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Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe lattices
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We show that the negative of the numberfloppy modebehaves as fiee energyor both connectivity and
rigidity percolation, and we illustrate this result using Bethe lattices. The rigidity transition on Bethe lattices is
found to be first order at a bond concentration close to that predicted by Maxwell constraint counting. We
calculate the probability of a bond being on the infinite cluster and also on the overconstrained part of the
infinite cluster, and show how specific heatan be defined as the second derivative of the free energy. We
demonstrate that the Bethe lattice solution is equivalent to that of the random bond model, where points are
joined randomly(with equal probability at all length scaleto have a given coordination, and then subse-
quently bonds are randomly removg&1063-651X99)07202-5

PACS numbegps): 05.70.Fh, 61.43.Bn, 46.25y

. INTRODUCTION directly[7] or as thes— 1 limit of the s state Potts mod¢8].
For rigidity, this free energy allows us to locate the bulk
Connectivity percolation on Bethe lattices or infinite sta-transition on the Cayley tree, and we refer to this as the
tistically homogeneous Cayley trees was thoroughly anaBethe lattice solutio3]. We confirm that forb=1 andg
lyzed by Fisher and Essapt] and provides a useful model =2 the rigidity transition is always first order on the Bethe
for percolation. Rigidity on Cayley trees was first studied bylattice, whereas of course it is second order for connectivity
Moukarzel, Duxbury, and Leafl2], henceforth referred to as percolation whereg=1. On the triangular lattice, rigidity
MDL. This model hasg degrees of freedom per site, with percolation is second ord¢®—11], in contrast to the first
g=1 Corresponding to Connectivity perco]a’[ion being a Speprder tre}nsitipn on the Bethe .Iattice. The _nature of the rlgld-
cial case, and so may be regarded as an extension of tH¥ transition is a subtle question, depending on the network,
work of Fisher and EssafiL]. In this paper, we develop a @nd this has not always been taken into accqa@. For
free energy for the rigidity percolation problem, and as arfonnectivity percolation, the transition is always second or-
example of its use, we show how to locate the bulk rigidity 4€" [1,13: . .
transition on the Bethe lattice. We use the téBethe lattice MDL developed a general solution, using a transfer-
rather thanCayley tree to emphasize the bulk behavior of Matrix technique, for a network of rigid bodies, each vgth
lattices containing no loops away from the boundgiy3] degrees of freedom generically connected thybars, as
- : sketched in Fig. 1. Initially each rigid body haseighbors,
We have previously suggested that a free energy can b

. ; And the rigidity of the network is studied as the bonds are
defmed as the negative .Of the nu_mber of floppy mddgsin randomly removed. Fdi<g, this type of network is always
this paper we prove this assertion for the case of rando

mﬂoppy unless the tree is attached to a rigid surfdmesbay
bond dilution in a general lattice with degrees of freedom . . o ;
per site and withz nearest neighbors, connected by 1 in which case rigidity may or may not propagate away from

bars. Forg=1, this givesconnectivity percolation. Forg the busbar, depending on the degree of dilution.
: o ) w lify th k of MDL b ing the f
=d it models a central force network with pointlike nodes in e amplity the work o y using 'he Tree energy

. ; X ) and the associated Maxwell constructipt4], to remove
d dlmens'lons[5,6]. However, if the nodes of the Iatt|cg ar€ poundary constraints in the analysis of bond-diluted Cayley
bodies with rotational degrees of freedog d(d+1)/2 in
a d-dimensional space. Note that when bodies exist on each
node of a lattice, it makes sense to consider models where
more than one bafor spring connects each pair of bodies.
These models were introduced, discussed, and extensively
analyzed in Ref[2]. Here we concentrate on the simplest
cases of pointlike hodes with one bar between each pair of
nodes.

