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Multispecies asymmetric simple exclusion process and its relation to traffic flow
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Using the matrix product formalism we formulate a naturalp-species generalization of the asymmetric
simple exclusion process, using the matrix product formalism. In this model particles hop with their own
specific rate and fast particles can overtake slow ones with a rate equal to their relative speed. We obtain the
algebraic structure and study the properties of the representations in detail. The uncorrelated steady state for the
open system is obtained and in thep→` limit, the dependence of its characteristics on the distribution of
velocities is determined. It is shown that when the total arrival rate of particles exceeds a certain value, the
density of the slowest particles rises abruptly.@S1063-651X~99!07501-7#

PACS number~s!: 05.70.Ln, 05.70.Fh, 05.40.Fb
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I. INTRODUCTION

The matrix product ansatz~MPA!, introduced in the work
of Hakim and Nadal@1#, became popular in the study of on
dimensional stochastic exclusion models after Derridaet al.
@2# applied this technique to the simplest such mod
namely, the totally asymmetric simple exclusion process
ASEP@3#. For a recent review see@4#. They were able to find
nontrivial representations for the relevant algebra and ca
late many physical properties of this process. Since then
technique has been applied to many other interesting
chastic systems, both with periodic and with open bound
conditions. Janowsky and Lebowitz@5# have considered the
case where there is a single impurity~a fixed blockage! on
the lattice, where hopping rates are reduced, and have fo
that this single blockage has global effects, due to long ra
correlations. The case of a moving blockage and the for
tion of shocks has also been addressed in several w
@6–8#. Finally MPA has been formulated for models wi
quasiparallel updatings@9–11#.

In most of these works, a simplified model of traffic flo
@12# is cited as a physical application, especially when i
purities are present which when encountered decrease
rate of hopping of other particles@13#. Evans@14# has ap-
plied MPA to the case of several kinds of particles hopp
with their own rates on a ring and has found that abov
critical density a macroscopic number of holes are conden
in front of the slowest particle. In the work of Evans, how
ever, particles cannot overtake, and the order of particle
unchanged during the process.

Turning to the mathematical aspect of the problem, a m
trix product state can be understood as a generalizatio
ordinary factorizable states with a product measure in wh
numbers are replaced with noncommuting objects. This
lows the original problem to be reformulated in terms
algebraic relations. The main advantage of this techniqu
that once a nontrivial representation is found, all the phys
quantities such as the currents, densities, and correla
functions can in principle be obtained from the represen
tion. This is of course not a simple task and one must ov
come many difficulties of combinatorial type in calculatin
PRE 591063-651X/99/59~1!/205~8!/$15.00
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the explicit form of the matrix elements of products of o
erators.

Whether or not the zero energy state of a Hamilton
with nearest neighbor interaction can always be formula
as a matrix product state has been answered in the affir
tive by Kreb and Sandow@15#. Thus to any Hamiltonian of
the above type corresponds an algebra in the MPA form
ism. However, finding nontrivial representations of this alg
bra may be harder than the original problem itself. Theref
some authors@16,17# have tried to reverse the problem, th
is, to begin with a quadratic algebra, with, one hopes, sim
representations and then to find the relevant stochastic
cess. In@17# the algebras considered are apparently relate
the partially asymmetric case. This restriction has a twof
disadvantage. First they obtain the concrete form of the
gebraic relations only in cases for a low number of spec
and second they do not obtain@17# ‘‘a general framework for
arbitrary N ~number of species!, which when specialized to
N52 gives the known results.’’

Our aim in this paper is to start from a suitable algeb
and proceed to find a natural generalization of the o
species ASEP. We will show that such a natural general
tion exists. We will obtain the algebra, its representatio
and many of its properties. In thisp-species ASEP each pa
ticle of typej hops with ratev j to its right neighbor site, and
when it encounters a particle of typei with v j.v i they in-
terchange their sites with ratev j2v i , as if the fast particle
overtakes the slow one. In any other case the attempted m
of the original particle is rejected. The model seems to
relevant as a simplified model of one way traffic flow. W
consider open boundary conditions where particles~or cars!
enter the system~the highway! with a rate proportional to
their speed and leave at the other side. The paper is o
nized as follows. In Sec. II we introduce the algebra a
solve its consistency conditions. In Sec. III we obtain t
Hamiltonian which corresponds to this algebra. In Sec.
we obtain the uncorrelated steady state and finally in Sec
we construct the infinite dimensional representations of
algebra and present some of its useful properties. In all
steps we compare our results with the one-species ASE
205 ©1999 The American Physical Society
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II. THE ALGEBRA

We begin with an algebra generated by the eleme
Di , i 51, . . . ,p andE, with the following relations:

DiE5
1

v i
Di1E, ~1!

