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Phase diagram of tobacco mosaic virus solutions
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The phase behavior of an aqueous suspension of rodlike tobacco mosaic viruses is investigated theoretically
as a function of the virus density and the concentration of added salt. The total free energy involves “volume
terms” from the microscopic counter- and co-ions and an effective pair interaction between the colloidal rods
described by a Yukawa-segment model according to linear screening theory. Within a thermodynamic pertur-
bation approach, the short-range repulsion between the rods is mapped onto a reference system of effective
hard spherocylinders. The free energy of the spherocylinder system is gained from combining a cell model with
scaled particle theory, which yields a reasonable phase diagram. The remaining long-range interaction is
treated within a mean-field approximation. As a result we find stable fluid, nematic, and smectic phases as well
as AAA- and ABC-stacked crystals. For increasing salt concentration at fixed rod concentration, there is a
nematic reentrant transition. We finally discuss our results in view of experimental data.
[S1063-651%9901302-1

PACS numbd(s): 82.70.Dd, 64.70.Md

I. INTRODUCTION i.e., nearly touching charged rods tend to orient perpendicu-
. . - . lar to minimize their potential energy.

In the 1930s the exlstence of colloidal I_|qU|d crystalline |, this paper we stgrt from the pr?r)rllitive model of strongly
phases was detected in aqueous suspensions @btReco  asymmetric electrolyte&harged colloidal rods, counterions,
mosaic virus(TMV): A phase separation into(¢hinnep op-  and co-ions Linear screening theory results in an effective
tical isotropic and a(thicken birefringent phase was ob- Yukawa-segment model describing the interaction between
served when the virus concentration exceeded[200Sub-  two rods plus additional “volume terms” comprising the
sequently, higher ordered liquid-crystalline phases werdree energy of the counter- and co-ions as obtained for
discovered for samples under different conditions: Layere@pherical macro-ions recently by van Roij and HangEg;
structureg 2—4] were proved to be either a colloidal crystal S€€ alsq17]. These terms are particularly important for low

[5] or a smectic phasks], depending on the ionic strength. salt concentrations. The Yukawa-segment interaction is split

For highly deionized samples the structure is still controverN0 & short-ranged and a long-ranged part according to stan-

sial' here some evidence for a columnar phase has been rdard thermodynamic perturbation theory. Using the system
’ P &f hard spherocylinders as a reference system for the short-

ported[7]. Still the full phase diagram of an aqueous TMV y5naed part and describing the long-ranged part on a mean-
suspension as a function of its density and the ionic strengtfie|q level, we obtain the free energies in the various liquid-
is not known. crystalline phases and the overall phase diagram. We finally
Over other rodlike colloidal samples, e.g., the fd virusremark that Han and Herzfe[d 8] recently proposed a simi-
[8—10] or Boehmite rod$11,12), the TMV has the important lar strategy, deriving the effective shape of a HSC reference
advantage that it is practically rigid and monodisperse, whictsystem from a self-consistent interplay between the reference
facilitates a theoretical description with an effective Ssystem and a mean-field description. In this work, however,
orientation-dependent pair interaction. The simplest modepnly low ordered phases were under consideration and the
system of a lyotropic colloidal liquid crystal is that bard ~ “volume terms” have been neglected. _
spherocylinderHSC$ with a pure excluded volume inter-  The paper is organized as follows. Free energies of the
action. Within this model, Onsagel3] explained the dlffergnt phases in the hard spherocylinder model are consid-
isotropic-nematic transition for large aspect ratipsf the ~ €red in Sec. Il. We combine a cell model with a scaled par-
HSC. Although the model is quite simple and governed b);lcle theory and find that the resulting phase diagram com-
only two parameters, namely, the particle density pnit is pares reasc_)nably well with the computer simulation data. In
only recently that the full phase diagram was explored by>€¢- !!l we introduce a perturbation scheme for charged rod-
computer imulton; see RELa] A he T is crarged L0 sshensins nd show how o avpy 11 vt
stabilized, the interaction between two rods will be long, o presented in Sec. IV. We present in Séa brief com-
ranged(at least fqr strongly deionized samgleihe SIM- harison of our theoretical results with available experimental
plest approach to include these long-ranged interactions is ta. We conclude in Sec. VI.
describe them approximately in an effective diameter as al-

ready done by Onsager. This method had been expanded By CELL MODEL THEORY FOR THE PHASE BEHAVIOR
Stroobantset al. [15], who included the twisting effect, OF HARD SPHEROCYLINDERS

A. Basic features of the model

*Also at Institut fur Festkaperforschung, Forschungszentrum Ju  The shape of the HSC contains a cylindric part capped
lich, D-52425 Jlich, Germany. with two hemispheres at the ends such that it is characterized
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by a total lengthL and a widthD. The anisotropy of the N
particle is measured by the aspect rgiioL/D. In general, Wy,

its center-of-mass position is denoteand its orientation is

described by a unit vectap pointing along the cylindrical
axis. A system o HSCs is one of the simplest models for
rodlike particles sincekgT simply sets the energy scale.
Hence there are only two independent parameters, namely,
the aspect ratip and the cylinder number densipz=N/V,
whereV is the system volume. This density can conveniently
be expressed in terms of the close-packed density

2
PP 5y J3p) DF @

Two limiting cases are of special interest. First, for 0, the
hard sphere model is recovered. In the opposite so-called FG, 1. Construction of the mean distance. The configuration