We prove that this free energy has the correct convexity
property and hence specific heatan be defined from the FIG. 1. Showing one branch of a tre@vith coordination
second derivative. This definition of the free energy reduces—3) with a single barf=1) connecting each pair of sites. The
to the known result for connectivity percolation when ponds are present with probabilify Each site, shown as a shaded
=1, where it becomes the negative of the total number otircle, hasg degrees of freedom. Only the first few levels from the
isolated clusterg7]. This latter result can either be found rigid busbar are shown.
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trees, and hence obtain the bulk or Bethe lattice solutiontandomly present with probabilitp. An exact relation on
This constraint equation leads tohagher rigidity threshold  any bond-diluted lattice is

than that found in MDL. In analogy with thermally driven
thermodynamic transitions, we interpret the threshold found
in MDL as aspinodalpoint and useg when referring to it in
this paper. We use, to refer to thebulk threshold.

The layout of this paper is as follows. In the next sectionwhereF is the total number of floppy modes. There &e
(Sec. 1) we develop results applicable to general bond-sites in the network and(p) is the probability that a bond is
diluted lattices; namely the proof that the negative of theredundant, i.e., its removal does not change the number of
number of floppy modes acts as a free energy for studyinfloppy modes in the system. Equati@l) demonstrates that
bond-diluted connectivity and rigidity percolation, and we we can count either floppy modes or redundant bonds, and
derive the associated Maxwell constructidi¥] or consis- although early work has emphasized counting floppy modes
tency condition. We review the main equations from MDL [4,18], they are equivalent. In Maxwell counting(p) is
for the Cayley tree, and evaluate the probabilty of being  assumed to be zero f@<p,, and the rigidity threshold is
in the infinite rigid cluster and also the probabiliB,, of  taken to occur af(p,,) =0, which leads to thélaxwell es-
being in the overconstrained part of the infinite cluster, bothtimate of the rigidity threshold,
defined in the bulk far from the busbar.

In Sec. lll, we discuss th@andom-bond mode[15], Pm=29/z. 2
wherez bonds join each site with other sites, regardless of
distance, and then these bonds are randomly diluted. Thi/ithin this approximation it is evident that
model is solved using the integer algorithm, the pebble game

_ F _ z
f(p)—g—N—l—E[p—r(p)], 1)

[9,10,16, for the connectivity casg=1, z=3 and the ri- f(p)=0 for p=ppy,
gidity caseg=2, z=6.We demonstrate that in the thermo-
dynamic limit, the random-bond model is equivalent to a f(p)=1-p/py for p<pn, (3

Bethe lattice.

In Sec. IV, we show that fog=1, the familiar connec- so thatf(p) changes slope at,,. We emphasize that Max-
tivity case is recovered. This analysis is examined for a genwell counting is not correct, but does provide a useful initial
eralz, specializing taz=3 to illustrate the detailed behavior approximation. In realityf+0 for p=p,, and is nonzero
for connectivity percolation. right up top=1 as there is always a small probability of

In Sec. V, we give detailed results for a Bethe lattice withhaving a floppy inclusion ip# 1. This is aLifshitz type of
g=2 andz=6 as an example of a first-order rigidity transi- argumen{20].
tion. We apply the consistency condition to locate the first We note thatf(0)=1 andf(1)=0, and hence from Eqg.
order transition in the bulk, and show that the results arg1) we haver(0)=0 and
equivalent to the random-bond model. We also give results
for the probabilityP,, of being on the infinite cluster and the 29
probability P,, of being on its overconstrained part. We r=1-—. 4
show that the results for the number of floppy modes are
equivalent to theg=2 random-bond model. We present a Equivalently
table summarizing important results for a range of values of ’
gandz 1

Throughout this paper we focus our attention on bond f fPdp=—1. (5)
dilution where the number of bats=1. Results forb=2 0

and/or for site dilution can probably be obtained in a similar ] B )
manner. These consistency conditions remove boundary constraints

from the calculation and hence enable predictionbafk

critical behavior. This is a key new element of the Cayley
tree theory, which was lacking in MDL, and which we now
A. General refer to as the bulk or Bethe lattice solution. In particular it

