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Using the matrix product formalism we formulate a natupadpecies generalization of the asymmetric
simple exclusion process, using the matrix product formalism. In this model particles hop with their own
specific rate and fast particles can overtake slow ones with a rate equal to their relative speed. We obtain the
algebraic structure and study the properties of the representations in detail. The uncorrelated steady state for the
open system is obtained and in the-< limit, the dependence of its characteristics on the distribution of
velocities is determined. It is shown that when the total arrival rate of particles exceeds a certain value, the
density of the slowest particles rises abrupfy1063-651X99)07501-7

PACS numbgs): 05.70.Ln, 05.70.Fh, 05.40.Fb

I. INTRODUCTION the explicit form of the matrix elements of products of op-
erators.
The matrix product ansatMPA), introduced in the work Whether or not the zero energy state of a Hamiltonian

of Hakim and Nadal1], became popular in the study of one with nearest neighbor interaction can always be formulated
dimensional stochastic exclusion models after Dergtlal.  as a matrix product state has been answered in the affirma-
[2] applied this technique to the simplest such modeltive by Kreb and Sandowl5]|. Thus to any Hamiltonian of
namely, the totally asymmetric simple exclusion process othe above type corresponds an algebra in the MPA formal-
ASEP[3]. For a recent review sdd]. They were able to find ism. However, finding nontrivial representations of this alge-
nontrivial representations for the relevant algebra and calcusra may be harder than the original problem itself. Therefore
late many physical properties of this process. Since then thisome author§16,17 have tried to reverse the problem, that
technique has been applied to many other interesting stqs, to begin with a quadratic algebra, with, one hopes, simple
chastic systems, both with periodic and with open boundaryepresentations and then to find the relevant stochastic pro-
conditions. Janowsky and Lebowita] have considered the cegs. |1{17] the algebras considered are apparently related to
case where there is a single impuriey fixed blockageon e hartially asymmetric case. This restriction has a twofold
the lattice, where hopping rates are reduced, and have founfis, 4 antage. First they obtain the concrete form of the al-

that this single blockage has global effects, due to long rangSebraic relations only in cases for a low number of species,

correlations. The case of a moving blockage and the formaénd second they do not obtditi7] “a general framework for

tion of shocks has also been addressed in several works, . ; : .
[6—8]. Finally MPA has been formulated for models with arbltraryN (number of speme)s,yvhlch when specialized to
guasiparallel updating®-11]. N=2 gIves Fhe kpown resylts. .

In most of these works, a simplified model of traffic flow ~ OUr @im in this paper is to start from a suitable algebra
[12] is cited as a physical application, especially when im-and _proceed to flnd_a natural generalization of the one-
purities are present which when encountered decrease t§@€cieS ASEP. We will show that such a natural generaliza-
rate of hopping of other particld43]. Evans[14] has ap- tiOn exists. We will obtain the algebra, its representations,
plied MPA to the case of several kinds of particles hoppingand many of its properties. In thsspecies ASEP each par-
with their own rates on a ring and has found that above dicle of typej hops with ratev; to its right neighbor site, and
critical density a macroscopic number of holes are condensedhen it encounters a particle of typawith v;>v; they in-
in front of the slowest particle. In the work of Evans, how- terchange their sites with ratg—v;, as if the fast particle
ever, particles cannot overtake, and the order of particles isvertakes the slow one. In any other case the attempted move
unchanged during the process. of the original particle is rejected. The model seems to be

Turning to the mathematical aspect of the problem, a marelevant as a simplified model of one way traffic flow. We
trix product state can be understood as a generalization afonsider open boundary conditions where parti¢tgscars
ordinary factorizable states with a product measure in whictenter the systenfthe highway with a rate proportional to
numbers are replaced with noncommuting objects. This altheir speed and leave at the other side. The paper is orga-
lows the original problem to be reformulated in terms ofnized as follows. In Sec. Il we introduce the algebra and
algebraic relations. The main advantage of this technique isolve its consistency conditions. In Sec. Ill we obtain the
that once a nontrivial representation is found, all the physicaHamiltonian which corresponds to this algebra. In Sec. IV
guantities such as the currents, densities, and correlatione obtain the uncorrelated steady state and finally in Sec. V
functions can in principle be obtained from the representawe construct the infinite dimensional representations of the
tion. This is of course not a simple task and one must overalgebra and present some of its useful properties. In all the
come many difficulties of combinatorial type in calculating steps we compare our results with the one-species ASEP.
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Il. THE ALGEBRA E
We begin with an algebra generated by the elements D,
D,, i=1,...p andE, with the following relations: ?
1 D=
DiE=_—Di+E, ()
[
o D
DiDi=§;iDj+ 7;Di,  j>i 2 )

