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Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe lattices
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We show that the negative of the number offloppy modesbehaves as afree energyfor both connectivity and
rigidity percolation, and we illustrate this result using Bethe lattices. The rigidity transition on Bethe lattices is
found to be first order at a bond concentration close to that predicted by Maxwell constraint counting. We
calculate the probability of a bond being on the infinite cluster and also on the overconstrained part of the
infinite cluster, and show how aspecific heatcan be defined as the second derivative of the free energy. We
demonstrate that the Bethe lattice solution is equivalent to that of the random bond model, where points are
joined randomly~with equal probability at all length scales! to have a given coordination, and then subse-
quently bonds are randomly removed.@S1063-651X~99!07202-5#

PACS number~s!: 05.70.Fh, 61.43.Bn, 46.25.2y
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I. INTRODUCTION

Connectivity percolation on Bethe lattices or infinite s
tistically homogeneous Cayley trees was thoroughly a
lyzed by Fisher and Essam@1# and provides a useful mode
for percolation. Rigidity on Cayley trees was first studied
Moukarzel, Duxbury, and Leath@2#, henceforth referred to a
MDL. This model hasg degrees of freedom per site, wit
g51 corresponding to connectivity percolation being a s
cial case, and so may be regarded as an extension o
work of Fisher and Essam@1#. In this paper, we develop
free energy for the rigidity percolation problem, and as
example of its use, we show how to locate the bulk rigid
transition on the Bethe lattice. We use the termBethe lattice,
rather thanCayley tree, to emphasize the bulk behavior o
lattices containing no loops away from the boundary@1,3#.

We have previously suggested that a free energy can
defined as the negative of the number of floppy modes@4#. In
this paper we prove this assertion for the case of rand
bond dilution in a general lattice withg degrees of freedom
per site and withz nearest neighbors, connected byb51
bars. Forg51, this givesconnectivitypercolation. Forg
5d it models a central force network with pointlike nodes
d dimensions@5,6#. However, if the nodes of the lattice ar
bodies with rotational degrees of freedom,g5d(d11)/2 in
a d-dimensional space. Note that when bodies exist on e
node of a lattice, it makes sense to consider models wh
more than one bar~or spring! connects each pair of bodie
These models were introduced, discussed, and extens
analyzed in Ref.@2#. Here we concentrate on the simple
cases of pointlike nodes with one bar between each pa
nodes.

We prove that this free energy has the correct conve
property and hence aspecific heatcan be defined from the
second derivative. This definition of the free energy redu
to the known result for connectivity percolation wheng
51, where it becomes the negative of the total number
isolated clusters@7#. This latter result can either be foun
PRE 591063-651X/99/59~2!/2084~9!/$15.00
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directly @7# or as thes→1 limit of the s state Potts model@8#.
For rigidity, this free energy allows us to locate the bu
transition on the Cayley tree, and we refer to this as
Bethe lattice solution@3#. We confirm that forb51 andg
>2 the rigidity transition is always first order on the Beth
lattice, whereas of course it is second order for connectiv
percolation whereg51. On the triangular lattice, rigidity
percolation is second order@9–11#, in contrast to the first
order transition on the Bethe lattice. The nature of the rig
ity transition is a subtle question, depending on the netwo
and this has not always been taken into account@12#. For
connectivity percolation, the transition is always second
der @1,13#.

MDL developed a general solution, using a transf
matrix technique, for a network of rigid bodies, each withg
degrees of freedom generically connected byb bars, as
sketched in Fig. 1. Initially each rigid body hasz neighbors,
and the rigidity of the network is studied as the bonds
randomly removed. Forb<g, this type of network is always
floppy, unless the tree is attached to a rigid surface~busbar!,
in which case rigidity may or may not propagate away fro
the busbar, depending on the degree of dilution.