In this subsection we develop a free energy for both Congllows us to locate the bulk critical poi, when the tran-

nectivity and rigidity problems on general lattices, and show® Itllﬁg(;i ?(;Stth%r?neéamf'i\g%é t:Zt?oor:r;tcaetaV\s"e“(;:?otgiigp\l:g;eiglen-
that this leads to a consistency constraint on the number ot%]? d as the critical point Hq label that point d
floppy modes that is useful in locating first-order transitions. fed as the critical point. Here we ‘abet that pointasan

These results are applied to Cayley trees in the next SeCti0nrai:\?(tairgirritt-lé%Se:ht(?aigirt}gggl point in analogy with thermally

A constrain nting metho@l I xwell nt-
constraint counting metholso calledviaxwell count We now show that the number of floppy modes acts as a

ing) has been very useful as a conceptual tool in understan(ilfee energy in bath connectivity and rigidity problems. To

T?% rjlgrzgltx/l’aicvil:ncgl?:tlicnlga;ptgs);gdggn?;gliisiilnz}qbepemonstrate this, we recall the relation developed by Jacobs
. and Thorpg 10],

of floppy modes, where we defirfép) as the average num-
ber of floppy modes per degree of freedom. We consider

generic networks where each site ltpdegrees of freedom fO(p)=— i( —
with central forces that connect toneighbors. Bonds are 2

the following relation must be satisfied:

II. FORMALISM

NO) z N,

Nel 2Ny ©
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wheref is the number of floppy modes per degree of free- Therefore, we can use f(p) as a free energy, and if
dom, Ng is the number of overconstrained bonds on the latthere is any ambiguity the system will always be in the low-

tice, N, is the number of isostatic bonds on the lattice, est free energymaximum floppy modeésstate. The quantity
—f(p) is convex as required of a free energy, and we will
N :E\‘: N+ N @ refer tof(p) interchangeably as the fraction of floppy modes
B2 o or as the free energy. Note that the proof above is given for

arbitraryg andz, but is restricted tdo=1 and bond dilution.
is the total number of bonds pl’esent on the Iattice, and thgecausd(z)(p) is the second derivative of a free energy and
first derivativef(®=9f/gp. The relation(6) is obtained by s positive definite, we can regard it as a specific heat and it
removinga single bond, chosen at random, and ascertaining calculated explicitly in subsequent sectigag].
the probability that this bond is in an overconstrained region
(in which case the number of floppy modes is unchanged

! : B. Cayley trees
else the number of floppy modes is reduced by 1. Thdbis

one removed bond AF=(1—Ny/Ng), and if we now re- Following M_DL, we consider trees which have c_oordina-
move ANg bonds, we have tion numberz with g degrees of freedom per site, which form
a Cayley tree network attached to a rigid boundary which we
JF No call a busbar. This is shown in Fig. 1. The busbar is not
WB = —( - N_B) tS) necessary for connectivity whey= 1, but is of vital impor-

tance for rigidity wheng=2. We defineTg to be the prob-
and the resul(6) follows. By comparing Eqg(1) and(6), we  ability that a bond on @ranch n levels away from the
see that the number of overconstrained bonds is given by theusbar, is part of the infinite rigid cluster. In general, if the

rate of change of the number of redundant bonds, sites of the tree have degrees of freedom, rigidity is trans-
mitted to the next level of the tree provided at legsif the
ar(p) N bonds to the lower level are occupiadd provided that the
ap  Ng ©  sites at the ends of these bonds are rigid. This gives the

recurrence relation

We can use a similar argument to derive the important -

result z-1
=2 ( K )(pTS)k(l—pTS)“k, (15)
(2)(p) = 1 2(p)=0, 10
29 where Tj is the probability that a bona levels from the

oV o0 o busbar is rigid. If we take the thermodynamic linfitery
where the second derivatiié?)= 5%f/4”p. We demonstrate large n), Eq. (15) iterates to a steady-state solution, which
this as follows. If we remove one bond, chosen at randomyo call T, and is given by

then the change in the number of overconstrained bonds is
given by 1. 9
To=k2 ( K )(pTo)k(l_pTo)ZIK- (16)

N
AN0=—N—O(1+)\), (12)
B From this equation, we can find the probability of having a

whereA=0, because when an overconstrained bond is re§ing|e degree of freedom with respect to thiéstan} bound-

moved, the number of overconstrained bonds is reduced b@ry

at least one, and sometimes by more. If we remdw; -1
bonds, we therefore have T1=( 1)(p-|-0)g—1(1_p-|-0)z—g, g#1 (17
g_
Ng N—B(lﬂx)- (120 and more generally fordegrees of freedom with respect to

the boundary
Using this, we find 7—1
T.:( >(PTo>g'(1—pTo)Zg+'l, 1<l<g-1.