D jDi5j j i D j1h j i Di , j . i ~2!

where the parametersv i are finite real numbers and the p
rametersj j i andh j i are to be determined. In writing Eqs.~1!
and~2! we have had in mind a totally asymmetric exclusi
process. In order to be consistent with associativity we h
to check that

~D jDi !E5D j~DiE!. ~3!

Using Eqs.~1! and ~2!, this requirement determinesj j i and
h j i as

j j i 5
v i

v i2v j
, h j i 5

2v j

v i2v j
. ~4!

For the present we take all thev i to be different. Later we
will relax this condition. We should also check that

~DkD j !Di5Dk~D jDi !, k. j . i . ~5!

Using Eq.~2! we find that this relation imposes no new r
lations on the parameters. Since any monomials of the f
DkD j•••Di with k. j .•••. i can be reduced to a linea
combination of generators, associativity is guaranteed fo
the monomials of higher degree. The final form of the alg
bra reads

DiE5
1

v i
Di1E, ~6!

D jDi5
1

v i2v j
~v iD j2v jDi !, j . i ~7!

where the parametersv1•••vp are free.

III. THE HAMILTONIAN AND THE PROCESS

We consider a one dimensional chain ofN sites. The Hil-
bert space of each site isp11 dimensional. The Hamiltonian
is written as

H5h11HB1HN5h11 (
k51

k5N21

hk,k11
B 1hN, ~8!

whereHB is the bulk Hamiltonian andh1 andhN are bound-
ary terms. In the matrix product formalism, the steady st
of this Hamiltonian can be written as

uP&5^WuD^D^D^ •••D^DuV&, ~9!

where
ts

e

m

ll
-

e

D5S E

D1

p

•

•

Dp

p

D
anduV& and^Wu are vectors in an auxiliary space. Accordin
to MPA, we haveHuP&50 if the following relations are
satisfied:

hBD^D5X^D2D^ X, ~10!

~hND2X!uV&50, ~11!

^Wu~h1D1X!50, ~12!

where we takeX to be

X5S 21

x1

•

•

xp

D ,

with xi asc-numbers. Anticipating the process from the for
of the algebra, we write the bulk Hamiltonian as follows:

hB52(
i 51

p

yi~E0i ^ Ei02Eii ^ E00!

2(
j . i

p

yi j ~Ei j ^ Eji 2Ej j ^ Eii !. ~13!

Here the matricesEi j act on the Hilbert space of one site an
have the standard definition: (Ei j )k,l5d ikd j l . The first term
expresses an ASEP for each species of particles~i! with rate
yi . The second term represents an interchange of particle
type (j . i ), with rateyi j . The parametersyi andyi j are to
be determined.

The natural choice of the boundary terms should be s
that particles of type~i! are injected at the left and extracte
at the right with their specific rates, say,a i andg i , respec-
tively. So we take

h152(
i 51

p

a i~Ei02E00!, ~14!

hN52(
i 51

p

g i~E0i2Eii !. ~15!

Inserting Eq.~13! in Eq. ~10! leads to the following equa
tions:

yi

p
DiE5

Di

p
1xiE, ~16!



th

of

PRE 59 207MULTISPECIES ASYMMETRIC SIMPLE EXCLUSION . . .
yi j

p
D jDi5xjDi2xiD j , j . i . ~17!

Comparison with Eqs.~6! and ~7! shows that

xi5
v i

p
, yi5v i , yi j 5v j2v i . ~18!

Inserting the values of the parametersyi andyi j in Eq. ~13!
clearly highlights the physical process governed by
Hamiltonian. Denoting a vacant site by the symbolf and a
site occupied by a particle of typei, by the symbolAi , the
process defined byHB is
e

Aif→fAi , with rate v i , ~19!

AjAi→AiAj , j . i with rate v j2v i . ~20!

In order for all the rates to be positive we restrict the range
v i ’s as

v1<v2<v3•••<vp . ~21!

Inserting Eqs.~14! and ~15!, respectively, in Eqs.~11! and
~12! we find the following explicit matrix equations:
~22!

~23!
the
ce

on.
These equations then yield

Di uV&5
v i

g i
uV&, ~24!