We amplify the work of MDL by using the free energ
and the associated Maxwell construction@14#, to remove
boundary constraints in the analysis of bond-diluted Cay

FIG. 1. Showing one branch of a tree~with coordination
z53) with a single bar (b51) connecting each pair of sites. Th
bonds are present with probabilityp. Each site, shown as a shade
circle, hasg degrees of freedom. Only the first few levels from th
rigid busbar are shown.
2084 ©1999 The American Physical Society
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PRE 59 2085FLOPPY MODES AND THE FREE ENERGY: RIGIDITY . . .
trees, and hence obtain the bulk or Bethe lattice solut
This constraint equation leads to ahigher rigidity threshold
than that found in MDL. In analogy with thermally drive
thermodynamic transitions, we interpret the threshold fou
in MDL as aspinodalpoint and useps when referring to it in
this paper. We usepc to refer to thebulk threshold.

The layout of this paper is as follows. In the next secti
~Sec. II! we develop results applicable to general bon
diluted lattices; namely the proof that the negative of
number of floppy modes acts as a free energy for study
bond-diluted connectivity and rigidity percolation, and w
derive the associated Maxwell construction@14# or consis-
tency condition. We review the main equations from MD
for the Cayley tree, and evaluate the probabilityP` of being
in the infinite rigid cluster and also the probabilityPov of
being in the overconstrained part of the infinite cluster, b
defined in the bulk far from the busbar.

In Sec. III, we discuss therandom-bond model@15#,
wherez bonds join each site with other sites, regardless
distance, and then these bonds are randomly diluted.
model is solved using the integer algorithm, the pebble ga
@9,10,16#, for the connectivity caseg51, z53 and the ri-
gidity caseg52, z56. We demonstrate that in the therm
dynamic limit, the random-bond model is equivalent to
Bethe lattice.

In Sec. IV, we show that forg51, the familiar connec-
tivity case is recovered. This analysis is examined for a g
eral z, specializing toz53 to illustrate the detailed behavio
for connectivity percolation.

In Sec. V, we give detailed results for a Bethe lattice w
g52 andz56 as an example of a first-order rigidity trans
tion. We apply the consistency condition to locate the fi
order transition in the bulk, and show that the results
equivalent to the random-bond model. We also give res
for the probabilityP` of being on the infinite cluster and th
probability Pov of being on its overconstrained part. W
show that the results for the number of floppy modes
equivalent to theg52 random-bond model. We present
table summarizing important results for a range of values
g andz.

Throughout this paper we focus our attention on bo
dilution where the number of barsb51. Results forb>2
and/or for site dilution can probably be obtained in a simi
manner.

II. FORMALISM

A. General

In this subsection we develop a free energy for both c
nectivity and rigidity problems on general lattices, and sh
that this leads to a consistency constraint on the numbe
floppy modes that is useful in locating first-order transitio
These results are applied to Cayley trees in the next sect

A constraint counting method~also calledMaxwell count-
ing! has been very useful as a conceptual tool in understa
ing rigidity, and in particular the rigidity of glasses@4,17–
19#. The Maxwell counting approach centers on the num
of floppy modes, where we definef (p) as the average num
ber of floppy modes per degree of freedom. We consi
generic networks where each site hasg degrees of freedom
with central forces that connect toz neighbors. Bonds are
n.
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randomly present with probabilityp. An exact relation on
any bond-diluted lattice is

f ~p!5
F

gN
512

z

2g
@p2r ~p!#, ~1!

whereF is the total number of floppy modes. There areN
sites in the network andr (p) is the probability that a bond is
redundant, i.e., its removal does not change the numbe
floppy modes in the system. Equation~1! demonstrates tha
we can count either floppy modes or redundant bonds,
although early work has emphasized counting floppy mo
@4,18#, they are equivalent. In Maxwell counting,r (p) is
assumed to be zero forp,pm and the rigidity threshold is
taken to occur atf (pm)50, which leads to theMaxwell es-
timateof the rigidity threshold,

pm52g/z. ~2!

Within this approximation it is evident that

f ~p!50 for p>pm ,

f ~p!512p/pm for p<pm , ~3!

so thatf (p) changes slope atpm . We emphasize that Max
well counting is not correct, but does provide a useful init
approximation. In reality,f Þ0 for p>pm and is nonzero
right up to p51 as there is always a small probability o
having a floppy inclusion ifpÞ1. This is aLifshitz type of
argument@20#.

