical calculations not only provide a Il. MODEL
gualitative description of the coexistence densities of the iso- '
tropic and nematic phase but are also able to predict the In this study we use the three-dimensional version of the
transition densities to within about 20%. bond-fluctuation lattice model, which has been discussed in
For lattice polymer models the situation is different. Thedetail in the literaturd26,27. Each monomer occupies the
eight corners of a unit cube on the simple cubic lattice, i.e.,
its size isV=2% in units of the lattice constant. The bonds
*Electronic address: Wolfgang.Paul@uni-mainz.de connecting the monomers are generated out of theBset
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FIG. 2. Chain stiffness as measured by the characteristic ratio as
a function of temperature for the chains of lengtk20. The defi-

FIG. 1. Configuration snapshot for a system of chains of lengthition is given in the text. We observe a sharp increase in stiffness
N=20 at a temperaturé=0.219 in the nematic phase. for temperature§ <0.3.

={(2,00),(2,10),(2,21),(2,21),(3,00),(3,1,1)} by all The intermolecular interaction in the model is pure ex-
possible lattice symmetry operations. The shortest bondluded volume interaction, realized in the lattice model by
length puts two momoners adjacent to each other on thprohibiting double occupancy of lattice sites. This model has
lattice. Two monomers whose centers are connected by theeen used previously in studies of the free volume percola-
largest bond length are still so close that no other monometion transition in polymer matrice9] and the excess scat-
can pass between thefohain connectivity. Temperature is tering induced by intramolecular ordering of these chains
introduced by the Hamiltonian upon cooling[30]. We will discuss simulations performed at
a constant polymer volume fraction &= 0.5 and for chains
) of lengthN= 20, with some results also presented for chains
H({b}.{6})= Eb €n(h—Dbo) of lengthN=10 for comparison.
{0} At low temperatures a Monte Carlo simulation using Me-
tropolis rates exhibits an exponentially decreasing accep-
+% €y COL0)(1+Co 0% o)), (1) tance rate, and we are addressing an ordering phenomenon
with an algebraiqsecond ordegror rounded algebraifirst

which contains only intramolecular degrees of freeddih. ordep divergence of relaxation times near the transition tem-
denotes the set of all bond lengths, 4l denotes the set of Perature. Furthermore, we have to s_imulate rather large sys-
all bond anglese, =1 defines the energy scale of the modelt€mS to allow for the occurrence of differently oriented nem-
(temperatures will henceforth be given in units@), and  atic domains and to be able to perform a finite size scaling
we choosee,=0.67,b,=0.86, andc,=0.03 [28]. The study using the subensemble meth&d]. In this study the
Hamiltonian therefore favors short bond lengtts, (= 2) largest Imear.dlmensmn of the system was 130. .One im-
and stretched bond angle®= ). At high temperatures Portant technical advantage of the bond-fluctuation model at
these chains are known to conform to the Gaussian statistidgiS volume fraction is the ability of the slithering snake
of polymer chains in the meJ26,27], and the ground state of reptation algorithm(see Refs[32,33 for a version of this
each chain is a rigid rod with all bonds collinear and of typealgonthm that_ allows f(_)r further dynar_n_lc S|mulat|o_ns using a
(2,0,0. The contour length of the chains in the ground statg@ndom hopping algorithif27]) to equilibrate the simulated

is 2N lattice units, and its width is that of a monomer, i.e., System through the whole transition region. Despite the fact
d=2. The variation of the chain stiffness as a function ofthat our system size =130 means that we have almost 1.1

oy - . 7
temperature can be seen in Fig. 2, where we show the chafillion monomers in the system, times of order' Ionte

acteristic ratio of the chains of lengtti=20: Carlo stepdMCS) per monomer can be reached. To check
equilibration and exclude the occurrence of frozen-in meta-
(R?) stable states, we performed stepwise cooling from the melt
NE—————, (2)  for the temperature$=0.367, 0.282, 0.263, and 0.251, and
(N=1)(1%) stepwise heating from a columnar crystal for=0.219,