On_sager limit of infini_tely Ior_lg r0d$)—_>oo one can asymp- parameters of the particle are given by the center-of-mass vector
totically calculate the isotropic-nematic phase transition ana-

lytically. and th.e urlit vectgrf) p.oir.1ting in ttle direction of the particle. The
The phase diagram of HSCs for all aspect ratios has onli)emat'c ghrec}or '.S pglntlng along,. The normal of t.he tOUCh,'ng

very recently been explored by Monte Carlo simulationsP/@ne points in directiomy . Note that the mean distan€®, is

[14]. Previously, simulation results had been available onl)fot""t'on"’1I invariant around the nematic director.

for very few values op [19-21], whereas analytic calcula-

tions, mainly based on density-functional methods, had beeprobability of the rods pointing in directiom. We shall use

restricted to low-order phasg¢@2-29. In the rest of this 47y ag a trial function, where the single variational param-

section we present a simple theory, which accounts for th@ier o, describes the width of the orientation distribution
phase behavior of HSCs semiquantitatively, though with less

numerical effort. A comparison with available Monte Carlo around a given dLrecFoavO. In particular, we use a Meier-
data[14] shows quite good agreement. Parts of this workSaupe form fog(w), i.e.,

were already published elsewhée]. - B - -
g(w)=N""exf aPy(w- wy)], 2

B. Fundamental concepts of the theory

—(3y2_ i .

The basic ingredient to obtain the phase behavior is thgvhelre ch(jX)A_[(?TX tl)/2 IS th? second L(—:gendre ‘I’.O'Vtr.‘o
reduced free energy per particfe= BF/N in the different mia Qanz R IS 9 guargn ee_ correc normalz_a lon
phases from which the pressure and the chemical potentidls,9(w)d“w=1. The integration with respect to the orienta-

can be derived. Here 8~KkgT is the thermal energy. The tions is performed on the unit sphers,: szdZ(:)
phase coexistence is then achieved by a usual common tan-

2 T i _ H

gent construction to the free energies of the two coexistin _eggsd(M ¢sin(@)do=4m. The rotational free energy thus
phases. In order to accegswve shall either take known ex-
pressions or use a variational cell theory for the one-particle
densityp)(r, ) of the HSC. - - -

The fundamental approximation for our treatment of the fmt:f d*o g(@)In[g(w)]. 3)
anisotropic particles is the factorization of translatiofsga-
tial) and orientational degrees of freedom. The orientational
free energyf™ describes ideali.e., noninteractingrotators D. Mapping onto an effective oriented system
obeying a fixed orientational distributiog(w), which is In the different phases, we map orientable particles onto
given explicitly below. Except for the fluid phase, where we effective oriented ones. Their effective shape is constructed
use a scaled particle thedi36], we obtain the free energy of as follows. First, let the center-of-mass position of a HSC be
the translational degrees of freedoifP® by mapping the fixed and letw, be the direction of the nematic director. We
system onto a substitute system of completelym?ligrsli(tj Palstart from the convex envelope of all planes touching a
ticles with an effect_lve shape. Thus we hal\fe_f + PR spherocylinder pointing in directiom. The shortest distance
Let us outline the different steps in more detail. R, from the center-of-mass position to a plane in direction
wwp touching the HSQsee Fig. 1 will be now averaged

_ with respect to the orientation distribution functigf),
The orientation distribution functiom(w) is assumed which yields the mean distance

to be spatially invariant, being thus proportional to the

spatial averaged one-particle densitg®)(r,»):g(w) ROy [g]):EJrEf 2o 9o o). (@

=N"11d% p)(r,w). The quantity g(w) measures the , 2 2]s,

C. Handling the orientational degrees of freedom
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The effective shape now is the Legendre transforrR ofith The free energy of the system is obtained by a modified
respect t06yp, defined by Cofyp=@o- wyp. This con- cell model: The basic assumption is that the free volume cell

struction embodies approximately orientational quctuations.for the HSfCh W('jth tr;]e eﬁecgtl\{e shap;]e hgs tge dsamﬁ fé)rm "ﬁ'
in an average sense into the effective shape of a substitu#ge one of hard Spheres, being a rhombic dodecahedron. 1is

ABC o i : :
hard body. It is instructive to consider two limiting cases. €€ VOlUMevfee” IS given in Appendix A. Hence we obtain
First, for fully aligned spherocylinders we havg(cS)

for the reduced free energy per particle in thBC crystal
= 5(:3— J)o) and the effective shape coincides with theﬁorigi- "f‘ABC(a) =l @) — In[A‘3v$§eC(a)], (6)
nal HSC shape. Second, for an isotropic distributigia)
=1/44, the effective shape is a sphere with the mean radiu¥here « is the variational parameter for the orientational
of curvatureR o= D/2+L/4 [27,26]. distribution andA is the thermal de Broglie wavelength. Our

Except for the crystalline phases, we approximate the efproposed cell model reduces fpr=0 to the familiar hard-

fective shape further as effectiaigned hard spherocylin- sphere cell model. In order to obtain the correct coexistence
ders with an effective diameted* =2§( Ovp=12:[g]) densities for the hard-sphere fluid-solid transition one there-