We note thatf (0)51 and f (1)50, and hence from Eq
~1! we haver (0)50 and

r ~1!512
2g

z
. ~4!

Equivalently, the following relation must be satisfied:

E
0

1

f ~1!dp521. ~5!

These consistency conditions remove boundary constra
from the calculation and hence enable prediction ofbulk
critical behavior. This is a key new element of the Cayl
tree theory, which was lacking in MDL, and which we no
refer to as the bulk or Bethe lattice solution. In particular
allows us to locate the bulk critical pointpc when the tran-
sition is first order. In MDL, the point at which the finite rea
solution to the mean-field equations ceased to exist was id
tified as the critical point. Here we label that point asps and
reinterpret it as the spinodal point in analogy with therma
driven first-order transitions.

We now show that the number of floppy modes acts a
free energy in both connectivity and rigidity problems. T
demonstrate this, we recall the relation developed by Jac
and Thorpe@10#,

f ~1!~p!52
z

2gS 12
N0

NB
D52

z

2g

NI

NB
, ~6!
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2086 PRE 59DUXBURY, JACOBS, THORPE, AND MOUKARZEL
where f is the number of floppy modes per degree of fre
dom,N0 is the number of overconstrained bonds on the
tice, NI is the number of isostatic bonds on the lattice,

NB5
pzN

2
5N01NI ~7!

is the total number of bonds present on the lattice, and
first derivative f (1)5] f /]p. The relation~6! is obtained by
removinga single bond, chosen at random, and ascertain
the probability that this bond is in an overconstrained reg
~in which case the number of floppy modes is unchanged! or
else the number of floppy modes is reduced by 1. That is~for
one removed bond!, DF5(12N0 /NB), and if we now re-
moveDNB bonds, we have

]F

]NB
52S 12

N0

NB
D ~8!

and the result~6! follows. By comparing Eqs.~1! and~6!, we
see that the number of overconstrained bonds is given by
rate of change of the number of redundant bonds,

]r ~p!

]p
5

N0

NB
. ~9!

We can use a similar argument to derive the import
result

f ~2!~p!5
z

2g
r ~2!~p!>0, ~10!

where the second derivativef (2)5]2f /]2p. We demonstrate
this as follows. If we remove one bond, chosen at rando
then the change in the number of overconstrained bond
given by

DN052
N0

NB
~11l!, ~11!

where l>0, because when an overconstrained bond is
moved, the number of overconstrained bonds is reduced
at least one, and sometimes by more. If we removeDNB
bonds, we therefore have

]N0

]NB
5

N0

NB
~11l!. ~12!

Using this, we find

]

]NB

N0

NB
5

1

NB
S ]N0

]NB
2

N0

NB
D5

l

NB

N0

NB
~13!

and hence using Eqs.~9! and ~10!,

f ~2!~p!5
lz

2pg

N0

NB
>0 ~14!

establishing that2 f (p) is a convex function of the fraction
of bonds present,p. Note that we must ensemble-average
results ~12! and ~14! so that l is to be interpreted as a
ensemble-averaged quantity.
-
t-

e

g
n

he

t

,
is

e-
by

e

Therefore, we can use2 f (p) as a free energy, and i
there is any ambiguity the system will always be in the lo
est free energy~maximum floppy modes! state. The quantity
2 f (p) is convex as required of a free energy, and we w
refer to f (p) interchangeably as the fraction of floppy mod
or as the free energy. Note that the proof above is given
arbitraryg andz, but is restricted tob51 and bond dilution.
Becausef (2)(p) is the second derivative of a free energy a
is positive definite, we can regard it as a specific heat an
is calculated explicitly in subsequent sections@21#.

