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Anisotropic self-diffusion in colloidal nematic phases
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By computer simulation the anisotropic long-time translational self-diffusion coefficients are calculated in
the nematic phase of colloidal hard spherocylinders exhibiting Brownian dynamics in a solvent. In particular,
the two diffusion coefficientﬁ)”L andDi , parallel and perpendicular to the nematic director, are obtained for
aspect ratios between 4.8 and 16 and for arbitrary densities. Long-time diffusion along the nematic director is
nonmonotonic in density: Upon increasing the density, it first increases due to stronger alignment and then
decreases due to packing constraints. It is shown that theDafib{ and the orientation flip rate essentially
scale with the nematic order parameter. While the rBtjéD{ increases with density in the nematic phase, it
decreases dramatically with increasing density in the smécpbtrase. The results are compared to recent
experiments[S1063-651X99)03602-§

PACS numbegp): 82.70-y, 61.30-v, 66.10—x

I. INTRODUCTION With the exception of Ref.36], all these previous studies
were performed in the isotropic phase. In the present work
Since the pioneering work of OnsagEt], it has been we extend these investigations exploring the dynamical cor-
known that a system of hard spherocylinders undergoes ®elations systematically over a broad stability range of the
first-order transition from an isotropic phase to a nematimematicphase and we also include results for the sme&tic-
phase provided the aspect ratio is sufficiently high. Whilephase. As in Refl31], we use a hard spherocylinder model
both the translational and orientational degrees of freedom akith excluded volume interactions. The reason for doing so
the rods are completely disordered in the isotrgpicfluid)  is twofold: First, this model is governed by two parameters
phase, there is a macroscopic director along which the rodnly, namely, the aspect ratio and the rod number density.
orientations are ordered in the nematic phase but the centegecond, the stability range of the nematic phase is known
of-mass pOSitionS of the rods are still disordered. Most of thq_')recise|y by recent Computer Simu|ations of Bo|huis and
recent theoretical and computer simulation wi2k has fo-  Erenkel [9]. Clearly, in the nematic phase, the long-time
pused on structgral corrglatio[ﬁ] and on the location of the mean-square displacement becoraeisotropic i.e., it can
isotropic-nematic transition for hard ro@é-10 as well as g gpjit into parts parallel and perpendicular to the nematic

for chargecj and erijIe particlefl1-1§. Qn the other director. Consequently there are two long-time self-diffusion
hand, detailed experimental data are available tracing thgoefficientsD”L and D . In the present study we calculate

phase boundaries for different rodlike colloidal samples- them both over a large stability range of the nematic phase,

19} including cylinder aspect ratios ranging between 4.8 and 16.

While there is an increasing understanding of the stati%N find ic behavior o for i ina d
and thermodynamic properties of rodlike particles, it is fair ' ¢ '"d @ nonmonotonic behavior bf, for increasing den-

to say thatdynamicalcorrelations are far less studied. For Sity, and show that the ratid{/Di and the orientation flip
colloidal samples, the dynamics are Brownian rather tharate essentially depend on the nematic order parameter alone.
Newtonian as for molecular ||qu|d Crystaﬂgo_za_ A tre- This ratio D‘ll_/Dt is found to increase with denSity in the
mendous difficulty in the theoretical description of the nematic phase, and to decrease with density in the smactic-
Brownian case concerns the long-ranged hydrodynamic inPhase.

