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Phase diagram of tobacco mosaic virus solutions

Hartmut Graf and Hartmut Lo¨wen*
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 13 July 1998!

The phase behavior of an aqueous suspension of rodlike tobacco mosaic viruses is investigated theoretically
as a function of the virus density and the concentration of added salt. The total free energy involves ‘‘volume
terms’’ from the microscopic counter- and co-ions and an effective pair interaction between the colloidal rods
described by a Yukawa-segment model according to linear screening theory. Within a thermodynamic pertur-
bation approach, the short-range repulsion between the rods is mapped onto a reference system of effective
hard spherocylinders. The free energy of the spherocylinder system is gained from combining a cell model with
scaled particle theory, which yields a reasonable phase diagram. The remaining long-range interaction is
treated within a mean-field approximation. As a result we find stable fluid, nematic, and smectic phases as well
as AAA- and ABC-stacked crystals. For increasing salt concentration at fixed rod concentration, there is a
nematic reentrant transition. We finally discuss our results in view of experimental data.
@S1063-651X~99!01302-1#

PACS number~s!: 82.70.Dd, 64.70.Md
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I. INTRODUCTION

In the 1930s the existence of colloidal liquid crystallin
phases was detected in aqueous suspensions of thetobacco
mosaic virus~TMV !: A phase separation into a~thinner! op-
tical isotropic and a~thicker! birefringent phase was ob
served when the virus concentration exceeded 2%@1#. Sub-
sequently, higher ordered liquid-crystalline phases w
discovered for samples under different conditions: Laye
structures@2–4# were proved to be either a colloidal cryst
@5# or a smectic phase@6#, depending on the ionic strength
For highly deionized samples the structure is still controv
sial; here some evidence for a columnar phase has bee
ported@7#. Still the full phase diagram of an aqueous TM
suspension as a function of its density and the ionic stren
is not known.

Over other rodlike colloidal samples, e.g., the fd vir
@8–10# or Boehmite rods@11,12#, the TMV has the importan
advantage that it is practically rigid and monodisperse, wh
facilitates a theoretical description with an effecti
orientation-dependent pair interaction. The simplest mo
system of a lyotropic colloidal liquid crystal is that ofhard
spherocylinders~HSCs! with a pure excluded volume inter
action. Within this model, Onsager@13# explained the
isotropic-nematic transition for large aspect ratiosp of the
HSC. Although the model is quite simple and governed
only two parameters, namely, the particle density andp, it is
only recently that the full phase diagram was explored
computer simulation; see Ref.@14#. As the TMV is charged
stabilized, the interaction between two rods will be lo
ranged~at least for strongly deionized samples!. The sim-
plest approach to include these long-ranged interactions
describe them approximately in an effective diameter as
ready done by Onsager. This method had been expande
Stroobantset al. @15#, who included the twisting effect

*Also at Institut für Festkörperforschung, Forschungszentrum J¨-
lich, D-52425 Ju¨lich, Germany.
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i.e., nearly touching charged rods tend to orient perpend
lar to minimize their potential energy.

In this paper we start from the primitive model of strong
asymmetric electrolytes~charged colloidal rods, counterion
and co-ions!. Linear screening theory results in an effecti
Yukawa-segment model describing the interaction betw
two rods plus additional ‘‘volume terms’’ comprising th
free energy of the counter- and co-ions as obtained
spherical macro-ions recently by van Roij and Hansen@16#;
see also@17#. These terms are particularly important for lo
salt concentrations. The Yukawa-segment interaction is s
into a short-ranged and a long-ranged part according to s
dard thermodynamic perturbation theory. Using the syst
of hard spherocylinders as a reference system for the sh
ranged part and describing the long-ranged part on a m
field level, we obtain the free energies in the various liqu
crystalline phases and the overall phase diagram. We fin
remark that Han and Herzfeld@18# recently proposed a simi
lar strategy, deriving the effective shape of a HSC refere
system from a self-consistent interplay between the refere
system and a mean-field description. In this work, howev
only low ordered phases were under consideration and
‘‘volume terms’’ have been neglected.

