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Anisotropic self-diffusion in colloidal nematic phases
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By computer simulation the anisotropic long-time translational self-diffusion coefficients are calculated in
the nematic phase of colloidal hard spherocylinders exhibiting Brownian dynamics in a solvent. In particular,
the two diffusion coefficientsDL

i andDL
' , parallel and perpendicular to the nematic director, are obtained for

aspect ratios between 4.8 and 16 and for arbitrary densities. Long-time diffusion along the nematic director is
nonmonotonic in density: Upon increasing the density, it first increases due to stronger alignment and then
decreases due to packing constraints. It is shown that the ratioDL

i /DL
' and the orientation flip rate essentially

scale with the nematic order parameter. While the ratioDL
i /DL

' increases with density in the nematic phase, it
decreases dramatically with increasing density in the smectic-A phase. The results are compared to recent
experiments.@S1063-651X~99!03602-8#

PACS number~s!: 82.70.2y, 61.30.2v, 66.10.2x
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I. INTRODUCTION

Since the pioneering work of Onsager@1#, it has been
known that a system of hard spherocylinders undergoe
first-order transition from an isotropic phase to a nema
phase provided the aspect ratio is sufficiently high. Wh
both the translational and orientational degrees of freedom
the rods are completely disordered in the isotropic~or fluid!
phase, there is a macroscopic director along which the
orientations are ordered in the nematic phase but the ce
of-mass positions of the rods are still disordered. Most of
recent theoretical and computer simulation work@2# has fo-
cused on structural correlations@3# and on the location of the
isotropic-nematic transition for hard rods@4–10# as well as
for charged and flexible particles@11–16#. On the other
hand, detailed experimental data are available tracing
phase boundaries for different rodlike colloidal samples@17–
19#.

While there is an increasing understanding of the st
and thermodynamic properties of rodlike particles, it is f
to say thatdynamicalcorrelations are far less studied. F
colloidal samples, the dynamics are Brownian rather th
Newtonian as for molecular liquid crystals@20–22#. A tre-
mendous difficulty in the theoretical description of th
Brownian case concerns the long-ranged hydrodynamic
teractions mediated by the solvent flow. These interacti
can, however, be neglected for low volume fractions of
colloidal particles. Correspondingly, in most of the rece
Brownian dynamics simulations, the long-time self-diffusi
coefficients for strongly interacting particles were calcula
neglecting hydrodynamic interactions. Results were obtai
both for spherical particles~see, e.g., Refs.@23–30#!, as well
as for anisotropic particles modeled by hard rods@31# and by
two- @32,33# and many-@34–36# site-models. On the othe
hand, experiments using fluorescence recovery after p
tobleaching~FRAP! for boehmite rods@37,38# and Pyridin
@39# were performed, and good overall agreement was
tained between the experimental data of van Bruggen, L
kerkerker, and Dhont@37# with the results of Brownian dy-
namics computer simulation for hard spherocylinders@31#.
PRE 591063-651X/99/59~2!/1989~7!/$15.00
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With the exception of Ref.@36#, all these previous studie
were performed in the isotropic phase. In the present w
we extend these investigations exploring the dynamical c
relations systematically over a broad stability range of
nematicphase and we also include results for the smectiA
phase. As in Ref.@31#, we use a hard spherocylinder mod
with excluded volume interactions. The reason for doing
is twofold: First, this model is governed by two paramete
only, namely, the aspect ratio and the rod number dens
Second, the stability range of the nematic phase is kno
precisely by recent computer simulations of Bolhuis a
Frenkel @9#. Clearly, in the nematic phase, the long-tim
mean-square displacement becomesanisotropic, i.e., it can
be split into parts parallel and perpendicular to the nem
director. Consequently there are two long-time self-diffusi
coefficientsDL

i and DL
' . In the present study we calculat

them both over a large stability range of the nematic pha
including cylinder aspect ratios ranging between 4.8 and
We find a nonmonotonic behavior ofDL

i for increasing den-
sity, and show that the ratioDL

i /DL
' and the orientation flip

rate essentially depend on the nematic order parameter a
This ratio DL

i /DL
' is found to increase with density in th

nematic phase, and to decrease with density in the smecA
phase.