teractions mediated by the solvent flow. These interactions Our study is also motivated by recent pioneering FRAP
can, however, be neglected for low volume fractions of theexperiments of van Bruggeet al.[40], where the dynamics
colloidal particles. Correspondingly, in most of the recentPerpendicular and parallel to the nematic director were re-
Brownian dynamics simulations, the long-time self-diffusion Solved and distinguished in the nematic phase of boehmite
coefficients for strongly interacting particles were calculatedods. It was found that the diffusion coefficients are mainly
neglecting hydrodynamic interactions. Results were obtaineflominated by the density, and are comparable to that ex-
both for spherical particle&ee, e.g., Ref$23—30), as well  trapolated from the isotropic phase. It was further found that
as for anisotropic particles modeled by hard rf@t§ and by  the ratio of the two long-time diffusion coefficienB and
two- [32,33 and many-{34—36 site-models. On the other Di , parallel and perpendicular to the nematic director, is at
hand, experiments using fluorescence recovery after ph@bout 2—3 at the nematic density coexisting with the isotro-
tobleaching(FRAP) for boehmite rod§37,38 and Pyridin  pic phase. In our Brownian dynamics simulations we confirm
[39] were performed, and good overall agreement was obthese findings.

tained between the experimental data of van Bruggen, Lek- The paper is organized as follows: In Secs. Il and 1, we
kerkerker, and Dhonft37] with the results of Brownian dy- discuss the model and the Brownian dynamics algorithm.
namics computer simulation for hard spherocylind&®. Results for the different diffusion coefficients are given and
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discussed in Sec. IV. Finally we conclude in Sec. V. Egs. (2)—(4) that the effective aspect ratio stemming from
the effective interactions and the physical aspect ratio are the
1I. MODEL same. This inconsistency is not severe, sinceptaepen-

. ) S dence in Egs(2)—(4) is weak. In fact, our model was suc-
The model and its Brownian dynamics is similar to that cegsfully used to describe self-diffusion data for silica coated
studied previously in Re{31]: N spherocylinders with total poehmite rods in the isotropic phakd?].
width L and diameterr are in a volumeV; their aspect ratio

is p=L/o [41]. A rod configuration is characterized by its
center-of-mass coordinate$R,=(X;,Y;,Z),i=1,... N}
and orientationgQ;,i=1, ... N}, whereQ; is a unit vec- We use a sequential Brownian dynamics scheme. A suf-
tor. The potential energy is zero if the rods do not overlagficiently small time stepAt is used, and a nonoverlapping
and infinite else. Consequently the temperafugimply sets ~ Starting configuration is given. In one elementary trial step of
the energy scale and the rod number denﬁW\]/V is the the S|mu|at|0n, one rod which is labeled byl the f0||0W|ng
only relevant thermodynamic variable which is conveniently!S chosen randomly and a translational and rotational trial
expressed in terms of the rod packing fraction move is made. First, the center-of-mass coordifgtef the

ith rod is moved. It can be composed into a part parallel

R'=(0;-R)Q; to the orientation};, and another parR"
The bulk phase diagram only depends grand p. Hence-  perpendicular to();, such thatRi:R‘i‘fRiL- Within the
forth we choose the rod diameter as a suitable unit of move, the parallel paiR! is replaced byR!+ (AR Q;, and
length. the perpendicular parR’ is replaced byR! +(AR})é&

5 Neglect(ijng hydro?{mamic& i.nterhactio?s,. tr:jeb Sglsrt;timejL(ARﬁ)éiz. Here AR") is a Gaussian distributed random
rownian dynamics ot the roas 1s c ar?c erize I y WO ranSy ymber with zero mean and variancB®'At, while (AR;)
lational short-time diffusion constanf®3~ and D", perpen-

J_ . .
dicular and parallel to the rod axis, and a rotational short—and (AR%) are bOt&LGA?uT:S'at?] randonj nun&tlers W':h zero
time diffusion constanD'. For a single cylinder in a solvent, mean and variance - Furthermoree;, ande;; are two

these three diffusion constants have been calculated as©ithogonal unit vectors perpendicular . If the new rod

function of p by Broersma42] and Tirado and co-workers configuration is free of overlaps, it is accepted, otherwise it is