^WuE5^Wu
v i

pa i
, ~25!

and

v11v21•••1vp

p
51. ~26!
Equation~26!, which means that the average speed of
particles is unity, is not really a condition on the rates, sin
by a rescaling of time one can always obtain this conditi
Hereafter we will write this condition simply aŝv&51.
Equation~25!, however, implies thatv i /pa i is independent
of i. Thus we seta i5(1/p)av i .

In order that Eq.~24! be consistent with Eq.~7!, we re-
quire that

S D jDi2
v iD j2v jDi

v i2v j
D uV&50. ~27!
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After using Eq.~24! and rearranging terms, this conditio
shows that

g i2v i5g j2v j .

Thus we set

g i5v i1b21.

Therefore we have

Di uV&5
v i

v i1b21
uV&, ^WuE5^Wu

1

a
. ~28!

The meaning of the parametersa andb is now clear. From
Eq. ~26! we find

a11a21•••1ap5a,
g11g21•••1gp

p
5b.

Thusa andb are, respectively, the total rate of injection a
the average rate of extraction of particles. In order for
individual rates to be positive we restrict further the range
speeds as

12b<v1<v2<v3•••<vp . ~29!

The above results clearly justify this model as a natural g
eralization of the one-species ASEP.

We conclude this section with formulas for the curre
operators. A simple way to obtain these is to directly refer
the process~19! and ~20! and write the equation for the on
point function^tk

( i )& which is the average density of particle
of type ~i! at site k. Determining from Eqs.~19! and ~20!
various ways of increasing and decreasing this density
denoting the probability of sitek to be vacant byek we find

d

dt
^tk

~ i !&5v i^tk21
~ i ! ek&2v i^tk

~ i !ek11&

1(
j , i

~v i2v j !^tk21
~ i ! tk

~ j !&2(
j , i

~v i2v j !^tk
~ i !tk11

~ j ! &

2(
j . i

~v j2v i !^tk21
~ j ! tk

~ i !&

1(
j . i

~v j2v i !^tk
~ j !tk11

~ i ! &. ~30!

Note that inside any correlation function we haveek51
2( itk

( i ) . Equation ~30! can be rewritten as a continuit
equation

d

dt
^tk

~ i !&5^Jk
~ i !&2^Jk11

~ i ! &,

where

^Jk
~ i !&5v i^tk21

~ i ! ek&1(
j , i

~v i2v j !^tk21
~ i ! tk

~ j !&

2(
j . i

~v j2v i !^tk21
~ j ! tk

~ i !&. ~31!
e
f

-

t
o

d

According to MPA

^Jk
~ i !&5

^WuCk22J~ i !CN2kuV&

^WuCNuV&
,

whereCªE1(1/p)DªE1(1/p)(D11D21•••1Dp). The
current operators can be read from Eq.~31! to be

J~ i !5v i

Di

p
E1(

j , i
~v i2v j !

Di

p

D j

p
2(

j . i
~v j2v i !

D j

p

Di

p
.

~32!

Using Eqs.~6! and ~7!, we obtain

J~ i !5
v i

p S 1

v i
Di1ED2

1

p2 (
j , i

~v jDi2v iD j !

2
1

p2 (
j . i

~v jDi2v iD j !

5
1

p
Di1

v i

p
E2

1

p2S (
j Þ i

v j DDi1
v i

p2 S (
j Þ i

D j D
5

1

p
Di1

1

p
v iE2

1

p2 ~p2v i !Di1
v i

p2 ~D 2Di !

5
v i

p
C. ~33!

We thus obtain

^J~ i !&5
v i

p

^WuCN21uV&

^WuCNuV&
. ~34!

Therefore all the currents are simply proportional to the
erage currentJ, however,J itself has a highly nontrivial de-
pendence on the hopping rates.

In the next section we will find the one dimensional re
resentations of the algebra. This case corresponds to
steady state being characterized by a Bernoulli measure
though very simple this steady state has a rather rich st
ture.

IV. ONE DIMENSIONAL REPRESENTATIONS
AND THE UNCORRELATED STEADY STATE

In the one dimensional representation the operatorsDi
and E are represented byc-numbersD i and e, respectively.
From Eq.~28! we have

D i5
v i

v i1b21
, e5

1

a
. ~35!

