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Comparison of critical properties in binary and ternary liquid mixtures
using light scattering techniques
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In this paper we present results of light scattering and viscosity measurements of both binary and ternary
mixtures. The investigations are carried out for two liquid systems: ariliyelohexane and
aniline+cyclohexane- p-xylene. Correlation lengths, generalized osmotic susceptibilities, mutual diffusion
coefficients, and viscosities are obtained for a range of compositions and temperatures where the systems
becomes nearly critical. We investigate the shift in critical exponents, the validity of power laws, and the role
of corrections to scaling when we change from a binary critical point to a ternary plait point. It is shown that
critical exponents of the ternary mixture, obtained from power-law fitting, are apparently larger than those of
a binary mixture. A possible influence of corrections to scaling on the critical behavior of a ternary mixture is
discussed[S1063-651X99)04502-X]

PACS numbd(s): 05.70.Jk

I. INTRODUCTION wherev is the critical exponent of the correlations length of
concentration fluctuationg, y denotes the exponent of the
Static and dynamic light scattering measurements havgeneralized osmotic susceptibili§y, and« is the heat ca-

proved to be powerful techniques for studying critical phe-pacity exponent above the plait point. The subscripte-
nomena in fluid phases. The angle-dependent intensity ambtes that this quantity is an exponent of a ternary plait point.
the spectrum of scattered light can be easily related to the In an extended investigation of the ethanol-water-
magnitude and the dynamics of critical fluctuatidris2]. chloroform system Chu and Liri1] found larger exponents
Many papers published in recent decades are concerned witor the correlation length and the osmotic susceptibility than
the analysis of these long-range correlations in binary sysexpected by critical exponent renormalization. Because of
tems in the neighborhood of their plait pointe.g., the this situation it becomes necessary to study the nature of
aniline+cyclohexane systerf8—6]). It could be shown that critical anomalies in three-component systems. The existence
theoretical concepts such as renormalization group or modef a critical line leads to the assumption that in a ternary
mode coupling theory are in impressive agreement with thenixture values of critical exponents may be found in a cer-
results of measurements in binary fluid mixtures. In a threetain range instead of being fixed as in a binary mixture. The
component system one could expect that the plait poinexponents of the binary system should be a limit to this
should behave analogously to the critical mixing point of arange.
two-component system. However, there is in fact an impor- In the first step of this systematic study we intend to per-
tant difference in the case of a ternary plait point: Underform a direct comparison of a binary and a ternary fluid
constant pressure it is a part of a critical line on a coexistenceystem. These systems should differ only by the third com-
surface. There are only a few papers that deal with the critiponent. For this purpose we measured a critical mixture of
cal behavior in three component critical fluids. Bak andaniline and cyclohexane and afterward we performed exactly
Goldburg[7] observed no change in the critical exponent ofthe same measurements with a critical ternary mixture of
osmotic susceptibility when they add up to 6% phosphoricaniline, cyclohexane, angxylene. The refractive inderp
acid to a critical mixture of water and phenol. In contrast toof p-xylene corresponds to the refractive index of the binary
this result, a mixture of brombenzene, water, and acetoneritical mixture. So the presence pixylene has no influence
gave a critical exponent that was larger than the binary onen optical properties of the system.
[8]. Fisher and Scesney explained this trend by renormaliza-
tion of critical exponents from analysis of the free-electron
Ising model[9,10], e.g., Il. THEORY

A. Intensity of scattered light

Light scattering can be observed whenever there are local

V = 1
“l-a fluctuations in the dielectric constaatof the medium. The
(1) intensityl of the scattered light is given by
Y .
Oyt I (@) =Asin?(®)(| 5e(q)]?) (2)

from the static point of view. In this equatioh denotes a

*Author to whom correspondence should be addressedconstant determined by the wavelengtiof incident beam.
FAX: +49-3461-46-2129. @ is the phase shift between the incident and the scattered

Electronic address: winkelmann@chemie.uni-halle.de beam, andj is the so-called wave vector. It is defined by
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with the scattering anglé and the refractive inderp . In a
fluid mixture the local fluctuations of the dielectric constant
are a function of fluctuations in pressype temperaturerT,
and concentratioe. Under the given conditions the concen-
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[15] and 0.08416]. However, for ternary mixtures it is not
obvious whether this exponent has to be renormalized in a
way like Eq. (1). If we consider the static structure factor
exponent, Eq(8) must be modified to yield

CXTT

|s(Q)=sz- (10

tration fluctuations are doubtlessly much more essential than

the others. So we can formulate the scattered intensity as

2

[ de
|s<q)=Asm2(%) (| ae(@)]?. @
p,T
The quantity(| 5c(q)|?), describing the concentration fluc-
tuations in space, is the static structure fac®fq). It is

Because there is no theoretical limit defined for the range
of criticality we cannot exclude that corrections to scaling
become evident even in the vicinity of the critical point.
These corrections modify the power laws, which are deter-
mined by a scaling hypothesis. However, approaching the
critical point, the amount of these corrections to scaling
should decrease and finally disappear.

strongly connected to the space autocorrelation function of By application of the renormalization group theory Weg-

the concentration fluctuatiors(r),

S(q):VfVeiq'G(r)q dr, (5)

whereV denotes the scattering volume. Within the Ornstein-

Zernike theony12] the correlation function of concentration
fluctuations is described by

exp(—r/é)
-

G(r) (6)

ner proposed a description of the critical singularity within
an extended range of temperature. For the correlation length
he obtained

E(T)=Eoe "(1+£1€%%+ &€t 0+ €369,
(12)

If we disturb a binary critical mixture by adding a third com-
ponent, we could imagine that in this case the corrections to

A comparison to the static structure factor from the fluctua-scaling are applicable even in the critical range. In a binary

tion theory of Einstein and Smoluchowski3] leads to a
description of the static structure factor

XT

S(a)=(| se(@)|*) =keTc*

: (7)
&
where xt is the osmotic susceptibility denotes the corre-
lation length of concentration fluctuations, akg is the
Boltzmann constant. With respect to Eg), the intensity of
scattered light becomes

CXTT
|s(Q):mr§2.