Our study is also motivated by recent pioneering FR
experiments of van Bruggenet al. @40#, where the dynamics
perpendicular and parallel to the nematic director were
solved and distinguished in the nematic phase of boehm
rods. It was found that the diffusion coefficients are main
dominated by the density, and are comparable to that
trapolated from the isotropic phase. It was further found t
the ratio of the two long-time diffusion coefficientsDL

i and
DL

' , parallel and perpendicular to the nematic director, is
about 2–3 at the nematic density coexisting with the isot
pic phase. In our Brownian dynamics simulations we confi
these findings.

The paper is organized as follows: In Secs. II and III, w
discuss the model and the Brownian dynamics algorith
Results for the different diffusion coefficients are given a
1989 ©1999 The American Physical Society
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discussed in Sec. IV. Finally we conclude in Sec. V.

II. MODEL

The model and its Brownian dynamics is similar to th
studied previously in Ref.@31#: N spherocylinders with tota
width L and diameters are in a volumeV; their aspect ratio
is p5L/s @41#. A rod configuration is characterized by i
center-of-mass coordinates$RW i[(Xi ,Yi ,Zi),i 51, . . . ,N%
and orientations$VW i ,i 51, . . . ,N%, whereVW i is a unit vec-
tor. The potential energy is zero if the rods do not over
and infinite else. Consequently the temperatureT simply sets
the energy scale and the rod number densityr5N/V is the
only relevant thermodynamic variable which is convenien
expressed in terms of the rod packing fraction

h5rps2
„s/61~L2s!/4…. ~1!

The bulk phase diagram only depends onh and p. Hence-
forth we choose the rod diameters as a suitable unit of
length.

Neglecting hydrodynamic interactions, the short-tim
Brownian dynamics of the rods is characterized by two tra
lational short-time diffusion constantsD' and D i, perpen-
dicular and parallel to the rod axis, and a rotational sho
time diffusion constantDr . For a single cylinder in a solven
these three diffusion constants have been calculated
function of p by Broersma@42# and Tirado and co-worker
@43,44#. We have used the analytical expressions propo
by in Ref. @44#:

D'5
D0

4p
~ ln p10.83910.185/p10.233/p2!, ~2!

D i5
D0

2p
~ ln p20.20710.980/p20.133/p2!, ~3!

Dr5
3D0

pL2 ~ ln p20.66210.917/p20.050/p2!, ~4!

with

D05kBT/hsL, ~5!

wherekB is Boltzmann’s constant andhs the shear viscosity
of the solvent. Our basic time scale is

t5s2/D0. ~6!

Since we neglected hydrodynamic interactions, our mo
does not describe the correct dynamics of hard spheroc
ders at high packing fractions. Nevertheless the model
still be used if a soft interaction between the rods is pres
~as e.g., for charged rods! which can be mapped ontoeffec-
tive hard spherocylinders@45,15,6#. In this case, one has t
distinguish between the effective packing fraction result
from the interactions and the physical packing fraction of
rods. Typically, the physical packing fraction is muc
smaller than the effective packing fraction. Since the hyd
dynamic interactions are governed by the physical pack
fraction, one can still safely neglect them. However, there
still an inconsistency of the model since we assumed in
t

p

-

t-

a

d

el
n-
n

nt

g
e

-
g

is
e

Eqs. ~2!–~4! that the effective aspect ratio stemming fro
the effective interactions and the physical aspect ratio are
same. This inconsistency is not severe, since thep depen-
dence in Eqs.~2!–~4! is weak. In fact, our model was suc
cessfully used to describe self-diffusion data for silica coa
boehmite rods in the isotropic phase@37#.

III. BROWNIAN DYNAMICS SIMULATIONS

We use a sequential Brownian dynamics scheme. A s
ficiently small time stepDt is used, and a nonoverlappin
starting configuration is given. In one elementary trial step
the simulation, one rod which is labeled byi in the following
is chosen randomly and a translational and rotational t
move is made. First, the center-of-mass coordinateRW i of the
i th rod is moved. It can be composed into a part para
RW i

i[(VW i•RW i)VW i to the orientationVW i , and another partRW i
'

perpendicular toVW i , such thatRW i5RW i
i
1RW i

' . Within the

move, the parallel partRW i
i is replaced byRW i

i
1(DRi)VW i , and

the perpendicular partRW i
' is replaced byRW i

'1(DR1
')eW i1

1(DR2
')eW i2 . Here (DRi) is a Gaussian distributed rando

number with zero mean and variance 2D iDt, while (DR1
')