. — . fore reduces the free energy by an empirical fit parameter
* _ —N- _N*
and an effective length* =2R(6yp=0;[g]) —D*. In this C.= - 1.8[33] to obtain

substitute system we split the free energy stemming from the’s
center-of-mass coordinates into a part describing the fluidlike fronn=Frnnt C @
dimensions and another one describing the solidlike dimen- ABCT TABCT s

sions. We treat the fluidlike dimensions with a scaled particle]'he Constancs is now used Consistenﬂy for all aspect ratios
description, whereas for the solidlike dimension we use an all solidlike phases, but not in the isotropic and nematic
cell model. For strictly aligned spherocylinders Taytral.  phases. We finally have to minimize the free energy with
[28] applied such a strategy to calculate the phase diagramespect to the orientation distribution to optimize the map-
The scaled particle theory;ombines the probability of par- pmg on the effective para||e| partic|es_

ticle insertion with the pressure at a plane wall scaling be-

tween both expressions to derive an expression for the equa- 2. Plastic crystal phase

tion of state[26]. The basic idea for &ree volume theorys

to divide the space into equal compartments, each containingr
a single particle that moves there independent of the neighd
bor particles. The partition function factorizes by this as-

sumption. Recall the case of hard sphd2%30d, where the size R for such a rotator solid, we obtain an effective hard
configurational integra@Qy factorizes as sphere with radiusRea=D/2+L/4. The free volume for

this hard sphere cell model readsf..=[(y2/p)?
—2Rmead®/ V2 and we obtain for the free energy in the plas-

In the plastic crystal phase, the center-of-mass coordinates
e perfectly ordered on an fcc lattice while the orientation
istribution is constant. By our construction of the effective

1 - - _ HS, = - .
QN:mfvdgrl' o fvdere BUpotT1s - %) tic crystal phase |
" fo=f(a=0)—In(A 3vf.) +Cs. 8
37 _. N .
g[ f . d°r | =Vfree- (5 Again, we have corrected our theory by the same constant
free Cs-
Herevee is the free volume one particle can access within a 3. AAA crystal

single cell. For hard spheres the free energy obtained by the
cell theory provides a strict upper bound to the real freed
energy. In our approach, however, this property is lost sinc%
we already did approximations.

Variational parameters, i.e., the width of the orientation
AAA

distribution, distinguish the one-particle density fields in thefree volumev®*4  which is given in Appendix A. The free

various phases. To optimize the mapping, we therefore fi- finall d
nally minimizethe free energy with respect to these param—energy inally reads
eters. In the following, the whole strategy will be illustrated fAAA(a):frot(a)_|n(A—3v#£eA)+Cs_ (9)

for the different liquid-crystalline phases.

We describe theAAA structure by stacking two-
imensional triangular hard-sphere crystals on top of each
ther and stretching them in the stacking direction while fix-
ing the ratio of the lattice constants to Ipe-1. The free
volume cell for this structure is a hexagonal prism with the

Again, a final minimization with respect to the width of the
E. Different phases in systems of hard spherocylinders orientation distribution is required and consistently the con-

stantC, is added.
1. ABC crystal

Hard spheres are known to freeze in a face-centered-cubic 4. bec crystal

crystal[31,32. One obtains the corresponding structure of Contrary to the previously mentioned crystalline struc-
HSCs by stretching the fcc crystal along the 111 directiontures the bcc solid is built up by layers, where the oriented
The hexagonal layers of HSCs perpendicular to the directoparticles are located on a squared lattice perpendicular to the
are then stacked as #&BC sequence. This structure is also director. This structure is known only to be metastable for
the close-packed structure for HSCs. hard spheres; however, as we are also interested in the HSC
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system as a basis for a perturbation theory for long-range 7. Nematic phase
potentials, we also consider this structure. In the nematic phase all the particles are pointing by pref-
By a suitable stretching with a facter+1 of the corre-

sponding bcc hard-sphere crystal we obtain the anisotropigrence along the nematic directag while the center-of-

structure for HSCs. The free volume cell of the stretched bed35S coord|_nate shaws no o_rder_. We approxmate the free
crystal is assumed to be the same as the one in the case gicray of this phase by considering a fluid of parallel hard

hard spheres, namely, a truncated octahedron with the fretseogelg(;c){mger_Srf\:;'tgci}l?egﬁe;rtt'.\'c?edéamgfi.Oanngo??hgf];ec(;ess
volumev % see Appendix A. The free energy from our cell v 9 ' part Xpresst X

theory including the consta, is free energy of parallel hard spherocylinders rel88
37* — 5*2(3/2+B?/6)
(1-7*)?

with B=pwL*D*2/4. The packing fraction of the effective
The present approach is readily generalized to a columnavarallel hard spherocylinders was denoted #¥=pv§,

phase where aligned particles are fluidlike along tubeswith v} = 7(D*3/6+ D*2L*/4) being the volume of the ef-

which form a two-dimensional hexagonal lattice in the planefective spherocylinder. To optimize the mapping we finally

perpendicular to the director. However, in contrast to theminimize

computer simulation, the columnar phase will win always

against theAAA crystal since a one-dimensional hard-rod Tnen{a):fFOt(a)+fid+fﬁ’én(a) (14)

system will never freezg34]. This deficiency was recovered

also in the theory for oriented cylindef28]. For this reason with respect to the width of the orientation distributi@).

our theory overestimates the stability of the columnar phasdn order to compensate for the lack of configurations due to

In order to circumvent this problem we have discarded thehis crude mapping description we add a second empirical

foed @) = @) — In(A~30E%) + C,. (10 X =

nem

—In(1-7%*), (13

5. Columnar phase

columnar phase altogether. fitting parametelC,,= —2.25 to the free energy per patrticle.
The value of this constant settles the isotropic-nematic-
6. Smectic-A phase smectic as well as the isotropic-nematic-solid triple point and

anvas chosen in comparison with computer simulatifh4].