)

mixture, however, in the temperature range T.<1.2K,
the contribution of the Wegner termg,...,&3 should be
close to zero.

B. Scattered light spectrum

Following the theories of Landau and PlacZdKk], the
linewidth of the central Rayleigh peak in the spectrum of
scattered light can be expressedIby D+q? in a pure fluid,
where Dt is the thermal diffusion coefficient, or by
=D,,0% in case of a fluid mixture. Her®,, denotes the
mutual diffusion coefficient. However, this is valid only far
from any critical singularity. In the range of criticality we
will obtain a strong power-law dependence that can be writ-

whereC is a temperature-independent factor containing thggp, as'(q)=Ag? with a universal value of the exponent

macroscopic concentration, the concentration dependence
g, and kg. This equation leads to the Ornstein-Zernike-

af3.066.
As a result of the mode-mode coupling theory by Ka-

Debye(OZD) method. Since this procedure does not enablgyasaki and Swiff18—20, we identify the linewidth for both

us to evaluate the quantit§¢, we cannot calculate the os-
motic susceptibilityy itself. Instead we obtain a generalized
osmotic susceptibilityCy .

Equation(6) is correct only for ranges afthat are not too

singular and regular behavior of a fluid mixture

I'=D1,0%Q(x)=

2 22\, /2
5 pg A Q)LD (12)

small. Because of the divergence of the static structure factor

in the neighborhood of the critical point, a small numbgr
was introduced by Fisher describing a critical singularity of
the correlation functiori6). So we can writg 14]

exp(—r/é)

G(N)* — 1= ©

In this equationR denotes a dynamic ratio of amplitudes.
The scaling variable is defined by=q¢. The dynamic vis-
cosity is 7. The constanb=0.55 is an empirical parameter.
Equation(12) shows that the dynamic scaling functioX(x)
can be divided into two parts:(i) the universal Kawasaki
function

According to renormalization group analysis, one must ex-

pect »~0.06 for the three-dimension&BD) Ising model.
Experimental investigations gave values between0.065

3

Qo(x)= o2l X2+ arctarix) (13

1
x3——
X
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and (i) a correction term for background viscosity by ll. EXPERIMENT
Bustyn, Sengers, Bhattacharjee, and Ferrell with the critical
exponent of viscosity,,, which is theoretically given by the
dynamic scaling lave=3+2,,. 1. Glassware cleaning

It is common practice to consider some special cases of
Eqg. (12).

(i) In the hydrodynamic range, for a very small scaling
variable ¢<1) it follows that

A. Sample preparation

All light scattering cells, syringes, Erlenmeyer flasks, and
viscosimeters were immersed in a mixture of water, sodium
hydroxide, and hydrogen peroxide for several days to re-
move any organic impurities. Then the glassware was rinsed
with distilled water and subjected to ultrasonic vibrations for
r=Dg? (14 1 h. Hot water steam was used to remove all remaining dust
particles from inside of the flasks and cells. The cleaned
where no enlargement of the correlation length is obtained glassware was carefully dried at a temperature of 120°C
(i) In a cross range witlyé~1, the so-called nonlocal under vacuum and cooled to room temperaturer &te un-
hydrodynamic range, we have to consider a correction for théer a nitrogen atmosphere. All glassware was sealed with

growth of cooperative regions, so we write Parafilm before storing.
3 2. Materials
— 22| 42
I'= D( 1+gz0%¢ )q ' (15 Certified ACS spectranalyzed cyclohex&86.5 mole %

and p-xylene (99.2 mole % were used without further puri-
. . . fication with the exception of removing traces of water. Both
('”.) Approaching the cr|t|cal_ pointg¢>1) the exponent substances were refIExed with calciu?n hydride and distilled.
of q Increases to the _theoretlcal value of 3.066. One can The aniline was distilled at 60 °C under reduced pressure
obtain a linewith described by using a column 2000 mm in length and dynamically dried
with Zeosorb 4A. After repeated rectification the aniline
r-=p 3m  ,  RkgT | (16) fractions were multiple frozen and evacuated. The substances
B 8§1+Zr/q _16773Qé’7q ' were stored under an argon atmosphere. A water analysis by
Karl-Fischer titration gave less than 12 ppm water in the

. . .. aniline fractions.
where g denotes the background viscosity, which is a

nearly constant regular part of the viscosity, d@gl is the 3. Sample preparation
critical amplitude of viscosity depending on the system.

To determine the critical composition coexistence data
_ ) ) o from Dobbertin[6] (aniline+cyclohexan) and Anglescu and
C. Viscosity and background correction to linewidth Zinca (aniliner-cyclohexane- p-xylene)[22] were used. For
For a test of dynamic scalings laws as well as for theeach plait point we prepared six mixtures with their target
background correction to the critical linewidth the measure-compositions. Because of weighing uncertainties, these com-

ment of viscosity data is necessary. The temperature depeﬁOSitiOﬂS were slightly different. To avoid the influence of
dence of viscosity above the plait point is described by dust the mixtures were filtered through Teflon membranes

(with a 0.2 um pore width into the cylindrical sample cells.
To exclude oxygen and water from the air all operations
17) were carried out under an argon atmosphere. For each system
six sample cells were flame sealed to determine the real de-
composition temperaturey°. All prepared samples were
tested by the volume equivalence criterion. The sample that
meets best this criterion was defined to be the critical
B one. The binary critical mixture was anilifeyclohexane
7g=Ae T~ (18 with 44.58 mole % aniline and a critical decomposition
temperature 9¢°=29.648°C. The ternary one was
where A, B, and C are temperature-independent constantsaniline+cyclohexane- p-xylene with 44.42 mole % aniline,
They will be determined by viscosity measurements in a49.59 mole % cyclohexane, anﬁfs: 17.576 °C.
temperature range far from critical singularities. With this
back-ground viscosity we can calculate the background line-
width of the scattered light according to Rouch and Chen

T-T.\ %
n= ﬂB(Qofo)Z”( ) .

