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Within the framework of a free-energy landscape model for the relaxation in supercooled liquids the primary
(@) relaxation is modeled by transitions among different free-energy minima. The secdlaslaxation
then corresponds to intraminima relaxation. We consider a simple model for the reorientational motions of the
molecules associated with both processes and calculate the dielectric susceptibility as well as the spin-lattice
relaxation times. The parameters of the model can be chosen in a way that both quantities show a behavior
similar to that observed in experimental studies on supercooled liquids. In particular we find that it is not
possible to obtain a crossing of the time scales associatedwaitid 3 relaxation. In our model these processes
always merge at high temperatures and dhgrocess remains above the merging temperature. The relation to
other models is discusseld51063-651%99)07002-9

PACS numbd(s): 64.70.Pf

I. INTRODUCTION Another aspect of glassy relaxation, which has attracted
much attention, is théslow) B relaxation. This relaxation
Despite considerable efforts, a detailed understanding afrocess is thought to be an intrinsic property of glassy relax-
the glass transition is still missing@or reviews seg1-3]).  ation by many{13-15. However, there still is some discus-
There are several aspects of the relaxation behavior of supe$ion about its molecular origifl6—-18. Whereas in some
cooled liquids, which have been subject to extensive discuscases, an intramolecular reorientat{dr,17 has been sug-
sions in the last few years. Apart from the question of thegested as the origin of thg process, this process has also
applicability of mode coupling theorig®CT) [4], the ques- been observed_ln rigid molecules like toluefies,20] gnd
tion concerning heterogeneity of the relaxation has been fluorocarbon mixtureg21,22. We note that Goldstein re-
addressed in many recent studiB$ At present it seems that ”?afked already in his sgmmal paper on the energy landscape
the o relaxation can be viewed as heterogeneous, althoug icture of glassy relaxatiofiL9] that one should not rule out

the relation to a characteristic length scale still poses a que he possibility that thes process may be related to the pack-

tion [5,6], as many of the applied experimental techni ues 9 of the molecules in the amorphous phase. It is to be
o y pplie P ChNIUeS e ntioned that this process is much slower than(thst) 8
are sensitive to molecular reorientational dynamics. Con-

; h d d f the d i h Erocess playing a central role in the two-step decay of den-
cerning the temperature dependence of the dynamic heterQg, - elation functions within the framework of MCT.

geneities, little is known at present as most studies are car- ‘gome aspects of the dielectric loss in the glassy state seem
ried out at temperatures slightly above the calorimetric glasgy spow universal behavior. The spectra are symmetric on a
transition temperaturg, [7]. logarithmic frequency scale and the peak position changes
Several models have been formulated to treat the problefyith temperature according to a simple Arrhenius law. This
of dynamical heterogeneities, most of which rely on the exhehavior can be modeled excellently by the assumption of a
istence of long-lived domains or regions in the supercooledsaussian distribution of activation energies with an approxi-
liquid, see, e.g., Ref$3] and[8]. One of us in collaboration mately temperature-independent width. Recently, it has been
with others recently introduced a free-energy landscapemphasized that the mean activation energy correlates with
model for thea relaxation in strongly supercooled liquids the calorimetric glass transition temperatdig, Eg~24T,
[10-12. In this model molecular reorientation is assumed to[18]. Typically, the time scale of thg process is in the kHz
be coupled intrinsically to the structural relaxation, which inregime atT, to be compared with about 100 s for the
turn is modeled as transitions among an extensive number @frocess. Therefore, at temperatures not too high, a clear-cut
free-energy minima. When interpreted in terms of domainsseparation of thex and 8 peaks is possible. At higher tem-
in this model the restructuring of domains is responsible foperatures, the peaks seem to merge and the typically shown
« relaxation. We note that in the low-temperature regime ofschematic plots of a merging or crossing of the timescales of
relevance here MCT is of little use since the idealized ver« and g relaxations heavily rely on extrapolations of tBe
sion does not give rise to any structural relaxation at all angheak frequency from low temperatures.
the dynamical equations occurring in more sophisticated Concerning the merging of the and 3 process, several
models have not been solved so féf. interpretations have been put forward so far. Some authors
suggest that at temperatures higher than the merging tem-
perature, Tyeger the a process dies out due to vanishing
*On leave from Institut fu Physikalische Chemie, Johannes intensity [23]. Rossler[24] argues that the merging of the
Gutenberg-Universitavlainz, 55099 Mainz, F.R.G. processes takes place at the temperature where a change in
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the transport mechanism in supercooled liquids can be otamong two sites around some prescribed axis. This gives rise
served. Similar observations have been reported by Hansda dielectric loss as well as to spin-lattice relaxation due to
et al. [25]. This means that there should be a relation bethe B process. The eventual decay to zero of the considered
tween the MCT critical temperature affgherge As pointed — correlation function is achieved by the process at high
out by Arbeet al.[17], a note of caution is appropriate in the €nough temperatures.
interpretation of the merging of the and 8 peaks. Most of The outline of the paper is the following. In the next
the data are analyzed in terms of two distinct peaks and ection we briefly recall the essential features of the free-
subsequent extrapolation of the peak frequency ofaipeo- ~ €Nnergy landscape model and set up the rate equations for the
cess to higher temperatures. These authors used a more §§neralized model. This section, therefore, is of a more for-
phisticated data analysis and were able to resolve som@al nature. Readers only interested in the physical aspects of
puzzles concerning the time scale of the dieleatrigrocess ~the model may skip and go directly to Sec. Ill, where we
of polybutadiene as compared to the viscosity. However, thi§resent the results of model calculations for both the dielec-
analysis relies on a specific model for tBeprocess and the  tric loss and the spin-lattice relaxation times. Section IV con-
assumption of statistical independence of the two processel@ins a discussion of our results and some remarks on the
Apart from the time scale, a more or less similar behaviofiréatment of experimental data. Finally, we close with some
is found for the intensity of th@ peaks. When corrected for conclusions in Sec. V.
the Curie behavior, it usually is found to increase with in-

creasing temperature. This increase is very weak bdlgw Il. ACTIVATED « AND B RELAXATION

but becomes much more pronounced abbye Correspond- IN A FREE-ENERGY LANDSCAPE MODEL

ingly, the intensity of thew peak decreases with increasing ) ) )
temperaturé17,18. In this section we set up the rate equations for the com-

It is the purpose of the present paper to generalize th@osite Markov process luse.d to describe bqth _the primary and
above-mentioned free-energy landscape mpti@/11,12 in slow secpndary relaxation in supercooled I_|ql_J|ds e}nd glasses.
order to take into account the process in addition to the ~ COncerning thex process, the procedure is identical to the
relaxation. As already mentioned, the fundamental assum2"€ used in Ref310] and[11], which we briefly review here
tion of this model is an intrinsic coupling of the orientational 10F completeness.

(and translationaldegrees of freedom of a tagged molecule !f We assume that the structural relaxation in a super-
to the « relaxation. Denoting the rates of transitioas—e  co0led liquid neail is governed by activated dynamics, i.e.,

among connected statésinima) € by «(e|e’), the model by @ransitions among an e_xtensive number of free-energy
assumption of an intrinsic coupling states that molecular reMinima (or valleys in the spin-glass notatiprwe can set up
orientations are completely determined by thge|e’). In & Master equation for the Green'’s functiGiie,t| eo):

other words, any transition from a molecular orientatidto

a diff_e_rent orientatiorf)’ is asspciateo! with a C(_)rresp_onding Glet|eg) = — K(E)G(61t|€o)+J de’ k(€| e’ )G(€ ] eo),
transition among the stateswhich define the minima in the

free-energy landscape. Hefkedenotes the orientation of the D
relevant interaction in a laboratory axes system, specified by L , .

the Euler angle€)=(a, 8,7) [26]. The model starts from a With (€):=[de’x(e’|€). The rates«(e'|€) for a transi-
composite Markov proceg@7] (Q(t), e(t)) from which the tion e—¢€’ obey de_:talled balance and we have def_med the
non-Markovian process of molecular reorientatifuft) is ~ decay rated(e). As in Ref.[11] we will consider two differ-
obtained as a projection by integrating over all statetn ent mod_el_s for the transition rates. One. is defined by a global
this model, reorientational time correlation functions decayFonnectivity among the free-energy minima and referred to
to their equilibrium value only after a number of transitions @S a@globally connected modelGCM) in what follows. In
have taken place. This, for instance, allows a simple inter2ddition to the global connectivity we assume that once an
pretation of several experiments monitoring higher-orde/£Scape from the |r)|t.|al minimure has taken place, the des-
correlation function§10]. The same model can be applied to tination minimume’ is chosen at rangom that is correspond-
the translational motion and the diffusion constant obtains. {"9 to the density of state®OS) 7(e'). We then have

has been shown that a number of so far unresolved features

related to thex relaxation can be understood naturally within K(€'le)=n(e")(kie P9, 2

the framework of this model, including the different stretch-

ing of rotational correlation functions as obtained by differ-whereg=(kgT) %, E, is a common activation free energy,
ent experimental technigues, the similarity in their timeand «; denotes an “attempt frequency.” This choice repre-
scales, and the apparent enhancement of translational diffgents a mean-field-like random trap model. If we switch from
sion [11]. Since the orientatiof) is associated with thee  the values of the free energy in a given minimeno the
process, the reorientational motions are modeled by finiteorresponding activation free enerdy, — €, we have a ran-
isotropic angular jumps. It then appears natural to identiffdom barrier model. We do not distinguish among these
the B relaxation with processes taking place inside thechoices, since there is a linear relation among them. The
minima of the free-energy landscape. Physically, one wouldther choice for the transition rates isl@cally connected
assume that the associated reorientational motions will benodel (LCM), where only transitions between minima of
neither isotropic nor of large scale. In the following we will similar values ofe are allowed. Whereas the GCM might
consider the simplest possible model for such a scenario. Wseem more plausible on first sight, the LCM may be relevant
will formulate the rate equations for a simple reorientationif the value ofe is among the relevant order parameters as
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jump angle § around some axis. Since this axis does not
necessarily coincide with the orientation of, e.g., the molecu-
lar dipole momentas is relevant for dielectric relaxatipor
one of the principal axes of an electric field gradient tensor
(which is relevant for deuteron NMRwe assume that the
axis A has an arbitary but defined orientation relative to a
molecular axis systertiM). The latter is defined in a way that
the zy, axis coincides with the axis of the relevant interaction
0 under consideration. Thg process is now modeled in as-