In th ic ph h icl i . .
n the smectic phase the particles are oriented and é—lence the free energy of the nematic phase reads finally

ranged in layers perpendicular to the director. Within thes

layers the particles behave in fluidlike fashion. For the two-fnem™ frem® Cn .

dimensional fluid of effective particles with diamef@t we

use a scaled particle descriptiB5] to obtain the free en-

ergy In the isotropic(fluid) phase the excess free energy per
particle is given within the scaled particle thed&6] as

8. Isotropic phase

275~ 1
SRS IN(A2pp)+ ——— —In(1—7%p), (11 an+(a%6—a)n?
® RN * &= s —n(i-n, 19
(1-m)
where 73,=pdwD*?/4 is the two-dimensional packing ith
fraction of the effective hard disks anldthe spacing between
the smectic layers. In the remaining dimension we calculate 3(1+p)(1+p/2)
the free energy from a one-dimensional cell model a= 1+(3/2)p (16)
IR —In(A Yo7y, In the hard-sphere limit this expression corresponds to the
Percus-Yevick approximatiof87]. Here n=puv is the vol-

with the free Voluma)fsrg‘f d— (D* + L*) ume fraction of the HSC Witbo: 7T(D3/6+ LD2/4) the vol-

ume of one HSC.

The remaining parts of the free energy are the contribu-
tion from the ideal rotator§™'=1/47 and the ideal gas con-
tribution f9=In(A3p)—1. Thus the total free energy in the
isotropic phase becomes

The total free energy then reads

fom(a,d) =1 @)+ a,d)+ 55 «,d)+ Cy/3. w2

Consistent with the treatment of the crystalline structures, we fiso_ groty fid gex 17)
add a third of the constaf, to the free energy in the smec- 0
tic phase as the system is solidlike in only one dimension.
Ford—D*+L* the free energy ™ diverges. On the other
hand, wherd— 4/p 7D*? the termf5P'goes to infinity. Con- The result of our theoretical description is shown in Fig.
sequently there is a minimum of the free enefgy(«,d) for 2, where the phase behavior is shown as a function of the
intermediate layer spacings. We finally minimize the freelength-to-width ratiop and the reduced density*. The
energy numerically with respect to the orientation distribu-shaded areas correspond to the coexistence regions. Short
tion and the layer spacing. rods freeze with increasing density first into a plastic crys-

F. Results
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O 1 2 3 p4 5 6 7
FIG. 2. Phase diagram for HSC in te-p plane, wherep*
=plpcp. The shaded area corresponds to the coexistence region
calculated within the cell theory and the dots are the simulation data
from Ref.[14]. There is an aligned AA solid, an alignedABC

solid, a plastic crystalR), an isotropic fluid (), and a nemati¢N)
and a smecti& (SmA) phase. The symbols for the simulational

data are+, |-ABC transition; ¢, I-P transition; (I, 1-SmA FIG. 3. Yukawa-segment model for the pair interaction of two
transiton; 4, I-N  transition; X N-SmA transition;  charged rods The physical parameters are the lelgih and the
*  SmA-ABC transition; A, P-ABC transition. width dy,, of the virus particles. We model the pair interaction of

two rods pointing in thef)l and J)z directions and being a distance
talline structure P) For hlgher densities this plaStiC Crystal Fl_FZ apart by a Yukawa-segment model. There Mte 17 beads
then transforms into an orientationally orde®®BC crystal.  in a distancedegaligned on the rods and their mutual distance is
Note that our theory respects the close-packed limit, i.e., thﬁ?aﬁ|.
free energy diverges when approaching this structure. For
length-to-width ratios larger tham=0.522 the plastic crystal _ _ )
becomes metastable and the isotropic fl@id directly ~ Surface proteins leading, atgH of 7, to a line charge of

freezes into the ordered solid. Beyond an aspect ratip of 10—20 e€/nm in titration experiments. However, some of
—3.4 a smectid phase (SmA) becomes stable. For a these charges recondense at the surface. As only the bound-

slightly larger length-to-width ratio the isotropic fluid trans- &7y value of the counterion charge density at the Wigner-

forms first with increasing density into a nematic phaisi, ( Seitz cell is responsible f_or the pair interaction, the totql
then into a smectié phase, and finally into aABC solid. charge has to be renormalized to a lower value when consid-

Long HSCs withp=5.19 first freeze into aAAA structure.  €7ng the pair interactiofi38—40. A total charge number of

The stretched bcc crystalline phase was never stable withifPughly Z=300-500 was able to reproduce the static struc-
our theory. ture factor of light scattering experimerl,42. Here we

Comparison with the computer simulations of BoIhuisth”S take a fixed value =390 for the total effective rod

and Frenke[14] shows good overall agreement. These dat#narge. _ _ _

are included in Fig. 2 as dots. All stable phases and the BY density functional perturbation theory it was recently
topology of the phase diagram are remarkably well reprodémonstrated how to obtain the effective Derjaguin-Landau-
duced by our simple theory. Additionally, the theory reveals¥€rwey-Overbeek pair interaction within the primitive
the correct slopes of all coexistence lines. However, one ophodel [43,16,44. By this derivation, additional “volume
serves when comparing the results to simulational data thd€™ms” show up, which shift the phase boundaries particu-
the theory shows some deviations for longer rods, e.g., thirly for salt-free suspensions. Although these studies are
stability of the AAA structure is overestimated. Also, the done for spherical macro-ions, a similar derivation is pos-
isotropic-nematic transition in our theory does not respecfiPle for rodlike macro-ionp45] where the charge is distrib-

the Onsager limit and density jumps are overestimated. ~ Uted on segmentlike beads along the rods.
Still the rods retain &physica) spherocylindric hard core.