[43,44). We have used the analytical expressions proposediscarded. Nexﬁi is replaced byﬁi+xléi1(t)+xzéi2(t),

by in Ref.[44]: where nowx; and x, are Gaussian random numbers with

zero mean and varianceD2At. The new orientation vector

is scaled appropriately to have unit length. Again, if this

move leads to no rod overlap, it is accepted, otherwise it is

rejected. AfterN, elementary trial steps the corresponding
Do ) physical time ist=N.At/N. This sequential algorithm cor-

D _ﬂ(ln p—0.207+0.980p—0.133p%), (3 responds to real Brownian dynamics onhi is sufficiently

small. Then one is able to generate “toothed” trajectories

. 3D, ) {Ri(t),Q;(t)} of the rods. The smallness dft is the real
D'=—2(Inp—0.662+0.917p—0.050p%), (4  pottleneck of the simulation; typically we usdt/r
=0(10%). Therefore a huge number of elementary trial
with steps(typically 10°) are required in order to obtain correct
statistical averages for long-time properties. The same meth-
Do=kgT/7slL, (5 ods as given in Ref31] were used to check that the results
were insensitive to a further reduction of the time step. The
aspect ratiop was varied between 4.8 and 16. With two
exceptions where the smecticphase was explored, the
packing fraction was always in the stability range of the
® nematic i i
phase. All parameters of the runs are summarized in

Since we neglected hydrodynamic interactions, our modef able 1. ) . )
does not describe the correct dynamics of hard spherocylin- A rectangular simulation box with a square base and pe-
ders at high packing fractions. Nevertheless the model cafiodic boundary conditions is used. The box length in the
still be used if a soft interaction between the rods is preser@ndy directions isLo, while itis L, in thez direction, with
(as e.g., for charged rogsvhich can be mapped oneffec- x>1 measuring the anisotropy of the cell. Consequently,
tive hard spherocylinderg45,15,4. In this case, one has to Lo=(N/xp)**. For the actual numbers, see Table I. The
distinguish between the effective packing fraction resultingStarting configuration was completely aligned along the
from the interactions and the physical packing fraction of thedirection, and was put on a body—centered-tetragopal lattice
rods. Typically, the physical packing fraction is much as far as the rod positions are concerned. The dirdetoof
smaller than the effective packing fraction. Since the hydrothe nematic phase was always very close toZlagrection.
dynamic interactions are governed by the physical packing herefore, the anisotropic box minimizes finite-size effects
fraction, one can still safely neglect them. However, there isn the nematic phasg9]. During the simulation the center-
still an inconsistency of the model since we assumed in thef-mass coordinate of the whole system was fixed in order to

IIl. BROWNIAN DYNAMICS SIMULATIONS

n=pmwo?(al6+(L—o)ld). 1)

D
D! =ﬁ(ln p+0.839+0.185p+0.233p2),  (2)

wherekg is Boltzmann’s constant angls the shear viscosity
of the solvent. Our basic time scale is

=0?/D,.
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TABLE |. Parameters of the different runs. Given are the rod D”L: lim D”(t), 9
packing fractions, the aspect ratip, the numbemN of rods in the tow
simulation box, the time stept, the total timeT over which sta-
tistics was taken, the maximal timg, of the time window where  with
dynamical correlations were explored, and the anisotrpmf the

simulation box. The time unit is=o2/D. D(t)y=W'(t)/2t, (10)
7 p N AtlT TIT tn/ T X where
0.48 48 432 00002 1800 1000 40 1 o A
0.41 60 432 00002 200 200 45 Wi(t)= NZ& ([Qo- (Ri(t) —Ri(0)]%) (11

0.453 6.0 432 0.0002 60.0 30.0 4.6
0.28 100 486  0.0005 400 250 3.0 jsthe mean square displacement of the center-of-mass coor-

0.3 10.0 432 0.0005 50.0 25.0 3.0 dinate parallel to the nematic director. Similarly, let us define
0.35 10.0 432 0.0005 60.0 25.0 7.0

0.4 10.0 432 0.0003 20.0 20.0 7.0 Dt =lim Dl(t), (12
0.44 10.0 432 0.0003 30.0 20.0 7.0 toe

046 100 392 0001 2000 1000 105 ..