The paper is organized as follows. Free energies of
different phases in the hard spherocylinder model are con
ered in Sec. II. We combine a cell model with a scaled p
ticle theory and find that the resulting phase diagram co
pares reasonably well with the computer simulation data
Sec. III we introduce a perturbation scheme for charged r
like colloidal suspensions and show how to apply it to va
ous liquid-crystalline phases. Results for the phase diag
are presented in Sec. IV. We present in Sec. V a brief com-
parison of our theoretical results with available experimen
data. We conclude in Sec. VI.

II. CELL MODEL THEORY FOR THE PHASE BEHAVIOR
OF HARD SPHEROCYLINDERS

A. Basic features of the model

The shape of the HSC contains a cylindric part capp
with two hemispheres at the ends such that it is character
1932 ©1999 The American Physical Society
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PRE 59 1933PHASE DIAGRAM OF TOBACCO MOSAIC VIRUS SOLUTIONS
by a total lengthL and a widthD. The anisotropy of the
particle is measured by the aspect ratiop5L/D. In general,
its center-of-mass position is denotedrW and its orientation is
described by a unit vectorvW pointing along the cylindrical
axis. A system ofN HSCs is one of the simplest models f
rodlike particles sincekBT simply sets the energy scale
Hence there are only two independent parameters, nam
the aspect ratiop and the cylinder number densityr5N/V,
whereV is the system volume. This density can convenien
be expressed in terms of the close-packed density

rCP5
2

~A21A3p! D3
. ~1!

Two limiting cases are of special interest. First, forp50, the
hard sphere model is recovered. In the opposite so-ca
Onsager limit of infinitely long rodsp→` one can asymp-
totically calculate the isotropic-nematic phase transition a
lytically.

The phase diagram of HSCs for all aspect ratios has o
very recently been explored by Monte Carlo simulatio
@14#. Previously, simulation results had been available o
for very few values ofp @19–21#, whereas analytic calcula
tions, mainly based on density-functional methods, had b
restricted to low-order phases@22–25#. In the rest of this
section we present a simple theory, which accounts for
phase behavior of HSCs semiquantitatively, though with l
numerical effort. A comparison with available Monte Car
data @14# shows quite good agreement. Parts of this wo
were already published elsewhere@17#.

B. Fundamental concepts of the theory

The basic ingredient to obtain the phase behavior is
reduced free energy per particlef 5bF/N in the different
phases from which the pressure and the chemical pote
can be derived. Here 1/b5kBT is the thermal energy. The
phase coexistence is then achieved by a usual common
gent construction to the free energies of the two coexis
phases. In order to accessf, we shall either take known ex
pressions or use a variational cell theory for the one-part
densityr (1)(rW,vW ) of the HSC.

The fundamental approximation for our treatment of t
anisotropic particles is the factorization of translational~spa-
tial! and orientational degrees of freedom. The orientatio
free energyf rot describes ideal~i.e., noninteracting! rotators
obeying a fixed orientational distributiong(vW ), which is
given explicitly below. Except for the fluid phase, where w
use a scaled particle theory@26#, we obtain the free energy o
the translational degrees of freedomf spat by mapping the
system onto a substitute system of completely aligned
ticles with an effective shape. Thus we havef 5 f rot1 f spat.
Let us outline the different steps in more detail.

C. Handling the orientational degrees of freedom

The orientation distribution functiong(vW ) is assumed
to be spatially invariant, being thus proportional to t
spatial averaged one-particle densityr (1)(rW,vW ):g(vW )
5N21*d3rW r (1)(rW,vW ). The quantity g(vW ) measures the
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probability of the rods pointing in directionvW . We shall use
g(vW ) as a trial function, where the single variational para
eter a describes the width of the orientation distributio
around a given directorvW 0 . In particular, we use a Meier
Saupe form forg(vW ), i.e.,

g~vW !5N21exp@aP2~vW •vW 0!#, ~2!

where P2(x)5(3x221)/2 is the second Legendre polyno
mial and N is to guarantee correct normalizatio
*S2

g(vW )d2vW 51. The integration with respect to the orient

tions is performed on the unit sphereS2 : *S2
d2vW

5*0
2pdf*0

psin(u)du54p. The rotational free energy thu
reads

f rot5E d2vW g~vW !ln@g~vW !#. ~3!