B. Cayley trees

Following MDL, we consider trees which have coordin
tion numberz with g degrees of freedom per site, which for
a Cayley tree network attached to a rigid boundary which
call a busbar. This is shown in Fig. 1. The busbar is n
necessary for connectivity wheng51, but is of vital impor-
tance for rigidity wheng>2. We defineT0

n to be the prob-
ability that a bond on abranch, n levels away from the
busbar, is part of the infinite rigid cluster. In general, if th
sites of the tree haveg degrees of freedom, rigidity is trans
mitted to the next level of the tree provided at leastg of the
bonds to the lower level are occupiedand provided that the
sites at the ends of these bonds are rigid. This gives
recurrence relation

T0
n115 (

k5g

z21 S z21
k D ~pT0

n!k~12pT0
n!z212k, ~15!

where T0
n is the probability that a bondn levels from the

busbar is rigid. If we take the thermodynamic limit~very
large n), Eq. ~15! iterates to a steady-state solution, whi
we call T0 and is given by

T05 (
k5g

z21 S z21
k D ~pT0!k~12pT0!z212k. ~16!

From this equation, we can find the probability of having
single degree of freedom with respect to the~distant! bound-
ary

T15S z21

g21D ~pT0!g21~12pT0!z2g, gÞ1 ~17!

and more generally forl degrees of freedom with respect
the boundary

Tł5S z21

g2 l D ~pT0!g2 l~12pT0!z2g1 l 21, 1< l<g21.

~18!

Summing over all possibilities, we have the useful sum r

(
l 50

g

Tl51. ~19!

Equation~16! is the self-consistent equation for the rigidi
order parameter on bond-diluted Cayley trees. MDL a
considered a more general class of problem in which ano
degree of freedomb>2 @the number of constraints~or bars!
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PRE 59 2087FLOPPY MODES AND THE FREE ENERGY: RIGIDITY . . .
between each pair of sites# is allowed. They also considere
the case of site dilution, which is trivially related to bon
dilution on a Cayley tree forb51 only.

For trees withb51, the probability that a bond is over
constrained ispT0

2 , i.e., a bond is overconstrained if it i
presentand both of the sites at its ends are already rigid
connected to the busbar. Such bonds are theoverconstrained
bonds of the infinite cluster, as no other bonds are overc
strained far from the busbar, which is the bulk solution th
we are seeking. Thus from Eq.~6! we have

f ~1!~p!52
z

2gS 12
pT0

2

p D 52
z

2g
~12T0

2!. ~20!

Differentiating a second time gives

f ~2!~p!5
z

g
T0

]T0

]p
. ~21!

SinceT0>0, we must have solutions where

]T0

]p
>0 ~22!

to be acceptable.
In a similar way the probability that a bond is connect

to the infinite rigid cluster via the busbar at one end, but
one degree of freedom at the other, is 2pT0T1 . Such bonds
are the isostatic bonds associated with the infinite clust
@9–11#. Thus the total probability that a bond that is prese
belongs to the infinite clusterP` is

P`5T0
212T0T1 . ~23!

The probability that a bond that is present belongs to
overconstrained part of the backbone is given by

Pov5T0
2 . ~24!

Since the number of redundant bondsr (p) is zero forp
<pc , and after findingr (1)(p)5T0

2 from Eq. ~20! using Eq.
~1!, we must have

r ~p!5E
pc

p

T0
2dp. ~25!

In particular, combining Eq.~25!, with the consistency con
dition ~4!, we have

r ~1!5E
pc

1

T0
2dp512

2g

z
. ~26!

This is the key new component of the theory developed h
As in MDL, we solve the tree equations for the order para
eter T0 but now we use Eq.~26! to identify the rigidity
thresholdpc . Once we havepc , the number of floppy mode
at anyp is given by@from Eq. ~1! using Eq.~25!#

f ~p!512
z

2gFp2Ep

T0
2dpG . ~27!
pc
n-
t

s

t

e

e.
-

The condition~4! may be regarded as aMaxwell condi-
tion, in analogy with that commonly used to locate the fir
order transition in thermodynamic systems@14#.