Il PERTURBATION THEORY FOR SOFT The t(ztal palrﬁlnteractlon between rods .possessmg (zrlenta-
INTERACTIONS tions w; and w, and a center-of-mass difference vectegr

A. Model for the interaction I reads
In this section we illustrate how to treat the soft interac- U(Fp—T1,01,05)
tions between the TMVs by a thermodynamic perturbation
theory. We describe the TMV as a stiff cylinder with a
(physica) length Iyy=300 nm and diameterdyy =1 (Ze/INy)? Ns exf — kI 44]
=18 nm|[8]. Furthermore, since we are interested only in
mesoscopic length scales we ignore the detailed molecular
structure. In an aqueous solution protons dissociate from the (18

o if the physical hard cores overlap

otherwise.

€ a,B=1 I’aﬁ
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Here the sum runs oveXg beads labeledr and 8, which  struct an effectivetwo-dimensional diameter by applying

have a distancl 4| (see Fig. 3 Each of these beads carries the Barker-Henderson formuld7]

a chargeZ/Ng; e is the dielectric constant of the solvent- .

.The segments are arranged in such a spadiggthat the deﬁ:f [1_e—BuSD(r)]dr, (26)
guadrupole moments of the uniformly charged rod and the 0

segment rod are identical, which leads to

while the effective length for the HSC reference system is
_ [Tmv (19 given byles= (Ns—1)dseq-

dseg .
V(Ng— +
(Ns=1)(Ns+1) C. Treatment of the long-range perturbation

Two contributions enter into the inverse Debye screening The remaining perturbation is treated in a mean-field fash-

length ion. In particular, we split the full pair potential as
pp U(X1,X2) = Ug(X1 1 X2) +W(Xq ,X5), Wherex=(r, o). The po-
K 7 (Zp+2ny), (200 tential uy=up+Aw interpolates, by the parametek
ekgT €[0,1], between the reference potentigl and the full po-

tential by adding the perturbatiom.

namely, t'?el ol;nsr[y dm;hthe <|:tounter|o?s t.stem:nlrég fr;cr)n the By thermodynamic integration one obtains the exact rela-
macroparticleZp, and the salt concentrationy. In Eq. (20) tion [37] for the total free energy,

kgT is the thermal energy ang=N/V the rod density.
F=Fo+ Fret
B. Splitting the potential and treatment of the reference system

1
The key idea of perturbation theory is to separate the =Fot %f d)\f fp(f)(xl,xz)w(xl,xz)dxldxz.
dominant behavior of the pair interaction and to treat the 0
remaining part as a perturbation. The free energy splits into a (27
reference parF, and a term describing the perturbatigfi®"
as Fo denotes the HSC reference free energy, which is approxi-
mately known in the different liquid-crystalline phases from
F=Fo+ FPer 2D sec. IB. p{?(x1,%y) is the two-particle density for the po-
. .. _tentialu, (x4,X,) in the different phases.
8 eleence sytem e ke ard spherocyinders ih 1 Yo vt the perpate part o e fee cnegy’
foctive len thl Thése effective sizes for fiche hard bod the pair interaction is split on the level of the single beads by
9thlefr - y using the saméscaled support functionG(r) from the two-

instead of the physical ones take into account the slow decay, .\ cional case. We thus approximate the short- and long-

of the pote_nual in the case Of.IOW added salt. . range potentials for the rods with an orientational degree of
To obtain these effective sizes we make use of a S'mpl?’reedom by

generalization of the scheme proposed by Kanhal. [46].
First we define a typical in-plane distancgbetween paral- u (F B )
lel oriented rods by putting all particles on a distorted fcc °* 212

lattice. At this splitting range (ZeINg)2 e~ <Tap G op)

NS
ro=[v2/(pltmy /dran) 12 (22 = %‘; X € Nap N2
0 otherwise,

for rop<rg

we then split the two-dimensional potential of two parallel

in-plane rods into a short-range paﬁD(r) and a long-range (29
part w?°(r) such thatu?®(r)=u3’(r)+w?°(r). In particu-
lar, G(rap)
Nq > forr,g=<rp
u?®(r)—G(r) for r=ry W(T1, 01,0 = > X Ns
,W1,W9)=
un=1, . (23 BT F T (zeINg? e s
otherwise, M) otherwise
€ ralg '
5 G(r) for r<r, ot (29
wer)= u?®(r) otherwise, (24)

D. Treatment of the different phases

where the linear function As already explained, the free energy of the reference

du?(r) system is described within our cell theory from Sec. II. The
G(r)=u®P(rg)— (ro—r) (25) reference system also fixes any variational parameters such
dr|,_ as the widtha* of the orientation distribution and, for the

1y
smectic phase, the layer spacidg. In the spirit of first-
guarantees continuity @°(r) andw?®(r) and their deriva-  order perturbation theory, these parameters will be kept un-

tives atr =ry. We now use the short-range potential to con-changed to evaluate the perturbative part.
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1. Isotropic phase describing a homogeneous fluid of particles exactly confined
in layers a distancd* apart. In Eq.(35) the spatial coordi-
ghate perpendicular to the layers is denotedrbyand p?P
=pd* is the effective two-dimensional density.
The two-particle density is further approximated by