and (DR2
') are both Gaussian random numbers with ze

mean and variance 2D'Dt. Furthermore,eW i1 andeW i2 are two
orthogonal unit vectors perpendicular toVW i . If the new rod
configuration is free of overlaps, it is accepted, otherwise i
discarded. NextVW i is replaced byVW i1x1eW i1(t)1x2eW i2(t),
where nowx1 and x2 are Gaussian random numbers wi
zero mean and variance 2DrDt. The new orientation vecto
is scaled appropriately to have unit length. Again, if th
move leads to no rod overlap, it is accepted, otherwise i
rejected. AfterNe elementary trial steps the correspondi
physical time ist5NeDt/N. This sequential algorithm cor
responds to real Brownian dynamics only ifDt is sufficiently
small. Then one is able to generate ‘‘toothed’’ trajector

$RW i(t),VW i(t)% of the rods. The smallness ofDt is the real
bottleneck of the simulation; typically we useDt/t
5O(1024). Therefore a huge number of elementary tr
steps~typically 108) are required in order to obtain corre
statistical averages for long-time properties. The same m
ods as given in Ref.@31# were used to check that the resu
were insensitive to a further reduction of the time step. T
aspect ratiop was varied between 4.8 and 16. With tw
exceptions where the smectic-A phase was explored, th
packing fraction was always in the stability range of t
nematic phase. All parameters of the runs are summarize
Table I.

A rectangular simulation box with a square base and
riodic boundary conditions is used. The box length in thex
andy directions isL0 , while it is xL0 in thez direction, with
x.1 measuring the anisotropy of the cell. Consequen
L05(N/xr)1/3. For the actual numbers, see Table I. T
starting configuration was completely aligned along thez
direction, and was put on a body-centered-tetragonal lat
as far as the rod positions are concerned. The directorVW 0 of
the nematic phase was always very close to thez direction.
Therefore, the anisotropic box minimizes finite-size effe
in the nematic phase@9#. During the simulation the center
of-mass coordinate of the whole system was fixed in orde
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PRE 59 1991ANISOTROPIC SELF-DIFFUSION IN COLLOIDAL NEMATIC PHASES
avoid spurious diffusion of the whole system.
In order to check equilibration and to identify the diffe

ent liquid-crystalline phases correctly, we have monito
nematic and smectic order parameters. The nematic o
parameterS and the direction of the nematic directorVW 0
were obtained as the largest eigenvalue and the corresp
ing unit eigenvector of the second-rank tensor

Q5
1

N (
i 51

N
3

2
^VW i ^ VW i&2

1

2
1. ~7!

Here^ denotes the dyadic product,1 is the unit second-rank
tensor, and̂¯& is a canonical average. Note thatVW 0 is only
defined up to a sign. A set of smectic order parameters$zn%,
on the other hand, can be defined as

zn5
1

N (
i 51

N

^cos~2pnZi /xL0!&, ~8!

measuring smectic ordering along thez axis. HereZi denotes
the z coordinate of the center of mass of thei th rod. A
nematic phase can clearly be detected ifSÞ0 andzn50 for
any integern. On the other hand, in a smectic-A phase,S
Þ0 andznÞ0, and there is no long-range ordering in thexy
plane.

IV. TRANSLATIONAL LONG-TIME SELF-DIFFUSION

A. Definition of the quantities

The long-time self-diffusion splits into two parts; one
them,DL

i , is parallel to the nematic directorVW 0 , while the

other,DL
' , is perpendicular toVW 0 . In detail, the definition of

DL
i is

TABLE I. Parameters of the different runs. Given are the r
packing fractionh, the aspect ratiop, the numberN of rods in the
simulation box, the time stepDt, the total timeT over which sta-
tistics was taken, the maximal timetm of the time window where
dynamical correlations were explored, and the anisotropyx of the
simulation box. The time unit ist5s2/D0 .

h p N Dt/t T/t tm /t x

0.48 4.8 432 0.0002 180.0 100.0 4.0
0.41 6.0 432 0.0002 20.0 20.0 4.5
0.453 6.0 432 0.0002 60.0 30.0 4.6
0.28 10.0 486 0.0005 40.0 25.0 3.0
0.3 10.0 432 0.0005 50.0 25.0 3.0
0.35 10.0 432 0.0005 60.0 25.0 7.0
0.4 10.0 432 0.0003 20.0 20.0 7.0
0.44 10.0 432 0.0003 30.0 20.0 7.0
0.46 10.0 392 0.001 200.0 100.0 10.5
0.50 10.0 392 0.001 200.0 100.0 11
0.21 16.0 486 0.0005 60.0 25.0 3.8
0.23 16.0 432 0.0005 60.0 25.0 8.0
0.25 16.0 432 0.0005 125.0 25.0 8.0
0.3 16.0 432 0.0004 60.0 24.0 8.0
0.35 16.0 432 0.0004 30.0 24.0 8.0
0.4 16.0 400 0.0003 40.0 24.0 10.0
0.44 16.0 486 0.0005 40.0 25.0 3.8
d
er

nd-

DL
i
5 lim

t→`

D i~ t !, ~9!