III. RANDOM-BOND MODEL

The random-bond modelconsists ofN sites thrown down
randomly, with each site joined at random toz other sites
~without regard to distance! to form az-coordinated network.
Small rings appear with probabilityO(1/N). It is convenient
to show this network in a plane as in Fig. 2, wherez53. The
dimension of this model is only defined through the numb
of degrees of freedomg associated with each site. In th
Bethe lattice and in the random-bond model, there are
loops in the thermodynamic limitN→` and so in a diagram-
matic expansion all terms agree and the models are equ
lent. For finite Cayley trees, there are loops involving t
busbar, as can be seen in Fig. 1. Likewise, there are loop
the random-bond model, as can be seen in Fig. 2. So
equivalence is only in the bulk thermodynamic limit. W
find this is a useful alternative viewpoint on the Bethe latt
limit.

We have numerically examined connectivity percolati
havingg51, z53, and theg52, z56 rigidity percolation
case using the random-bond model. These simulation res
are compared with the corresponding exact Bethe lattice
culations in the next two sections. The pebble ga
@9,10,16# was used to find the number of floppy modes a
the derivativesf (1)(p) and f (2)(p) for the g52, z56 case.
For connectivity percolation withg51, a similar pebble
game algorithm can be constructed where only one pebb
assigned to a site@22#. In fact, as long as a site represents
rigid body havingg degrees of freedom and not a point, th
pebble game can be straightforwardly generalized by ass
ing g pebbles to each site@23#.

For the connectivity percolation case, however, we ac
ally used theg52 pebble game~two pebbles per site! by
invoking an interesting mapping that makesg52 rigidity
percolation equivalent to connectivity percolation. This ma
ping is valid for any generic network and is not limited to th
random-bond model. The mapping consists of adding
singleghostsite to theN site network. The ghost site hasg
52 as do all other sites in the network. AdditionalN bonds
are placed between each of theN sites in the network and the
ghost site. With this additional ghost site and its associa
bonds, the network consists of edge sharing triangles. T

FIG. 2. A sketch of the random-bond model with a single b
b51 along thez53 bonds from each site. The bonds are pres
with probability p. Each site, shown as a shaded circle, hasg de-
grees of freedom. OnlyN512 sites are shown in this sketch. I
simulations using the pebble game, we useN5262 144.
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2088 PRE 59DUXBURY, JACOBS, THORPE, AND MOUKARZEL
is, any three sites in the network that are connected are
tually rigid because they form edge sharing triangles with
ghost site common to all triangles.

The ghost site and its associated bonds allow connect
to be a sufficient condition for a set of sites to be mutua
rigid. Since rigid clusters are those that are connected, a
to-one mapping between clusters in ag52 network to ag
51 network is established. However, the number of flop
modes of theg52 network~with the ghost site! will be two
more than the number of rigid clusters. These floppy mo
can be viewed as two translational motions for the ghost
and one rotational motion of each rigid cluster about
ghost site. By accounting for these two extra modes, an e
mapping is established.

IV. CONNECTIVITY PERCOLATION

The analysis in Sec. II holds for any value ofg. For g
51 we recover and extend the familiar results of connec
ity percolation @1,13# for random-bond dilution on a tre
with coordinationz. In this section we use a generalz as
much as possible, but then focus onz53 to simplify the
algebra when necessary. Forg51, Eq. ~16! reduces to

T05@12~12pT0!z21#. ~28!

Expanding nearpc , it is easy to show that the order param
eterT0 vanishes as

T0;
2~p2pc!

pc~12pc!
with pc5

1

z21
. ~29!

The number of redundant bondsr (p) can be found from Eq.
~25! by using Eq.~28! to first calculate]T0 /]p and then
doing the integration to give

r ~p!5T0F S z22

z D ~11p2pT0!2~12p!G , ~30!

whereT0 is obtained by solving the polynomial~28!. Notice
that thefraction of bonds in overconstrained regions on t
infinite cluster is given from Eqs.~23! and ~24! and using
T1512T0 ,

Pov

P`
5

T0
2

T0
212T0T1

5
T0

22T0
. ~31!