where the parametets are finite real numbers and the pa- and|Vv) and(W| are vectors in an auxiliary space. According
rametersj; andy;; are to be determined. In writing Eqd)  to MPA, we haveH|P)=0 if the following relations are
and(2) we have had in mind a totally asymmetric exclusion gatisfied:

process. In order to be consistent with associativity we have

to check that hBDe D=X®D-D&X, (10
(DjD;)E=D;(D;E). 3 (hND-X)|V)=0, (11
Using Egs.(1) and(2), this requirement determines; and (W|(hD+X)=0, (12
! where we takeX to be
U _ Ty (4) -1
gji_Ui_Uj' 7]ji_l)i_l)j.
X1
For the present we take all thg to be different. Later we X =
will relax this condition. We should also check that ’
(DkD])Dlsz(DJD|)1 k>J>| (5) Xp

Using Eq.(2) we find that this relation imposes no new re- with x; asc-numbers. Anticipating the process from the form
lations on the parameters. Since any monomials of the forref the algebra, we write the bulk Hamiltonian as follows:
DyDj---D; with k>j>..->i can be reduced to a linear
combination of generators, associativity is guaranteed for all B_
the monomials of higher degree. The final form of the alge- h®= _gl Yi(Eoi ®Eio~Eii®Eqo)
bra reads

p

p
1 - Yij(Eij®Eji —Ej;®E;). (13
DiE:v_Di+E! (6) I=l
[
Here the matricek;; act on the Hilbert space of one site and
have the standard definitionE( ), ;= 6« 5j . The first term

D;D; :vi 0. (viDj—v;Dy), j>i () expresses an ASEP for each species of parti¢lesith rate
J y; . The second term represents an interchange of particles of
where the parametets;- - -v,, are free. type (j>1i), with ratey;; . The parameterg; andy;; are to

be determined.
The natural choice of the boundary terms should be such

lll. THE HAMILTONIAN AND THE PROCESS that particles of typ€i) are injected at the left and extracted

We consider a one dimensional chainNsites. The Hil- ~ at the right with their specific rates, say, andy;, respec-
bert space of each sitejist 1 dimensional. The Hamiltonian tively. So we take
is written as o
k=N-1 hl:—;l @i(Ejo—Eoo), (14)
H=h'+HEB+HN=h1+ > hd +hY, (8
=
p
whereH® is the bulk Hamiltonian anti* andh™ are bound- h ;1 7i(Boi —Bii). (15
ary terms. In the matrix product formalism, the steady state
of this Hamiltonian can be written as Inserting Eq.(13) in Eqg. (10) leads to the following equa-
tions:
|P)=(W|D®D®D® - - - DRD|V), 9 5
Yi Ui
where BDiE— 0 +X;E, (16)
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i Aip— pA;, with rate v;, 19
y_FI)JDjDi:XjDi_XiDj, J>| (17) I¢ ¢ I ! ( )
Comparison with Eqs(6) and(7) shows that AA—AA), =1 with rate vy —u;. (20
Ui -~ _ In order for all the rates to be positive we restrict the range of
Xi=p YiTvi YiiTuimui (18) vi's as