FIG. 1. The definition of the relative orientation of the agisn ~ SUMINg thatA performs two site jumps on a cone arounl
a molecular fixed coordinate system. The aXisoincides with the ~ With fixed cone anglé and so far unspecified jump angle
z axis of the coordinate systerf®), AllZ,, and is assumed to ConsequentlyA becomes time dependent. This means that
change due to reorientations about an anglnd its polar angle the orientation of the coordinate systém, whereZ, coin-
relative to the axis of the relevant interactian,) is denoted byg, cides withA, relative to theM system() )\, constitutes our
cf. text. Also indicated is the isotropic reorientation of Mesystem  processwg(t). Here onlyéis time dependent in accord with
due to thea procesgdotted arrow. our assumption. We thus have

o-process
(angle w)

used, for example, by Stilling¢28]. In this case one ends up w(t)=(aam(€),0(€),5(€,t)),

with a Fokker-Planck equation for the Green’s function and

one has activated transport governed by entropic barriers o, =(apy(e),0(€),5(€)), w,=(aam(€),0(€),0), (4)
[29]. In the simplified version used here, tledependent

diffusion coefficient is given by (€)= ﬁgefﬁ(Efé) and the  where we have allowed for an additional dependence of the
entropic force stems from a potentibl(e) =3~ "In[7(e)]  relevant angles or. This assumption is physically reason-
[10]. In both cases the equilibrium population of the minimaable since different molecular configurations corresponding
or states is given by to different minima in the free-energy landscape might in
particular differ in local density, allowing for different mean-
P e)=Z"1y(e)e P where Z:J de n(e)e P, (3) squg_rec_i displacem_ents. Additionally,_ we assume that the
equilibrium populations of the two orientations; and w,
re equalp®{w;)=1%, i=1,2, thus neglecting any bias. We
For a further discussion of the master equation and the physfhentign tﬁa:((%)r oar present purpoges thg an)g/;igw(e)
cal picture underlying the proposed scenario, we refer 1qaaq not be further specified as they do not enter in the

Refs. [191 and[11]. There also the pr_ocedurg to treat the calculations of the time correlation functions considered in
composite Markov procedd) ,(t),e(t)) is described. this paper.

We now set up the rateAequatlons for the composite Having defined the reorientational model we will use for
Markov process(,(t),ws(t),&(t)). Here(), denotes the = e g relaxation, the only thing remaining is the definition of
orientation of the tagged molecule that is to be changed ifhg corresponding process. In view of the above consider-
the course of time due te relaxation,w that orientation  4iion this is straightforward: The isotropic reorientations
associated with th@ process, an@=(e,u) Now is a tWo-  iing rise toa relaxation are just the tumbling motions of

dimensional variable wittx denoting the activation free en- 1o M system relative to a well-defined laboratatty) sys-
ergy of theg process. TheB process is viewed as a small oy,

amplitude reorientational process definedthin a single

minimum of the free energy. We do not specify the interre- Q () Q. (t)= t t t 5
lation betweene and u now, except for the physically rea- (1) (U= (@ (V) Bu () Y (V). ®
sonable choice that the rates for transitions amaifgrent 16 \e(as in all following relationsuse the convention of
minima are independent gf. Two possible relations be- Rose[26].

tweene and . are as follows. Before analyzing the corresponding master equations, let

(i) The values ofe and u are completely uncorrelated, YS summarize the physical picture of the above definitions.
which means they are chosen from independent distributiolf/€ view the complex reorientational motion in supercooled
functionsp®{e) andg(). There is no correlation between iquids as a composite process of two distinct motions: There

the escape rate from stat@nd the activation energy for the @€ “fast” restricted angular fluctuationébut still much
8 process in that state. slower than any microscopic time scakessociated with3

(i) The value ofe determines the value gf. In practical ~ '€laxation, which we model by a simple two-site angular
calculations one might choose to be given as a function JUMP mode.I.(T.he reason for assuming o_nIy two onentauops
w="f(€). Here one has a strong correlation among the acti®1 @hd@; is simply that the corresponding master equation

vation energies for the and 8 process in a given state. can be solved easilySuperimposed on these we have the
(isotropig tumbling of the jump axis corresponding to the

The process(t) is viewed as the fundamental stochasticrelaxation. In terms of the free-energy landscape picture set-

process responsible for the primary relaxation in the systenting the overall frame for all considered relaxation processes,
In order to model both the and 8 processes, we proceed the S relaxation[ wg(t)] corresponds tantravalley relax-

in the following way (cf. Fig. 1): We assume that th@  ation and thex relaxation[ () ,(t)] corresponds tintervalley

process can be modeled as a simple two-site angular jump o&laxation.
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Since the assumption of a two-site jump model for the A en(,]Q)=6(Q,—(Q,+AQ,))
process is rather restrictive, we relax this in the formal de- '
velopment that follows and assume a continuous range for
wg. When returning to a discrete notation all integrals in the
following expressions simply have to be replaced by the cor- . .
responding summations. The same holds, of course, for thg€re, we have assumed that the angular jump angles i the
variableg= (e, ). andz direction are the _same.'Gene.raI choice of theS(_a angles

The master equation for the conditional probabilig7] accounts for anisotropic reorientations. In the following we

of the composite Markov proce€€ (), w4(t),&(t)) reads always stay with isotropic reorientations, which amounts to
“ p set¢(eyer)=(¢p(eye,)ld§) [30]. Note that the above choice of

F’1|1(Qa,wﬁ,%,tml,w}'g,?') A(e.e)(£2,]Q}) is more general than the one used in Ref.
[11]. However, the results are very similar; see R8&fl]. In
_ ) , - At 1 Ay addition, we have already made use of the fact that only the
_f dQ“f dwﬁf de W(Q“'wB'Em“'wﬁ’E ) transition rates associated with tBeprocess depend on the
L v w oan activation energieg..
XP1a(Qg 0,810, 0, &) (6) In the two-site jump model to be utilized in later calcula-
tions, the matrix(12) is given by

where AQa: (¢(e,e’) !lp(e,e') ’¢(E,E'))' (13)

along with the initial condition

Pl‘l(Qa ,wﬁ,%,t=O|QZ[ ,(1)2;,%” H(E,,u.)(wi|wk): _F(E,/.L){(S((,!)| lwk)_ V((l)i :(l)k)}y

:5(QQ,QZ)5(Q)B,wg)ﬁ(%,%”), @ i k=12, (14)
7

where 8(x,y) denotes a Dirac delta function in the case ofwhereI'(e;u) denotes the rate for the reorientational jump.
continuous variables and the Kronecker symbol in the dis- A couple of comments are in order. The structure of\ithe
crete case. For the equilibrium population we neglect correMatrix in Eq.(9) is the following.

lations among the different processes and approximate (a) With any transition among the different minima de-

PL(Q,,04,8)=p°YQ,)pY w4 pe & scribed by the rateg(e|€’) a transitionQ ,— (), is associ-

1l 5.8 =P Q)P ) PHE) ated. The fact that the “diagonal element” in E(L1) is
=p*(Q,)p*wp)p*™(€)g(n).  (8)  unity (instead of the negative sum of the off-diagonal ele-

) - ments reflects the assumption th@t, changes in timsolely
According to our model, we now choose the transition ma-g,e to e— ¢’ transitions. There is no extra mechanism
trix Win the following way: available for changes. For this reason the matrix
Al Ay I, e')(Qa|Q') does not have the structure of a transition

W(Q,,wg,€Q 0, €") € @ S X

@ matrix as typically found for master equations; in particular,

=[K(el €N, o)(Q]QL{co(wp,wp) there is no sum rule. _ _ .
(b) As we assume thabs(t) is a process defined within
+(1-c)pwp)} + 1 1) (wglwp) a free-energy minimum, the corresponding transition matrix
, ) . (12) occurs on the “diagonal” with respect ©[ < d(¢,€')] in
X8(Q4,0,)6(e,€)]6(p,p’). ©) the transition matri¥V. The matrix for transitions among the

various possible values of the orientatien, Eq.(12), does
obey the sum rule.
(c) As it is still a question of the definition of the particu-
K(ele')=—«(€)8(e,€')+k(ele ) v(e,e'),  (10) lar model vyhether or noa)ﬁ_(t) may change in case ofa
— €' transition, we have included the term in the curly
. o) (Q,]Q0)=8Q,,0L)8e,€) _brackets in e_xpressid@). The physical mean_ing of this_ term
is the following. If the parameter equals unity, there is no
A6 (QaQ)V(Q,,Q))v(e€), correlation among the processe§) ar_1c_i wﬁ_(t) in which
(11) case the value ob; after ae— €’ transition is the same as
before, which is accounted for by the teg@(wg,wg). In
and the other limitc=0 the value ofw; randomizes completely
with every e—¢€’ ftransition, hence the term (1
M (wgop)=—T . (0p)8(ws,0p) —c¢)p*{wg). A similar ansatz though in a different context
, , has been used in connection with a composite Markov pro-
(e (wglop v(og,p), cess by Beckert and Pfeifer, and Sille§&1,32. Note that
other scenarios would of course be possible, but would un-

H(e,m(w/;)zf dwéﬂ(e,ﬂ)(wblwﬁ)- 12 necessarily complicate the physical picture.