When p51, we haveT051, so that the ratio~31! becomes
unity, meaning that the entire tree is overconstrained~no
dangling ends!. Nearp5pc , and using Eq.~29!, the fraction
of overconstrained bonds in the infinite cluster goes to z
linearly as

Pov

P`
;

p2pc

pc~12pc!
, ~32!

so that as the connectivity percolation transition is a
proached, the infinite cluster becomes completely isosta
For z53 we can solve the quadratic equation~28! to get

T050 for p<pc , ~33!
u-
e
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c.

T05
~2p21!

p2
for p>pc ,

wherepc51/2, and is shown in Fig. 3.
We can use Eq.~30! to check that we get the same valu

of pc by noting that we correctly reproduce r~1! 5 1/3 @see
Eq. ~4!#. Therefore the transition is indeed second ord
Having foundpc , we find f (p) andr (p) from Eqs.~25! and
~27!,

f ~p!512
3p

2
for p<pc ,

~34!

f ~p!5S 12p

p D 3 ~3p21!

2
for p>pc

and

r ~p!50 for p<pc ,
~35!

r ~p!5
1

3S 2p21

p D 3

for p>pc

and by differentiating Eq.~34!,

f ~1!~p!52
3

2
for p<pc ,

~36!

f ~1!~p!52
3

2

~12p!2~p212p21!

p4
for p>pc

and differentiating again

f ~2!~p!50 for p<pc ,
~37!

f ~2!~p!5
6~2p21!~12p!

p5
for p>pc .

FIG. 3. The result for bond diluted connectivity percolation on
Bethe lattice forT0 is shown for coordination numberz53 and
with g51 degrees of freedom per site. The probability that a bo
is present isp, and percolation occurs atpc50.5.
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These results~34!–~37! are shown in Fig. 4. We note tha
this second derivative, which is like a specific heat,
strongly peaked aroundp5121/A650.59, although it does
go to zero atpc50.50. Note also thatf, f (1), and f (2) are all
continuous atpc , with f (3) being the first derivative to show
a discontinuity@4#.

The number of overconstrained bonds in the infinite cl
ter is Pov and is given from Eq.~24! by

Pov5S 2p21

p2 D 2

for p>pc ~38!

and the fraction of bonds in the infinite clusterP` is given
by Eq. ~23!,

P`512S 12p

p D 4

for p>pc , ~39!

which has been derived by Essam and Fisher@1# @see their
Eq. ~35b!#, although it should be noted that they have
extra factor ofp as they normalized to all bonds, not ju
thosepresent. These results are shown in Fig. 5. The rea
might be concerned that some overconstrained bonds arnot
associated with the infinite cluster. This is not so on a Cay
tree in the asymptotic limit, where only the infinite clust
reaches back to the busbar. All other clusters are isolated
contain no overconstrained bonds, except finite rigid clus

FIG. 4. Results for bond diluted connectivity percolation on
Bethe lattice for the number of floppy modesf (p) and the first two
derivatives. The number of redundant bondsr (p) is also shown.
The second derivativef (2)(p) acts as a specific heat for this pro
lem. Results are for coordination numberz53 and withg51 de-
grees of freedom per site. The probability that a bond is presentp,
and percolation occurs atpc50.5. The open circles are from com
puter simulations of the random bond model using the pebble g
as described in Sec. III, usingN5262 144 sites and averaging ov
2000 realizations. The Maxwell estimate@Eqs.~2! and ~3!# for the
number of floppy modes is a straight line that follows thef (p) at
small p.
-

r

y

nd
rs

attached to the busbar which are considered to be sur
effects and hence are ignored in the bulk or Bethe lat
solution.

In the connectivity casef (1)(p) and the order parameter
T0 ,Pov , andP` are continuous at the transition, and so co
nectivity percolation is of a conventional second-order ty
as indeed it is on real lattices like the triangular netwo
@13#.