The noncritical part of viscosity is given by the Vogel equa-
tion

B. Light scattering apparatus

[21]. All described light scattering measuremeifssatic and
dynamig are carried out in a commercial apparatus shown in
keT . 1+02&2 Fig. 1, which is mounted on a vibration-damped table. As the
['5=0.038—q°————. (190  light source we used a NEC-type He-Ne gas laser of about
78 Qoé 35 mW at 632.8 nm. Because of the very high scattered light

intensity at near critical states the incident beam intensity has
This background linewith is used for a correction of the line-been reduced by a liquid crystal attenuator. After passing the
width determined from the time autocorrelation function.  attenuator the incident intensity and beam position were ana-
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codl 1 = according to the methods proposed by Kao and 23 To
y 4 I | extract the effect of criticality from our measurements we
© a o an applied the following procedure for background qorrect_ion.
oy T We used the same mixture and measured the intensity of
H> 0 o scattered light at 35 K above the critical temperature. At this
(69 <] o o high temperature no critical effects are expected andlthis
“"i (30 == 1 is taken for the background correction. The corrected inten-
N * Y Y o sity is denoted by .
(5)  (3d)
D. Viscosimetry
The behavior of a near critical mixture is very sensitive to
Personal ALV-5000FAST slight changes in its composition. Since a common Ubbelo-
Computer Correlator-Board hde viscosimeter is an open system, we did not obtain reli-

able measurements. Instead we modified the viscosimeter so
that it could be flame sealed. To move the substance in the

FIG. 1. Light scattering apparatus) He-Ne laser, (2)—(2d) ~ Upper part of th_e viscosi_meter iF was mounted on a plate Fhat
mirrors, (3a)—(3d) apertures(4) beam attenuator5) beam di- €nables a vertical rotation. This apparatus was placed in a
vider plate, (&)—(6c) bispherical lenses(7) probe holder,(8) water bath with a volume of about 451. By using a Julabo-
thermostated measurement céll) goniometer(10) quadrant pho-  type thermostat FP25 we achieved a constant temperature
todiodes, and11) photomultiplier tube. with fluctuations less tharrt0.005 K over a time range of 24

h. The rotating plate was driven by an external motor in

lyzed using a quadrant-diode coupled in with a beam dividePrder to avoid any influence on the bath temperature.
plate. The sample cell was positioned in the center of the The related density needed to calculate the dynamic vis-
scattering cell, which is filled with toluene. To analyze the cosity from flow times was measured with a vibration den-
scattered light a photomultiplier tube was mounted on a goSimeter (Fa. A. Paar, which uses the density-dependent
niometer, which allows us to scan a range of angles from 139amping of aJ-shaped vibrating tube containing the sample.
up to 152° with an accuracy of better than 0.01°. A fastThis apparatus must be calibrated by well known density
photon count correlator platine ALV-5000/Fast was con-Standards. We used the pure substances of aniline and cyclo-
nected directly with the photomultiplier and enabled us tohexane as standards. A temperature constant of about
obtain lag times down to 13 ns for a dynamic analysis of=0.002 K was achieved with the help of another Julabo-type
scattered light. thermostat FP40.

To determine the quality of optical adjustment, test mea-
surements were carried out with pure toluene as a scattering IV. DATA ANALYSIS

medium showing no angle dependence of the scattering in- ..
tensity. During the whole measurement period the angle de- Since the temperature dependence of the observed prop-

pendence of scattered light intensity was less than 3%. e_rties in the c_ritical range is strongly ”0”_'"?%‘“ the applica-
We could retain0.002 K temperature control over ex- tion of a special powerful least-squares fitting procedure be-

tended periods of time by using a single Julabo-type FP4 ame essential. Instead of a standard implementation of the

o . . arquard-Levenberg algorithm we applied a special proce-
:B?e:mrgzgu\pgtnhlecr:guilﬁtltnhgeV\g[;[;e?n the medium. Ter_nperaqure of Golub and Pereyf@4] and Osborn¢25]. They de-

g cell were carried ot o4 o algorithm to solve problems of a type of multipl
with a Pt-100 resistor thermometer and a thermistor that hag 9 oo ah aigorihm to solve problems of a type of multiple
a sensitivity of better than 0.2 mK. nonlinear regression with a model functld@amthat)s sepa-

rable. The program attempts to compute a weighted least-
) squares fit to a separable function
C. Scattered light measurement

After centrifugation to avoid dust particles in the scatter- L
ing volume, the sample cell was positioned into the appara- Yead @, B,X) = Z Bi®j(a,x)+®j,q1(a,x), (20
tus. It was allowed to come to thermal equilibrium by ob- 1=
serving the scattered intensity over a time range of about 2—
h.

Both static and dynamic measurements of scattered lig
were done simultaneously at the same apparatus. In bo
binary and ternary samples we measured intensities at 21 N
angles between 40° and 140° and 117 'gemperatures in a |r|2:z WY — Y ead @, B,%) 12, (21)
range fromT —T.=0.02 to 1.2 K. The sampling time at each i=1
angle and temperature was 10 s. This procedure was repeated
ten times to get 100 s of total measurement time interruptehere W; denotes the weight of each poinY¥;(x;). This
by 5 s of theautoscaling procedure between each samplingveight is given by the reciprocal of the square of the uncer-
period. tainity for that measured point. The residuas modified to

The measured scattering intensity was corrected for incorporate, for any fixedy, the optimal linear parameters
scattering volume, intensity fluctuations, dark counts, etc.for that a. It is then possible to minimize only the nonlinear

\?(/hich is a linear combination of nonlinear functiods . It
hctieterminesi_ linear parameterg; and the vector of nonlin-
Far parametera by minimizing the norm of residuals