050 100 392 0001 2000 1000 11

021 160 486 00005 600 250 3.8 DL () =W (t)/4t, (13)
023 160 432 00005 600 250 8.0

025 160 432 00005 1250 250 80 where

0.3 16.0 432  0.0004 60.0 24.0 8.0
0.35 16.0 432  0.0004 30.0 24.0 8.0 N = =
0.4 16.0 400  0.0003 40.0 240 10.0 WA= N 2*1 {Ri()=Ri(0))

0.44 16.0 486 0.0005 40.0 25.0 3.8

— Qo[- (Ri(1)—Ri(0)]}?). (14)

avoid spurious diffusion of the whole system. By splitting the different terms in the square of E¢l) and

In.ort_jer to chepk equilibration and to identify the dl_ffer— 14), it is possible to calculate boiﬁo and WI(t) [W ()]
ent liquid-crystalline phases correctly, we have monitore uring the run.

nematic and smectic order parameters. The nematic order Alternatively one can define
parameterS and the direction of the nematic dwectﬁ)o

were obtained as the largest eigenvalue and the correspond- L 1d |
ing unit eigenvector of the second-rank tensor D= |lm§ aW'(t) (15
Ly 3 6eay- 11 7 and
N2 5 i®Q) - 51 (7
. . . 1d
Here® denotes the dyadic produdtjs the unit second-rank = “mZ awi(t), (16)

tensor, and:--) is a canonical average. Note trﬁb is only
defined up to a sign. A set of smectic order paramdtgyk,

on the other hand, can be defined as The latter formula has the advantage of quicker convergence

ast— o, although the statistical error is larger since it is a
N differential quantity. By comparing both expressions during
—NE (cog2mnZ;/xLy)), (8) the simulation, we checked whether the infinite-time limit
=1 has been reached, and extracted an error in the data. In every
case, bothp*(t) andD'(t) were monotonically decreasing
in time, which seems to be an expected formal property of
Brownian rod systemgas in the case of Brownian spheres

measuring smectic ordering along thaxis. HereZ; denotes

the z coordinate of the center of mass of thiéh rod. A

nematic phase can clearly be detecte8+#0 and/,=0 for :

any integern. On the oth)e/:r hand, in a smect@cShase,S !n gepe.ral,'n was Qbsiaryed that the convergflancBJqft) to

#0 and{,#0, and there is no long-range ordering in ttye :,ts tquﬂmte-“mgnhmlgg'l 's faster thlan thlat iDer)(”t). I—éegi:e-

plane. orth we useD" an as natural scales fdp| an ,
respectively.

IV. TRANSLATIONAL LONG-TIME SELF-DIFFUSION

L N B. Results for D] and D; in the nematic phase
A. Definition of the quantities

. e o ) Results for the long-time self-diffusion coefficients are
The Iong-tlme self-diffusion spll.ts mto two part§, one of ¢\ marized in Table II. Fop=6, 10, and 16, we have also
them,D| , is parallel to the nematic directé?,, while the  graphically displayed these results in Fig. 1—3. Defining an
other,Di , is perpendicular t6),. In detail, the definition of “isotropized” value of the long-time self-diffusion by
D| is D)= (2D1, +D})/3, it is tempting to compar® (s with
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TABLE II. Results of the different runs. Given are the rod pack- 0.7 ; ; :
ing fraction #, the length to width ratig; the nematic order param- = nematic smectic A
eterS the ratiosD| /D', D{/D*, D|/D{, andD{®?/D%; and the Z.0.6 T8
logarithm of the reduced orientation flip rate- per particle. The =5 0.5 __%
number in brackets gives an estimate for the error of the last digit. : 5
The two runs withp=10 andz=0.46 and 0.50 are in the smec#c- “Q 0.4 §
phase. P