0 NO 1 3N0 NO A NO g—l
NN TN e 19 18
dNg Ng Ng\!dNg Ng/ Ng Ng (18
and hence using Eq€9) and (10), Summing over all possibilities, we have the useful sum rule
g
Az N
@)= — —= T =1 19
f@p)= 55N, =0 (14) 2T (19

establishing that- f(p) is a convex function of the fraction Equation(16) is the self-consistent equation for the rigidity
of bonds presenf. Note that we must ensemble-average theorder parameter on bond-diluted Cayley trees. MDL also
results (12) and (14) so that\ is to be interpreted as an considered a more general class of problem in which another
ensemble-averaged quantity. degree of freedorb=2 [the number of constraint®r barg
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between each pair of sites allowed. They also considered
the case of site dilution, which is trivially related to bond
dilution on a Cayley tree fob=1 only.

For trees withb=1, the probability that a bond is over-
constrained ipTZ, i.e., a bond is overconstrained if it is
presentand both of the sites at its ends are already rigidly
connected to the busbar. Such bonds aretlezconstrained
bonds of the infinite cluster, as no other bonds are overcon-
strained far from the busbar, which is the bulk solution that

we are seeking. Thus from E(f) we have FIG. 2. A sketch of the random-bond model with a single bar
5 b=1 along thez=3 bonds from each site. The bonds are present
Zz PTo . Z 2 with probability p. Each site, shown as a shaded circle, paie-
5( N T) - E(l_TO)' (20) grees of freedom. OnlN=12 sites are shown in this sketch. In
simulations using the pebble game, we tse262 144.

f(p)=~

Differentiating a second time gives
The condition(4) may be regarded as Maxwell condi-

@ z_ dT, tion, in analogy with that commonly used to locate the first-
f9(p)= ETOE' 21 order transition in thermodynamic systefd<l].
SinceT,=0, we must have solutions where I1l. RANDOM-BOND MODEL
T, Therandom-bond modedonsists ofN sites thrown down
%zo (22 randomly, with each site joined at random zmther sites

(without regard to distangeo form az-coordinated network.
to be acceptable. Small rings appear with probabili®(1/N). It is convenient

In a similar way the probability that a bond is connectedt?ns]gggéz'Zptehti\gor;l;:jne?iglzgf ?jse:‘?ngjg.tﬁr'ovl\:hﬁﬁtehi mfnber
to the infinite rigid cluster via the busbar at one end, but hag y g

one degree of freedom at the other, [sT3T,. Such bonds of degree§ of fregdong associated with each site. In the
) . . ! o Bethe lattice and in the random-bond model, there are no
are theisostatic bonds associated with the infinite cluster

[9-11]. Thus the total probability that a bond that is presentkmp.S in the th_ermodynam|c limi—c and soin a dlagram-_
belongs to the infinite cluste®., is matic expansion all terms agree and the modgls are equiva-
lent. For finite Cayley trees, there are loops involving the
busbar, as can be seen in Fig. 1. Likewise, there are loops in
the random-bond model, as can be seen in Fig. 2. So the
equivalence is only in the bulk thermodynamic limit. We

§ind this is a useful alternative viewpoint on the Bethe lattice

P.=T3+2T,T;. (23

overconstrained part of the backbone is given by

We have numerically examined connectivity percolation
havingg=1, z=3, and theg=2, z=6 rigidity percolation
case using the random-bond model. These simulation results
are compared with the corresponding exact Bethe lattice cal-
culations in the next two sections. The pebble game

Po=T3. (24)

Since the number of redundant bondp) is zero forp
<p., and after finding *)(p)=T3 from Eq.(20) using Eq.