2030 O. MULLER AND J. WINKELMANN PRE 59

80— : . : IgT 1 &
e . Il Cxr ' Cxrd (22
60 - o .
50 o . — to determine the generalized osmotic susceptibility and the
g 0 —°Z° * | correlation length from the corrected scattering intensity at a
£ . ) : :
w— L} given temperature. Using this method we calculated the sus-
30 @gg 3;, 7 ceptibility Cx(T) from the scattered intensity at zero angle
90 L 4 and the correlation lengté(T) from the slope. The correla-
%@M o tion lengths of the binary and the ternary critical mixture, as
10 - W%W‘}@%ﬂp%wﬁ calculated according to E€R2) vs temperature are shown in
0 ' ' ' ' Fig. 2. We were not able to give a single estimate for the
0 02 04~ 06 08 ' uncertainitiesA& of £(T) over the whole range of measured
@ T-T7*® temperatures. However, we can specify estimates for follow-
ing cases: (i) In the rangeT—T.>1.5K, due to the low
scattering intensity, we found\é~5nm; (i) if T—T,
=1.5—-0.2 K the higher intensity leadsAa <1 nm; and(iii )
at T-T.<0.2K the system became very sensitive to tem-
perature fluctuations and the uncertainities increasa §o
7 ~10nm. If we compare our results for the binary and ter-
i nary mixturegsee Fig. 2a)] we find only slight differences
in the range far from the critical temperature. Tif- T, be-
comes less than 0.4 K, the difference in both correlation
lengths becomes evident and leads to an apparently stronger
curvature of the ternary correlation length. To eliminate the
5 | ! L . temperature effect on this curvature a log-log plot of the
0.0001 0.0005 0.001 0.002 correlation length versus the reduced temperature was made
(b) 5 [Fig. 2(b)].
FIG. 2. Correlation length of the critical concentration fluctua- 0.025 | | . |
tions ¢ vs temperature of the binayD) and ternary(@®) mixture.
(a) Correlation length¢ vs T—TYS, whereTY® is the visually ob- ol 8 |
tained critical temperaturgb) A log-log plot of the correlation ’
lengths vs the reduced temperature. This corresponds to the pow¢z
law approximation. E 0.015
8
parameters. After the optimal values of thehave been de- £ 00!
termined, the linear parameters can be recovered by linea®
least-squares techniqug4]. This is achieved by a modifi- 0.005 -
cation(se€e[25]) of the Marquard-Levenberg procedure using
stable orthogonal Householder reflections on a modification 0
of the Jacobian. 0
The main advantage of this procedure over other Ieast-(a)
squares programs is that no initial guesses are needed for tt
linear parameters. Not only does this make it easier to use
but it often leads to faster convergence. We used this pro-
gram codevARPRO for the determination of the critical am- _ 001
plitudes, exponents, and critical temperatures as well as fo£
the calculation of the Wegner coefficients. Here we espe-é
cially benefited from the fact that the objective functiéiis E
separable. We treated the critical exponent as a nonlineg 09!
parameter and the Wegner coefficients as linear parameter:
V. RESULTS AND DISCUSSION 0.0001 - —
0.0001 ror, 0001

A. Static properties

1. Determination of correlation lengths and osmotic
susceptibilities

According to Eq.(7), we used the common procedure by (b)

FIG. 3. Temperature dependence of the generalized osmotic sus-

ceptibility Cy+ for a binary(O) and ternary(®) mixture. (@) Cxt
vs T—T¢®, whereT® is the visually obtained critical temperature.

A log-log plot of the susceptibility vs the reduced temperature.

Ornstein, Zernike, and Debye The slopes give the values of the critical exponents.
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TABLE I. Results of fitting the temperature dependence of correlations lengths of the binary g¢$em
to a simple power law and to scaling corrections.

Parameter According to E@23) According to Eq.(26) According to Eq.(25)
& 0.223 +0.016 0.212 +0.018 0.121 =*0.015
& 0.023 +0.008 62.64 *+69.73
& —2710.74  *=31003
& 11438.02  *+12759
T, 302.765 +0.003 302.768 +0.004 302.781 =*0.004
v 0.633 +0.011 0.641 +0.012 0.728 =*0.126

variance 1.777 1.676 1.683

From the zero angle limit of E¢(22) we obtain the gen- C,_data from the OZD method. The critical amplitude was

eralized osmotic susceptibili€ x1, the temperature depen- considered as a linear parameter, wherBasnd the expo-
dence of which is presented in Figak Again the curvature nents were treated as nonlinear parameters in the fit. As
of the ternary mixture data is stronger than that of the binanshown in the first two columns of Table I-IV, we achieved
mixture. Figure 8) shows that in the ternary case a nonlin- satifying fits with reasonable results for both properties.
earity was found at temperatures lower than 0.1 K above thgyithin their uncertainties the critical exponents for the bi-
critical point. Two effects have to be considered in thISnary mixture show the expected values of the 3D Ising
case: (i) The influence of multiple scattering leads to model. In the ternary mixture the exponents of correlation
higher intensities and thus to higher values of the susceptiength and osmotic susceptibility are apparently larger. Si-
bility and (i) the correction for background scattering de- myltaneously in the ternary mixture, the critical amplitudes
pends on the precision of incident beam measurements. Ajf hoth variables became much smaller than in the binary
low incident intensities, because of the very intense scatteignes. This is a numerical effect due to the strong coupling

ing,.We I’eaCh the ||m|t of inCi.dent IntenSIty resolution. To between the Critica| exponent and the Corresponding amp"_
avoid errors resulting from this nonlinearity, we used onlytyde in the power laws.

the linear part of the data set to obtain the critical suscepti-
bility exponentsy and yy . 3. Determination of the static exponents by correction to scaling

There is conjecture that the presence of a third component
in a critical mixture may not only alter the critical exponent
Our data were measured very closeTta Therefore, we  pyt also influence the correction to scaling. To investigate
assume that power laws will describe the temperature depefhis behavior in more detail we applied a Wegner expansion
dence of the correlation length to our correlation length dat(T) and determined the criti-
T_T )_V cal exponent. The Wegner expansiofil) was rearranged
Cc

¢ g(T) = foG_V‘l‘ 605160'5_1}_‘_ §o§2€1'0_v+ §O§361.5—V
(25

2. Calculation of the static critical exponents by power laws

&T)= §o( (23

and generalized osmotic susceptibility
to suit a nonlinear regression with separable terms, where the
Cx-(T)=C T-T¢| 7 (24) amplitude ¢, and the Wegner coefficients appear as linear
xr( XT.0 T, ' parameters andl, andv as nonlinear ones. The experimental
data were weighted by their respective reciprocal square
To determine the parameters in E483) and (24) we per-  variances obtained from the slope of the OZD method. To
formed nonlinear least-squares fits applying thwerRPRO  study the influence of the third component we applied the
code described above. As input we used weighteld and  same fitting procedure to the data of the binary mixture too.