Since a(numerical solution to the master equation, ),
The transition rates among two orientatidg are chosen to usually is not feasible in the present form, we proceed in the
be following way. Since the eigenvectors of the transition ma-

With the definitionv(x,y)=1— 8(x,y) the various operators
(matrices are explicitly given by
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trix H(ever)(Qa|Q;) are known to be the Wigner rotation GEIM) (et
n,q ’

6”): f dE,WE'u) (Ele,)GEﬁ),q)(El ,t| E”),

matrices, we expand the conditional probabifty, in terms In,q)
of these: (21
P(Q, . 05,6100, ), €") with
21+1 " ] Wil o) (el€')=—{T (¢ (@) + ()} (e, €’)
:I m,n 8772 )Dgr?n(QH)Dgr)n*(Q")Ggm))(e’”e ) (i e

+K(€|€,)A(E’€r)(|n)
(19 x{c+(1—0) g v(e.e). 22)
Here, we have used the fact thatdoes not change in the !
course of time[cf. Eq. (9)] and denoted the dependence of Here, we have defined
P11 andG on u by a superscript. The latter obeys the fol-

lowing rate equation: F(e,m(Q)‘:_f dw,gJ dw/BV—l(wB’q)
ity etlen= | do, | de'Wig o elo. ) X (gl V(g Q)
X Gt (€t €"). (16 and
Here, we have gq::J dwﬁj da)};Vil(a)B,q)peu(a)B)V(wk,q).
Wgﬁ))(wﬁ,dw;g,e') (23)
={H(6’M)(a)ﬁ|w'ﬁ)—/<(e) wg,wp)}S(€,€") In case the eigenvectoff))} are known, one is left with the
, . problem of the diagonalization of the matrik. This is
+k(el€)Aceny(IN){cd(wg,wp) achieved most easily numerically after symmetrization of

this matrix.
In terms of the above-defined eigenvectors and Green’s
functions the desired conditional probability reads

+(1_C)pea(wﬁ)}v(616,) (17)
with
PS_TJ?(QQ ,wﬁ ,E,tl\(),clk ’wgif//)

:I%n

X Gl (€t eNDIF(QV Y w},q).
(24)

21+1

872

21+1 (%
Aeen(In)= 8.2 fdﬂaf dQ2, Dy (Q,)

T

| dapi.vios0

XA () (2] QL)DNLQL)
=CoS 2N (e AN N (Peer))- (18

Note that in case oH(E,,L)(wﬁ|w;,)=O the above equations
reduce to the ones considered in R¢fD,11]. Equation(24) allows the calculation of arbitrary time corre-

The next step consists in performing an expansion of thdation functions. Here, however, we restrict ourselves to the
foﬁ))(e,ﬂé") in terms of the(as yet unknown eigenfunc- Most general orientational two-time correlation function that
tions of I, ,)(wglwp). This is most easily achieved for- 'S of experimental relevance,
mally by using a Dirac notation and introducing the propa-

gator Cin (D=(DN), [QALD DA [QAL(0)]). (25
, Using the well-known transformation properties of the
(1) N —
P (e.tle )_f d")BJ dwglwg) Wigner rotation matrice26] we easily find

XGEfﬁ))(wB,e,t|w’5,e’)<w}3|, |
Cﬁ,l)nz(t)zfdef de’jdﬂaj dQ;f dwﬁf dwj

Ggﬁ]))(wﬁ & tlog ,6’)=<wB|ngﬁ))(e,t|e')|w"6.>. (19

X | du p®4e’ Q) p w;
We now introduce a representatigg)}, which diagonalizes J #PHENG(PT Do) U(wB)
ng))(wﬁ,dwl’g,e’) with respect tof| w )} Z| . . .
X Dy (wg)Dy) (D 5 (w))
V(wg,0):=(wgla), V Hwg,a)=(dlwg). (20 =g TR e

(H* 4 (m) ' ’ ’
This yields for the resulting Green’s function, XDy (QL)PH( Qg 05,6 Q 0 0p,€"). (26)
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We now give the results that are obtained if fh@rocess G (e,t|e)=e 2lemrxlalty ¢ ).
is modeled via jumps among two sites. The corresponding (m
transition matrix is given in Eq(14). The eigenvalues are The Green's functionGn(e,t|€’) is just the one that is
easily found to be obtained in the absence of ayrelaxation and is identical to
the one considered in Refd.0,11]. Its occurence stems from
Piew(@=1)=0 andl',)(q=2)=2T(&un) (27  he fact that the total probability for the process is to be
conserved. This in particular means that the general form of
P11, Eg.(31), is unchanged if more complex models for the
1 reorientational motion associated with tBgrocess are con-
V(wi,q)=— for (i,0)#(2,2 sidered. One eigenvalue always equals zero and the only
V2 thing that changes is the number of Green’s functi@l%(ﬁJ a
along with their weight factor$the factor )% in Eq.
and V(wz,q:2)=—i. 28) (31)], as each elgen.vaIuE «)(0) gives rise to the oc-
o) curence of the assomat@éﬁ,yq) .
Inserting the expression for the conditional probability,
In this case there are two different Green’s functions thakgq. (31), into Eq.(26) allows us to write
occur in the expression for the conditional probability, Eg.
(24). Since theg=1 eigenvalue of thg process equals zero M

and the matrix of the eigenvectors is simply given by

— (M
and the resulting Green’s function does not depengL.at Cnlﬂz(t) 2l +1{A”1nz(t)+Bﬂln (B} (34)
all, we write
If we replace the actually occurringsm(e,tle’) and
Gany(etle")=Gn (e tle"). (29 Gl (etle’) in this expression by
Similarly, the index 2 is redundant for the other Green's 1
function. Therefore, we denote it by Guetle)=5—+ 2 G(Im) etle), (35)

20+1
E,‘%(e t|e'):=G* |n (e tle), (30
and a similar expression f@B{fs)(e,t|€’), we find
Using Eqs.(28)—(30) in Eqg. (24), we arrive at (,k=1,2)

PO 01,105, 01 A(n'fnz(”:fdef de’p°A e " (8¢, 5(€")
:%l% (2;21 Din(Q)Di (2) X G (etle), 36
X{Gn(etle)+(—) WG (et|e)}. Bg;nz(t):f def de'p= N1 1" (B’ 8(€))]
> fdMQ(M)GU)(E,He’). 37)

The Green’s functions obey the following rate equatiprfs

Eq. (2D Note that these expressions are independemt,offhe am-

_ plitudes are defined by
Giny(e,t|€") fdf Wiiny(€l€")Gn)(€’,t|€") 1
1" (0(e), 8())=5

1+ 2 [d){6(e)} 12 cogms(e)] |-

(38)
Wnm(ele')=—k(€)d(e, € )+ A or\(IN)k(e|€")v(e€"),
(my(el () | (32)  According to the above remark it should be clear that the

amplitudesfgnl)(a(e),5(6)) depend on the model chosen
for the B process. We note that the approximation B%) is
excellent for isotropic reorientations, cf. Sec. Ill, and it is
<|n>(€t| € fde WE(Q)(E|€ |n>(€ t€e”) exact for small step reorientatioEGO].With_outthis approxi-
mation each term in the sum occurrmg in €88) is to be
with multiplied by Gm)(e,t|e’) or G(,m))(e t|€’), respectively,
and the resulting expressions faif,), (t) and By, (t) are
Wi (ele’)=—{2T (€;)+ k(€)} 5(e,€”) more complicated.
33 From the functionCﬂl)nz(t) all experimentally relevant
observables may be calculated. For instance, the correlation
From the last expression it is obvious that a crucial role isunction of the first-order Legendre polynomial, which is the
played by the parametear. If it is set to zero,c=0, one observable in dielectric relaxation experiments, is simply
simply has given by

with

and analogously

+CA(cen(IN)k(el€)v(e ).
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cWt 1 3
g:(t)= f%() (39) Cllh, (0= 5 (VP[0 + (1= 1)@ (1),
Coo (0) (42)
and the correlation function giving rise to the spectral densi- (iny)

ties as observed in spin-lattice relaxation experiments is  om which the role of the ™" as amplitudes is most trans-
parent. The definition of the functiors{®(t) and®P)(t) is
Cm(t)=CE(1). (400 evident from Eqs(36) and (37).