£,0.3 1 A-F e I p=10

7 P S D|/D' D{/D* D{/D{ D{™ID! InTr Q 0.2 < g
0.48 4.8 0.58) 0.131) 0.081) 2.11) 0.101) -7.5 E Bl Feo___ <
041 6 048) 022D 01a1) 241 0161 -62 = 0.1 ¢ -3 I
0.43 6 0701 0.242) 0.101) 3.12) 0.161) -8.6 2 0.0 ' '
0453 6 0761) 0.201) 0.091) 3.01) 0131) -88 0.25 0.35 0.45 0.55
0.28 10 0.68]) 0.542) 0.2x1) 3.32) 0.301) -—-8.2
03 10 0.761) 0541 0.161) 472 0341 -86 n
835 ig 83‘?13)7) 8:;(3 giig 22((2 82;3 FIQ. 2. Same as_Fig. 1, but now fpr=10. The results in the
044 10 0965) 0442 0082 7.34) 0232 ] smecticA phase are included.
046 10 0097) 0.142) 0.071) 3.24) 0.092 - _ N _ _ _
050 10 0.9¢l) 0.043) 0.061) 097 0.053) 3 (1) F(_)r fixed p, Dy decrease_s for increasing WIFh an
021 16 0.721) 0.651) 0.231) 4.01) 04Q1) -8.2 almost linearn dependence. Thls_ IS S|m|Iar. to the |§otr0p|c
023 16 085) 0691 0.201) 502 0.411) 3 case, wher®| also decreases with increasing packing frac-
025 16 0.881) 0.701) 0.1948) 5.21) 0.411) - tion. In the fully aligned caseS=1), D;'/D* is expected to
03 16 0.9417) 0.711) 0.171) 6.02) 0441 - be close to the scaled long-time self-diffusion coefficient of
035 16 0.966) 0.651) 0.141) 6.72) 0.351) ) two;dlmensmnal Brownian disks which is well-described by
04 16 09815 0542 0.091) 863 0281 - 1-37yfor0<z= 0.7[26]. The actual data are much smaller
0.44 16 0.980) 0.432) 00649 9.74) 0222 i than in the disc case, proving that there is a significant en-

the translational long-time self-diffusion coefficieBt in
the isotropic phase[31]. Both quantities are conveniently
measured in terms of the short-time limD'=(2D*
+D")/3. The following facts can be extracted from our data.

_ 0.50 sion since there are less vicinal rods to cross in moving along
Q nematic smectic A the director. Second, with increasing there is less free
=040 1 .8 space available, which hinders diffusion in general. It is a
2 & subtle interplay between these two effects which results in
~ 0.30 E the nonmonotonic behavior. Close to the isotropic-nematic
Q Y. S " . : . cer
~ -2 transition, S rapidly changes with density. Hence diffusion
2 along the director is accelerated with increasing density. For
:S 0.20 N /I\I p= g g y
A oo 3 S
............. 1
2 0.10 ¢ S =S _ 10—
5 e Q | nematic
=~ - ~ !
Q 0-00 i = =~ 0-8 T : <
0.38 0.42 0.46 0.50 Q R By
- %‘ I R~
n n 06 15! S
=~ S s
FIG. 1. The ratiosD{/D" (solid ling), D{/D* (long-dashed .§q 0.4 | it “
line), andD(L'so)/Dg (short-dashed lineas functions of packing frac- Q7 K
tion % for fixed p= 6. Simulation data together with their error bars i =16
are given. The lines are a guide to the eye. The long-time transla- “Q 0.2 : f‘i—-z 1
tional self-diffusion coefficient of the isotropic phase, measured in ~Z_ !
terms of its short-time limit at isotropic-nematic coexistence, is "Q“‘ 0.0 ! :
given by the triangle. The dot-dashed line is the long-time transla- - 0.2 0.5

tional self-diffusion coefficient of the isotropic phase which is ex-

trapolated into the nematic phase region by using the fit formula of
Ref. [31]. The vertical dashed lines locate the isotropic-nematic,
and the nematic—smectitransition.

hanced entanglement of nonparallel vicinal rods.