TABLE II. Results of fitting the temperature dependence of correlations lengths of the ternary system
&(T) to a simple power law and to scaling corrections.

Parameter According to E§23) According to Eq.(26) According to Eq.(25)
& 0.052 +0.012 0.091 +0.011 —0.012 +0.003
& 0.087 +0.017 —553.33  *+509.38
& 15083.33  +14843
& —135250.32 +154343
T, 290.771 +0.007 290.773 +0.007 290.822 +0.005
v 0.820 +0.037 0.743 +0.020 0.758 =*0.116

variance 2.225 2.209 2.205
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TABLE Ill. Results of fitting the temperature dependence of the osmotic susceptiBijityT) of the
binary mixture to a simple power law and to scaling corrections.

Parameter According to Eq24) According to Eq.(28) According to Eq.(27)
XT0 1.811 *0.210 1.852 +0.188 1.89 *0.19
XT1 0.062 +0.021 716  *6.75
XT2 —221 +223
XT3 493 +452
T, 302.768 +0.004 302.752 +0.006 302.742 *0.018
y 1.253 +0.028 1.252 +0.022 1.244  *0.107

variance 4.285 4.274 4.171

In a first step we performed a four-parameter fit, treating=0.76. However, the critical amplitude of the ternary mix-
&o and the¢; as linear parameters afg andv as nonlinear ture exhibits an unphysical value that leads to a downward

ones. The higher coefficients were set to zero singularity of the first term in Eq(25). This behavior com-
pelled us to analyze the various terms in the corrections to
E(T)=é&ge "+ Egér€957. (26) scaling under the assumption that approaching the critical

temperature these corrections should tend to zero.
For both the binary and ternary mixtures the results of this In a first run the critical exponent was kept fixed gt
procedure are shown in the third and fourth columns of=0.71. We found a slight decrease in the variance and re-
Tables | and Il. In both cases correction to scaling leads tsults as shown in Fig. 4. In this diagram we see that the
small improvements of the fit shown by a decrease in varipower-law term improves at the expense of the first Wegner
ance. In the case of our binary mixture, the introduction ofterm. The overall resul{solid line) is in good agreement
the second term in Eq26) leads only to slight changes in with the experimental data, but the various Wegner terms
the values of critical exponent and amplitude. Consequenthyiffer widely. They describe closely the critical singularity
this first correction term is small. In the ternary mixture, itself, but not any corrections to scaling. The first and second
however, the results show a considerable downward changmrrection terms are rather large, have opposite signs, and
of the critical exponent if we apply a Wegner term as in Eq.seems to compensate for each other, whereas the third term
(26). Here the value of this term becomes more significantends towards zero a;, as expected. The next diagram
and should not be left out. The critical temperatures deter¢Fig. 5 represents the fitting results when we use the value
mined by using Eq(26) are within the uncertainities of our of the critical exponent,=0.63, as predicted for the 3D
direct measured decomposition temperatures. Fixing thésing model. The quality of the representation still improved.
critical exponents to their theoretical values does not lead tdhe power-law term shows even closer agreement with the
significant changes in the values of the free parameters or imeasured correlation lengths and the Wegner terms nearly
the quality of the fit. compensate for each other.

To test the influence of the higher-order terms we used To find out whether this procedure converges we deter-
Eq. (25 performing a six-parameter fit, treatigg and theg; mined the run with the minimum overall variance. The cor-
as linear parameters affd and v as nonlinear ones. For the responding critical exponent is,=0.50 and the detailed
binary system we found good agreemenfinand a critical representation is given in Fig. 6. Here the power-law term is
exponentr that is larger than that from the simple power law close to the experimental data and gives a good description
(23). However, it has a statistical uncertainity considerablyof the critical region. The Wegner expansion terms tends
larger than the former. For the ternary system the estimatetbwards zero as we expected and are influenced more if the
critical temperature increases about 50 mK, which is outsidelistance fromT; increases. However, in all cases we should
our direct measurements of the decomposition temperatur&eep in mind that the differences in variance are quite small
The ternary critical exponent decreases to a valuev,of and the statistical uncertainities are rather high.

TABLE IV. Results of fitting the temperature dependence of the osmotic susceptiDjitfyT) of the
ternary system to a simple power law and to scaling corrections.

Parameter According to E¢24) According to Eq.(28) According to Eq.(27)
XT0 0.408 +0.041 0.373 +0.03 0.071 *0.014
XT1 0.113 +0.02 339.71  +293.54
XT12 —-575 +561
XT3 16042 +16436
T, 290.778 +0.010 290.772 +0.009 290.751 =0.009
y 1.542 +0.047 1.422 +0.051 1.471 +£0.102

variance 4,812 4,732 4,799
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FIG. 6. Wegner expansion of the correlation lengtf) for the
ternary mixture with a critical exponent,=0.50. The parameters
are the same as in Fig. 4.

FIG. 4. Wegner expansion of the correlation lengff) for the
ternary mixture with a critical exponent,=0.71. Comparison of
experimental dat&O) with the full correction to scalin§Eg. (25)],
the first (power law term [Eq. (23)], and the individual Wegner

terms Similar to the case of the correlation lengths, the best

analysis was obtained by restriction to one correction term

From this detailed analysis we conclude that for our ex- Cx1(T)=x0e 7+ X0X160'577 (28
perimental data a Wegner expansion does not yield signifi-
cant improvement. We feel that in our case the expansiofven if the variance of the fit is slightly larger than that from
with v,=0.50 gives the best and physically most reasonabl&d. (27). In the case of the binary mixture the additional
representation, but generally it seems preferable to restrigarameter does not change significantly both the critical ex-
ourself to a power-law analysis with only one Wegner term.ponent and the critical temperature determined by simple
Our results illustrate the difficulties in the determination of aPower laws. The small value of the correction term is in
critical exponent because the superposition of the Wegnetdreement with this result. The exponent shows nearly its
correction terms tends to a certain self-compensation. theoretical value. If we investigate the ternary mixture the