Combining Eqs.~35! and ~6! gives the conditiona1b51
on the average rates which is of the same form as in
one-species ASEP. This, together with Eq.~29!, means that
for an uncorrelated steady state to exist, the minimum sp
v1 should be greater than the average arrival ratea. The
steady state is now given byuP&5ur& ^ N where
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ur&5
1

c1
e

D1

p

D2

p

•

•

•

Dp

p

2 , c5e1
1

p
~D11D2•••1Dp![e1

1

p
D.

~36!

The density and current of particles of type~i! and the total
density and the total current are all site independent and
respectively, given by@see Eq.~34!#

r~a,i !5
D i /p

e1D/p
J~a,i !5

v i /p

e1D/p
,

~37!

r~a!5
D/p

e1D/p
, J~a!5

1

e1D/p
.

It is better to consider the limiting casep→`, that is, we
assume that particle speeds are taken from a continu
probability distributionP(v). Condition ~26! is then trans-
formed into

^v&ªE vP~v !dv51.

Discrete quantities (1/p) f ( i ) are transformed into the con
tinuous functionsf (v)P(v) and sum into integrals. Instea
of Eq. ~36! we have

r~a,v !5
D~a,v !P~v !

e1D~a!
, J~a,v !5

vP~v !

e1D~a!
, ~38!

r~a!5
D~a!

e1D~a!
, J~a!5

1

e1D~a!
, ~39!

where

D~a,v !5
v

v2a
and D~a!5E

a

` v
v2a

P~v !dv.

~40!

As an example, in the following, we take a distributio
which at low speeds vanishes as some power ofv2a, so
that a is indeed the minimum speed of particles. Requiri
that the distribution has an exponential decay ratel at high
speeds and the average speed be unity gives

Pl~v !5
1

lm11G~m11!
~v2a!me2~v2a!/l, ~41!

wherem115(12a)/l. Herem is not necessarily an inte
ger. A similar choice ofP(v) has also been made in@14#.
Note that sincem is to be positive for each choice ofl, we
re,

us

should have 0,a,12l. This distribution is peaked a
v512l. Inserting Eq.~41! into Eq. ~40! and doing the in-
tegral gives

D~a!5
l21

l1a21
~42!

from which we obtain

J~a!5
a~l1a21!

l211al
, r~a!5

a~l21!

l211al
. ~43!

Eliminatinga between the above equations gives the curr
versus density:

J~r!5rS 12
r

12l~12r! D . ~44!

The curvesJ(a) and J(r) are shown in Figs. 1 and 2 fo
various values of the widths of the distributions. Note th
for zero width (l50) the familiar results of the one-specie
ASEP are obtained, namely,r5a andJ5r(12r). For any
finite value ofl, r is an increasing function ofa but J(a)
has a maximum atãª@(12l)/l#(12A12l). The current
at this optimal value of the arrival rate is

FIG. 1. The current versus the arrival rate of particles for d
ferent values ofl.

FIG. 2. The current versus the density for different widths of t
distribution.
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Jmax~l!5~12l!S 12A12l

l D 2

. ~45!

The maximum of J as a function of r occurs at r̃
5(1/l)@A12l2(12l)#. It is seen that the maximum cur
rent has its highest value of14 only when all the particles
have the same hopping rates. It is interesting to note
even in such a simple uncorrleated steady state, a varian
hopping rates reduces the current.

The final quantity we consider is the average density
particles of different speeds,r(a,v) as a function ofv.
From Eqs.~38! and ~41! we have

r~a,v !}v~v2a!m21e2~v2a!/l. ~46!

The interesting point is that whenm>1 ~or a<122l) the
density vanishes at the lowest speeda and has a maximum a
vmaxª

1
2 @12l1A(12l)224la#. However, whenm,1

or (a.122l) the distribution changes and the density
the slowest particles rises abruptly. This transition is one
the interesting features of this process and is somehow r
niscent of the Bose condensation noted in@14#.

V. REPRESENTATIONS

As in the one-species ASEP the representations of
algebra are either one dimensional or infinite dimension
To see this we first note that there is no nonzero eigensta
E, sayue& such thatEue&5(1/v i)ue& for any i. Since if there
is any such vector then by acting on both sides withDi and
using Eq.~5! we obtain (1/v i)ue&50 and sincev i is finite
this means thatue&50. Following @2# we now show that in
any finite dimensional representation of the algebra all
generators mutually commute, for if the representation is
nite dimensional then the matricesE21/v1 , . . . ,E21/vp,
having no zero eigenvalue, are all invertible and hence
~5! gives Di5E(E21/v i)

21 which in turn means that the
representation is commutative. Thus the representation
this algebra are either one dimensional or infinite dim
sional. Note that in the one dimensional case the expres
Di5E(E21/v i)

21 automatically satisfies Eqs.~6! and ~7!.
Thus such one dimensional representations really exist,
were used in Sec. IV to find the uncorrelated steady stat

To find the infinite dimensional representations we
sume that there is one single vector denoted byu0& such that

Di u0&5di u0&, i 51, . . . ,p ~47!

where the parametersdi are to be determined. We then co
sider the vector spaceW spanned by the formal vector
$un&ªEnu0&,n50,1,2, . . . %. Clearly

Eun&5un11&, ;n. ~48!