0.238, 0.251, and 0.263. For the two temperatures where
where(R?) is the mean squared end-to-end distance of theompletely different starting configurations were used, Fig. 3
chains,N is the degree of polymerization, af¢?) is the  shows that we were well able to equilibrate the structures and
mean squared bond length. The characteristic ratio stronglghat there are no discernible effects of the thermal history of
increases toward its ground state valueGaf=19 for tem-  the sample. Comparing the behavior of the mean squared end
peratures below = 0.3, giving us a first indication where to to end distance of the chains in FigaBto the order param-
expect the nematic ordering phenomenon. eter of the systeniwhich will be defined in Sec. I}lin Fig.
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[CL N vy w———— The unit vectory; is taken along the symmetry axes of a
molecule[34—-37] (not available heng the principal axes of
Tmi“’”‘ inertia of a polymef15], or the individual polymer segments
A M‘Mﬂ N MMW{J N/ JMMM“WMW [16], which is computationally more efficignt in the polymer
600 JWM ! M‘N‘h . ' case. In a simulation, however, the directigt) at timet is
not ana priori known quantity. One therefore proceeds by
"n:w ST, 20263 (from melt) computing the Saupe tens88],
T,,=0.251 (from columnar crystal) 1 1 N 3 1
500 | Qaﬁzﬁg1 (Euiauiﬁ—zaaﬁ). (4
o Wiy N‘J‘f"‘b"\vuf"f N".N‘"““’\qv‘""J"\Wv" by
(. V_ T 0263 The sum runs over all bonds in the systépnis a symmetric
agp L= fommed traceless tensor with the inversion symmetry of the nematic
0 10 2x10’ phase. The eigenvector for the largest of the three real eigen-
t[MCS] @ values(\ ;) is the nematic director. The nematic phase is
rotationally invariant around the director, so in this phase we
06 — ' have
T, .=0.238 (from columnar crystal)
05 W vl B == (o)== (0), 5)
"MMVMA*J\‘*"‘M*W’f\/]‘f“' where(\ ) denotes the middle ar _) the smallest eigen-
04 | value. In the isotropic phase we have

T, .=0.263 (from melt)

m 0.3 T, .=0-251 (from columnar crystal) | <)\ + > - <)\ 0> - <)\ 7> =0. (6)
- M (,% J 'IV""W"“VWMMNMWM Defining S=(\ ) provides an equivalent way to calculate

02 \ the nematic order parameted6] which is generally used in

Tow=0-263 computer simulationg37,39-41.

017 ] In a computer simulation the signature of a phase transi-

LT, =0.273 (from melt) tion is always distorted by effects of the finite simulation

0 1'0 ‘ 7 volumg. T_he_magnitude of these effects depends on the ratio

of the intrinsic length scale of the phenomer(time correla-
(b) tion length &) to the linear system size. This dependence
has been used in the phenomenological finite size scaling

FIG. 3. (a) Equilibration time series for the mean squared e”d'theory[31,42], where the singular part of the free energy is

to-end vector for two different simulation temperatuf&sq. For — yritten as a function of thermodynamic parameters such as

both temperatures time series starting from a columnar crystal ahe temperature and the ratid¢. For the moments of the

lower temperature and a melt configuration at higher temperaturg o, parameter this leads to the well knof@1,42 predic-
are shown. Both time series reach the same equilibrium value fons at a second-order phase transition ’

about 16 Monte Carlo time units(b) Same aga) for the nematic
order parameter. Here the equilibration time is about W®nte _
Carlo time units. (XY (T,L)=LKkI"X

0.0

7

2x10°  3x10° 4x10
t[MCS]

TE> 7
Z) @)