Inserting the values of the parametgrsandyj; in Eq. (13)

clearly highlights the physical process governed by the V1SUaSUg  SUp. (2D
Hamiltonian. Denoting a vacant site by the symiohnd a

site occupied by a particle of type by the symbolA;, the  Inserting Egs.(14) and (15), respectively, in Eqs(11) and

process defined bii® is (12) we find the following explicit matrix equations:
0O -y =7 -y - - - Yp E -1
D
0 7y 0 o - - 0 1 i
p
D
0 0 1y 0 22 %2
p p
- = 22
0 0 0 ’ 0 _ |vy=o0, (22)
D
o 0 0 0 Y ' a4
u p p /1
B atayt---+a, 0 0 - - - 0 E -1Y
D
- 00 - - - 0 -1 i}
p
D
-, 00 - - -0 22 Y2
p p
(W] —a 00 - - . 0 + | =0. (23
D
~a, 00 0 s il
|
These equations then yield Equation(26), which means that the average speed of the
particles is unity, is not really a condition on the rates, since
IV by a rescaling of time one can always obtain this condition.
Di|V) V), (29 : . . " )
Vi Hereafter we will write this condition simply a&)=1.
Equation(25), however, implies that; /p«; is independent
— o 2o of i. Thus we sety;=(1/p)av; .
(WIE=(W| pa;’ (25 In order that Eq(24) be consistent with Eq.7), we re-
quire that
and
o v:D.—v:D;
vituat +vp:1 (26) D,-Di—"—f' [V)=0. (27)

p ' Vi~ Vj
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After using Eq.(24) and rearranging terms, this condition According to MPA

shows that A
) <W|Ck—2J(I)CN—k|V>
U=y — J(|)>:
YiTUiT Y7V (J <W|CN|V> '
Thus we set
whereC:=E+ (1/p)D:=E+ (1/p)(D,;+D,+---+D;). The
vi=vi+B—1. current operators can be read from Egfl) to be
Therefore we have D D, D D,
J0= -—E+ oF Vi~V — —.
: 1 p 2 iy o 12» vimvy g
Di|V)= mW), (WE=(W[—. (28 (32

The meaning of the parametea#sand 8 is now clear. From Using Egs.(6) and(7), we obtain

Eq. (26) we find

U l
J<'>=—' — ) — > (v;Di—viD))
+ Yot +
a1+a2+~-+ap=a, Y1 T Y2 '}’p:ﬂ. p i<i
i ! > (v:D;—v,D
Thusa andg are, respectively, the total rate of injection and p? & (vjDi—viby)
the average rate of extraction of particles. In order for the
individual rates to be positive we restrict further the range of 1 , 1 :
speeds as =—D-+EE——(E v;|Di+ =5 D-)
P p - p o P T P
1-B<svi<v,Svge - <v,. (29
1 1 Vi

The above results clearly justify this model as a natural gen- = BDi + BUiE_ F(p_vi)Di +p—|2 (D -Dy)
eralization of the one-species ASEP.

We conclude this section with formulas for the current .
operators. A simple way to obtain these is to directly refer to ='c. (33
the procesg19) and(20) and write the equation for the one p
point function<r(k')> which is the average density of particles .
of type (i) at sitek. Determining from Eqs(19) and (20) We thus obtain
various ways of increasing and decreasing this density and v; (W|CN-1V)
denoting the probability of sitk to be vacant by, we find (I0y= Ly T (34)

P (w[CNVv)

—<T(I)>:U'<T(i) € >—U'<T(i)6 ) : ;
dt 'k iNTk—1%k ik Ck+1 Therefore all the currents are simply proportional to the av-

erage currend, however,J itself has a highly nontrivial de-
_ () - q) pendence on the hopping rates.
+E (vi=v; )<Tk 17%) j<i Y] (s In the next section we will find the one dimensional rep-
resentations of the algebra. This case corresponds to the
steady state being characterized by a Bernoulli measure. Al-
though very simple this steady state has a rather rich struc-

—2 o)

ture.
—I—E (vj—v; W) ). (30
IV. ONE DIMENSIONAL REPRESENTATIONS
o _ . AND THE UNCORRELATED STEADY STATE
Note that inside any correlation function we haeg=1 _ _ _
—3;7). Equation (30) can be rewritten as a continuity [N the one dimensional representation the operafrs
equation and E are represented bgnumbersA; ande, respectively.
From Eq.(28) we have
d . .
GO =@ =30, N 1 ,
o+ B—1 = 39

where
Combining Eqgs(35) and (6) gives the conditior+ 8=1
IOy =4 (7D + N D) (D on the average rates yvhich is of th_e same form as in the
Fh=vdrsed+ 2 (i o(rtsnl) one-species ASEP. This, together with E29), means that
for an uncorrelated steady state to exist, the minimum speed
_ o WD Ay 31 v, should be greater than the average arrival @ateThe
Ei (O3 =o{nEamc) 3D steady state is now given B)=|p)®N where
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e 0.30 ———— T T
J L
ﬁ 0.25
p
A, 0.20
1] p 1 B 1 0.15
|p>=E E c=e+B(A1+A2~~+Ap)=e+BA.
0.10
0.05
ﬂ 000 bl L
p 0.0 0.2 0.4 0.6 0.8 ol