(1), we must have [9,10,14 was used to find the number of floppy modes and
the derivativesY)(p) andf(®)(p) for theg=2, z=6 case.
r(p)=pr§dp. (25)  For connectivity percolation wittg=1, a similar pebble
Pc game algorithm can be constructed where only one pebble is

assigned to a sit22]. In fact, as long as a site represents a
In particular, combining Eq(25), with the consistency con- rigid body havingg degrees of freedom and not a point, the

dition (4), we have pebble game can be straightforwardly generalized by assign-
ing g pebbles to each sifR3].
1, 29 For the connectivity percolation case, however, we actu-
r(l)=| Todp=1-—-. (26) ally used theg=2 pebble gamétwo pebbles per sijeby

invoking an interesting mapping that makgs-2 rigidity
This is the key new component of the theory developed herd?ercolation equivalent to connectivity percolation. This map-
As in MDL, we solve the tree equations for the order param{?ing is valid for any generic network and is not limited to the
eter T, but now we use Eq(26) to identify the rigidity —fandom-bond model. The mapping consists of adding a

thresholdp, . Once we have,, the number of floppy modes single ghostsite to tth s'ite network. The gh.olst site has
at anyp is given by[from Eq. (1) using Eq.(25)] =2 as do all other sites in the network. Additiordibonds
are placed between each of tResites in the network and the
p ghost site. With this additional ghost site and its associated
[p— f Ted p}-
Pc

z
f(p)=1- E (27 bonds, the network consists of edge sharing triangles. That
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is, any three sites in the network that are connected are mu- 1
tually rigid because they form edge sharing triangles with the
ghost site common to all triangles.

The ghost site and its associated bonds allow connectivity 08
to be a sufficient condition for a set of sites to be mutually
rigid. Since rigid clusters are those that are connected, aone- |

to-one mapping between clusters irga& 2 network to ag

=1 network is established. However, the number of floppy +
modes of theg=2 network(with the ghost sitewill be two 04 |
more than the number of rigid clusters. These floppy modes
can be viewed as two translational motions for the ghost site
and one rotational motion of each rigid cluster about the 0.2 ¢
ghost site. By accounting for these two extra modes, an exact
mapping is established.

IV. CONNECTIVITY PERCOLATION P

The analysis in Sec. Il holds for any value @f For g FIG. 3. The result for bond diluted connectivity percolation on a
=1 we recover and extend the familiar results of connectivBethe lattice forT, is shown for coordination number=3 and
ity percolation[1,13) for random-bond dilution on a tree yvith g=1 (_jegrees of freedpm per site. The probability that a bond
with coordinationz. In this section we use a genemalas 'S Present i, and percolation occurs at=0.5.
much as possible, but then focus an 3 to simplify the

2p—1
algebra when necessary. g+ 1, Eq.(16) reduces to T0=( p : ) for p=pe.
p

To=[1-(1-pTo)* '], (28)
wherep.=1/2, and is shown in Fig. 3.

We can use Eq30) to check that we get the same value
of p. by noting that we correctly reproducély = 1/3 [see
1 Eq. (4)]. Therefore the transition is indeed second order.
with pczﬁ_ (29) I—;aving foundp., we findf(p) andr(p) from Egs.(25) and

Expanding neap,, it is easy to show that the order param-
eterT, vanishes as

2(p_ pc)

To~e——
0 pc(l_pc)

The number of redundant bond§p) can be found from Eq. 3p
(25) by using Eq.(28) to first calculatedT,/dp and then f(p)=1—-—- for p=p.,

doing the integration to give 2 (34)

_ co(RPee-n

r(p)=Tol| )(1+p—pTo>—<1—p>, (30) e e or p=p.
whereT, is obtained by solving the polynomié28). Notice ~ and
that thefraction of bonds in overconstrained regions on the _ _
infinite cluster is given from Eqg(23) and (24) and using r(p)=0 for p=p,
T,=1-T,, (35
o) 1( 2p—1>3 .
rp)=- —— or p=
Po_ T3 T S PP
P, T2 2Ty 39
= To+2ToTy 0 and by differentiating Eq(34),