A similar analysis was performed for the generalized osfirst-order scaling correction according to Eg8) becomes
motic susceptibilitie<C, (T). We intended to calculate the significant. Consequently, the determined critical exponent

ritcl expoenty, fom  iegner expansion withsepa- (5155 022252, UTIe i g i eaner soetn
rated correction to scaling terms: ' P P

sufficient precision.
15—y

— -y 05—y 1.0-y
Cxr(T)=Xoe "+ xoxs€ + Xox2€ *+ Xoxs€ 27 4. Influence of the structure factor exponent

Equation(22) does not consider the singularity of the

Again we found a slight improvement of the representationt 207 2t € CER UL 10 B 1S N ICE B e v
when we included the correction to scaling. As shown in 9 o gp
ues of the critical exponents y, and» (v, vy, andn, for

Tables Il and IV, the values of the critical exponentand . " '
v, for the binary and ternary mixtures decrease. The ternartemf?‘r.y m|>_<turee and t_he critical amplitudeo (£0x) by a
odified Fisher equatiofiL4]

system shows a susceptibility exponent larger than the binary
one. As in the case of the correlation length, we varied the lsc )

critical exponent and determined the expansion coefficients. ?=A06_7[1+quoe‘z”]‘“”’er lg, (29
The minimum overall variance was reachedyat 1.20, but

the Wegner coefficients had large statistical uncertainities. yheree denotes the reduced temperatufe-(T,)/T., A is
treated as a parameter, ahglis the background scattering

80 T T T T intensity. Because of the background correction included in
of cale, 1B G6E) _© I, |g Was zero. In both binary and ternary critical mixtures
oL | y Bq.{
sec%}lsdt wgggggggg S we cou!d not find a sig_nificant difference between the results
401 thllggw\gqggEER&_t 2 — of the five-parameter fit4q, v, v, 7, and&,) and the OZD

method with a three-parameter fit to a power law either in the
» binary or in the ternary mixture. The slight difference in the
oF it exponentsr and y calculated with Eq(29) (see Table Vis
b within the range of uncertainity. It is interesting that we
_____________________ found a structure factor exponent, for ternary mixtures
40 L-L L ' L s comparable to the binary one. This does not lead to a renor-
290.8 201 w12 © P14 216 2918 malization of . However, the structure factor exponent is
very small; it is within the uncertainties of the other expo-
FIG. 5. Wegner expansion of the correlation lengff) for the nents. We have summarized the results of both methods for
ternary mixture with a critical exponent,=0.63. The parameters the binary mixture in Table V and for the ternary system in
are the same as in Fig. 4. Table VI.

20

¢ (nm)
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TABLE V. Summary of the critical exponents of the binary 50 ; | | | 5 |
mixture resulting from data analysis using the OZD metli@8) 45 &,@&p -
and the modified Fisher equatigf9). 40 L Cpof |

&
Exponents v v 7 . B y&‘éf ]
Equations ?i]”’ 30 - J‘P Lo ]
- 25 oot i
(22)-(24) 0.643+0.024 1.251*0.056 g =t m&)"’gf ’w...- i
(29) 0.636x0.031 1.244*+0.042 0.045+0.011 15 L d ot |
of eget™”
10 @83 ‘.:" |
B. Transport properties 5 B?V B
L 1 1 | | 1
1. Determination of the mutual diffusion coefficient 00 0.2 0.4 0.6 0.8 1 12 14
(a) T -T2 (K)

At the same angles and temperatures at which we mee

sured the scattered intensity, we obtained the time- . T
autocorrelation function ‘;g i
N
1 20 slope = 0.663
GP(n)=5 2 1(K)I(k+7),
N1 ~ ]
NE;I"’ 10
k=1,...N correlator channels, (30 =
g 4
of the intensity by a multiple= hardware correlator. After a h 4 .
symmetric normalization 3 ]
9 N
(2)_MG<2>(k)— MoM
ST MMy 31 ) . . L
0.0001 0.0005 0.001 0.002 0.003
with My=3_,1(k) andM, =3} ,1(k—1), we applied the b) T

Discrete algorithm by Provenchg26] to calculate the line-

width I" of each signal. Because of the relaxation processes FIG. 7. Temperature dependence of the mutual diffusion coef-
in both binary and ternary mixtures one can obtain only ondicients D, for a binary (O) and ternary(®) mixture. (&) Dy, vs
relaxation time. To determine the mutual diffusion coeffi- T—T¢", whereT{® is the visually obtained critical temperatutb)
cient for each temperature a linear plot[dfq)/qz VS q2 was A log-log plot of the mutual diffusion coefficients vs the reduced

performed. We identify the zero-angle linewidth temperature. The straight lines show the approximation to power
laws.
- (Ie
D= "mo a2 (32 markable because of the only small difference between the
q— T

correlation lengths in the binary and the ternary mixture. The
as the mutual diffusion coefficient. The tedy denotes the log-log plot of the mutual diffusion coefficients vs the re-
critical part of the scattered linewidth calculated By=T"  duced temperaturidower part of Fig. Th)] reveals the influ-
—T'g, wherel'g is the background linewidth according to ence of the different critical exponents of the diffusion coef-
Eq. (19). Here it was not necessary to measure the absolutéicient in both mixtures, as one can see from the slopes.
scattering intensity, so the diffusion coefficients are the mosEspecially for the correct calculation of the viscosity expo-
precise properties we obtained within this work. The vari-nent, it is important to know the temperature range of criti-
ances are less than 1% within a rangéefT.>0.1K. Fig-  cality in the binary and ternary mixtures. There is no exact
ure 7 shows the temperature dependence of the measurtitgoretical criterion to tell us in which temperature range the
diffusion coefficients in the binary and the ternary mixtures.applied power laws are valid. However, the value of the line-
One can see the critical slowing down of the mutual diffu-width exponentz describing theq dependence of the line-
sion. Both the binary and ternary mixtures show almost novidth is a suitable practical criterion for this purpose. We
diffusion at the critical temperature. However, our ternaryobtain the effective linewidth exponens by estimation of
system exhibits a less strong curvature and a much lowdr =D;,0%f. Figure 8 shows the growth @ vs the tem-
diffusion coefficient in the hydrodynamic range. This is re-perature differencd —T.. We find an enlargement of the
linewidth exponent fromz.4~2 (hydrodynamic rangeto
TABLE VI. Summary of the critical exponents of the ternary higher values in order to reach the critical temperature in
mixture resulting from data analysis using the OZD metli2®  both cases. The ternary mixture shows a smaller critical