(36) FIG. 1. The current versus the arrival rate of particles for dif-

The density and current of particles of tyfig and the total ~ ferent values oh.
density and the total current are all site independent and are,

respectively, given bysee Eq.(34)] should have & a<1—\. This distribution is peaked at
v=1-N\. Inserting Eq.(41) into Eqg. (40) and doing the in-
) Ailp , v /p tegral gives
p(a"):e+A/p ‘](a'l):e+A/p’
A—1
Alp 7 M=t “2
Pl)=cap M= granp:

from which we obtain
It is better to consider the limiting cage—, that is, we
assume that particle speeds are taken from a continuous a(N+a—1) a(A—1)
probability distributionP(v). Condition (26) is then trans- Ja)= Nedtan ' PlOEITII N
formed into

(43

Eliminating « between the above equations gives the current
(v) ;:f vP(v)dv=1. versus density:

Discrete quantities (b)f(i) are transformed into the con- _ P
tinuous functionsf(v)P(v) and sum into integrals. Instead Jp)=p|1- 1-\(1—p))" (44)
of Eq. (36) we have

The curvesJ(«) and J(p) are shown in Figs. 1 and 2 for

pla,v)= M' Ja,v)= & (3g)  Vvarious values of the widths of the distributions. Note that
etA(a) etA(a) for zero width (. =0) the familiar results of the one-species
ASEP are obtained, namely= a andJ=p(1—p). For any
~ A(a) 1 finite value of\, p is an increasing function af but J(«)
P(M-W, )= xa (39 _ ~
@) e+A(a) has a maximum a#:=[ (1—N\)/\](1—V1—A\). The current
at this optimal value of the arrival rate is
where
v - 0B T T T I T T
Ala,v)=—— and A(a)=f —P(v)do. J | A=0

UV— o al— 0.20 [ .
(40 T o 1
As an example, in the following, we take a distribution 015 |- .
which at low speeds vanishes as some power ofw, so . ]
that « is indeed the minimum speed of particles. Requiring o010 | b

that the distribution has an exponential decay nat& high ' 0.8
speeds and the average speed be unity gives [ ' ]
0.05 |- h

1 ma—(v—a)/\
Px(v)zm(v—a)e , (4D I I T I
0.2 0.4 0.6 0.8

wherem+1=(1-«a)/\. Herem is not necessarily an inte- P
ger. A similar choice ofP(v) has also been made [14]. FIG. 2. The current versus the density for different widths of the
Note that sincem is to be positive for each choice af we  distribution.
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1 _ 2 Di _ i_ndi 0 i—n+11 i—n+22
%m#u—m(#) . (45) Im=vi 7| >+1v [D)+vi"2)
+o 4o In=1)+(n). (50)

The maximum ofJ as a function ofp occurs atp In order to check Eq:6) in this representation it is enough to
=(1M\)[V1-N—(1—\)]. Itis seen that the maximum cur- consider only the stat¢0), since all the other states are
rent has its highest value af only when all the particles obtained by acting on this state using the algebraic relations
have the same hopping rates. It is interesting to note thawhich have been found to be consistent. Therefore we re-
even in such a simple uncorrleated steady state, a variance uire that
hopping rates reduces the current.

The final quantity we consider is the average density of
particles of different speedsi(a,v) as a function ofv.
From Egs.(38) and(41) we have

1
D]DI_T(UIDJ_UJDI) |0>:0 (51)
Ui—Vj

This fixes the parametets; to bed;=v;/(e+v;) wheree is
pla,v)xv(v—a)™ te” 7N (46) a constant independent bfThe explicit matrix forms of the
generators are then as follows:

The interesting point is that when=1 (or a<1-2\) the
density vanishes at the lowest speednd has a maximum at 0
Umax=3[1—N+(1—\)?—4\a]. However, whenm<1 10

or («>1-—2\) the distribution changes and the density of .1 0
the slowest particles rises abruptly. This transition is one of

the interesting features of this process and is somehow remi- E=
niscent of the Bose condensation noted1id].