Whenp=1, we haveT,=1, so that the rati@31) becomes 3
unity, meaning that the entire tree is overconstrairied f<1)(p)=—§ for p<p,,
dangling ends Nearp=p., and using Eq(29), the fraction
of overconstrained bonds in the infinite cluster goes to zero 3 (1 p)2(p?+ 2p- 1) (36)
i —p)°(p p—
linearly as fO(p)=— > " for p=p.

h’,\, P—Pc (32)

P, p(l—po)’ and differentiating again
so that as the connectivity percolation transition is ap- f2(p)=0 for p=pe,
proached, the infinite cluster becomes completely isostatic. (37)
For z=3 we can solve the quadratic equati@8) to get 6(2p—1)(1—

@)~ 2P~ D —Pp)
f9(p)= for p=p;.

To=0 for p=p, (33 p°
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1.0 T T T T T T 1
0.8
05 f(p) r(p)
0.0 | . % 0.6
0.0 T T s
[=]
o 04
~-05 [ :
—1.0 r ' 02 -
-1.5 b 5
r P T T T - 0 L L L 1
6 ] 0 0.2 04 0.6 08 1
p
ar f(z)(p) ] FIG. 5. Results for bond diluted connectivity percolation on a
5 Bethe lattice for the probability of being on the infinite clusker
a ] and the probability of being on the overconstrained part of the in-
0 . . . ; finite clusterP,,. Results are for coordination numbe+3 and
0 0.2 04 06 08 1 with g=1 degrees of freedom per site. The probability that a bond

0] is present i, and percolation occurs a@t.=0.5.

FIG. 4. Results for bond diluted connectivity percolation on a
Bethe lattice for the number of floppy modi@) and the firsttwo ~ attached to the busbar which are considered to be surface
derivatives. The number of redundant bondg) is also shown. effects and hence are ignored in the bulk or Bethe lattice
The second derivativé®(p) acts as a specific heat for this prob- solution.
lem. Results are for coordination numies 3 and withg=1 de- In the connectivity casé*)(p) and the order parameters
grees of freedom per site. The probability that a bond is presentis T,,P,,, andP,, are continuous at the transition, and so con-
and percolation occurs @.=0.5. The open circles are from com- nectivity percolation is of a conventional second-order type,
puter simulations of the random bond model using the pebble gamgs indeed it is on real lattices like the triangular network
as described in Sec. Ill, usig= 262 144 sites and averaging over [13].
2000 realizations. The Maxwell estimdtegs.(2) and(3)] for the
number of floppy modes is a straight line that follows fi{e) at
smallp. V. RIGIDITY PERCOLATION

These result€34)—(37) are shown in Fig. 4. We note that , " the rigidity case we must numerically solve HQ6)
this second derivative, which is like a specific heat isfor To and hence find the other quantities of interest. We first

_ _ ; Ive the self-consistent EQL6), by simple iteration, to find
strongly peaked arounpl=1-1//6=0.59, although it does S0 S N
go to zero ap,=0.50. Note also that £V, andf® are all Ty, which is shown in Fig. 6 fog=2 andz=6. The analog

continuous ap,, with f(®) being the first derivative to show of the Maxwell constructior4) is then used to fing, . This
a discontinuity{4].

1

The number of overconstrained bonds in the infinite clus-
ter is Py, and is given from Eq(24) by
2 08 |
2p—1
Pov= -5 for p=p (39 i
06 | 4
\
and the fraction of bonds in the infinite cluster, is given ° \\
by Eg.(23), 04} .
1_ p 4 f \\\\\
=1-|— = ~
I or p=pe, (39 0zl .
which has been derived by Essam and Fidli¢fsee their
Eq. (35b)], although it should be noted that they have an 002 05 Y 07 08 09 1
extra factor ofp as they normalized to all bonds, not just p