Here the particle density is uniformpis(X) = piso
=pl4w. We use a high-temperature approximation to th
pair distribution function, obtaining

P (X1,%2) = pise(X1) Pise(Xp) € PaX) - (30)

(2)(X Xo)= 2D)2 S(r, —nd*)
Doing the final integration ovex one gets P 1 %2) = (p ; “

1 X 8(r,,—Nnd*)go(r1.r2)
]."PETEEkBTJ deldXZPiso(Xl)Piso(Xz) 2

X e*ﬁuo(xlvxz)[ 1—e BAwlxg ,XZ)] + 2 a(rzl_ nd* ) 5(]’22— n'd* )

n,n’
1 - -
QEJ Jdxldxzpiso(xl)Piso(Xz)efﬁuo(xl'XZ)W(Xl,Xz), Xg(wy,a@*)g(w,a*). (36)

(31)  Heregy(ry,r») is the pair distribution function of the center-

] ) o of-mass coordinates of two hard spherocylinders in the ref-
where we again made a high-temperature approximation. erence system.

It is convenient to expand the expressian,E)l,J)z) The perturbative part of the free enen@y) thus splits as
=e Pu(ron.02dw(r »,, w,) from Eq.(31) into spherical in- t . .
variants: FRe= FRo 2o FREL 2P, (37
I - I By using Egs.(27), (36), and(37) the two-dimensional flu-
h(F,w1,w2)=; ha(N@p(w12,01,02). (32 dlike expression reads
. . . N ® ~
Due to the symmetric properties, tEe summation runs only Fpert, 2D:_p2Df d%r g2°(r) W2o(r;a*), (38)
over the multidimensional index\=(l,l4,l,), involving 2 o0

only evenl,l,,l,. The derivation of the expansion coeffi-
cientsh, can be found in Appendix B. This simplifies the Where we introduced thé&wo-dimensional hard-disk pair

expression(31) further to distribution functiong®®(r), which is obtained frongy(r,
—Fl) via
]—'-pen:ﬂpL fwdrrzﬁooc(r) (33
ISO 2 " R
vam Jo QZD(r)=go(w§+r§)Ef drgo(r)s(ry). (39

2. Nematic phase .

Herer=(r,,ry,r,). In the calculations we use an approxi-
: . ) _ mate density expansion f@?°(r), which is valid for area
density ppen{X) = p,g(w; @), where the width of the orien-  ¢ractions up to~0(0.4) [48]. Furthermore, in Eq(38) we
tation distributiona* was already fixed by the reference SYS-defined, starting from the orientationally averaged long-
tem of the effective HSC. Approximating again the pair dis-range potential

tribution function by a low-density expressiof80), the

perturbation contribution is similar to the isotropic c43&).

For the perturbative part we start with the one-particle

Expanded into spherical harmonics, this yields \TV(FZ_Fl;a*):f dz‘;lf d®wog(wy,a*)
N 1 ) -
Fhn=op——= 2 \/2I+1f dr r2hy(r) X g(wz,a*)W(Xy,%z), (40)
2" 47 V'even

a two-dimensional equivalent by

2
X f g(w;a*)Py(w-wg)dw | (34
\7v2D(r;a*)=f dr,8(r,)w(r;a*), (41)
whereP|(x) is thelth Legendre polynomial.
) with r= \/rX2+ry2.
3. Smectic phase The mean-field part in the remaining solidlike dimension
We approximate the one-particle density by is a lattice sum

R N ~
psr(X)=pP2  8(r,—nd*) g(wia*), (39 Fen1P=2 2 W¥(nd*;a*), (42)
n n
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with the in-layer averaged potentialw'(r,;a*)
=p2Dferfdry\7v(F;a*). The summation in Eq(42) ac-
counts for the distinct layers.

4. ABC solid

As for the distinct layers in the smectic phase, we assume
the particles in the perturbative part of the solid free energy

to be exactly localized at their lattice positioﬁs:

pascX) =2 S(r—R)g(w;a*). (43
Ri

Most of the structural information is contained in the one-
particle densities. The two-particle density is thus given by

pP(x1,%)= 2, 8(r1—R)(r,—R)

Ri R
Xg(w1;a*)g(wy;a*). (44)
The mean-field contributiof27) then reads
ert N =D
FRge=7 2 W(Riia*), (45)
R

summing over the lattice points of the distorted fcc lattice.

5. AAA solid
As for the ABC solid one has

N ~
Fhan=5 2 W(R;ia%),

R

(46)
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FIG. 4. Phase diagram of the tobacco mosaic virus. The coex-
istence densities in units ofl%{,, are plotted versus the concentra-
tion ng of added monovalent salt. We observe a cascade of liquid
crystalline phases: In addition to the isotropig,(nematic (), and
smecticA(SmA) phases, two different colloidal crystalline struc-
tures, with anAAA and anABC stacking, become stable. The ex-
perimental data are depicted as follov®, |-N coexistence den-
sities from Frademt al.[51]; O, |-N coexistence densities aidi,
density values where a smecficphase is stable from Hirat al.
[54]; * smecticA values reported by Weet al.[6]; ¢, a colloidal
crystalline structure for vanishing additional salt concentrations re-
ported by Kreibig and Wetted] and Fraderet al. [5]. For a salt
concentration of ilnM computer simulations fot-N coexistence
densities are availablel9] (©).

tively. A finite size correctior16] due to the physical core

of the rods is included by considering it as a stringNof
=17 spheres. To obtain phase equilibria we equate the total
pressure and the chemical potential of the tobacco mosaic
virus particles as well as the chemical potential of the nega-
tively charged salt ions in coexistence.

where the summation runs now over the lattice positions of For high salt concentrations the volume terms can be ne-

an AAA structure.