and the modified Fisher equatigf9). range.
Exponents Vx Yx Tx 2. Calculation of the critical diffusion exponent by power laws
Equations ;
Since our measurements were performed very close to
(22)-(24) 0.790£0.033 1.493+0.070 T., we assumed that the temperature dependence of the mu-
29) 0.784+0.041 1.490%0.068 0.058+0.016 tual diffusion coefficient can be described by a simple power

law
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32 AR T Therefore, we tried to calculate the exponefitof D5(T)
s L ° . ) taking into consideration the scaling corrections
o0 % S
28 - B‘fogoe . DiyT)=Dipe " +D1pP12:€ "
- * Oo% - — % K
g 0 o ®o +D1o D126 +D1p P12 (34)
N a % )
>4 toy O The results of this data analysis are shown in Tables VIl and
22 F %\ %, . - VIIl. Similar to the behavior of the static properties, we
s %% . . f
S g Ry found a small decrease of the variance if we included cor-
2r rections to scaling according to E@4). While in the case of
1.8 L R static properties we observed larger changes in the calculated
0.01 0.1 1 temperatures, for the diffusion coefficients these differences

T -1 (K) are within the uncertainties. The accuracy of the calculated
critical exponents is comparable to that of the results ob-
tained from power-law fitting. We found only small differ-
ences between exponents calculated from a power law and
those from scaling corrections. Again the exponent of the
. ternary system is larger than the binary one. Also in the case
T-T¢\"” of the mutual diffusion coefficient an exact calculation of
D12:D12,ﬂ( Te ) (33 Wegner coefficients was not possible because of the large

uncertainties. The relatively small changes in all parameters
Like our static data analysis, we used therPRO nonlinear

lead to the assumption that the mod2¥) might be overes-
imated.

least-squares algorithm to perform a free fit of our binary and 14 5y0id this overestimation we restrict the scaling cor-

ternary data to this model. The results of this calculation area tion even more to one Wegner term

shown in Tables VII and VIII. Within the statistical uncer-

tainties the determined critical temperature agrees Wlth- the DlZ(T):D12,O€7V* + D12,0Dlz,160'5r v (35)

values ofT, found from the analysis of the static properties

by power laws. The critical exponent of the binary diffusion Compared to the fit from simple power laws, we yield down-

coefficient shows a slightly smaller value than the theoreticalvard changes of the critical exponents in both the binary and

one from the dynamic renormalization theoryvi(,  the ternary system. Consequently, the first Wegner terms are

=0.67). The critical diffusion exponent of the ternary mix- of the same order. This leads to the assumption that the dif-

ture v} is apparently larger. This is consistent with an in- fusion coefficient is influenced by the noncritical part of the

creased exponent of the correlation length in the ternary casdynamic viscosity in the binary system. Unlike the full scal-

Again one can see the strong coupling between the criticahg corrections, the results of this fit are more satisfying be-

exponent and the critical amplitud®;, o, which leads to a cause of the smaller uncertainties in the determination of the

smaller value of the amplitude in the case of the ternarparameters.

mixture.

FIG. 8. Plot of the effective linewidth exponeng; vs the tem-
perature above the critical point for the bindfy) and ternary(@®)
mixture.

C. Dynamic viscosity
3. Determination of the diffusion exponent by correction

. To determine the scaling behavior we measured the flow
to scaling

times of the mixtures at 104 temperatures in the range from
The mutual diffusion coefficient is strongly connected to20 mK up to 2 K above the critical temperature. To avoid the
the hydrodynamic radius of the moving particles. If we as-influence of background viscosity we also performed mea-
sume that the third component influences the corrections teurements fromT—T.=4 K (ze~2) up to T-T,=30K
scaling of the correlation length, we have to investigate theand used these data to estimate the parameters of the Vogel
same assumption in the case of diffusion coefficients tooequation (18), as shown in Table IX. The temperature-

TABLE VII. Results of fitting the temperature dependence of the mutual diffusion coeffibig(T) of
the binary system to a simple power law and to scaling corrections.

Parameter According to E¢33) According to Eq.(35) According to Eq.(34)
D120 2747 +78 2733 =+81 1976  +61
D124 0.042  +0.001 0.0022 +0.0015
D1z, —-0.0312  *0.0204
Diss 0.0644  *+0.0656
T, 302.763 £0.003 302.771 =*=0.006 302.788 =*0.01
v* 0.657 *0.012 0.638 =*0.011 0.643 *0.016

variance 2.173 2.148 2.151
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TABLE VIII. Results of fitting the temperature dependence of the mutual diffusion coeffibigfT) of
the ternary system to a simple power law and to scaling corrections.

Parameter According to E¢33) According to Eq.(35) According to Eq.(34)
Dizp 1048  *46 1087 =111 1117 =51
Dis1 0.062 +0.013 0.010 +0.008
Diop —0.0699 +0.0518
Dios 0.1940 +0.2003
Te 290.775 *+0.005 290.778 *0.006 290.782 +0.008
v* 0.787 *0.021 0.751 =*=0.046 0.781 =*=0.14

variance 3.025 2.975 2.982

dependent flow times from viscosity measurements were cocedures on both mixtures under the same conditions, we can
rected by the Hagenbeck formula. We obtained the dynamidirectly compare the behavior of these systems and deter-

viscosities by mine changes in their critical properties. We investigated the
shift in critical exponents, the validity of power laws, the
7(T)+ 7g(T)=K[t(T)—ty]p(T) (36) influence of the structure factor exponent, and the role of