thosepresent These results are shown in Fig. 5. The reader giG. 6. Results for bond diluted rigidity percolation on a Bethe
might be concerned that some overconstrained bondsadre |attice for T, are shown for coordination number=6 with g=2
associated with the infinite cluster. This is not so on a Cayleyjegrees of freedom per site. The probability that a bond is present is
tree in the asymptotic limit, where only the infinite cluster p and percolation occurs @t.=0.656 shown by the vertical line.
reaches back to the busbar. All other clusters are isolated arthe thin line extends out to the spinodal poinpat=0.603 and the
contain no overconstrained bonds, except finite rigid clustergdashed line shows the unstable solution.
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0.4 T T T T T T L 1
03 [ 1 P Pov
0.2 08
01
0.0 206
0.0 8
o
<
-0.5 | o o4y
-1.0 | .
0.2 -
-1.5 - ‘ '
5 T T T o ) ) ) ) )
4} . 0.4 0.5 0.6 0.7 0.8 0.9 1
(2) P
31 (p) ]
2 r , ] FIG. 8. Results for bond-diluted rigidity percolation on a Bethe
1L 4 lattice for the probability of being on the infinite cluster, and the
0 Loscesssccts N ) ; I probability of being on the overconstrained part of the infinite clus-
0.4 0.5 0.6 0.7 0.8 0.9 1 ter P,,. Results are for coordination numbe# 6 with g=2 de-

P grees of freedom per site. The probability that a bond is present is

FIG. 7. Results for bond diluted rigidity percolation on a Bethe @nd percolation occurs @ = 0.656.
lattice for the number of floppy modd{p) and the first two de-
rivatives. The number of redundant bord) is also shown. The  connectivity percolation, the boundary conditions are irrel-
second derivativd @ (p) acts as a specific heat for this problem. evant, and no difference is found with or without a rigid
Results are for coordination numker 6 and withg=2 degrees of  pyshar. This is not so for rigidity percolation, where there are
freedom_ per site. The probability that a bo_nd is presem &nd three real solution§25] for all ps<p<1, with anunstable
percolation occurs ap.=0.656. The open circles are from com- . ion gt finiteT, existing in this regime as shown by the
puter simulations of the random-bond model using the pebble gamg, s jine in Fig. 6. In order for the stable firiftg solution
descrlbed_ in _Sec. I, usingy=262 1_44 sites and averaging over to be found, the boundary rigidity must labovethe un-
2000 realizations. The Maxwell estimdtegs.(2) and(3)] for the . . L .
number of floppy modes is a straight line that follows ft{e) at _stable fixed point. Any bo_undary_rlgldlt_y below this value
small p, iterates to theT(?:O_ sqIL_m_on. This curious effect of the

boundary condition in rigidity percolation, even on the bulk
Bethe lattice solution, needs further study.

is shown as the jump in Fig. 6 a.=0.656. The other pos- |t js useful to compare the results fpr, with that pre-
sible solutions are ruled out by application of Hd) and  dicted by Maxwell counting. Maxwell counting would pre-
hence we have a first-order jump from a rigid to a floppydict p,,=2g/z=2/3 in both casestudied here. In the con-
state. The point gbs=0.603 can be interpreted as a spinodalnectivity case this is markedly different than the exact result
point [24]. The dashed line is unstable as can be seen from. =1/2 because there are many floppy modepain that
Eg. (22). Having found T, and p., we can findf(p), case, as can be seen from Fig. 4. In contrast, in the rigidity
fM(p), f@(p), andr(p) as shown in Fig. 7. It can be seen case, the Maxwell estimate is close to the Bethe lattice result
that there are no redundant bonds foe p, and hence (M) p.=0.655 and there are rather few floppy modegatas
and f(® are flat in this region, as also happens for connecshown in Fig. 7. It is remarkable that Maxwell counting does
tivity percolation as shown in Sec. IV. In Fig. 7, we also so well in locating the position oboth first-order and
show the results from the random-bond model, discussed isecond-ordef6,18] rigidity transitions.
Sec. lll, and find that the results are exactly the same as Results of calculations for a range of valuegaindz for
expected. Note that with the random-bond model, the firstbond diluted Bethe lattices are summarized in Table 1. In all
order transition occurs naturally and no Maxwell construc-rigidity cases(i.e., g>1) there is a large jump in the order
tion is needed, as the pebble game always finds the bulgarameteiT,, P.,, or P, at the critical poinp., although
equilibrium solution. the jump does decrease with increasinfpr a giveng. On