=
o

V. REPRESENTATIONS

As in the one-species ASEP the representations of this
algebra are either one dimensional or infinite dimensional. _ (52
To see this we first note that there is no nonzero eigenstate of d -
E, say|e) such thatE|e)=(1/v;)|e) for anyi. Since if there Vi
is any such vector then by acting on both sides viithand
using Eq.(5) we obtain (1%;)|e)=0 and sincev; is finite 0 1
this means thate)=0. Following[2] we now show that in
any finite dimensional representation of the algebra all the
generators mutually commute, for if the representation is fi-
nite dimensional then the matric&s—-1/v4, ... E—1lv,,
having no zero eigenvalue, are all invertible and hence Eq.
(5) gives D;=E(E— 1/v;) ! which in turn means that the
representation is commutative. Thus the representations of
this algebra are either one dimensional or infinite dimen-
sional. Note that in the one dimensional case the expression
D;=E(E—1/v;) ! automatically satisfies Eq$6) and (7).
Thus such one dimensional representations really exist, anje make the following remarks.
were used in Sec. IV to find the uncorrelated steady state. (1) |f ¢=0, then all thed, = 1 and using Eq(50) one sees

To find the infinite dimensional representations we as‘thatDiDszjDi Vi,j althoughD,E#ED, . Hereafter we
sume that there is one single vector denotedysuch that  restrict ourselves to this case. Note that this does not mean
that the two point functionér(’ () and( 7’ (") are equal.

(2) When e=0 we haveD;=D; for vj=v;, so that Eq.
] (7) becomes vacuous in this case and no singularity arises
where the parameted; are to be determined. We then con- g,e tov;=v; in this equation. Furthermore, one can safely
sider the vector spack/ spanned by the formal vectors gliminate one of these generators for the other one. This

2
o

Ik 5o

=
e S 5
e S 5

O
Il
<
<

=N

D||O>:d||0>, |:l,p (47)

{In):=E"0),n=0,1,2...}. Clearly means that thep(— 1)-ASEP algebra is naturally embedded
in the (p)-ASEP algebra.
E[n)=In+1), Vn. (48) The ket and bra vecto®/) and(W| are found to be
Iterating Eq.(5) we find *
V)= 2 (1-5)"n), (53
DiEn:Uiani+Uifn+1E+Uifn+2E2+ . _i_viflEnfl_i_ EN n=
(49 -
(W|=2 (a)"nl. (54)

Thus we obtain n=o
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Having a representation at hand goes only half of the wayhere Zy={(«|CN|1— ). Or the probability of a segment
in obtaining explicit expressions for physical quantities sucH k,l] being empty is given by
as currents and correlation functions. To obtain these quan-
tities, one should do lengthy calculations on the matrix ele- P(k,1):= 1 fﬁ _< ICk 1))
ments of products of operators. Our work is not complete in ZN 1-B<|z<a,2TiZ
the sense that we do not yet have the final explicit expression
for these matrix elements. However, we explore the proper- Nekol
ties of the representations as far as we can, hoping that by x(z|C |1—3>F- (58)
using these, the rest of the problem will be solved on another

occasion, by this author or by others. Once the eigenvalues and eigenvectorCadre known,
the problem can be solved completely. In the following we
A. Eigenvectors ofD;’s will give an implicit formula for these objects.
Let z be any complex number, witlz| <v,. Define
B. Eigenvalues ofC
_ 2 n 55 First we consider the cage= 1. For any coherent stafe)
|2) z"|n). (55 "
n=0 we haveE|z) = (1/z)(|z)—|0)). For any two complex num-
bersz and w define

