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Phase-ordering dynamics with an order-parameter-dependent mobility: The larges limit
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The effect of an order-parameter-dependent mohibtykinetic coefficieny, given by)\(q?)oc(l— $?), on
the phase-ordering dynamics of a system described by@mponent vector order parameter is addressed at
zero temperature in the largedimit. In this limit the system is exactly soluble for both conserved and
nonconserved order parameter; in the nonconserved case the scaling form for the correlation function and its
Fourier transform, the structure factor, is established, with the characteristic length grovldﬁg’é%““). In
the conserved case, the structure factor is evaluated and found to exhibit a multiscaling behavior, with two
growing length scales differing by a logarithmic factot ;~t¥%2+ @) and L ,~ (t/In t)4&2+ ),
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[. INTRODUCTION cases. While thes®(n) models are not exactly soluble for
generaln, exact solutions can be obtained in the limit
In this paper we examine the effect of an order-parameterm— .

dependent mobility, or kinetic coefficient, on the phase- In Sec. Il we consider a nonconserved system with a vec-
ordering dynamics of a system described bynartomponent  tor order parameter. The scaling hypothesis is established,
vector order parameter_ Both conserved and nonconservé}fld the exact forms of the two-time correlation function and
order parameters are considered. For the case of a constdA@ Structure factor are calculated. We find that the charac-
(i.e., order-parameter-independemnobility/kinetic coeffi-  teristic length grows ak~t"2(") Due to the absence of
cient, both these systems become analytically soluble in th_gefects there is no Porod’s law: the structure factor is Gauss-
largen limit [1—3]; it is in this limit that we now consider i1@n for all a.
the effect of an order-parameter-dependent mobility given by N the conserved caseSec. Il), the structure factor
R((Z)“(l—éz)“, for models where the equilibrium order Is found to depend on two characteristic lengths,

. L, ~tY2C+a) and L,~(t/Int)Y22* @) through the form
parameter satisfiegp>=1. Thus the mobility vanishes in 2~ ) g

__y de(kLy) : . -
equilibrium, leading to a reduction in the growth rate of thes(k’_t) ,I,‘l - This type of behavior is termgd 'mu|t|
characteristic length scale(t), of the bulk phases. scaling,” and the results fdr; andL, are generalizations of

The effect of an order-parameter-dependent diffusion coSimilar expressions obtained by Coniglio and Zanriéftfor

efficient on a system with a scalar order parameter has bedf€ case of a constant mobility. Indeed, as expected, all the
studied by several authofd—6] since it has been proposed results of th|§ paper reduce to the established conataet

that for a scalar order parameter a mobility of the formSults whena is set 'to Z€r0. ) :
N(¢)=(1— ¢?) is required to accurately model the dynam- We conclude with a summary and discussion of the re-
ics of deep quenched] and the effect of an external field SUltS:

[8]. Lacasteet al.[5] studied this system numerically using a

mobility given by \(¢)=(1—a¢?). They found that for Il. THE NONCONSERVED O(n) MODEL

a=1 the characteristic length grows &4 (in contrast to the
conventionak® growth fora=0), and for alla# 1 there is

a crossover betweeh~t* and L~tY3. Similar behavior
was observed by Puet al.[6]. This system has been solved
exactly in the Lifshitz-Slyosov limif5] for a more general -
mobility given by (¢)=(1— ¢?)%; in this system the sys- 9di _ N () oF[¢]
tem coarsens with growth exponent 14%), despite the at O
absence of surface diffusion as a coarsening mechanism at

late times(due to the geometry of the systgrand the van-  \yhereV/($?) is the potential energy term in the Ginzburg-
ishing of the mobility in the bulk phases. Landau free-energy functional, and is invariant under global

. Although a system de_scrlbed by a vector order paratherrotations ofcfs. In the following calculation, the conventional
will have a completely different morphology from the Scalarchoice is made for the form of the potential:

case(e.g., there are no localized defects ford+1), it is
natural to try to generalize this order-parameter-dependent .

mobility to the vector cas€9]. In this paper, therefore, we V(2)= (1—-¢%) @)
examine(in Secs. Il and Il] the coarsening dynamics of an 4 ’

n-component vector order parameter for a general class of

mobilities/kinetic coefficients given by(gZ):(l— (Z,Z)a, and the order-parameter-dependent kinetic coefficient is

where a e A", for both the nonconserved and conservedgiven by (¢)=(1— ¢?)“.