V. RIGIDITY PERCOLATION

In the rigidity case we must numerically solve Eq.~16!
for T0 and hence find the other quantities of interest. We fi
solve the self-consistent Eq.~16!, by simple iteration, to find
T0 , which is shown in Fig. 6 forg52 andz56. The analog
of the Maxwell construction~4! is then used to findpc . This

e

FIG. 5. Results for bond diluted connectivity percolation on
Bethe lattice for the probability of being on the infinite clusterP`

and the probability of being on the overconstrained part of the
finite clusterPov . Results are for coordination numberz53 and
with g51 degrees of freedom per site. The probability that a bo
is present isp, and percolation occurs atpc50.5.

FIG. 6. Results for bond diluted rigidity percolation on a Bet
lattice for T0 are shown for coordination numberz56 with g52
degrees of freedom per site. The probability that a bond is prese
p and percolation occurs atpc50.656 shown by the vertical line
The thin line extends out to the spinodal point atps50.603 and the
dashed line shows the unstable solution.
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is shown as the jump in Fig. 6 atpc50.656. The other pos
sible solutions are ruled out by application of Eq.~4! and
hence we have a first-order jump from a rigid to a flop
state. The point atps50.603 can be interpreted as a spinod
point @24#. The dashed line is unstable as can be seen f
Eq. ~22!. Having found T0 and pc , we can find f (p),
f (1)(p), f (2)(p), andr (p) as shown in Fig. 7. It can be see
that there are no redundant bonds forp<pc and hencef (1)

and f (2) are flat in this region, as also happens for conn
tivity percolation as shown in Sec. IV. In Fig. 7, we als
show the results from the random-bond model, discusse
Sec. III, and find that the results are exactly the same
expected. Note that with the random-bond model, the fi
order transition occurs naturally and no Maxwell constru
tion is needed, as the pebble game always finds the
equilibrium solution.

In Fig. 8, we show results forP` andPov from Eqs.~23!
and~24!, respectively. It can be seen that most of the infin
cluster is overconstrained, even at the first-order transitio

In the connectivity case as shown in Figs. 3 and 5,
order parameter (T0 , P` , or Pov) is continuous atpc ,
whereas in the rigidity case as shown in Figs. 6 and 8
order parameter has a large first-order jump atpc . The quan-
tity f (1)(p), which acts like an energy, also has a large fir
order jump. One could argue that in the rigidity case, a me
stable rigid state exists for anypc.p.ps . Note that for

FIG. 7. Results for bond diluted rigidity percolation on a Bet
lattice for the number of floppy modesf (p) and the first two de-
rivatives. The number of redundant bondsr (p) is also shown. The
second derivativef (2)(p) acts as a specific heat for this problem
Results are for coordination numberz56 and withg52 degrees of
freedom per site. The probability that a bond is present isp and
percolation occurs atpc50.656. The open circles are from com
puter simulations of the random-bond model using the pebble g
described in Sec. III, usingN5262 144 sites and averaging ov
2000 realizations. The Maxwell estimate@Eqs.~2! and ~3!# for the
number of floppy modes is a straight line that follows thef (p) at
small p.
l
m
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-
lk
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e

e

-
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connectivity percolation, the boundary conditions are irr
evant, and no difference is found with or without a rig
busbar. This is not so for rigidity percolation, where there
three real solutions@25# for all ps,p,1, with anunstable
solution at finiteT0 existing in this regime as shown by th
dashed line in Fig. 6. In order for the stable finiteT0 solution
to be found, the boundary rigidity must lieabove the un-
stable fixed point. Any boundary rigidity below this valu
iterates to theT050 solution. This curious effect of the
boundary condition in rigidity percolation, even on the bu
Bethe lattice solution, needs further study.

It is useful to compare the results forpc with that pre-
dicted by Maxwell counting. Maxwell counting would pre
dict pm52g/z52/3 in both casesstudied here. In the con
nectivity case this is markedly different than the exact res
pc51/2 because there are many floppy modes atpc in that
case, as can be seen from Fig. 4. In contrast, in the rigi
case, the Maxwell estimate is close to the Bethe lattice re
pc50.655 and there are rather few floppy modes atpc as
shown in Fig. 7. It is remarkable that Maxwell counting do
so well in locating the position ofboth first-order and
second-order@6,18# rigidity transitions.