with

D i~ t !5Wi~ t !/2t, ~10!

where

Wi~ t !5
1

N (
i 51

N

^@VW 0•„RW i~ t !2RW i~0!…#2& ~11!

is the mean square displacement of the center-of-mass c
dinate parallel to the nematic director. Similarly, let us defi

DL
'5 lim

t→`

D'~ t !, ~12!

with

D'~ t !5W'~ t !/4t, ~13!

where

W'~ t !5
1

N (
i 51

N

^$„RW i~ t !2RW i~0!…

2VW 0@VW 0•„RW i~ t !2RW i~0!…#%2&. ~14!

By splitting the different terms in the square of Eqs.~11! and
~14!, it is possible to calculate bothVW 0 andWi(t) @W'(t)#
during the run.

Alternatively one can define

DL
i
5 lim

t→`

1

2

d

dt
Wi~ t ! ~15!

and

DL
'5 lim

t→`

1

4

d

dt
W'~ t !. ~16!

The latter formula has the advantage of quicker converge
as t→`, although the statistical error is larger since it is
differential quantity. By comparing both expressions duri
the simulation, we checked whether the infinite-time lim
has been reached, and extracted an error in the data. In e
case, both,D'(t) andD i(t) were monotonically decreasin
in time, which seems to be an expected formal property
Brownian rod systems~as in the case of Brownian spheres!.
In general, it was observed that the convergence ofD'(t) to
its infinite-time limit DL

' is faster than that ofD i(t). Hence-
forth we useD i and D' as natural scales forDL

i and DL
' ,

respectively.

B. Results for DL
i and DL

' in the nematic phase

Results for the long-time self-diffusion coefficients a
summarized in Table II. Forp56, 10, and 16, we have als
graphically displayed these results in Fig. 1–3. Defining
‘‘isotropized’’ value of the long-time self-diffusion by
DL

(iso)5(2D'L1DL
i )/3, it is tempting to compareDL

(iso) with
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the translational long-time self-diffusion coefficientDL
t in

the isotropic phase@31#. Both quantities are convenientl
measured in terms of the short-time limitDt[(2D'

1D i)/3. The following facts can be extracted from our da

FIG. 1. The ratiosDL
i /D i ~solid line!, DL

'/D' ~long-dashed
line!, andDL

(iso)/D0
T ~short-dashed line! as functions of packing frac

tion h for fixed p56. Simulation data together with their error ba
are given. The lines are a guide to the eye. The long-time tran
tional self-diffusion coefficient of the isotropic phase, measured
terms of its short-time limit at isotropic-nematic coexistence,
given by the triangle. The dot-dashed line is the long-time tran
tional self-diffusion coefficient of the isotropic phase which is e
trapolated into the nematic phase region by using the fit formul
Ref. @31#. The vertical dashed lines locate the isotropic-nema
and the nematic–smectic-A transition.

TABLE II. Results of the different runs. Given are the rod pac
ing fractionh, the length to width ratiop; the nematic order param
eter S; the ratiosDL

i /D i, DL
'/D', DL

i /DL
' , andDL

(iso)/Dt; and the
logarithm of the reduced orientation flip rateGt per particle. The
number in brackets gives an estimate for the error of the last d
The two runs withp510 andh50.46 and 0.50 are in the smectic-A
phase.