Iterating Eq.~5! we find

DiE
n5v i

2nDi1v i
2n11E1v i

2n12E21•••1v i
21En211En.

~49!

Thus we obtain
at
in

f

f
f
i-

is
l.
of

e
-

q.

of
-
on

nd

-

Di un&5v i
2ndi u0&1v i

2n11u1&1v i
2n12u2&

1•••1v i
21un21&1un&. ~50!

In order to check Eq.~6! in this representation it is enough t
consider only the stateu0&, since all the other states ar
obtained by acting on this state using the algebraic relati
which have been found to be consistent. Therefore we
quire that

S D jDi2
1

v i2v j
~v iD j2v jDi ! D u0&50. ~51!

This fixes the parametersdi to bedi5v i /(e1v i) wheree is
a constant independent ofi. The explicit matrix forms of the
generators are then as follows:

E5S 0 • • • • • •

1 0 • • • • •

• 1 0 • • • •

• • 1 0 • • •

• • • • • • •

• • • • • • •

• • • • • • •

D ,

~52!

Di51
di

di

v i

di

v i
2

di

v i
3

di

v i
4 • •

0 1
1

v i

1

v i
2

1

v i
3 • •

0 0 1
1

v i

1

v i
2 • •

• • • • • • •

• • • • • • •

• • • • • •

• • • • • • •

2 .

We make the following remarks.
~1! If e50, then all thedi51 and using Eq.~50! one sees

that DiD j5D jDi ; i , j althoughDiEÞEDi . Hereafter we
restrict ourselves to this case. Note that this does not m
that the two point functionŝtk

( i )t l
( j )& and^tk

( j )t l
( i )& are equal.

~2! When e50 we haveDi5D j for v i5v j , so that Eq.
~7! becomes vacuous in this case and no singularity ar
due tov i5v j in this equation. Furthermore, one can safe
eliminate one of these generators for the other one. T
means that the (p21)-ASEP algebra is naturally embedde
in the (p)-ASEP algebra.

The ket and bra vectorsuV& and ^Wu are found to be

uV&5 (
n50

`

~12b!nun&, ~53!

^Wu5 (
n50

`

~a!2n^nu. ~54!
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Having a representation at hand goes only half of the w
in obtaining explicit expressions for physical quantities su
as currents and correlation functions. To obtain these qu
tities, one should do lengthy calculations on the matrix e
ments of products of operators. Our work is not complete
the sense that we do not yet have the final explicit expres
for these matrix elements. However, we explore the prop
ties of the representations as far as we can, hoping tha
using these, the rest of the problem will be solved on ano
occasion, by this author or by others.

A. Eigenvectors ofDi ’s

Let z be any complex number, withuzu,v1 . Define

uz&5 (
n50

`

znun&. ~55!

Then uz& is a common eigenvector of allDi ’s:

Di uz&5
v i

v i2z
uz&. ~56!

This can be easily proved by direct calculation. The statesuz&
can in fact be thought of as the coherent states of the alg
constructed as follows:uz&ª@1/(12zE)#u0& where 1/(1
2zE) is understood by its power series. We now define
dual vector^zu5(n50

` z2n^nu. Then we have the following
theorem, the proof of which is accomplished by noting th
^nuE5^n21u and ^0uE50, and doing straightforward cal
culations.

Theorem
~a! ^zuE5(1/z)^zu.
~b! The coherent states form a basis of the spaceW, and

un&5E
uzu<1

1

p
dz dz̄z2nuz&.

~c! The coherent statesuz& form an overcomplete basis fo
W. A complete basis is obtained by taking only the sta
with fixed uzu, with a completeness relation:

15 R
fixeduzu

dz

2p iz
uz&^zu.

~d! ^vuz&51/(12z/v) for uzu,uvu.