3(b), we furthermore note that the latter needs about an ordq_qere 3 is the order parameter critical exponenigharacter-

of magnitude more simulation time for equilibration. Figure . . : .
- s izes the divergence of the correlation length at the critical
3(b) also indicates that the two temperatures shown lie in the - ) .
, andX is a scaling function. It follows

nematic region of the phase diagram, which will be demonP0int, £<(T—T¢)™" -tto
strated in Sec. IV. from Eq.(7) that exactly af . whereL/£=0, certain suitably

chosen ratios of the order parameter momenmfs
=(x?)/(x¥)? are independent of the system size. The corre-
sponding curves for differerit as a function of temperature
thus have a common intersection point B. The most

In the nematic phase the orientational isotropy of the syspopular one of these ratios is the fourth-order cumulant
tem is broken, and the molecules are preferentially oriented

- 4
along some direction called the nematic direatofThe glo- 94= %) _ ®)
bal nematic order parameter can be defined as the expecta- (x?)?
tion value of the second Legendre polynomial of the inner

product of a unit vecton; characterizing the molecular ori- FOr reasons of statistical accuracy it is preferable, however,
entation and the nematic director: to work with the second-order cumulgis3]

— 1 .. n)2 g :@ (9)
5—5(3<(Ui'n) )~ 1. ) 2 (2"

IIl. HOW TO ANALYZE
THE ISOTROPIC-NEMATIC TRANSITION
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which is less susceptible to effects of statistical inaccuracy in 1.0
the tails of the numerically generated order parameter distri-
bution.

The cumulant intersection method can also be applied
to first-order phase transitiofid4—47. Since the predictions
for this case are different from those for second-order tran- 06 |
sitions, the method can serve as a tool to determine the order
of the transition. For a first-order phase transition the phe-
nomenological predictions are as folloyw&7]. 04 ¢

(i) The curves ofj,(T) for neighboring values df inter-
sect close to the transition temperatlite which means that
the sequence of curves as a functiorLddt fixed T reverses
atT.. The intersection point§., (L) converge to the critical
temperature fob. —oo,

0.8

0.2

0.0 ‘ : ‘ -
020 022 024 026 028 0.30

I Ted L) = Telloel =24, (10 T @
whered is the dimensionality of the system. 10 o~ eict
(ii) For smallL the cumulantg, is a monotonically in- . al=8
creasing function ofT. For sufficiently largelL, g, has a 08! N=10 :t:}g
maximum in the disordered phase whose height scales as the «—<L=14
volume and whose distance to the critical temperature scales y—viL=16
as the inverse volume. 06 | T iie

Quantitative predictions for the behavior of the second- W > L=38

order cumulant have not been derived so far, but qualita- oal \\’\\ *—xL=64
tively we expect a similar behavior. We will discuss our )
results for the second and fourth order cumulants in Sec. 1V,
0.2}
IV. RESULTS AND DISCUSSION

We have already seen qualitatively in Fig. 1 that our 0-%_20 022 024 026 028 030
model exhibits a nematic ordering phenomenon for chain T
length N=20 at low temperatures. This can be seen very ®)
clearly when we look at the nematic order param&es a FIG. 4. (a) Nematic order parameter as a function of tempera-

function of temperature in Fig.(d. This figure shows the tyre for a melt of chains of lengtN=20. The different curves are
nematic order parameter for several subsystem sizes of thgr different subsystem sizes given in the legefls). Same aga)
simulation box of sizd.=130. We see a strong increase of for N=10.

the nematic order for temperatures beldw: 0.27, and the
value of the order parameter becomes independent of the

subsystem size at low temperatures. For higher '[emperatungé::atter in the disordered phase, especially close to the peak