E. Inclusion of the volume terms

glected[17]. In order to speed up the phase coexistence cal-
culations, we have included them only in the cagg
>2ng, i.e., when the number of ions stemming from the
macro-ions is larger than the number of salt ions.

The volume terms depend on the thermodynamic param-

eters, but are assumed to be independent of the phase.

detall, they read akl6,17

FYl=F9 +F% +F1, (47)
with
FO=N,kgT[In(A3p,)—1], (48)
FO=N_kgT[IN(Ap_)—1], (49)
L1z K
F=— 4 Nm
2 € NS(1+ KdTM\//Z)
+kBT(N+—N)(ﬂ+_£) , (50
p+tp-

whereN, (p;) andN_ (p_) are the total numbefden-

sity) of positive and negative micro-ions in the solution, i.e.

p+=ng+|Z|p and p_=n,. A, and A_ denote the de

In
IV. RESULTS FOR THE PHASE DIAGRAM

The sample parameters we used are the usual ones for
aqueous solutiongdielectric constant=81 at room tem-
peratureT=298 K). For the number of sitef\;=17 was
chosen. The resulting phase diagram is shown in Fig. 4. At
high salt concentrations the typical sequence in the phase
behavior of long hard rods is obtained: With increasing den-
sity the fluid transforms into a nematic, a smectic, and finally
an AAA crystal. The close-packed structure, thBC crys-
tal, will become stable at very high densities out of the range
considered here. Below a salt concentratiomgf 3.1mM
the AAA structure is replaced by akB C crystal. This is due
to the reduction of the effective length-to-width ratio for de-
creasing salt concentration. Finally, below=2.25mM the
smectic phase becomes unstable.

Another interesting feature of the phase diagram is-a
entrant behavior of the nematic phakw fixed density and

,increasing salt concentratiorpl@,,,~100). The nematic

phase is stable for strongly deionized samples. By increasing

Broglie wavelength of the positive and negative ions, respecthe salt concentration the system freezes intd\&T crys-
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tal, which then transforms into a smectic phase. For everoncentration (10mM sodium phosphajavas examined by
higher salt concentration, the system again gets into a nentdirai et al. [54]. They reported the known sequence for long
atic phase. This theoretical prediction can be verified in exhard spherocylinders: isotropic, nematic, smegétiand pre-
periments. Still, we do not know at present whether thecrystal phases. Even at the highest measured virus concen-
counterintuitive reentrant nematic phase is an artifact of outration, the structure within the layers remains only weakly
approximations. ordered, implying that the full crystalline phase is not al-
We make three remarks about other possible phases. Firsgady obtained.
as our theory for the reference system overestimates the sta- The experimental results are often given in terms of a
bility of a columnar phase, we do not consider this structurecalculated ionic strength, assuming a specific value of the
here. Second, the aspect ratio of our effective particles isirus particle charge. Thus we identify approximately equal
always of order one and larger. Thus a plastic crystal will notionic strengths of experimental samples with corresponding
be stable. Third, by explicit calculations, the stability of the additional salt concentrations in our model and include in
cubic bcc structure was ruled out. this way known experimental results to our phase diagram in
There is one special coexistence point of thM transi-  Fig. 4. In particular, we reduced the experimental given ionic
tion where computer simulation data are availapi], strength by the salt-free value and then assumed monovalent
namely, for a salt concentration ofniM. The simulation ions. Due to these caveats this data plot should only be un-
was done for the same Yukawa-segment model and the sanderstood as an attempt to make trends visible.
parameters we used in our theoretical calculations. The com- The increase of the coexistence densities of the isotropic-
parison with our theory is faifsee again Fig. 4 proving that nematic transition with growing salt concentration is repro-
our approximations for the isotropic and nematic phases arduced within our theory. Additionally, we observe a fully
reasonable. crystalline structure at vanishing salt concentration. Under
these conditions a smectic phase is experimentally not ob-
served, as within our theory. From the phase diagram it
V. COMPARISON OF THEORY AND EXPERIMENT could also be explained that the colloidal crystal at vanishing
The full phase behavior of pure monodisperse TMVanitionaI salt concentrations_could be transformed to more
samples is experimentally still unknown. A major difficulty disordered structures by adding salt. Hence general trends
is due to polydispersity of the particles: The TMV has a&€in gpod a}greement Wlth our theory, but a full quantitative
tendency to aggregate top on top and experimental sampl&§Mparison is not possible at the moment.
can be spoiled by broken rods. An important caveat for the
comparison with our theory is that coexistence data for the VI. CONCLUSION
TMV are reported for various experimental conditions.
Samples are suspended in different buffers at different values In conclusion, we have presented a theory for the different
of the pH. There is no obvious reason why the bare chargdiquid-crystalline phases for suspensions of TMV particles.
of the macroparticles should remain unaffected, which wadhe resulting phase diagram is quite rich, showing the sta-
one of our basic assumptions for the effective interactionsbility of different phases including a reentrant nematic tran-
Additionally, the ions in these buffers are not necessarilysition. It would be interesting to perform further computer