(2) The most striking fact of our data is th@ﬂ'_ behaves
nonmonotonicallywith 7. The diffusion along the nematic
director first strongly increases, reaches a plateau, and then
decreases again; see Figs. 2 and 3. There are two inverse
effects competing in determining the diffusion along the di-
rector: First, the stronger alignment, as manifested by an in-
creasing nematic order parame®ifavors lengthwise diffu-

FIG. 3. Same as Fig. 1, but now fpr=16.
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higher densities, however, the alignment has practically satu- 40.0
rated, and the packing constraints slow down any diffusion.

(3) For fixed, D| /D" andD;'/D* increase for increasing 80 ,
p. This fact, which can be seen by a comparison of Figs. 2 i
and 3, is different from the isotropic phase whédg/D" 2 6.0 | S
decreases for increasimgat fixed . ~ &

(4) The “isotropized” diffusion D{*® exhibits the same 4.0 -
nonmonotonicity in density a@”L: it first increases similar ) LR A
to earlier findings in the Yukawa-segment mofie6], and 20 - ® .
then decreases again. This demonstrates that the acceleratic
in D{ is more dominant than the decreaseDyf. 0.0 . . , .

Comparing the data fdp{*”/D! with that for D! /D' ex- 00 02 04 06 08 1.0
trapolated from the fluid phase by the fit formula given in
Ref. [31], one obtains the following picture: In general, the S
fluid-state data fO'D}-/Dt are smaller tharD(LiSO)/Dt in the FIG. 4. Ratio of the long-time self-diffusion coefficients
nematic phase. At the isotropic-nematic transition, howeverg /. ) plbtted as a function of the nematic order paramétaihe '
both data practically coincide. In detail, fpr=4.8 andn  sojid fine is the upper bound @-1)/(1-S). The results of the
=0.48, corresponding to a state point in the stability regimesmecticA phase are given by triangles.
of the nematic phase, one hB$/D'=0.073, which is sig-
nificantly smaller tharD{*®/D'=0.10. Forp=6, isotropic- w'=1%(co 6),, (19)
nematic coexistence is ap~0.41, whereD|/D'=0.154
practically coincides wittD{*®/D'=0.16. For higher densi- Wherel, is a suitable length scale. Similarly,
ties, =0.453 atp=6, one obtains a larger difference, 5, . 2
namely,D!/D'=0.086 andD{"?/D'=0.13. A similar trend wh=I5(sin 6)g=15(1—(cos’ 6)o)

occurs for htigh?r aspect ratios: Here, at the isotropic-nemati& a typical mean-square displacement perpendicular to the

transition,D, /D*~0.33 in the isotropic phase, which is not PR 11y o 9l ol i}

much different from our data in the nematic phase. A Sim"ar_nemafuc_dlrector. Consequently, /Dy ~2w//w". Express
. : ing this in terms ofSfinally yields

trend was seen in the experiment of van Bruggeal. [40].

The diffusion in the nematic phase, coexisting with the iso- 2S+1

tropic phase, was comparable to the diffusion extrapolated D[/ Dt%ﬁ. (20

from the isotropic phase. However, in the experiment, a large

density jump was observed across the isotropic-nematic rafyq remarks are in order: First, the right-hand-side of Eq.

sition which is different from that in our spherocylinder
p y (20) actually should represent ampper boundto D|/Di,

model, and is probably due to the more complicated effectives- : -
) i o nce we neglected any parallel motion from the very begin-
interaction between the rods. This in turn leads to a IargeI w 9 yp : very beg