Then|z) is a common eigenvector of dl;’s:
|z,w)=2|2) — 0| ). (59

1%
Dilz)= 5 _IZ|Z>- (56)  Then it follows that
This can be easily proved by direct calculation. The sties Ez,0)=[2)~]w). (60
can in fact be thought of as the coherent states of the algebig, .o forp=1 we haveD|z)=[1/(1—2)]|z) we obtain
constructed as follows|z):=[1/(1—zE)]|0) where 1/(1
—ZzE) is understood by its power series. We now define the 1
dual vector(z|=27_,z "(n|. Then we have the following Clz,0)=(D+E)[z,0)=7—[2)= 7= ~|w). (6]
theorem, the proof of which is accomplished by noting that
(n|[E=(n—1| and(0|E=0, and doing straightforward cal- Therefore the statfz,w) is an eigenstate of if we have
culations. z(1-7)= w(1— w), the solution of which isv=z or w=1
—z. The second solution is acceptable and hence we have

Theorem
(@) (z|[E=(1/2)(z|. 1
(b) The coherent states form a basis of the spatand Clz,1-2)= 2(1-2) |z,1-2). (62)
|n>:f idz d_zzfnlz). Now let p>1. Using Eqgs(56) and(60), we obtain
Z|<1T
Clz,w)=2z7(2)|2)— wn(w)|w), (63

(c) The coherent statéz) form an overcomplete basis for
W. A complete basis is obtained by taking only the stategVhere
with fixed |z|, with a completeness relation:

1§
f|><ed\z|277'|Z | >< |

(64)

The statez,w) is an eigenvector o€ if zandw lie on the

(A (0]2)=1(1-Zw) for |2|<||. cuve 7(z)=7(w). We will then have C|z,0(2))
=1(2)|z.0(2)).
Remarks Note that in thep—o z andw are related by the follow-

(1) It is now appropriate to recall that the stat®$ and  ing equation:
(W| are in fact coherent states and so it is best to denote
them, respectively, byl— 8) and(«|. 1 J’ vP(v) 1 J’ vP(v)
(2) The calculation of any physical quantity is now re- z o7 v—w
duced to the calculation of matrix elements of powergof
between the coherent states. For example, the average den-In order to understand the connection with the eigenstate
sity <nL> is given as obtained by Derrida&t al.[2] in thep=1 case we change the

basis ofW as

v—Z )

(65

. 1 dz
=3¢ ooty e)=(E-170), ley=l0). (60

1-B<|z<a, |zj<v))2TiZ
Using Eqgs.(6) and(7) it is easily found that

k— K1y i
X(alCTH A 1) T, (5D) Elen)=len+ lens 1),
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Dle))=le.) +|en-1), (a) Finding a solution of the equation(z) = »(w) either
for a low value ofp (e.g., p=2) or in thep— o limit, and
Clen)=len_1)+2|en)+|ens1). then expanding the stafé — ) in terms of the eigenstates
of C. In this way one will obtain the current and the phase
Thus we have diagram of the system.

(b) Finding a solution of the mean field equations, either
— |0) numerically or analytically. These equations can be written
1-z-z(E-1) down from Eq.(31). In the p—o limit they are

1 1 ) 1
T 1-zl1-[Z/(1-2)]E 10)= 1-z

— 1 0
|Z>_ 1_ZE| >

1iz> : ave;=J(v) =Jia(v)=---=(v+B=1)n\(v),
d
(670  where

where by|z)q we meanz)y==,_,z"|e,). Therefore

z | z 1-z|1-z
|z,1-2)= -
d Z /g

1-2z/1-z z
*© z \nt+l 1—z\n*1
=2 (E) - (T)
n=0 Hereny(v) is the average density of particles of speedst
Takingz/(1—2) = €'’ gives site k and e;:=1— fgn,(v)dv is the probability of sitek
being vacant. In the one-species model it is known that the
* mean field analysis gives the phase diagram correctly. So it
|z,1-2)= >, sin(n+1)d|e,), (69  will be interesting to see for a typical probability distribution
n=0 how the phase diagram will be modified.

J(v)=vn(v)e 1+ Jov(v—v’)nk(v)nk+1(v’)dv’

—Jw(v’—v)nk(v’)nku(v)dv’-
len). (68)

which is denoted by #) in [2] with eigenvalue (1 2z)
=2(1+cos§). This concludes our treatment of the repre- ACKNOWLEDGMENTS
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