monovalent as we assumed in our calculations. simulations of our model in order to check quantitatively our
Let us now briefly summarize the experimental data availtheory for the phase diagram. . .
able. As experiments on tHeN transition[l] had been per- We finish with two remarks. FII’St, eXperImental studies

formed on probab|y po|ydisperse systems, coexistence def the isotropic-nematic transition O_f rodllke CO||OIda| par-
sities as a function of the ionic strength had been reexamineldcles in anexternal alternating electric fieldhow a critical

in detail by Fraden and co-workef§0,51,8,52, who ex- point [9]. This is a general feature between phases of. the
plored the transition densities for many different salt concensame spatial symmetry but with a different degree of orien-
trations. A crystalline structure in the absence of added saf@tional order. Thus, by external fields a critical point be-
had been explored. Ostg8] observed at low ionic strength a tween the plastic solid and th&BC-stacked crystal might
phase structured perpendicular to the director, i.e., either @Xist. It would be interesting to generalize our approach to
smectic or a crystalline phase. Kreibig and Wef#rmea-  such external fields coupling to the orientational degree of
sured the layer spacing for these samples by light scatteringfeedom. Second, a more microscopic theory is provided by
However, they observed a large variety of values stemminghe density functional approach of anisotropic particles.
from different droplets within one sample. Fradenal.[5]  These theories, however, require a large numerical effort.
examined by x-ray scattering the structure within these |ay.Uﬂti| now there had been no functional available, which gen-
ers and observed a crystalline structure, proving that for lowerates the full phase behavior of HSCs. Still, some kind of
est ionic strengths a colloidal crystal is the stable structureveighted-density approximatiori24] should be tested for
However, for extremely deionized samples evidence for ghe stability of the crystalline phases in order to get the full
columnar phase has been clain{@d. The structure of the phase diagram. Our future work lies along these directions.
samples with added salt was considered in various experi-
ments. One observation was due to Kreibig and We#gr
who noted that the addition of salt destroys the liquid crystal
in pure water irreversibly. Definite results for smectic phases We would like to thank M. Schmidt for helpful discus-
had been reported by Meyer and co-workgg$3]. The full  sions. This work was supported by the DFGeutsche For-
range of virus particle concentrations for one fixed bufferschungsgemeinschafwithin the Gerhard-Hess-Programm.
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APPENDIX A: FREE VOLUME OF SOLID HSC PHASES c2 p1/3
The basic assumption of our cell theory is that the HSCs a= et o mT
have the same free volume cell as the corresponding hard-
sphere crystal. b=—c3+27lp+3\3(27lp— 2¢%)/p,
1. ABC solid c=2BR(fhce,[9]) —3V2R(7/2]g]).

For the ABC solid the free volume cell is a rhombic
dodecahedron. The free volume depends on the direction beAppEND|X B: EXPANSION IN SPHERICAL INVARIANTS
tween two particles in two succeeding layers, measured with
respect to the preference direction perpendicular to the layers Here we anticipate the conventions of Gray and Gubbins
6, or, equivalently, on the angle in an equilateral pyramid,[55]. The quantityh(r,;,®,) [Eq. (32)] depends on the

and is given by unit vectoro=r/|r|. The rotational invariants
Vies = 42y" ) (1.
with I I Iy
_ => X > Clyyl,mmm)
y=a/2— R(’]T/Zy[g])v m=—1 mi=—I; my=—1, 12 12
c2 X my(@1)V,my(@2) V(). (B1)
a=—c+——+b'"
bl/3

with )),, being spherical harmonics ar@(lI,l,m;m,m)
5 < the Clebsch-Gordan coefficients, remain unchanged under si-
b=—2¢%+2\2/p+(2lp—4y2c%)/p, multaneous rotations @b, w,, ande. We expand therefore

¢=R(bie,[9]) —R(712[g]),

_ h(r,01,02)=2 Ar(NPp(0,01,02), (B
whereR(6,[g]) is defined in Eq(4).

where the summation is running over the tripl&

2. AAA solid =(I1,15,1) e N3. The expansion coefficients read
The shape of the free volume cell in &RA crystal is a 4
hexagonal prism. We fix the ratio of the long to short lattice A.(r)= m J d2e f A6 R an on 6
constant to be equal to the full aspect ratiop+ 1. The free A0 21+1]s, “1 s, w2 h(fwy,070)

volume reads . -
X(I)X((U,(Ul,a)z). (83)

2R<o,[g]>),

2
ala —
AAA_ N
Vtree _Gﬁ(E_R( 77/2,[9])) (X_ a As they are rotationally invariant, we fiw pointing along
(A2) thezaxis, w=eg,, to calculate them. The expansion coeffi-

cients thus read, witm=—m,

with
4
a=(2/y3px)1? Ao(r)= _J 2*J 2
(213px) Aa(N=\ 577 | Por1 | dw,
3. bce solid min(lq,12) - )
The free volume cell has the shape of a truncated octahe- xm:—n%(ll,lz) Clllal ;mm,O)yflm(wl)
dron and reads ) L
XY} H{0)h(r,01,07;0=8,). (B4)
iree= 4y, (A3) or i
with Using the invariance oh(r,w;,w,) if one of the w's

. changes sign, only those expansion coefficients with even
y=al2—R(w/2[9]), I4,l,,] are nonzero.
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