As already stated in the beginning of Sec. Il, there are two
The above general expressions will be used in the next segossible extreme choices for the interrelation between the
tion, where we present results of model calculations for thesalue € in a given state and the value for the activation free
imaginary part of the dielectric constant and the averagenergy for the3 processu in that state. If we choose to be
Spin-lattice relaxation rates. We end this section by notin% prescribed function Oé, the Green’s functiorGEi")') does
that a similar formalism can be applied to translational Moot depend onw explicitly and thefduw g(x) occurring in
tions of tagged particles. In this case the transition matrixzq (37) simply yields unity. In this case all transition rates,
Afe,en(2a]€Q;) in Eq. (12) is to be replaced by a matrix in particularI'(e; 4)=T'(¢), are determined by the variable
Aen(RIR") and the corresponding eigenvectofthe e as there is strong correlation betweeand w. In the other
Wigner rotation matricgsin the expansiorni15) by the plane extreme case of vanishing correlation among the two vari-
wavese'* R, cf. Ref.[11]. Similar arguments then apply for ables, one simply ha(e; 1) =T"(x) independent ot. This
the modeling of theB process, cf. the model of Arbet al.  case corresponds to a random choice of the activation ener-
[17]. gies u for each state.

It is illustrative to consider some limits of the equations

Ill. RESULTS OF MODEL CALCULATIONS derived in Sec. II.

Before we show results for the dielectric susceptibiliies (1) If we assume thab=0 (or also§=0 for the relevant
and the spin-lattice relaxation rates, let us discuss some propasen; =0), then we findfgnl)z 1 and the correlation func-
erties of the expressions obtained in the last section. For thgon decays solely due to reorientations associated witlrthe
simple model of angular jumps among two sites for the reprocess. The same result is obtained’{fe; x)=0 andc
orientations associated with th@relaxation, the most gen- =1 s chosen in Eq(33).
eral orientational two-time correlation functi@ﬂl)nz(t) can (2) If we choosex(e|e')—0, only the 8 process “sur-
be written as a sum of two different terms, cf. Eg4). For ~ vives” and the second term in Ed42) is of the form
more complicated models, there would be more terms; how®?)(t)= fde p®qe)e 2"t if u=f(e) [['(e;u)=T"(€)],
ever, the Green’s functioB;(e,t|e’) associated withx re-  and @A) (t)=fdu g(u)e 2" ™t in case of no correlation
laxation occurring in the termd(), (t) [cf. Eq. (36)] will  amonge and u [T'(€;u)=T(x)]. In any casedP)(t) is
always be present. The reason for this is just given by th@iven as a linear superposition of exponentially decaying
fact that the total probability of the stochastic processis functions.

a conserved quantity. This means that orientational correla\

tion functions always will show a decay to a plateau valuet is clear that the above limi(e|e’)—0 physically corre-
due to the combined effect af and 3 relaxation and then sponds to low temperatures, well below the glass transition

decay to their equilibrium values due t® relaxation. Of temperaturel . S_ince in this case an unsymmetrical choice
course, the plateau value and the form of the initial deca)pf the DOS.”(E) yields unsymmetnpal spectra for tlﬁapro-
depend on the model chosen for tAeelaxation. cess, we will neglect any correlation amoa@nd . in the

When considering the dependence of the jump angles oggllowing calculation_s.[We will use unsymmetricaly(e)
curring in the expressions of the last section upon the valug'nc® for a symmetr_|cal DOS the spectra O.f therocess
€, one would assume that they will vary with that value. also will be symmetrical. Only fo_r a symmetrical DOS tge
Consider, for instance, the ang¥e); since it is a reasonable sp(:f:tra alsq WOUltd bte symmketndal. the choi £ th
assumption that low-lying free-energy minima correspond to, rrc:_re ,I'mpOI’ ant fe”.‘afE coggerlr;sth. ec 0|cet of the
a more close packing or a higher value of some local densityé(r:]Orre atlor;) par_f;lmi irctr:n " g. (33). IS ptaramde e; IS
one would expecs to be a decreasing function ef Similar osen to be unity;=1, the two processes (t) and (1)
arguments may apply to the anglg. ., and . ., occur- are completely uncorrelated. It then follows from E§3)
ring in the expression fok (. . (In), Eq.(18). In all follow- that for c=1:
ing calculations we neglect these dependencies for simplicity () N a2t ,
and use single values for these angles, which then corre- Gifm(etle)=e Gan(etle’), (43)
spond to the average jump angles in the system. This simpli-

fication allows us to write where Gjn)(e,t|€’) is just the Green’s function for the
process, cf. Eq(32). This means in this particular case we
1 have
f=00,0)=5 1+ [df)(6)]* cogm)
1
(4D e (0= M+ (=1 e B0}l (1),

and (44)
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where we defined peratureTy=1/8,. We set Boltzmann’s constant to unity,
kg=1, throughout. We always choose this value in such a
®BO(t :f d e~ 2l (wt 45 way that th.e characte_nshc decay time constant qf the_ corre-
® “O(r) 49 lation function of the first rank Legendre polynomggl(t) is

on the order of 100 s.

Additionally, we use the following characterization of the
i . ] B relaxation. We always assume that the activation free en-
Note that the assumptian=1 means that the orientatiad;  grgies,, and e are uncorrelated. We choose the valuesuof

after ae— €’ transition is exactly the same as the one beforefr m a Gaussian distributiog(x) of meanE ; and variance
that transition. This seems a rather unplausible assumptlog The rates for the reorientations are chosen to be of the
from a physical point of view. The structural relaxation is prrhenius form,

modeled by the transitions among the different free-energy
minima. Therefore, the local configuration of the molecules [(u)=rPe PH, (50)
are assumed to change due to these transitions. In such a

picture one always would assume that also thg will  This represents the most simple physically reasonable
change in case of such a tran3|t|onca§ represents a par- choice. This means, we have the following parameters at our
ticular orientation within a given configuration. disposal: For thex process we have the valuespéndg for

The choicec=0, on the other hand, corresponds to athe DOS and the overall activation free eneEgy. Since the
strong correlation between the process(as andwg(t). In Jatter just gives the steepness of the correlation time in an
this caseaw ;s randomizes with every— e’ transition, i.e.wz  Arrhenius plot, we fix its value by the restriction that this
takes on both values; andw, with a probability of 50%. In  correlation time be on the order of 1®s at a temperature
this case we have from E¢33), for c=0, T=1.2T,. The time scalec is set according to the above-

()4 k(e mentioned requirement. For thgprocess there are the pa-
Giln(etle’)=e P nalts(e e, (46) rameters«? , E4, ando. We follow Kudlik et al.[18] and
fix k8~10"s™! and Ez~24T . With these preliminaries
the relevant parameters of the model calculations are given
R ST by the ratio X(Tg) =:(K;e‘ﬁgEa)/(K£e‘ﬁgE_B), the param-
1n2(t) 2l + {f (0 etersp, ¢ E,, Ez, ando. The above choice of ;=24T
means that the time scales of thend theB process become
+(1— fiy'”l))@(“)(tyb(ﬁ'o)(t)} (47)  comparable at approximately 10s.

In addition to the parameters characterizing the shape of
with the distributions and the time scales of the two processes, we
also have to choose the values of the jump angleg, and
é. Here, we will use an isotropic model for the reorientations
associated withy relaxation,¢= (¢/+/8) and usey=10° in
o ) all model calculations that follow. A mean reorientational
Thus, it is seen that although one again has a product of tWQngIe on the order of 10 ° has been in found in careful NMR
functions occurring fob(F)(t) in Eq. (42), the decay func-  investigations on orthoterphenia3], toluene [34] and glyc-
tion for “the pure 8 process” is not multiplied by the cor- ero| [35]. Concerning the jump anglé, we proceed in the
responding one for the “pure process.” Instead, the func- following way: It has been found in some experiments that
tion ®(@)(t) is identical to the one obtained if theprocess the mean-squared displacement increases much stronger than
is modeled by random reorientations, £f0]. Only in this  linear—approximately exponential—with temperature for
unphysical case Eqsi44) and (47) coincide. Note that temperatures arounfy [36,37] or higher. For a simple two-
®BO(t) and ()(t) are independent of the rarkof the  Site jump model a simple relation between the jump distance
considered cor(rle;ation function. Remember, however, thafjump @nd the mean-squared displacement can be given,
the amplituded;,"™ do depend on this rank. _

Before we proceed to present the results of the model (r2)=piP5T2r jumpsin( 8/2)]2.
calculations, we will fix the model parameters that will be
used in all following calculations. In all calculations we use
aT distribution for the DOS,

We mention that Eq44) is exactly of the form, which has a
long history in the interpretation of dielectric d4fe5,17,1§.

and correspondingly,

O (t)= f de p®Ye)e ~)t, (48

(51)

In some NMR investigationg37,38, the jump angle in the

above expression has been taken as temperature independent

and the temperature dependence has been attributed to
7(€)=N(Se)Pe 4% (490  temperature-dependent equilibrium populatiqef§. This,

however, means that one is concerned with a very asymmet-

where N denotes a normalization constant aiéd) the de-  ric double-well structure of the minima among which the

viation from the maximum value. This way it is assured thattwo-site jumps take place. In the following we use the alter-

7(e) is centered around zero. We mention that an exponentialative interpretation that the jump angtis temperature

tail also is characteristic of the energy distributions in meandependent in an Arrhenius-like fashiof(T) = d,e” #Fs, as

field spin glasses. Here, however, we udédistribution just  has also been used by Hinze and Silleg29] in their inter-

for computational convenience. Since the “attempt fre-pretation of NMR relaxation experiments on toluene. Figure

quency” occurring in Eq.(2) merely sets the overall time 2(a) shows(r?) calculated according to Eq51) for two

scale, we choose the produefe PeE« to define the tem- different choices of(T). In one cases, is chosen in a way
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g FIG.3. (a Dielectric susceptibilityd”(w) versus frequency
FIG. 2 2,2 ; . ‘ ‘ according to Eq(53) for a globally connected model. The param-
G.2. (@ (r)/riumpas a function of temperature for two eters are given in the text. Full lines=0; dotted linesc=1. The

choices of the temperature dependence of the jump ahdteone
example the jump angle is chosen to be 10° af.8ull curve),
which corresponds to the choiég,=10°€%>3%8Te) and in the other
case it is chosen to be 10° at U¥(broken curvg corresponding to
Sop="10°€3%0T9)  (b) The amplitudes relevant for the calcula-
tions of the dielectric constanifi) and the spin-lattice relaxation
rates (5-%) as a function of temperature for the choidéT)
=848 P55 [cf. (@]. The angled is chosen to be 20°, 40°, 60°
(from top to bottom in the case ofB (full lines) and 10°, 20°, 30°
for 3R (broken lines.

temperatures vary from OT§ to 1.2T, in equal steps. The dashed
line represents the spectrum®f. (b) The same as ifia) for a
locally connected model.

dence ond and the different absolute values @} and f3-®

are obvious from that plot. We note that the values pf¢
=60°) are on the order of magnitude of experimentally de-
termined value$17,18.