The dynamics of a nonconserved vector order parameter
are described by the phenomenological time-dependent
Ginzburg-Landau equatigri0],

IV(P?)
i

=M<Z>2>(v2¢i— ) 1)
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In the limit n— Eq. (1) may be simplified by making If we now differentiate again, we obtain a simple differential
the following substitution: equation fora(t), and from this we find that the largebe-
havior ofa(t) is given by

4(1+a)t) M+

*= nm(z ¢>f)=n<¢>§>=<$2>, 3)
a(t)~( d

now\j=1

(14

where( ) represents an ensemble average. Defimifty by H it learlv b that th tion alt
. A 32 ence it can clearly be seen that the assumption
the equatiora(t) = (1—-(¢)), Eq. (1) then reduces to <1 at late times is justified.

I, Using this result together with Eq&) and (13), we find

7=a“(t)[V2+a(t)]¢i. (4)  that

. . . b(t)~ gt1te), 15
If we now take the Fourier transform, this equation can eas- (O)~o (15

ily be solved to give
&V ()= (0)exr —k2b(t)+c(t)], (5) o(t)~ 4(1+a) In(%)’ 19

where b(t)=[idt'a®(t’) and c(t)=fidt'al**(t’). On Where
substituting Eq(5) back into the definition of(t) we find

al(1+a)
o=(1+ a)ll(““)(z) , a7
a(t)=1—A exg2c(t)]>, exgd —2k?b(t)],  (6)
: 1 4\« AZ/d l+a
where we have used the conventional choice for the initial tozm a) (E (18)
conditions,
A We are now in a position to evaluate the expression for
<¢l((i)¢(_j:('>: (_) 8 S (7 thg F_ourier transform of the order parameyer at largeub-
n stituting Eqgs.(15) and (16) into Eq. (5), we find that
Using the fact thak ,exd — 2k?b(t)]=[8#b(t)]" %2 in Eq. (6), , A t\ dAL+a)
we obtain <k'>(t)=¢<k'>(0)(t—) exp(— ak2tV1 @) - (19)
0

_1_ —dr2
a(h)=1-A[8mb(t)]"Texp 2¢(t) ] ® Using this result, we can evaluate the two-time structure fac-

Since we are mainly interested in late times, we now solvdOr @nd the correlation function. These are given by
this equation self-consistently to obtain the latgesult for _ df2 A1+ o)

b(t) andc(t). In order to make progress we make the as- S(kita,tz) = (8ma) ™ (tat;)

sumption that at late times(t)<<1, and hence the term on ><exr[—okz(t1/(1+“)+t1/<l+“))] (20)
the left-hand side of Eq:8) may be neglected. The validity ! 2 ’

of this assumption will be proveal posteriori Thus we wish A(tyt,) YL+ dl4
1t2
to solve C(r,ty,ty)= (e (IT7 )2
A[87b(1)]¥? ex 2¢(t)]=1. 9) )
—X
Differentiating this expression with respect to time gives the ><exp( 40_(t%/(1+a)+t%/(1+01))) (2D

following relation:
which, in the equal time case, reduce to the following ex-

~ db(t) pressions:
c(t)= F(t) (10

S(k,t)=(87o) Y221t Dexpy — 20k2tYIT ) (22)

Substituting the derivatives df(t) and c(t), which are ,

iven b X
g y C(r,t)=eX%—W . (23
b(t)=a%(t), (1)
These results exhibit the expected scaling forms, with the
c(ty=a*«(1), (12 characteristic length scale growing as~tY?(1*®)  The
structure factor has a Gaussian form, without the power-law
into Eq. (10), we find that tail predicted by Porod’s law. This is a direct consequence of
the absence of defects in the system.
b(t)= _ (13) If we now look at the two-time correlation function in the
4a(t) limit t;>t,, we find that
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(24

t )l/(l+a)

C(r,tl,tz)zH—2
4

d/4 X2
exp — —— o
Aot %/(1+ @)

Comparing this with the scaling forni10] C(r,ty,t,)

=(L,/Ly)*h(r/L,), we obtain the resulty =d/2, indepen-
dent of a.