h p S DL
i /D i DL

'/D' DL
i /DL

' DL
(iso)/Dt ln Gt

0.48 4.8 0.55~1! 0.13~1! 0.08~1! 2.1~1! 0.10~1! 27.5
0.41 6 0.48~1! 0.22~1! 0.12~1! 2.4~1! 0.16~1! 26.2
0.43 6 0.71~1! 0.24~2! 0.10~1! 3.1~2! 0.16~1! 28.6
0.453 6 0.75~1! 0.20~1! 0.09~1! 3.0~1! 0.13~1! 28.8
0.28 10 0.68~1! 0.51~2! 0.21~1! 3.3~2! 0.30~1! 28.2
0.3 10 0.76~1! 0.54~1! 0.16~1! 4.7~2! 0.31~1! 28.6
0.35 10 0.88~1! 0.59~2! 0.14~1! 5.8~2! 0.32~1! -
0.4 10 0.943~7! 0.52~1! 0.11~1! 6.5~2! 0.28~1! -
0.44 10 0.962~5! 0.44~2! 0.08~2! 7.3~4! 0.23~2! -
0.46 10 0.97~1! 0.14~2! 0.07~1! 3.2~4! 0.09~2! -
0.50 10 0.99~1! 0.04~3! 0.06~1! 0.9~7! 0.05~3! -
0.21 16 0.72~1! 0.65~1! 0.23~1! 4.0~1! 0.40~1! 28.2
0.23 16 0.85~1! 0.69~1! 0.20~1! 5.0~2! 0.41~1! -
0.25 16 0.88~1! 0.70~1! 0.194~8! 5.2~1! 0.41~1! -
0.3 16 0.941~7! 0.71~1! 0.17~1! 6.0~2! 0.40~1! -
0.35 16 0.966~6! 0.65~1! 0.14~1! 6.7~2! 0.35~1! -
0.4 16 0.981~5! 0.54~2! 0.09~1! 8.6~3! 0.28~1! -
0.44 16 0.989~4! 0.43~2! 0.064~9! 9.7~4! 0.22~2! -
.

~1! For fixed p, DL
' decreases for increasingh with an

almost linearh dependence. This is similar to the isotrop
case, whereDL

t also decreases with increasing packing fra
tion. In the fully aligned case (S[1), DL

'/D' is expected to
be close to the scaled long-time self-diffusion coefficient
two-dimensional Brownian disks which is well-described
12 4

3h for 0<h&0.7 @26#. The actual data are much small
than in the disc case, proving that there is a significant
hanced entanglement of nonparallel vicinal rods.

~2! The most striking fact of our data is thatDL
i behaves

nonmonotonicallywith h. The diffusion along the nematic
director first strongly increases, reaches a plateau, and
decreases again; see Figs. 2 and 3. There are two inv
effects competing in determining the diffusion along the
rector: First, the stronger alignment, as manifested by an
creasing nematic order parameterS, favors lengthwise diffu-
sion since there are less vicinal rods to cross in moving al
the director. Second, with increasingh there is less free
space available, which hinders diffusion in general. It is
subtle interplay between these two effects which results
the nonmonotonic behavior. Close to the isotropic-nema
transition,S rapidly changes with density. Hence diffusio
along the director is accelerated with increasing density.

a-
n

-

f
,

FIG. 2. Same as Fig. 1, but now forp510. The results in the
smectic-A phase are included.

FIG. 3. Same as Fig. 1, but now forp516.

it.
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higher densities, however, the alignment has practically s
rated, and the packing constraints slow down any diffusi

~3! For fixedh, DL
i /D i andDL

'/D' increase for increasing
p. This fact, which can be seen by a comparison of Figs
and 3, is different from the isotropic phase whereDL

t /Dt

decreases for increasingp at fixedh.
~4! The ‘‘isotropized’’ diffusion DL

(iso) exhibits the same
nonmonotonicity in density asDL

i : it first increases similar
to earlier findings in the Yukawa-segment model@36#, and
then decreases again. This demonstrates that the accele
in DL

i is more dominant than the decrease ofDL
' .

Comparing the data forDL
(iso)/Dt with that for DL

t /Dt ex-
trapolated from the fluid phase by the fit formula given
Ref. @31#, one obtains the following picture: In general, th
fluid-state data forDL

t /Dt are smaller thanDL
(iso)/Dt in the

nematic phase. At the isotropic-nematic transition, howev
both data practically coincide. In detail, forp54.8 andh
50.48, corresponding to a state point in the stability regi
of the nematic phase, one hasDL

t /Dt50.073, which is sig-
nificantly smaller thanDL

(iso)/Dt50.10. Forp56, isotropic-
nematic coexistence is ath'0.41, whereDL

t /Dt50.154
practically coincides withDL

(iso)/Dt50.16. For higher densi
ties, h50.453 at p56, one obtains a larger differenc
namely,DL