We now present the results of model calculations for the

) imaginary part of the dielectric susceptibility,
that 5=10° at 0.8 4 and in the other examplé=3° at that

temperature. The values are chosen this way only to show
that such a temperature dependence can be used in order to
show qualitatively the same behavior as found in real super-

cooledzliqgids. In partic'ular, it can be seen from Figa)2 \yherer denotes the Laplace transform aggande.. denote
that (r) rises strongly in the temperature rangeTof for  he zero and infinitive frequency limits, respectively. Ac-

both choices. Of course, relations such as 64) strongly cording to Egs(39) and (42), we have
depend on the model considered.

Even more important is the dependence of the amplitudes
0" on the angled. The two amplitudes of interest in the
following are f°={19 in case of dielectric relaxation and with ®{?(w) denoting the Laplace transforms of
fSLR=$(29 for spin-lattice relaxation. The angkebetween [—d/dt®{(t)]. All calculations are performed by numeri-
the axis of reorientation and the one of the relevant interaceal solution of Eqs(32) and (33) in a similar way as ex-
tion usually will be different for the two experimental tech- plained in Ref[11]. Here, we only mention that we numeri-
nigues as, e.g., the direction of a relevant carbon-deuterocally diagonalize the matrices defined implicitly in the
bond (in case of deuteron NMRdoes not necessarily coin- discrete versions of these equations using 50—100 values of
cide with the direction of the molecular dipole moment. In e. From the resulting Green’s functions, all observables of
using the amplitude$® for the calculation of the dielectric interest are obtained easily.
response we have to assume that dielectric relaxation is In Fig. 3 we showd”(w) versus frequency for the GCM
dominated by single molecule relaxation and that cross termlg=ig. 3(@] and the LCM[Fig. 3(b)]. In both cases & distri-
in the dipolar interaction can be neglected. The dependendgution with p=10, q=0.3 according to Eq(49) for 7(e) is
of {2 and SR on the angles is shown in Fig. 2), where  used. The remaining parameters afé=10" s and E
we plotted these quantities as a function of temperature for 24T in both cases. Furthermore, we usk(T,)=22.8,
various § and one choice o8(T). The rather strong depen- E,=114T,, and 0=7Ty in the GCM calculations and

% (0)= Ty

: (52)
€0 €Ex

d
- agl(t)

O (0)=f20 " (w)+(1-2)D P (w), (53)
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pressions given by Dixof40]. The deviations between the
two methods did not exceed 5%. The corresponding values
of widths and positions in the case ®)(») were deter-
mined numerically. The results fes, and the full width at
half maximum for the calculations according to the GCM
[Fig. 3(@] are plotted versus inverse temperature in Figs.
4(a) and 4b), respectively. Without showing them here, we
mention that the results of the corresponding LCM calcula-
tions behave very similafapart from the smaller width of
<I>(1ﬁ)(w) due to the smalles chosen in those calculatiohs

2k s - 3 Concerning the behavior of the position and the width of
085 090 085 1.00 the a peak(dot-dashed lines in Fig.)4we note that the fact
(@ Tg/T that the peak position varies in an almost Arrhenius-like

form has its origin in the assumption of a temperature-
independent DOS;j(e). When calculations with the present
model are compared to experimental data, it is usually found
that one has to allow for a temperature-dependent width of
the DOS[11,12. In other words, the temperature depen-
dence of the width of ther peak shown in Fig. @) is less
4 pronounced than is often found experimentally. Assuming a
sol A 1 temperature-dependent width of the DOS vyields a stronger
Bl . ' ' ' curvature of the peak position and also a steeper rise of the
0.85 0.90 0.95 1.00 1.05 . . . .
width as a function of inverse temperature. As we are mainly
(b) Tg /T interested in those features associated with ginelaxation
in the present paper, we always used a temperature-
FIG. 4. (a) Logarithm of the peak positions, for the GCM  independenty(e).
spectra of Fig. @) versus inverse temperature. The peak position of The extrapolated peak frequency of tBerocess crosses
®{*(w) is shown as the dot-dashed line. The solid line representshe corresponding one of theprocess at Ing,)=6.5. Note
the results ford{?(w) with c=0; the dashed line is the same for P (B
1 ' e > - that at low temperatures(e|e’)=0 and therefored™"”’ (w)
c=1 [correspondlng tq the fu.II and dotted Ilneslln Figa)3. Fi- :®gﬁ’0)(w), Where¢>(1ﬁ’0)(w) denotes the response function
nally, the dotted line is obtained by extrapolation from the low . . . .
associated withb (#:9(t) according to Eq(45). This func-

temperature behavior @{")(w). (b) Full width at half maximum € I
versus inverse temperature for the same calculations as ugad in t'on,represents the Io.W—temperature limit independent of the
The different lines represent the same parameters é.in choice of the correlapon parametgrcf. Eqs..(43) gnd(46).
The effect of averaging due to theprocess is evident from

X(Tg)=105, E,=108T,, ando=4.5T for the LCM. The the increase ofv, and the drop in the width o@(lﬁ)(w).
amplitude f? was chosen according to the lowest curve inNote that the time constants of the extrapolated low-
Fig. 2b). The effect of the different widths chosen for tBe  temperature data and the real spectra differ by approximately
process is clearly seen in the spectra, especially b@lgpw one decade at the temperature where according to the ex-
The full lines represent calculations with the parametset  trapolation a crossing of the two processes would occur. It is
to zero, which means tha, randomizes with eack— €’ evident from these considerations that a crossing ofdhe
transition and the dotted lines are results éer1. The dif- and B process cannot occur in our model as th@rocess
ferences in the spectra are not very pronounced. Only foleads to an averaging over the distribution of jump rdigs)
temperatures larger than roughly I, a clearly visible dis-  for the g relaxation if the mean time constants for reorienta-
crepancy is apparent. In all cases an apparent merging of thimns associated with the two processes do not differ too
a and thep peak occurs at a temperature of approximatelymuch. In Fig. 4a), the onset of the deviations between the
1.16T,—1.18T, for the parameters chosen. We have also perbehavior of®{¥)(w) and the extrapolated low-temperature
formed calculations for different sets of parameters. As theegime first occurs at a temperatufe-1.1T,. At this tem-
results qualitatively agree with the ones presented in Fig. 3perature the two peak frequencies differ by more than two
we do not show them here. The most prominent differencegiecades. This clearly shows that care has to be taken in ex-
occur if f2 is chosen differently, as this affects the relative trapolating data related t@ relaxation to higher tempera-
weights of the contributions ob{?(w) and®{#(w) in Eq.  tures. The effect of the averaging due to thg— Q! tran-
(53) to the susceptibility. sitions is seen even more pronounced when comparing the

~We now proceed with an analysis of the data presented ifyigths of ®{#(w) and ¢(B'°)(w) as extrapolated from low
Fig. 3. For this purpose we separately determine the peagemperatures. We note that experimentally, of course, there
position w, and the width forq)(la)(w).and.q)(lﬁ)(w)_ The  is no clear-cut separation betwedd® () and®{?(w) at
results of this analysis are shown in Fig. 4. Concem_'”gtemperatures higher than roughly T, as can be seen from
®{*)(w), we compared the values obtained from a numericajhe spectra in Fig. 3. If these spectra are analyzed as a single
determination of the widths and the position with the resultspeak, the peak frequency will change only by a negligible
of Kohlrausch fits to the time correlation functiag(t)  amount[cf. Fig. 4a)] and the width will stay more or less
=e*(“7’3, which were converted to the former via the ex- temperature independent as a competition between the de-

FWHM
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creasing width of®{?(w) and the larger one ob{?(w). cI)(oc) "
When we compare the results fo=0 (full lines in Fig. 4 I m ((D)
andc=1 (dashed lings we see that they behave quite simi-
larly with some systematic deviations. In tllenphysical) 0.3
case ofc=1, ®{?(w) contains a contribution from the '
Green'’s function for thex process, cf. Eq(44). Therefore,
the high-temperature limit in this case is a real merging of 0.2
the two peaks. Of course, the difference betweencthd
and thec=0 scenarios will be more outspoken if a model 0.1
with more than two orientationsz is considered for thes '
process, as in this case there are more values the vatigble
can reach foc=0 than the two in the simple two-site model 0.0
considered here.