It is also interesting to compare the response function,
G(k,t)=(dp((t)/d¢{’(0)), with the structure factor

S(k,t,0), i.e., with the correlation ofs{’(t) with its t=0
value. Using Eq(19) we find that

td/4(1+a)

S(k,t,O):A(E) exp( — ok?tY1t®) - (25)
t | 41+ e)

G(k’t):(E exp(— ak?tVt @), (26)

which verifies the relatios(k,t,0)= AG(k,t). Note that this
is an exact result valid beyond the largdimit; this may be

proved by integration by parts on the Gaussian distribution

for {¢(0)} [11].

Ill. THE CONSERVED O(n) MODEL
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1/2
X= (E) K, (31

c(t)
Eq. (30) becomes

A (ﬁ(t))dm
29717921 (d/2) \ b(t)

xfwdx X lexd 2B8(1) (x*—xH]1=1, (32
0

where
B(t)=c2(t)/b(t).

We now make an additional assumpti@iso to be veri-
fied a posterior) that 8(t)—«~ ast—w; the integral on the
left-hand side of Eq.32) can then be evaluated by the
method of steepest descents. Therefore,(&2). finally sim-
plifies to

(33

d/4

—-1/2
ABM exd B(t)/2]=1.

23d/2,n_(d7 1)/2I‘(d/2)

B(1)
b(t)

(39

We now solve this equation asymptotically, obtaining ex-
pressions for(t), b(t), and B(t) at late times. On taking

The dynamics of a system described by a conserved vedhe logarithm of Eq(34), we find that

tor order parameter are modeled by the Cahn-Hilliard equa-

tion [10],
Ib o[ OFLH]
s o 52
12
=V-[M$2>v(—v2¢i+a\gj)) L@

where we make the same choice for the potential as before,

,B(t)zgln b(t)+ 2T)In[ln b(t)]. (35

Using the definition of3(t) [Eq. (33)] in Eq. (35), we obtain
an equation forc(t), which when differentiated, givego
leading order

(d In b(t))l’z.
= | b(t). (36)

8b(t)

V($?)=4(1-$%?. Following the method of the previous |f we now substitute for the derivatives @f(t) and c(t)

calculation, ¢ is eliminated using Eq(3); therefore, Eq.
(27) reduces to

9hi_ _ a*(t)[ Vi +a(t) Vie],

g (289

wherea(t) is defined as before. Taking the Fourier transform

and solving the resulting differential equation yields

# (0= (0)exd k(D) +k2c(D)], (29

from Egs.(11) and(12), respectively, we find that

SO CLL LI «f2 3
a*(t)=b(t)= “8bm | (37
which has the asymptotic solution
(2+a)t 2[(2+ @) dint al(2+ a)
e P 39

If we now differentiate this expression once more, we

where b(t) and c(t) are defined as for the nonconservedobtain the asymptotic behavior aft),

case. Substituting this back into the formula foft) and
using the random initial conditions given by ET) gives

a(t)=1— A; exd — 2k*b(t)+2k%c(t)].  (30)

dint

22+ )t 1

142+ a)
( . (39

a(t)= + 2Int

and clearlya(t)<1 at late times, justifying one of our initial
assumptions.

To make further progress we again assume that at large On substituting Eq(38) into Eq. (35), we obtain

t, a(t)<<l. This is checked for self-consistency later in the
calculation. The sum ovel is converted to an integral and,

using the change of variables

2va “o

B(t)z%lnt%— )In(ln t).