t /Dt50.086 andDL
(iso)/Dt50.13. A similar trend

occurs for higher aspect ratios: Here, at the isotropic-nem
transition,DL

t /Dt'0.33 in the isotropic phase, which is n
much different from our data in the nematic phase. A sim
trend was seen in the experiment of van Bruggenet al. @40#.
The diffusion in the nematic phase, coexisting with the is
tropic phase, was comparable to the diffusion extrapola
from the isotropic phase. However, in the experiment, a la
density jump was observed across the isotropic-nematic t
sition which is different from that in our spherocylinde
model, and is probably due to the more complicated effec
interaction between the rods. This in turn leads to a la
variation of the diffusion across the isotropic-nematic tran
tion which does not occur in our model.

C. Ratio DL
i /DL

' in the nematic phase

Let us now discuss a simpletheoretical estimatefor the
ratio DL

i /DL
' . We assume that there is only motion in th

direction parallel to the rod orientations. In the nema
phase, these orientations are distributed according to an
entational distribution functiong(cosu), whereu is the angle
between the rod orientation and the nematic director. T
function g(cosu) is taken to be normalized with respect
integration over the unit sphere, such that

2pE
0

p

du sinug~cosu![^1&g51, ~17!

where the averagê̄ &g is over the unit sphere involving th
orientational distribution function. The associated nema
order parameterS can be expressed as an average of
second Legendre polynomialP2(cosu)5(3 cos2 u21)/2 as

S5^P2~cosu!&g5 3
2 ^cos2 u&g2 1

2 . ~18!

Now a typical mean-square displacement parallel to the n
atic director is
u-
.

2

tion

r,

e

tic

r

-
d
e
n-

e
e
i-

ri-

e

c
e

-

wi5 l 0
2^cos2 u&g , ~19!

wherel 0 is a suitable length scale. Similarly,

w'5 l 0
2^sin2 u&g5 l 0

2~12^cos2 u&g!

is a typical mean-square displacement perpendicular to
nematic director. Consequently,DL

i /DL
''2wi/w'. Express-

ing this in terms ofS finally yields

DL
i /DL

''
2S11

12S
. ~20!

Two remarks are in order: First, the right-hand-side of E
~20! actually should represent anupper boundto DL

i /DL
' ,

since we neglected any parallel motion from the very beg
ning. Second, in this simple theoretical approach,DL

i /DL
'

only depends onS. This is a prediction which can be teste
against our simulation data. In Fig. 4, we plot our simulati
results forDL

i /DL
' versusS. First, it can clearly be seen tha

the theory indeed provides an upper bound forDL
i /DL

' . Sec-
ond, the simulation data reasonably fall on a single cu
showing that the essential dependence ofDL

i /DL
' is on S

alone. At the isotropic-nematic transition, the nematic or
parameter grows from'0.4 to 0.784 asp increases@9#.
Hence, from Fig. 3, we obtain thatDL

i /DL
' is between 2 and

4 at the isotropic-nematic transition. This is consistent w
recent experiments@40# and with simulation on the Yukawa
segment model@36#.

D. Orientation flips

Finally we have calculated the rateG of orientation flips
per particle in the nematic phase for relatively small den
ties. We define this quantity as follows: Suppose, at ti
zero, the actual rod orientationVW i(0) is in a cone of angle
u0[p/2 around the directorVW 0 , i.e., VW i(0)•VW 0.cosu0/2
51/&. Then, with a certain flip rateG, this orientation will
be in the opposite cone after a mean time of 1/G, i.e.,
VW i(1/G)•VW 0,21/&. An orientation flip is a rare even
which scales with the number of particles. In the simulati

FIG. 4. Ratio of the long-time self-diffusion coefficients
DL

i /DL
' , plotted as a function of the nematic order parameterS. The

solid line is the upper bound (2S11)/(12S). The results of the
smecticA phase are given by triangles.
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we average over any flip and thus extract the flip rateG per
particle. Results forG are included in Table II. A plot of lnG
versusS is shown in Fig. 5. Again the data reasonably fall
a single curve. However, we remark that the actual statist
error in the data forG is large ~and could not safely be
estimated!, since only few events were sampled during t
simulation and the boxlength in thex,y direction was not
large. Also,G depends sensitively on the magnitude of t
time stepDt. For largeS, the corresponding rate was sma
such that no flip process at all was observed during the si
lation.