corrections to scaling when we change from a binary critical
using temperature-dependent densities from the vibratiomixture to a ternary one. There is a significant difference
densimeter. The viscosities for the binary and ternary mixbetween a binary critical point and a ternary plait point. The
tures vs the temperature are shown in Fig. 9. For the ternarylait point is part of a critical line on a coexistence surface.
mixture the absolute values of the dynamic viscosity are apTherefore, any thermodynamic path approaching the ternary
parently higher. This is in agreement with the lower diffu- plait point may or may not come close to this critical line.
sion coefficient at similar correlation lengths in this mixture. Thus its shortest distance to the critical line may VE2y].
However, we did not observe a significant difference in theOur basic assumption is that this behavior will influence the
curvature of both viscosities vs temperature. Taking expericritical properties. Instead of a single value, this would lead
mental uncertainties into account, the log-log plot, as showtio a sequence of critical exponents, depending on the shortest
in Fig. 9b), does not yield different slopes. In this connec-

tion we note that the use of a vibration densimeter for mea- 19 . ' ' ' '
surements in the critical range should be considered with i -‘o-,M i
care. The system is very sensitive to the import of mechani- ""*\.,__h

cal energy that may shift the system away from the near 7L "'"--................... i
critical state. The application of a capillary viscosimeter _ oo
leads to shear forces during the measurement that disturb thi® 16 - J
laminar flow process. Because of this our results of the vis- ¥ °°o°

cosity measurements are the most uncertain ones. To detet L5 %o a
mine the viscosity exponertt, we used Eq(17) with the %

values of¢, and v from our static light scattering measure- L 0 0000 0000 g o, |
ments. Like the structure factor exponenj,is very small. L3 . ' 7200000000000 4
Because of this situation we did not perform an analysis of 0 0.2 0.4 0.6 0.8 1
possible scaling corrections. In addition, this should be un- (a) T - T (K)

necessary because of the viscosity background correction by
Vogel.

1.8 - slope = -0.032

VI. SUMMARY 17 |

The purpose of this investigation was to study critical
singularities in binary and ternary fluid mixtures, in particu-
lar the determination of critical exponents in these systems. L5
Since we performed the same experimental and fitting pro-

1.6 - -

n (cP)

D%, 4 slope = -0.045
14 " sy,

TABLE IX. Critical exponentz, according to Eq(17) and the 131
parameters of Eq.18) by Vogel describing the noncritical part of : ! >
the dynamic viscosity. 0.0001 0.001 0.01
(b) 7

System z, A (cP) B (K) C (K) .

FIG. 9. Temperature dependence of the critical part of the dy-
binary 0.045-0.021 0.1032 201.358 204.771  namic viscosityy for the binary(O) and ternary(®) system.(a) »
ternary 0.054:0.028 0.1019 184.359 193.146 vsT—T!®. (b) Dynamic viscosity vs the reduced temperature. The

slopes of the straight lines correspond to the critical exponents.
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distance to the critical line. The binary exponent should be An exception was found with the viscosity measurements.
the limit of this sequence. To study these assumptions w&he comparison with the theoretical binary exponent shows
found that more high-precision experimental data on ternaryhat our measured values are too low. Unlike the other data
systems are needed and especially data sets over a widsgts, we could not obtain any significant difference between
range of temperatures so that the role of scaling correctionthe viscosity exponert, in the binary ana,, , in the ternary
could be investigated in more detail. mixture with respect to their uncertainties.

First we applied simple power laws to describe the tem- It would be interesting to test the estimated critical expo-
perature dependence of our experimental data and we olments to static scaling laws. If the observed systems are
tained good agreement between the calculated critical temmembers of an universality class, the equations
perature and the measured decomposition temperature of the
same mixture. In the binary mixture case the critical expo-
nentsv, v, and v* show only small differences from the 2=mv=y, 2—n)vy=1y (37
theoretical values. When we applied the power laws to the
ternary mixture data we found critical exponenis y,, and  should hold for binary and ternary systems, respectively. For
v that are apparently larger than the binary ones. the experimental exponents of the binary mixture this law

There is a conjecture that adding a third component to &olds, as expected. In the ternary case we found a difference
binary critical mixture may not only alter the critical expo- between the right- and left-hand sides of E@F). However,
nent but also change or influence the corrections to scalinghis difference is smaller than the deviation of the exponents
This behavior might be interpreted by the hypothesis ofvy andy,. Therefore, we assume that this scaling law holds
shortest distance to the critical line. On a thermodynamidor ternary systems too.
path to a critical plait point the shortest distance to the criti- The connection between static and dynamic critical expo-
cal line may change, depending on whether the path is closeents is given by the scaling laws
to or distant from the critical line. This change in distance to
the critical state could lead to a change in the corrections to
scaling. Therefore, we used the static properties correlation v* = v(l+z,), Vi = vy (1+2,), (38
length and generalized osmotic susceptibility to investigate
this influence. Generally, the introduction of scaling correc-respectively. Since the exponenf of mutual diffusion is
tions leads to a downward shift of the critical exponents. smaller than the correlation length exponengt this scaling

From our data analysis we found that the application oflaw does not hold for our ternary mixture.
several correction terms does not lead to consistent, physi- There is no doubt of the universality in ternary mixtures
cally meaningful results. Because of the superposition of adin the vicinity of their critical points with respect of their
ditional terms, the correction tends to self-compensation. Thetatic properties. The enlargement of the measured static ex-
resulting values of such correction terms become meaningponents does not lead to a violation of the static scaling law.
less. Therefore, it is important to choose the order of correcHowever, for dynamic properties we did not find the same
tion to scaling carefully, that is, in our case only one Wegnebehavior.
term. We observed that the effect of the third component is The results of our measurements show that the addition of
represented in two parameters: an enlargement of the critical third component to a binary critical system along a critical
exponent and a nonzero first-order correction term. The firdine leads to an enlargement of the static and dynamic critical
follows from the renormalization explained by the mobile exponents. Further investigations at various points along the
electron Ising model. We found no significant differencecritical line will show whether these values are fixed or func-
from the results of this model if we applied the first-ordertions of the binodal surface slope.
correction. We can conclude that the ternary
ar_1i|ine,ﬂ—cyclohe)_(angxL p-xylene system shov_vs no _simple ACKNOWLEDGMENTS
Ising-like behavior in the range of critical singularity. The
first-order correction term is necessary to describe the tem- We gratefully acknowledge financial support of this re-
perature dependence of the measured static properties in tesearch by the Deutsche Forschungsgemeinsc¢@aéint No.
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