216 C. L. EMMOTT AND A. J. BRAY PRE 59

We see that as—, B(t)—oo, justifying the application of vector order parameter. Exact results have been obtained in
the method of steepest descents to the integral in(B2).  the largen limit, a limit that despite its limited applicability
Thus both our initial assumptions are satisfied. to physical systems has been widely studied as one of the
We are now in a position to evaluate the expression fofew exactly soluble models of phase-ordering kinetics
#{(t). Completing the square in the exponent on the right{1-3,13—18. All the results obtained reduce to the expected

hand side of Eq(29) gives constantx results whern is set to zero.
In the nonconserved system, the correlation function and
e — 2() Bt B(t) b(t)\* J]? its Fourier transform, the structure factor, were explicitly cal-
b (=i (0)ex 4 4 L B(t) k culated and found to be of the expected scaling form, with

(41)  the characteristic length growing hs-tY2(1* % The order-
o parameter-dependent kinetic coefficient slows down the rate
Substituting forb(t) and B(t), from Egs.(38) and (40),  of domain coarsening; the result reduces to the famifir

respectively, gives growth for the casexr=0 [10,13. The resulth =d/2, inde-
(D (1) = A1) (2+ a—d)/4(2+ a)4[dI4(2+ a) | p(K/Ky) pendent ofa, was established from the two-time correlation
k (HD=¢'(0)(Int) t m, functi . : ,
(42) unction C(r,tq,t,) in th_e reg|metl>t2_, and_ the relation
S(k,t,0)0=AG(k,t), relating the correlation with, and the re-
where sponse to, the initial condition was verified. The equal-time
correlation functions and structure factor are Gaussian.
dint |¥2re The system with a conserved order parameter was found
2(2+a)’t to exhibit a more unusual behavior. In this system, the struc-
_ N _ _ ture factor does not have the conventional scaling form and
is the position gf 2:che maximum in the structure factor, andis dependent ontwo scaling lengths,t¥2?*® and k1
$(x)=1-(1-x9)° . ~ (t/In H)Y2(2T @) wherek,, is the position of the maximum
The structure factor is, therefore, given by in the structure factor. This type of behavior was first discov-
ered in a phase-ordering system by Coniglio and Zannetti
[1], for the «a=0 case. Fora=0 this behavior is a conse-
From this expression it is self-evident that the structure facduence of the noncommutativity of the largeand larget
tor does not have the conventional scaling foS¢k,t)  limits, as demonstrated within a soluble approximate model
~L9%(KkL). In this system there are two different length by Bray and Humayufl4]. They demonstrated that for fi-

scalesL, andL,, which differ only by a logarithmic factor Nite n, in the limit t—c, conventional scaling is found
and are given by whereas if then—c limit is taken first (at finite t), the

Coniglio and Zannetti resultl] is recovered. At large, but

m

(43

S(k,t):A(ln t)(2+a*d)/2(2+a)t[d/2(2+a)]¢(k/km). (44)

L,~tY22ta), (45 finite n, multiscaling behavior is found at intermediate times,
with a crossover to simple scaling behavior occurring at late
L, t\rAEe times[14,17,1§. We anticipate that a similar crossover to
Lo~ky = int (46) simple scaling at late times will occur for amyfor large but

finite n, leaving a single growing length scale-tY/2(+ ),
The structure factor is, therefore, of the forB(k,t)  but an explicit demonstration of this goes beyond the scope

~L{?"2 with an additional logarithmic correction factor, Of the present paper.
(Int)@*e-d/2(2+a) the exponent depends continuously on a . NOte that all the results presented above have been de-

scaling variable. This type of behavior is called “multiscal- V€d in the absence of thermal Eoise, so these results are
ing,” and was first noted by Coniglio and Zannetti for the strictly valid only for quenches t@ =0. However, since we

casea=0 [1]. Note that ther dependence enters through the 40 NOt expect temperature to be a relevant varighlel2,
length scales , andL,, while the functiond(x) is indepen- qualitatively similar results should be obtained for quenches
dent of a. to T>0 (but T<T,.), at least for nonconserved dynamics

(with n finite or infinite) or conserved dynamics with finite
IV. DISCUSSION AND CONCLUSIONS [18].

In this paper we have considered the effect of an order-
parameter-dependent mobility/kinetic coefficient, given by

M) =(1— $?)%, on a system described by arcomponent This work was supported by EPSROnited Kingdon).
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