. . o . i
variation of the diffusion across the isotropic-nematic transi- 19" Second, in th|s_ §|mple th_eoret|cal .approadﬁ/D,_
tion which does not occur in our model. only depend; (o] Thls is a pred_lctlon which can bg tested
against our simulation data. In Fig. 4, we plot our simulation
results forD|/D; versusS First, it can clearly be seen that
the theory indeed provides an upper boundDﬁév‘Dt . Sec-

Let us now discuss a simpl@eoretical estimatdor the  ond, the simulation data reasonably fall on a single curve
ratio D‘,‘_/Dt. We assume that there is only motion in the showing that the essential dependenceDééth isons
direction parallel to the rod orientations. In the nematicalone. At the isotropic-nematic transition, the nematic order
phase, these orientations are distributed according to an ofparameter grows from=0.4 to 0.784 ag increases9].
entational distribution functiog(cosé¢), whereg is the angle  Hence, from Fig. 3, we obtain thﬁt"L/Dt is between 2 and
between the rod orientation and the nematic director. The at the isotropic-nematic transition. This is consistent with
function g(coso) is taken to be normalized with respect to recent experimentgtO] and with simulation on the Yukawa-
integration over the unit sphere, such that segment mod€]36].

C. Ratio D} /D7 in the nematic phase

27Tf désinfg(cosh)=(1)y=1, a7 D. Orientation flips
0

Finally we have calculated the raleof orientation flips
where the average ), is over the unit sphere involving the per particle in the nematic phase for relatively small densi-
orientational distribution function. The associated nematidies. We define this quantity as follows: Suppose, at time
order parametes can be expressed as an average of therero, the actual rod orientatiaid;(0) is in a cone of angle
second Legendre polynomill(cos6)=(3 cos 6—1)/2 as 6o=/2 around the directof)y, i.e., (;(0)- Q> cos6y2

3 1 =1W2. Then, with a certain flip rat€, this orientation will
S=(P(c0s6))g=3(coS 6)g~ 3. (18) be in the opposite cone afttlaor a mean time of,lie.,
Now a typical mean-square displacement parallel to the nen(—ii(lll“)-ﬁo<—1/ﬁ. An orientation flip is a rare event
atic director is which scales with the number of particles. In the simulation
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-6.0 . . . . nematic phase. This is expected, as there is still fluidlike
hd order perpendicular to the director which results in a signifi-
cant mobility, while the increasing smectic order hinders par-
~7.0 | i allel motions massively. Hence the rafiyj /D decreases

- with increasing density, while it increases with increasing
density in the nematic phase. In Fig. 4 the data for the
smecticA phase are also included, showing that they do not
-8.0 1 i fall on the same universal curve as for the data in the nematic
ee phase.

o0 A final interesting dynamical difference between the nem-
0 ' . ' ¢ ' atlilc andlsmectitA phases is the time dependence of the ratio
- D'(t)/D~(t). In the nematic phase, we always found that

00 02 04 06 08 1.0 D'(t)/D*(t) is increasing for increasing timte This is dif-

S ferent in the smectic phase, whddé(t)/D~(t) is nonmono-
tonic in time; see Fig. 6. For small timeB/(t)/D*(t) starts
from values close tdD'/D*, which is the limit of fully
aligned rods. Then, for short times, the parallel motion is
faster than the perpendicular one, since the rods experience
fluctuations and undulations of the smectic layers. Then, af-
we average over any flip and thus extract the flip fateer  ter an intermediate timeD'(t)/D*(t) reaches a maximum
particle. Results fof" are included in Table Il. Aplot of Il and decreases, as the rods now realize the one-dimensional
versusSis shown in Fig. 5. Again the data reasonably fall onconfinement parallel to the director. The long-time parallel

a single curve. However, we remark that the actual statisticaliffusion is dominated by hopping processes between vicinal
error in the data fol’ is large (and could not safely be smectic layers.