any residual nematic order is clearly a finite size effect, asposmon. '.A‘S expected, the scatter is strongergptthan for_
can be seen from the vanishing of the order parameter wit2: Put since the curves bundle up for large system sizes
increasing subsystem size. In contrast, we cannot obsenfY€n forg; this scatter prevents a reliable determination of
such a phenomenon for the chain lendth: 10 in the same the intersection points of curves for differebts when L .
temperature intervalsee Fig. 4b)]. From this we cannot, becom_es Iarge._ This also precludes an accurate extrapolation
however, exclude a transition fdN=10 at considerably ©f the intersection points to the transition point.
lower temperatures than those analyzed here. Due to the 'N€ reason for this problem is the bundiing up of the
glassy freezing of the model at low temperatures, this probcUrves for different.’s in the disordered regime, which in
lem is difficult to study. turn stems from the finite size scaling behaylor of the differ-
Let us now turn to the determination of the phase transi€Nt momentg\’) of the order parameter. Figure 6 shows a
tion temperature and the order of the transition Kb 20.  comparison of the system size dependence of the largest and
Figure 5a) shows the fourth-order cumulant of the largestthe middle eigenvalue of the Saupe tensof &0.282 in the
eigenvalue of the Saupe tensor as a function of temperatufisordered phase. For the moments of the largest eigenvalue,
for different subsystem sizes, and FigbBshows its second- We observe a dependence approximately given(ky)
order cumulant. Qualitatively we observe the predictions dis=L ~"%?, makingg; andg, practically independent of the
cussed in Sec. lll. For smdllthe cumulants are monotonical system size for large systems in the disordered phase. For the
increasing functions of temperature, whereas for latgae ~ middle eigenvalue, however, the behavior is different. Here
see a peak occurring in the disordered phase. The arrows e find approximately(\{)=<L~"4? for n=2 but (\)
the figures indicate intersection points of curves for neigh<<L 3. For a model system of uniaxial molecules this behav-
boring L, and they appear to converge to a limiting valueior was analytically predicted in R€f35]. As a consequence,
aroundT=0.27. There is, however, relatively large statisticalthe second-order cumulant of the middle eigenvalue should
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FIG. 5. (@) Fourth-order cumulant of the largest eigenvalue of
the Saupe tensor as a function of temperature. The different curves
are for the subsystem sizes given in the legend. The arrows indicatse
intersection points of curves for neighboring subsystem si¢®s.
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FIG. 7. Second-order cumulant of the middle eigenvalue of the
Saupe tensor as a function of temperature. The different curves are
for the subsystem sizes given in the legend. Note that the curves for
different subsystem size now show a marked system size depen-
dence in the disordered phase.

scale agy>=L® in the disordered phase, thereby alleviating
the problem caused by the bundling up of the curves. In Fig.
7 we show that this behavior indeed can be seen. Here the
curves are sufficiently spread out so that it is possible with
the accuracy obtainable in the simulation to determine the
cumulant intersection points with sufficient precision. It may
seem that the smallest subsystem linear dimensioim-
cluded in our analysi¢Figs. 5 and ¥, L=4, is ridiculously
small. However, an analysis of the orientational correlation
function has revealefB2] a rather small value of the orien-
tational correlation lengtlt in the transition regiong~3
lattice spacings. Thus our choice satisfies £. The result-

g points are shown in Fig. 8 which presents the system size
caling of the cumulant intersection temperatures. The full
curve is a fit with

Same asa) for the second-order cumulant of the largest eigenvalue

of the Saupe tensor.
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FIG. 6. System size dependence of the largest and the middle FIG. 8. Extrapolation to an infinite system size for the intersec-

eigenvalue of the Saupe tensor at temperaiu®.282 in the dis-
ordered phase. Note théx,) and(\3) show the same slope.

tion temperatures of the second order cumulants in Fig. 7. The
extrapolated first-order phase transition temperatuiig. is0.271.
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TheL 2 scaling would be expected for any first-order phase 40 -
transition on general groundi46,47). From the fit we deter- N=18
mined a transition temperature,=0.271 compatible with

our prior estimates and a prefacte 3.11. nematic
In this way we are able to establish a first-order phase 80 r )
transition from a high temperature isotropic phase to the low
temperature nematic phase in our model system of chains of
lengthN=20. The transition is generated by the conforma- R, 20| |

tional changes in the chains which are forced toward the
rigid rod ground state as the temperature decreases. The tran-
sition itself is entropy driven. The chains lose orientational
entropy upon ordering, but they gain translational entropy. 10
Since the Hamiltonian favors bonds of the ty@e0,0 in the
rigid rod ground state there are, however, only three possible
orientations each chain can take in its ground state on the
simple cubic lattice. This small orientational entropy cer- 0 . .
tainly increases the ordering tendency compared to a con- 02 04 06 0.8 1.0
tinuum simulation. ¢