In Fig. 8, we show results fdP,, andP,, from Egs.(23)  real lattices, there will also beldfshitz tail[20] in the num-
and(24), respectively. It can be seen that most of the infiniteber of redundant bonds(p) (see Figs. 4 and)7extending
cluster is overconstrained, even at the first-order transition.into the regimep<p, all the way top=0. Notice that the

In the connectivity case as shown in Figs. 3 and 5, theBethe lattice result does correctly reproduce the Lifshitz tail
order parameter Ty, P., or Pg,) is continuous atp., in f(p) in the regionp.<p=<1.
whereas in the rigidity case as shown in Figs. 6 and 8 the It is seen from Fig. 7 that the random-bond model is nu-
order parameter has a large first-order jumpatThe quan- merically equivalent to the Bethe lattice results, as expected
tity f(Y)(p), which acts like an energy, also has a large first-from our previous discussion. The pebble game is an exact
order jump. One could argue that in the rigidity case, a metaalgorithm for a particular network and gives the exact num-
stable rigid state exists for ang.>p>p,. Note that for ber of floppy modegand the associated derivatiye$here
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TABLE I. This table gives a summary of results for bond-diluted Bethe latticesgnuitgrees of freedom
per site which are joined bly=1 bars toz neighbors. The Maxwell estimate for the transitigpis given as
well as the spinodal poiris and the critical poinp.. The number of floppy modes at the spinodal point is
f(ps) and at the critical point i$(p.). The jumps in the order parameters are givenTigr the probability
P., that a bond is present and is part of the infinite cluster, and the probabjjtthat a bond is present and
is overconstrained.

g z P Ps Pe f(ps)  f(pd)  To(Pe)  Po(P)  Pou(pl)
z 2 1 z-2 0 0 0
z z—1 2(z-1)

2 6 0667 0603 0656 0.096  0.016 0.911 0.972 0.830
2 8 0500 0447 0482 0.106  0.035 0.860 0.940 0.740
2 10  0.400 0.354 0.381 0115  0.048 0.833 0.918 0.694
2 15 0267 0232 0248 0129  0.071 0.793 0.882 0.629
3 8 0750 0646 0748 0.138  0.003 0.984 0.992 0.968
3 10 0600 0521 0596 0131  0.007 0.964 0.987 0.929
3 15  0.400 0.348 0.393 0129  0.016 0.935 0.968 0.874

is therefore ndwysteresisn the results of the pebble game on type construction, or self-consistency condition, to show that
the random-bond model, and in these large samples the sythe rigidity transition is always first order on Bethe lattices. It
tem flips from the rigid state to the floppy state aroymd is necessary to use this construction in order to remove
=0.656 as a single bond is removed in a given sample. Thiboundary constraints. In previous waig,25], a boundary-
is a very unusual situation as most numerical techniques, likdependent transition was found at the spinodal ppintAs
Monte Carlo, encounter hysteresis near a first-order transiis expected from experience with thermodynamic transitions,
tion [26]. metastability and boundary effects can be impor{24{ in
the regimep,<p<p., and this needs further investigation.

While rigidity concepts have been extensively applied to
experiments in chalcogenide glassgb8,19, first-order

In this paper we have shown that the free energy is neggumps in experimental quantities have never been observed
tive of the number of floppy modes. This generalizes a prefalthough see recent Raman results in chalcogenide glasses
vious resulf 7] which gives the free energy as the total num-[27]).
ber of clusters in connectivity percolation, where there is a
single floppy mode associated with each isolated cluster. In
connectivity percolation, the free energy can also be found as
the limit s— 1 of thes state Potts modédB]. No equivalent We would like to thank the NSF for support under Grant
approach has been possible for rigidity. No. DMR 9632182 and the U.S. DOE for support under

We have used the free energy and the associated Maxwellontract No. DE-FG02-90ER45418.

VI. CONCLUSIONS
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