Remarks
~1! It is now appropriate to recall that the statesuV& and

^Wu are in fact coherent states and so it is best to den
them, respectively, byu12b& and ^au.

~2! The calculation of any physical quantity is now r
duced to the calculation of matrix elements of powers oC
between the coherent states. For example, the average
sity ^nk

i & is given as

^nk
i &5

1

ZN
R

~12b,uzu,a, uzu,v i !

dz

2p iz

3^auCk21uz&^zuCN2ku12b&
v i

v i2z
, ~57!
y
h
n-
-
n
n

r-
by
er

ra

e

t

s

te

en-

whereZN5^auCNu12b&. Or the probability of a segmen
@k,l # being empty is given by

P~k,l !ª
1

ZN
R

12b,uzu,a,

dz

2p iz
^auCk21uz&

3^zuCN2k2 l u12b&
1

zl 2k
. ~58!

Once the eigenvalues and eigenvectors ofC are known,
the problem can be solved completely. In the following w
will give an implicit formula for these objects.

B. Eigenvalues ofC

First we consider the casep51. For any coherent stateuz&
we haveEuz&5(1/z)(uz&2u0&). For any two complex num-
bersz andv define

uz,v&5zuz&2vuv&. ~59!

Then it follows that

Euz,v&5uz&2uv&. ~60!

Since forp51 we haveDuz&5@1/(12z)#uz& we obtain

Cuz,v&5~D1E!uz,v&5
1

12z
uz&2

1

12v
uv&. ~61!

Therefore the stateuz,v& is an eigenstate ofC if we have
z(12z)5v(12v), the solution of which isv5z or v51
2z. The second solution is acceptable and hence we ha

Cuz,12z&5
1

z~12z!
uz,12z&. ~62!

Now let p.1. Using Eqs.~56! and ~60!, we obtain

Cuz,v&5zh~z!uz&2vh~v!uv&, ~63!

where

h~z!5
1

z
1

1

p(i 51

p
v i

v i2z
. ~64!

The stateuz,v& is an eigenvector ofC if z andw lie on the
curve h(z)5h(v). We will then have Cuz,v(z)&
5h(z)uz,v(z)&.

Note that in thep→` z andv are related by the follow-
ing equation:

1

z
1E vP~v !

v2z
5

1

v
1E vP~v !

v2v
. ~65!

In order to understand the connection with the eigens
obtained by Derridaet al. @2# in thep51 case we change th
basis ofW as

uen&5~E21!nu0&, ue0&5u0&. ~66!

Using Eqs.~6! and ~7! it is easily found that

Euen&5uen&1uen11&,
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Duen&5uen&1uen21&,

Cuen&5uen21&12uen&1uen11&.

Thus we have

uz&5
1

12zE
u0&5

1

12z2z~E21!
u0&

5
1

12zS 1

12@z/~12z!#ED u0&5
1

12zU z

12z L
d

,

~67!

where byuz&d we meanuz&d5(n50
` znuen&. Therefore

uz,12z&5
z

12zU z

12zL
d

2
12z

z U 12z

z L
d

5 (
n50

` F S z

12zD
n11

2S 12z

z D n11G uen&. ~68!

Taking z/(12z)5eiu gives

uz,12z&5 (
n50

`

sin~n11!uuen&, ~69!

which is denoted byuu& in @2# with eigenvalue 1/z(12z)
52(11cosu). This concludes our treatment of the repr
sentations of the algebra.

VI. DISCUSSION

This work can be pursued further in the following dire
tions.
ys

a

-

~a! Finding a solution of the equationh(z)5h(v) either
for a low value ofp (e.g., p52) or in thep→` limit, and
then expanding the stateu12b& in terms of the eigenstate
of C. In this way one will obtain the current and the pha
diagram of the system.

~b! Finding a solution of the mean field equations, eith
numerically or analytically. These equations can be writ
down from Eq.~31!. In the p→` limit they are

ave15Jk~v !5Jk11~v !5•••5~v1b21!nN~v !,

where

Jk~v !5vnk~v !ek111E
0

v
~v2v8!nk~v !nk11~v8!dv8

2E
v

`

~v82v !nk~v8!nk11~v !dv8.

Herenk(v) is the average density of particles of speedsv at
site k and ekª12*0

`nk(v)dv is the probability of sitek
being vacant. In the one-species model it is known that
mean field analysis gives the phase diagram correctly. S
will be interesting to see for a typical probability distributio
how the phase diagram will be modified.
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