Results of calculations for a range of values ofg andz for
bond diluted Bethe lattices are summarized in Table I. In
rigidity cases~i.e., g.1) there is a large jump in the orde
parameterT0 , P` , or Pov at the critical pointpc , although
the jump does decrease with increasingz for a giveng. On
real lattices, there will also be aLifshitz tail @20# in the num-
ber of redundant bondsr (p) ~see Figs. 4 and 7! extending
into the regimep,pc all the way top50. Notice that the
Bethe lattice result does correctly reproduce the Lifshitz
in f (p) in the regionpc<p<1.

It is seen from Fig. 7 that the random-bond model is n
merically equivalent to the Bethe lattice results, as expec
from our previous discussion. The pebble game is an ex
algorithm for a particular network and gives the exact nu
ber of floppy modes~and the associated derivatives!. There

e

FIG. 8. Results for bond-diluted rigidity percolation on a Bet
lattice for the probability of being on the infinite clusterP` and the
probability of being on the overconstrained part of the infinite clu
ter Pov . Results are for coordination numberz56 with g52 de-
grees of freedom per site. The probability that a bond is presentp,
and percolation occurs atpc50.656.
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TABLE I. This table gives a summary of results for bond-diluted Bethe lattices withg degrees of freedom
per site which are joined byb51 bars toz neighbors. The Maxwell estimate for the transitionpm is given as
well as the spinodal pointps and the critical pointpc . The number of floppy modes at the spinodal point
f (ps) and at the critical point isf (pc). The jumps in the order parameters are given forT0 , the probability
P` that a bond is present and is part of the infinite cluster, and the probabilityPov that a bond is present an
is overconstrained.

g z pm ps pc f (ps) f (pc) T0(pc
1) P`(pc

1) Pov(pc
1)

1 z 2

z

1

z21

z22

2~z21!

0 0 0

2 6 0.667 0.603 0.656 0.096 0.016 0.911 0.972 0.830
2 8 0.500 0.447 0.482 0.106 0.035 0.860 0.940 0.740
2 10 0.400 0.354 0.381 0.115 0.048 0.833 0.918 0.694
2 15 0.267 0.232 0.248 0.129 0.071 0.793 0.882 0.629
3 8 0.750 0.646 0.748 0.138 0.003 0.984 0.992 0.968
3 10 0.600 0.521 0.596 0.131 0.007 0.964 0.987 0.929
3 15 0.400 0.348 0.393 0.129 0.016 0.935 0.968 0.874
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is therefore nohysteresisin the results of the pebble game o
the random-bond model, and in these large samples the
tem flips from the rigid state to the floppy state aroundpc
50.656 as a single bond is removed in a given sample. T
is a very unusual situation as most numerical techniques,
Monté Carlo, encounter hysteresis near a first-order tra
tion @26#.

VI. CONCLUSIONS

In this paper we have shown that the free energy is ne
tive of the number of floppy modes. This generalizes a p
vious result@7# which gives the free energy as the total nu
ber of clusters in connectivity percolation, where there i
single floppy mode associated with each isolated cluster
connectivity percolation, the free energy can also be foun
the limit s→1 of thes state Potts model@8#. No equivalent
approach has been possible for rigidity.

We have used the free energy and the associated Max
. E

, i

s-
ys-

is
e
i-

a-
-

-
a
In
as

ell

type construction, or self-consistency condition, to show t
the rigidity transition is always first order on Bethe lattices
is necessary to use this construction in order to rem
boundary constraints. In previous work@2,25#, a boundary-
dependent transition was found at the spinodal pointps . As
is expected from experience with thermodynamic transitio
metastability and boundary effects can be important@24# in
the regimeps,p,pc , and this needs further investigation

While rigidity concepts have been extensively applied
experiments in chalcogenide glasses@18,19#, first-order
jumps in experimental quantities have never been obse
~although see recent Raman results in chalcogenide gla
@27#!.
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