We now proceed to calculate the spin-lattice relaxation
rates as observed in high-field NMR. This rate is given by
the well-known expressiof¥1-44

FIG. 5. Spectrab{®(w) versus frequency for the GCM &t

X =1.05T,. The parameters are the same as in Fig. 3. SI§& w)
R1:=T—1 = ?{Jl(wL)Jr‘”z(“’L)}' 54 and d)ff?(w), I=1,2 are practically indistinguishable, the latter are
not shown. The dependence of the spectramis negligible, jus-
Here,K, denotes the coupling constant, i.e., the quadrupolafifying the approximation Eq(35).
beating frequency in case of deuteron NMR and the second
moment in case of protons ang is the Larmor frequency. given line in the inhomogeneous NMR spectrum in a similar
The spectral densities for axially symmetric couplings arevay as in Ref[43]. As the process in our model gives rise
given by[43] to a broad distribution of relaxation rates, the corresponding
magnetization decay will be nonexponential and can be writ-
ten as

2

Im(w)=2Re f “dte (D@L Qe (1) IDE [ Qe (0)]).
0

(55 M(t)ocf dug(pe R T<T,. (56)

In this expressio)p; denotes the orientation of the princi-

pal axes system in the laboratory fixed frame. In the latterHowever, Eq.(56) is meaningful only in the absence of any
the z; axis coincides with the main magnetic field. One hasadditional averaging processes. In proton NMR usually an
to be careful in using the above expressions, since in thexponential decay of the magnetization is found due to fast
temperature interval considered in the present context, thepin diffusion. When considering deuteron NMR, the mag-
NMR spectra undergo a change in line shape from a liquidnetization decays nonexponentially in the glassy state. This
like Lorentzian to the typical solid-state spectra. These aréas been interpreted as a signature of nonergodi&8}.
given by a Pake spectrum in case of deuterons and often diyowever, it has also been demonstrated that the effects of
a Gaussian for protons. At high temperatures in the liquidspin diffusion cannot be neglected in the case of deuteron
region, the above correlation function coincides just with therelaxation experimentg45]. It can be shown, on the other
function C,(t) given in Eq.(40). At lower temperatures, hand, that the initial decay of the magnetization is free from
however, this is no longer true in general. If the reorienta-spin-diffusion effects[46] and this fact has been used to
tions due to thex process become slower than the averageobtain a sound interpretation of deuteron spin-lattice relax-
spin-lattice relaxation time, only the reorientations associatedtion experiments on tolueri@9]. Since the initial decay of
with the 8 process give rise to relaxation and the above corthe magnetization curves is governed by the average rate
relation function reads (R1), we have, at all temperatures,

(DRIQp () IDEA* [ Qe (0)]) <
omL42pL 0 PL (Ry)= %{<J1(‘UL)>+4<J2((‘)L)>} (57)

=2 D(Q)DF (2 )(DG[ws() DG Twp(0)])
nn’ in which the average spectral density now reads

as{}, is now time independent and onty, gives rise to "

relaxation. This, in particular, means that the spin-lattice re- (In(0))=(I(w))=2 Rej dt €tC,(t) (58)
laxation rate now is a function of the orientation of the con- 0

sidered interaction relative to the magnetic field. Each deu-

teron contributing to the Pake spectrumr each pair of with C,(t) given by Eq.(40), since the average rate also
protons has a well-definedR; and the decay of the normal- includes an average over all possible orientatigusvder
ized longitudinal magnetization is a superposition of all dif-averagg [47]. For a discussion of the treatment of experi-
ferent decays possible in the system. In principle, the aboveental data and the ambuigities associated with different av-
expression can be used to calculate the relaxation rate for agyage spin-lattice relaxation rates we refer to [R48].
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We start with a brief discussion of the response functions
for the a processb(¥(w). As stated in relation to Eq35),
in principle, different (%) (t) = fdefde’ p®I(e)Gmy(&t|€’)
contribute to the rotational correlation functions as well as to
spin-lattice relaxation. In order to demonstrate the quality of
the approximatior(35) we plot the spectra{®)(w) for dif-
ferentmin Fig. 5 as a function of frequency for the GCM at

a temperature of 10% In case ofl=1 Only d)(la)(w) 0|850|900I951I001|051|10115
=$\Y(w) is shown asp{?(w) is almost indistinguishable

from this. The difference in the width between the spectra for @ Tg /T

=1 (dotted ling andl =2 (full and dashed linesis clearly ————————

visible. The fact that in our model the stretchinggaf(t) is 10" F 0, =30MHz
less pronounced than that gj(t) has been extensively dis- B 100 =102 ==
cussed in Ref[11]. The width and shape ob{?(w) and - L

®{¥(w) are almost identical and onty$?)(w) (dashed ling A_ 10 Toe=20° 1
is somewhat broader tha®$?)(w). However, the differ- Q,: 102 3
ences among they(?)(w) for different m are very small. 108 ]

When the same considerations are applied to the spectra
dbl(,f,)(w) of the B process, one has to keep in mind the de-
pendence on the model chosen. Since at low temperatures (b) Tg /T

&8 (w)=d#9(w) according to Eq(45) is independent of - .

(Im), there is no difference between the various spectra. The FIG. 6. () Average spin-lattice relaxation raté&,) versus
same holds forbfﬂ)(w) in the case ot=0 for all tempera- inverse temperature. Here, we uskéiiS: 10°s™%, which is a value
tures, cf. Eq(47) mOnIy if c=1 is chosen, is there a depen- on the order of magnitude typical for the quadrupolar coupling of

. . deuterons. The calculations were performed for the GCM with the
(8)
dence of®jy'(w) on (Im). As this dependence is the same 8Ssame parameters as in FigaBandc=0, the only difference being

the one discussed above in the context of the spectrum ass@s choice of the anglé=10° here. The solid lines represe(iR,)

ciated with thex process, we do not show these spectra herey 10, 30, and 50 MHzfrom bottom to top. The dashed lines are
From this discussion it is evident that the approximationge contributions due to the “pure’ process and the “pure’B

(35), which neglects then dependence of the various spec- process for a 50 MHz. Additionally shown as the dotted line is a

0.850.900.951.001.051.101.15

tra, does not represent any problem. calculation for the LCM at 30 MHz(b) The dependence of the
From the above expression f(R;) and the properties of spin-lattice relaxation rates on the angi¥3) and 6 are shown for
the C(t), we have, for the spectral densities, two examples at 30 MHz in the GCM. The full lines correspond to
0=10° and the dashed lines t=20°. The lower lying curves are
(Iw))=F3RID (@) + (21— 3R (IB) (w))). those for the choiceS(T)= ;.6 #°° and the upper curves for

(59  &(T)=Sope #82 according to Fig. 2. The dotted line is the same
LCM calculation as ina).

Spin-lattice relaxation rates calculated according to Epjg.
and(59) are shown in Fig. @) for various Larmor frequen- jump angled(T). Thus, as it appears from the model calcu-
cies w_. In these calculations we used the GCM afd lations, it is not possible to determine the parameters for the
=10° in the expressions fof>R (solid lines. The other B relaxation experimentally from spin-lattice relaxation ex-
parameters are the same as those chosen in Fig. 3. Here, weriments. Here, consideration of the frequency dependence
usedc=0 only. The dashed lines show the individual con-of (R;) may be helpful. If one assumé®;) '~ o [39]
tributions from the two terms in Eq59) for 50 MHz. In and compares experiments performed at different Larmor
addition to these we included one LCM calculation for 30frequencies, one can estimate the exporknvhich sensi-
MHz, where we used the sameand §(T) as in the GCM tively depends on the width @f(x). We find for the data of
calculations(dotted ling. One clearly sees that the narrower Fig. 6 an approximately linear temperature dependenak of
distribution g(u) in this case gives rise to a stronger tem-with d(0.8T4)=1.29 andd(T,)=1.21 for the GCM. In the
perature dependence in the glass. However, this does nDCM the corresponding values are 1.64 and 1.48 al .8
allow us to determine this distribution due to the very pro-andT,, respectively. This clearly shows that for the broader
nounced dependence (R,) on # and §(T). This is exem-  distribution (GCM) there are more fluctuations in the MHz
plified in Fig. 6b). Here, we compare(R,) for 6=10° (full regime, although the mean time scales were taken to be the
lineg with #=20° (dashed lines for the two different same in both calculations. The LCM calculations show that
choices for§(T) as explained in connection with Fig. 2 and one is nearer to the limiting low-temperature valuedsf2
w =30 MHz. It is seen that the variation in the temperatureas obtained foF (u) <w, . Since a wide variation of Larmor
dependence ob(T) has a large effect on the temperaturefrequencies usually is not feasible in spin-lattice relaxation
dependence of the relaxation rates. Additionally shown as axperiments, a combination of these with dielectric spectros-
dotted line is the same LCM calculation as in Figa)6ltis  copy seems to be most advisable. Such a combination may
obvious that a variation in the width of the distribution of allow the determination of almost all parameters, if the mean
activation free energy for th@ process has a very similar and the width ofg(x) as determined by the dielectric ex-
effect as a variation in the temperature dependence of thgeriment are used as an input for the NMR experiments. Of
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course, it has to be noted again that particularly the jumghoice. As in the case of the process, we neglected any
angle 8(T), which results from such an analysis, strongly dependence of the jump anghon the value of the variable
depends on the model chosen. First, it can depend on thefor simplicity. The most simple generalization of the model
angle ¢ used in the analysis. This dependence is not veryised here would be a superposition of more than one two-
problematic as it merely sets the overall valug &f) in the  Sité jJump models. If these are taken to be statistically inde-
glass, cf. Fig. ). More important is again the fact that we pendent, the resulting amplitudé$ and f3-F would just be
used a two-site jump model, since the dependen(félgfon given by the sum of the individual ones. In that case, how-
6 and 5(T) changes if one considers another model. NevereVver, reorientations about different axes may give rise to dif-
the|eSS, the above-recommended combination should givefgrent ang|639 for both dielectric relaxation and Spin-lattice
reliable estimate of the small-angle fluctuations associatetelaxation. It therefore appears most meaningful to interpret

with the B8 process in the glass. This has amply been demonPur angless and 6 as effective angles. For the latter, there is
strated by Hinze and Sillesd@9]. no given relation between the value for dielectrics and NMR.