estimategl since only few events were sampled during the
simulation and the boxlengt_h in they direction_was not V. CONCLUSIONS
large. Also,I" depends sensitively on the magnitude of the
time stepAt. For largeS, the corresponding rate was small  Using Brownian dynamics simulations of colloidal hard
such that no flip process at all was observed during the simwspherocylinders, we have calculated the anisotropic transla-
lation. tional long-time self-diffusion coefficients in the nematic
phase. The diffusion along the director was nonmonotonic
E. Long-time diffusion in the smecticA phase with denSity. The ratIOD',‘_/Dt was about 2—4 near the
isotropic-nematic transition, and is increasing for increasing
density. BothD”L/Dt and the orientation flip rate depend
mainly on the nematic order parameterin the smecticA
phase, the picture was different: Here, the diffusion along the
director drops down rapidly, even below the perpendicular
diffusion, such thaD|/D{ decreases for increasing density.
We end with several comments related to future problems
‘and experiments.
(i) First, a low-density expansion for the long-time self-

. . ; diffusion coefficients was recently successfully accom-
slowing down is manifested only gradually across the tran plished by Dhont, van Bruggen, and Brid#6] in the iso-

sition. Deep in the smecti&- phase, however, the parallel tropic bh : ational h It id b

diffusion becomes even smaller than the perpendiculardiffu.—rCJpIC phase using ‘a variational: approach. wou €

sion, which is completely opposite to the behavior in the/nteresting to extenq this _theory to the nematic phase and to
’ compare with our simulational data.

(i) The long-time tail corrections tB'(t) andD*(t) are
7.0 only known for sphere$24] but not for rods. It would be
6.0 smectic A interesting to do an analysis for rodlike particles in the iso-
5.0 tropic, nematic, and smectic phases.
40 | e (iii) A comparison with experimental colloidal samples
3.0 |, nematic may be sp0|le_d by the intrinsic polydispersity of the rods.
/ Nevertheless, it should be possible to perform measurements
2.0 on samples similar to that used in RE37] in the nematic
1.0 and smectic phases. Thus an experimental verification of our
0.0 5.0 100 15.0 20.0 25.0 theoretical predictions is possible, at least in principle. It
e would be interesting to verify the nonmonotonic behavior of
FIG. 6. The ratioD'(t)/D*(t) vs reduced tima/r. The solid  the long-time self-diffusion along the nematic director ex-
line is in the smectic phase with=10 and»=0.46. For compari- Perimentally by using more concentrated nematic samples
son, the monotonic behavior in the nematic phase is showp for than that used in Ref40].
=10 and7=0.3 as a dashed curve. (iv) The present study is for prolate objects. No Brownian

In(I'7)

FIG. 5. Plot of the logarithm of the orientation flip rate per rod,
In(I'7), vs the nematic order parametgrNote that there is a large
statistical error inl".

For p=10, we have performed two runs in the smedic-
phase occurring for packing fractions 044<0.59[9]. In
particular, we have chosen=0.46 andn=0.50, see again
Tables | and Il and Fig. 2. While the diffusion perpendicular
to the director is practically not affected by the additional
smectic layering, the diffusion parallel to the director slows
down dramatically due to the one-dimensional ordering
Since the nematic—smectictransition is weakly first order
(i.e., the density jump across the transition is sinahis

Dl D)
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dynamics simulations were performed for oblate particleshe nematic director is smaller than the perpendicular diffu-
such as, e.g., clay platelets. The phase diagram of hard elligion.

soids of revolution exhibits a remarkable symmetry between

pro'late and oblate shapéé;?]: Therefore |t_ would be mter.- ACKNOWLEDGMENTS

esting to check whether a similar scenario for the long-time

guantities is valid across the isotropic-nematic transition for The author thanks J. K. G. Dhont, A. Jusufi, and H. Graf
platelets. What one expects here, is that the diffusion alonfpr helpful discussions.
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