In comparison with earlier lattice simulations of different 5 o \jean-field phase diagram according to the Onsager
moqels' we can On_ly speCL_JI_ate on Why_they failed to diSpla_)fheory using the one determined transition poirk=0.5R,
an isotropic-nematic transition. There is always a competi—j1y. The opaque circles indicate the volume fractions where the

tion between this transition and a glass transition in thesgsspective chain lengths would just show a zero temperature phase
simulations, when one increases the density at a fixed chaiansition to the nematic phase.

stiffness or the chain stiffness a fixed density. When the den-

s_ity (_stiffness) of the model at the _isotropic-nematif: transi- temperatureT =0.271. At this temperature we findR2)(T

tion is larger than the corresponding glass transition value= 0.271)=440.62. This gives an empirical value of const
the phase transition is masked by the glassy freezing and is 5 25 for the constant in Eq12), which lies between the
not observable in the simulation. The same Flory m¢d8]  \4jyes for the continuum and the simple lattice model that

used for the mean-field treatment of the isotropic-nemati¢-ory studied. We can now plot an approximate transition
transition is also the basis of the Gibbs-DiMarzio the@ty] line in the (¢,R.) plane, which is given by

of the polymer glass transition. Also in our simulation, the
self-diffusivity of chains at temperatures 035<0.6 is
compatible with a glassy freezing arourit=0.15 [32]. Ro=——. (13)
However, even at the simulated density ¢f=0.5 the ¢
isotropic-nematic transition already occurs at a higher tem- . . . N
peraturgismaller stiffnesg and is therefore observable in the The resulting phasg diagram is shown In F'g' 9*for<0<72
simulation. <1, where the full I|n_e denotes the sta_blllty limt c_>f the _

To gain further insight into the chain length dependencéSOtrOp'C phase. For fixed V_O'“”_‘e fract|_on of t_he 5|mu|at|_on
of this transition, we can try to interpret it in terms of the we expect a phase separation into an Isotropic phase V\."th a
Onsager theory of the entropy driven isotropic-nematic trangens'ty given by the curve, and a nematic phase at a higher

sition[7,2] or the lattice model treatment of this transition by density as soon ?‘39 becpmes 'afgef than 104/ Also in-
Flory [48,2]. For rigid rodlike polymers of lengtt< and cluded are transition points for chain lengtNs=6-18 for

diameterd, both theories predict the limiting volume fraction ‘€MperaturéT=0, where the length of the chains in their
of rods for the isotropic one-phase region to be rigid rod ground state iR.=2N, and the transition density
is 5.25N. From this diagram we conclude that at a volume

q fraction in the simulation ofp=0.5 all chains of lengthN
¢*=consfz. (12) >10 should show an isotropic-qematic phase transition at
some temperaturd >0. The chains of lengtiN=10 for
. L which the order parameter was shown in Figh)4are there-
The value_of the cpnstant in the above equation is 3.29 fofore not expected to order at the simulation density.
the numerical solution of the Onsager theory and 7.89 for the
numerical solution of Flory’s theory. In order to apply this
equation to our simulation we equate the paramdterith
the thickness of our chainsl€2), and the length of the rods ~ H.W. acknowledges funding through a EU Joint Research
with the square root of the mean squared end-to-end distang&oject under Grant No. CIPA-CT93-0105. The study was
(K=Rg= \/(Rg)). The latter relation is an exact identity in made possible by generous grants of computing time at the
the ground state, and serves as a definition of the length fatentrum fur Datenverarbeitung, University of Mainz, and the
T>0. From the simulation we determingel* =0.5 for the  Regionale Hochschulrechenzentrum Kaiserslautern.
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