A similar comment applies to the mean-squared displace-
ment as shown in Fig.(3). The jump distance;,,, appear-
IV. DISCUSSION ing in Eq.(51) is not determined by the model and it is most
] ] ) likely that the superposition of all local fluctuations will sum
Let us start the discussion with a couple of commentyy, o the observed mean-squared displacement. Also, it is to

concerning the model chosen in the present paper to descrip noted that if we relax the simplifying assumption that the

both the slow primary and secondary relaxation in S“per'amplitudesf('”) are independent of, Eq. (41), we can take

cooled liquids gnd glasses. Since the free-energy landscage, ccount the fact that there might be molecules not par-
model presenting the overall framework ceases 1o m_akﬁcipating in theB relaxation due to vanishing(e) or, more
sense in tht_a form used here and in the earlier investigatio obably, vanishing(e). This latter possibility should not be
[10,17 at high temperatures where the number of relevant a4 out as one can assume a high local density for small

Qalues ofe. This decreases the probability of local fluctua-

a Iow-temper_atu_re_ regime. O_ne WOUId. expect, that Fhe Cr0SYions. In this case the relative amplitudes of thand 8 peak
over from a liquidlike dynamics to activated dynamics takes

| ) ) 4 the critical are not related in any simple manner and Eg) cannot be
place in a temperature regime around the critical temperaturgse q 1 calculate the time correlation functions. Additionally,

of idealized MCT. Here, we have chosen the parameters 'the fraction of molecules participating in thgprocess may

the model calculations in a way that the correlation time forwe” be temperature dependent in such a scenario. Thus this
the « process equals approximately T0 atT=1.2Ty. This o4 account for the “islands of mobility[13] in principle.

also is roughly that temperature where the critical tempera- When we consider the dielectric respordé(w), it is

ture of MCT is located. Therefore, we cannot make anyseen from Fig. 4 that a remarkable difference occurs between

statements about the behavior at higher temperatures. . (8)
Concerning the model used for the reorientational dynam'Ehe peak frequencies dfy™(w) and the extrapolated one of

ics associated with the relaxation, we stress here only the #(w). As already pointed out, this difference is on the
fact that this dynamics is assumed to be intrinsically couple@rder of one decade at the crossing temperature as predicted
to the transitions in the free-energy landscape. The most imfy extrapolation. The influence of the process on the
portant point is not represented by a specific choice of th@eak is already visible at temperatured.IT,. This means
parameters used to model these transitions but by the a§at even though the mean time scales of the two processes
sumed intrinsic coupling. In all model calculations we useddiffer by more than two decades, the effect of averaging on
an isotropic small angular jump model for the reorientationghe distribution of jump rateB() due toa relaxation cannot
due tow relaxation. The jump angle has been fixed to be 10®€ neglected at these temperatures. We mention that a simi-
in all calculations. This means that we neglected any temlar behavior has been reported by Areeal. [17]. Thus, it
perature dependence of this angle for simplicity. Also, theS€€MS that even a slight extrapolation might yield unrealistic
existence of a distribution of jump angles, as has been foun@stimates of the merging temperature. Therefore, conclusions
experimentally{12,34,35, has been neglected. Taking these@bout a reakrossingof the two processes as advocated in
into account would yield quantitative changes in the calcuRef. [16] seem questionable. From our model, one would
lated spectra. A more dramatic change in the spectra is, hovassume that the two peaks always merge at high tempera-
ever, found if the mean jump angle is changed to largefures and that the high-temperature process isatpeocess,
values, cf[11]. even though this can no longer be modeled with the present

The slow process is viewed as local restricted orienta-@Pproach. This scenario has already been put forward by
tional fluctuations. These are modeled in the simplest posWilliams and Watt§15]. They, however, assumed theand
sible way by a two-site jump model. As has been pointed ouf8 Processes to be statistically independent. We have com-
in the last section, this restrictive choice can be relaxed ifnented on this assumed statistical independence already. Itis
principle. The calculations, however, become somewhalmportant to recognize what the physical implications of this
more involved. The qualitative behavior of the spectra doegssumption are. Independent of our concrete model used
not change in any case as the occurrence of the differerfiere, itis plausible to assume that those reorientations asso-
terms.AD_ (t) and B, (t) in the expression for the corre- ciated with thea process are related to structural changes in

: 12 ) o . . the supercooled liquid. Thg process is viewed as a local
lation functlonanlnz(t) according to Eq(34) is indepen- fluctuation in orientation within a given structure. Statistical
dent of the special choice for that model. The amplitudesndependence of the two processes means that the local fluc-
" are the quantities that depend most sensitively on thisuations are not at all affected by rearrangements of the local
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structure. This seems to be most unrealistic from a physicakmperature regime, also not beldy. Apart from this con-
point of view, in particular, when taking into account the tradiction to experimental findings, these calculations again
heterogeneous natuf@8] of the B process. In the above do not show any crossing of the two peaks, as can also be
picture this means that the rates for local fluctuations depenihferred directly by inspection of the above expression for
on the local environment, independent of whether these fluod(#)(t) for c=0. We stress the fact that the behavior of
tuations are of an intramolecular or intermolecular 0rigin.q>l(ﬁ)(w) found here is independent of the input parameters
These rates change in the case of a structural rearrangemegs it is solely a consequence of the averaging of the distri-
One would not only assume that the relevant orientation ofytion g(u) associated with th& () due to the transition
the axis of fluctuations are affected strongly by such a strucrates «(e|e’). It, therefore, does not rely on any specific
tural change but additionally the amplitude of the fluctua-form of the chosen distributiongn particular, not oro- and
tions. The latter corresponds to the jump andlen our Ay et alone a specific form for the correlation functions. In

quel. Therefore, a model in which there is a strong corre; model like the one proposed here, teprocess cannot
lation among the two processes seems to be much more {fl,-ome slower than the structural relaxation.

accord with physical intuition. Our calculations with the cor-  \yhen we consider the spin-lattice relaxation rates, it is
relation parametec set to zeroc=0, correspond t0 & COM- ¢4 g that the averaged rates can easily be calculated from
plete randomlzatlon qf the value of th? orientatioR re- o, model and the results show the same qualitative behavior
sponsible forg relaxation. Of course, this case of complete 5o gpserved experimentally. We pointed out already the
correlation also represents an extreme scenario. Howevegtrong dependence of these rates on the arégesl 6. There
this seems to be more in harmony with the underlying physiis however, one restriction té that must be met. If one
cal picture than the assumption of statistical independence .qnsiders the deuteron NMR spectra bel@y, these are
The correlation functions®()(t) can be written yery sensitive to reorientational motions. If reorientations by
in the form of a product in all cases, as long as anyangles larger than roughly 20° take place on a time scale
correlation among the variables and w is neglected faster than the inverse quadrupolar coupling constant, the
completely. Also in this case a factorization of the form effect of motional narrowing is visible in the spectra. In the
d{P(t)=d{(t)®AOXt) is only possible in the case af  examples we chose for the temperature dependengeTof
=1, as is obvious from Eq$33), (37), and(42). In no other  we have §(T,)~39° in one ands(T,)~24° in the other
choice of the parameters of the model is this kind of factorexample. If all ratesI'(u) at T, would be larger than
ization possible. On the other hand, if it assumed on the-10f Hz one would observe motional narrowing. Since the
contrary that there is a strong correlation amerandu, the  fraction of such large rates is quite small in our examiles
reorientation rate$'(e;u) are determinedimplicitly) by the  the GCM, it is on the order of 5% the spectra will show
value of € in a given free-energy minimumI'(e;«)  only small effects due to narrowing as is compatible with
=I'(€). In this case it is seen from the same equations thagxperimental datajWhether or not motional narrowing is

(I)l(ﬁ)(t) is of the form observed in the NMR spectra, of course, delicately depends
on the choice for the temperature dependencé(d).] We