E. Long-time diffusion in the smectic-A phase

For p510, we have performed two runs in the smecticA
phase occurring for packing fractions 0.44,h,0.59 @9#. In
particular, we have chosenh50.46 andh50.50, see again
Tables I and II and Fig. 2. While the diffusion perpendicu
to the director is practically not affected by the addition
smectic layering, the diffusion parallel to the director slo
down dramatically due to the one-dimensional orderi
Since the nematic–smectic-A transition is weakly first order
~i.e., the density jump across the transition is small!, this
slowing down is manifested only gradually across the tr
sition. Deep in the smectic-A phase, however, the paralle
diffusion becomes even smaller than the perpendicular di
sion, which is completely opposite to the behavior in t

FIG. 5. Plot of the logarithm of the orientation flip rate per ro
ln(Gt), vs the nematic order parameterS. Note that there is a large
statistical error inG.

FIG. 6. The ratioD i(t)/D'(t) vs reduced timet/t. The solid
line is in the smectic phase withp510 andh50.46. For compari-
son, the monotonic behavior in the nematic phase is shown fop
510 andh50.3 as a dashed curve.
al

u-

r
l

.

-

-

nematic phase. This is expected, as there is still fluidl
order perpendicular to the director which results in a sign
cant mobility, while the increasing smectic order hinders p
allel motions massively. Hence the ratioDL

i /DL
' decreases

with increasing density, while it increases with increasi
density in the nematic phase. In Fig. 4 the data for
smectic-A phase are also included, showing that they do
fall on the same universal curve as for the data in the nem
phase.

A final interesting dynamical difference between the ne
atic and smectic-A phases is the time dependence of the ra
D i(t)/D'(t). In the nematic phase, we always found th
D i(t)/D'(t) is increasing for increasing timet. This is dif-
ferent in the smectic phase, whereD i(t)/D'(t) is nonmono-
tonic in time; see Fig. 6. For small times,D i(t)/D'(t) starts
from values close toD i/D', which is the limit of fully
aligned rods. Then, for short times, the parallel motion
faster than the perpendicular one, since the rods experie
fluctuations and undulations of the smectic layers. Then,
ter an intermediate time,D i(t)/D'(t) reaches a maximum
and decreases, as the rods now realize the one-dimens
confinement parallel to the director. The long-time para
diffusion is dominated by hopping processes between vic
smectic layers.

V. CONCLUSIONS

Using Brownian dynamics simulations of colloidal ha
spherocylinders, we have calculated the anisotropic tran
tional long-time self-diffusion coefficients in the nemat
phase. The diffusion along the director was nonmonoto
with density. The ratioDL

i /DL
' was about 2–4 near th

isotropic-nematic transition, and is increasing for increas
density. BothDL

i /DL
' and the orientation flip rate depen

mainly on the nematic order parameterS. In the smectic-A
phase, the picture was different: Here, the diffusion along
director drops down rapidly, even below the perpendicu
diffusion, such thatDL

i /DL
' decreases for increasing densit

We end with several comments related to future proble
and experiments.

~i! First, a low-density expansion for the long-time se
diffusion coefficients was recently successfully acco
plished by Dhont, van Bruggen, and Briefs@46# in the iso-
tropic phase using a variational approach. It would
interesting to extend this theory to the nematic phase an
compare with our simulational data.

~ii ! The long-time tail corrections toD i(t) andD'(t) are
only known for spheres@24# but not for rods. It would be
interesting to do an analysis for rodlike particles in the is
tropic, nematic, and smectic phases.

~iii ! A comparison with experimental colloidal sample
may be spoiled by the intrinsic polydispersity of the rod
Nevertheless, it should be possible to perform measurem
on samples similar to that used in Ref.@37# in the nematic
and smectic phases. Thus an experimental verification of
theoretical predictions is possible, at least in principle.
would be interesting to verify the nonmonotonic behavior
the long-time self-diffusion along the nematic director e
perimentally by using more concentrated nematic samp
than that used in Ref.@40#.

~iv! The present study is for prolate objects. No Browni
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dynamics simulations were performed for oblate partic
such as, e.g., clay platelets. The phase diagram of hard e
soids of revolution exhibits a remarkable symmetry betwe
prolate and oblate shapes@47#. Therefore it would be inter-
esting to check whether a similar scenario for the long-ti
quantities is valid across the isotropic-nematic transition
platelets. What one expects here, is that the diffusion al
B
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the nematic director is smaller than the perpendicular dif
sion.
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