®B)(t Nf de peYe)e {T@+x(alt:  c—Q mention that this problem is overcome in the aforementloned

i €p™e) models with a temperature-independent but large jump angle

) . : by a very small equilibrium population of the higher level.
and cannot at all be written as a product. This also is NOkjnce the product of the two equilibrium populations enters

possible ifc=1 is chosen in this case. In the model calcula-j, the expression for the amplitudes, again a negligible effect
tions discussed in the last section we always assumecthat,, the NMR spectra is obtained, although the jump angles

and u are L_lncorrelated. A_n argument in favo'r of a missingare chosen to be on the order of 487] or 140°[38]. This
correlation is the symmetric form of th@peak independent ogpecially holds since in these investigations a very fast time
of the form of thea peak. Realistically, one would assume g 516 o the two-site jumps was assumed. We think that the
that a correlation among the two quantities cannot be négpice of a two-site model without a bias as it is used here is
glected as can be seen if one assumes that a low \&aluep, e piausible especially in view of these large jump angles.
correspon_ds to hlg'h local density. Therefore, in an environaqitionally it appears more natural that the jump angle in-
ment of high density, one WOU!d assume_the activation engyeases with temperature as an effect of thermal fluctuations.
ergy for a local process to be higher than in a corresponding a5 aiready been pointed out that a determination of the
low-density en_virt_)nment. Of course, the density changgs irj arameters for the dynamics of theprocess by means of
supercooled liquid are not expepted to be extraordinaril pin-lattice relaxation experiments is strongly hampered by
large and, therefore, the correlation must not be strong. Ifeir sensitivity to the amplitudes. On the other hand, this
any case, the assumption of no correlation amermnd . senitivity can be used if this type of experiment is combined
represents a simplification. This discussion shows that thg i dielectric relaxation studies.

product form for ®{A(t) is available only as the conse-  Fipally, let us discuss the merging scenario of &hend 3
quence of a couple of approximations. We mention that Weyrocess in view of the energy landscape model used for the
have also performed calculations ®fw) with a strong cor-  stryctural relaxation. Since the process is viewed as acti-
relation amonge and u, where we chose.=(E,—¢€) for  yated dynamics, the transitions among the different mimima
simplicity. The behavior concerning the peak positions areyr metastable states set the scale for the lifetime of the intra-
very similar to the findings of Fig.(@). Also the behavior of  mimimum reorientation rateB(u). If we use 10° jumps for
the width of®{”(w) is similar to the one shown in Fig(d).  the isotropic reorientations due torelaxation, roughly ten
The spectrad)‘lﬁ)(w), however, are not symmetric in any transitionse— ¢’ are necessary in order for the correlation
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functiong,(t) to decay to zero. This means that a dynamicalremains, as there is only structural relaxation. It is important
averaging over the transition rateqe|e’) is performed to point out that the fagh process as treated by MCT is to be
when measuring;(t). The effective distribution of reorien- viewed as structural relaxation in the present context. The
tation rates is somewhat narrower than the correspondinghysical picture emerging from these considerations is very
one of thex(e|€'). This effect gives rise to different stretch- Close to the one put forward by Beler{24]. The occurrence
ing of various time correlation functions as the efficiency ofof the slow relaxation is deeply related to the crossover in
the performed averages are different. For example, if we fithe dynamical mechanism in the supercooled liquid state, as
g,(t) for I'(x)=0 as calculated with the GCM af in the present model the existence of different minima in the
=1.1T, to a Kohlrausch function, we find stretching expo- frée energy is a prerequisite for the definition of the intra-
nents Bxww=0.53 for 10° angular jumps anfiyw="0.44  Minimum relaxatl_on associated wit@ r_ela_xat_lon. Though
for random angular jumps. In the latter example, the dynamiIhlS slowg relaxation appears to be an intrinsic feature of the
cal averaging is reduced to a minimum, cf. the extensive?hase space geometry, the present model is not able to give a
discussions in Ref§10,11]. resolution to the puzzle that this process is observed in some
The averaging effect of the transition rate|e’) on the su_percopled Ilqwd§ but not in others. On the other hand, the
distribution of the rate§'(w), on the other hand, is much the SPin-lattice relaxation rates in the glass often behave very
same as studied in typical environmental fluctuation model§imilar as a function of temperature. It, therefore, is tempting
[32,49,50. As soon as some of the(e|e’) come on the time to speculate that the amplitudes p[ay a crucial role W|th re-
scale of thel'(u), the distribution of effective reorientation SPect to the question of observability gfprocesses. This
rates starts to get narrowed as compared(ie). This fact ~May be substantiated by the fact_ that it appears _that in
explains why the influence of the process on thg peak is  CaNO3),KNO; a secondary relaxation is observable in me-
seen already at astonishingly low temperatures in the diele@hanical relaxation but not in dielectric relaxation studies
tric susceptibilities. This effect is best seen in the width of(51]. . o
the 8 peak as shown in Fig.(d). From that plot one would As the model useq fpr the primary relaxation is of a het-
estimate the temperature where the influence ofathelax- ~ €rogeneous nature, it immediately follows that also ghe
ation[i.e., thex(e|€’)] on theB peak sets in even lower than _relaxatlon is heter_oge_neous. This fact has _flrst been r_10t|ced
from Fig. 4a). What is of relevance is not the direct com- N the NMR investigations of Schnauss, Fujara, and Sillescu
parison of the peak positions of theand 8 peaks. Instead, [38] and has repeatedly been found afterwdR8.
one has to bear in mind the different character of the aver-
aging for the two processes. When the temperature is in-
creased, the averaging effect becomes more and more pro-
nounced until the time scales af(e[e’) andT'(u) become In the present paper we have generalized a simple free-
similar. Due to the same averaging, the shape of thenergy landscape model for primary relaxation in super-
@&ﬁ)(w) becomes asymmetric as the averaging is most efeooled liquids in order to take into account the slow second-
fective at low frequencies due to the fact that #{@|e’) are  ary relaxation observed in many glass-forming liquids.
smaller than thd'(«). Such a behavior has been found ex- Whereas the primary relaxation is assumed to be intrinsically
perimentally by Garweet al. [23]. coupled to transitions among different free-energy minima,
Strictly speaking, somewhere in the temperature region ofhis secondary relaxation process is viewed as a local relax-
the merging of the two peaks in dielectric spectroscopy thation within a given minimum. We concentrated on the cal-
underlying assumptions of the model cease to be valid. Theulation of time correlation functions associated with mo-
treatment of the structural relaxation by a master equatioriecular reorientations, but the generalization to translational
Eq. (1), requires that the lifetime of the free-energy minimamotions of tagged particles poses no problem. The stow
is much longer than the time spent by the system on crossingrocess is modeled by simple reorientational jumps among
the barriers between different minima. A Markovian descrip-two orientations. The activation energies for these reorienta-
tion of the dynamics is expected to fail if this condition is not tions are assumed to be distributed according to a Gaussian.
met. Concerning theg8 process, the assumption of a simple Several scenarios for the correlations among these activation
relationship of the Arrhenius forrtb0) for the reorientation energies and the valuesof the free energy within a given
ratesI"(u) makes sense only if the activation energieare ~ minimum and those among the dynamics of the relevant ori-
defined for a time long compared to the residence time of thentations and the transitions in the free energy landscape
system in one of the two orientations. If the lifetime of the have been considered. If no correlation among the energy
minima itself is only on that order of magnitude, then thevariablese and n is assumed, the dielectric susceptibilities
same holds for theu, as they are defined only within the for the secondary peak are symmetric at low temperatures in
minima. On the other hand, at a temperature where the lifeaccord with experimental findings. At higher temperatures,
time of the extensive number of free-energy minima is toothey become asymmetric due to the averaging effect of the
short to allow for activated dynamics, the minima itself be-transitions among different minima.
come irrelevant for the thermodynamics of the system. In In the model presented here a crossing of the two peaks
this case, one ends with one thermodynamically relevanassociated withe and 8 relaxation cannot occur, as the de-
free-energy minimum and the dynamics in phase space i®rmining dynamics are the transitions among different
diffusive. It may well be described by MCT. We expect that minima. These transitions set the ultimate time scale. The
there is a finite temperature interval where this crossover ifiorm of the correlation function relevant for dielectric relax-
the dynamics takes place. Regarding the sf@welaxation, ation as a product o and 8 correlators is obtained only as
this means that at high temperatures only theelaxation a special case for the physically counterintuitive assumption

V. CONCLUSIONS
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of complete statistical independence of the reorientations asnodel is intrinsically related to the often proposed change in
sociated with theB process and the transitions among thetransport mechanism in the supercooled ligiii€]. At high
free-energy minima. However, according to the abovetemperatures the dynamics is viewed as diffusive in phase
mentioned absence of any possibility of a crossing of the tw@pace, whereas at low temperatures we are concerned with
peaks and the concomitant uselessness of extrapolations gtivated dynamics. The latter is modeled here via a master
the characteristic parameters for tiepeak from low tem-  equation for the transitions among an extensive number of
peratures, it seems advisable to analyze experimental daﬁ%e-energy minima. Only if the existence of the many
using this assumption, as has been done by &ta. [17].  minima in free energy becomes relevant for the dynamics is
The reason for this is given by the fact that the product useg possible to define the sloys relaxation as we have done
in such an analysis contains teepeak as an input, which here as an intraminimum relaxation process. In order to gain
reduces the number of parameters. Also, for the simple twog petter understanding of the interrelation amongcfaad 8
site model considered in this Study, we found that the differ'proceSSES, a more detailed picture of the free_energy land-
ences between this assumption and the physically morgcape is necessary.
meaningful one of a strong correlation are not very large. |n conclusion, we have presented a very simplified model
However, the conclusions raised from such an analysigor the g relaxation based on a free-energy landscape model
should be handled with care. that is capable of reproducing both the results of dielectric
When considering the spin-lattice relaxation rates as calrg|axation experiments and spin-lattice relaxation experi-

culated with our mOde|, the results are at least qualitativel)f'nents with the same parameters and is free from phys|ca”y
in accord with experimental findings. We pointed out that aguestionable assumptions.

determination of the parameters characterizing gheslax-

ation in the glass will usually not be possible by spin-lattice

rglaxatl_on experiments. Here, the co_mbm_atlon of broadband ACKNOWLEDGMENTS
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