D. Mapping onto an effective oriented system

In the different phases, we map orientable particles o
effective oriented ones. Their effective shape is construc
as follows. First, let the center-of-mass position of a HSC
fixed and letvW 0 be the direction of the nematic director. W
start from the convex envelope of all planes touching
spherocylinder pointing in directionvW . The shortest distance
R' from the center-of-mass position to a plane in directi
vW MD touching the HSC~see Fig. 1! will be now averaged
with respect to the orientation distribution functiong(vW ),
which yields the mean distance

R̄~uMD ,@g# !5
D

2
1

L

2ES2

d2vW g~vW !u~vW MD•vW !u. ~4!

FIG. 1. Construction of the mean distance. The configurat

parameters of the particle are given by the center-of-mass vecrW

and the unit vectorvW pointing in the direction of the particle. The

nematic director is pointing alongvW 0 . The normal of the touching

plane points in directionvW MD . Note that the mean distanceR' is
rotational invariant around the nematic director.
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The effective shape now is the Legendre transform ofR̄ with
respect touMD , defined by cosuMD5vW 0•vW MD . This con-
struction embodies approximately orientational fluctuatio
in an average sense into the effective shape of a subst
hard body. It is instructive to consider two limiting case
First, for fully aligned spherocylinders we haveg(vW )
5d(vW 2vW 0) and the effective shape coincides with the ori
nal HSC shape. Second, for an isotropic distributiong(vW )
51/4p, the effective shape is a sphere with the mean rad
of curvatureRmean5D/21L/4 @27,26#.

Except for the crystalline phases, we approximate the
fective shape further as effectivealigned hard spherocylin-
ders with an effective diameterD* 52R̄(uMD5p/2;@g#)
and an effective lengthL* 52R̄(uMD50;@g#)2D* . In this
substitute system we split the free energy stemming from
center-of-mass coordinates into a part describing the fluid
dimensions and another one describing the solidlike dim
sions. We treat the fluidlike dimensions with a scaled part
description, whereas for the solidlike dimension we us
cell model. For strictly aligned spherocylinders Tayloret al.
@28# applied such a strategy to calculate the phase diagr
The scaled particle theorycombines the probability of par
ticle insertion with the pressure at a plane wall scaling
tween both expressions to derive an expression for the e
tion of state@26#. The basic idea for afree volume theoryis
to divide the space into equal compartments, each contai
a single particle that moves there independent of the ne
bor particles. The partition function factorizes by this a
sumption. Recall the case of hard spheres@29,30#, where the
configurational integralQN factorizes as

QN5
1

N! EV
d3rW1•••E

V
d3rWNe2bUpot

HS
~rW1 , . . . ,rWN!

<F E
v free

d3rWGN

5v free
N . ~5!

Herev free is the free volume one particle can access withi
single cell. For hard spheres the free energy obtained by
cell theory provides a strict upper bound to the real f
energy. In our approach, however, this property is lost si
we already did approximations.

Variational parameters, i.e., the width of the orientati
distribution, distinguish the one-particle density fields in t
various phases. To optimize the mapping, we therefore
nally minimizethe free energy with respect to these para
eters. In the following, the whole strategy will be illustrate
for the different liquid-crystalline phases.

E. Different phases in systems of hard spherocylinders

1. ABC crystal

Hard spheres are known to freeze in a face-centered-c
crystal @31,32#. One obtains the corresponding structure
HSCs by stretching the fcc crystal along the 111 directi
The hexagonal layers of HSCs perpendicular to the dire
are then stacked as anABC sequence. This structure is als
the close-packed structure for HSCs.
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The free energy of the system is obtained by a modifi
cell model: The basic assumption is that the free volume
for the HSC with the effective shape has the same form
the one of hard spheres, being a rhombic dodecahedron
free volumev free

ABC is given in Appendix A. Hence we obtain
for the reduced free energy per particle in theABC crystal

f̃ ABC~a!5 f rot~a!2 ln@L23v free
ABC~a!#, ~6!

where a is the variational parameter for the orientation
distribution andL is the thermal de Broglie wavelength. Ou
proposed cell model reduces forp50 to the familiar hard-
sphere cell model. In order to obtain the correct coexiste
densities for the hard-sphere fluid-solid transition one the
fore reduces the free energy by an empirical fit parame
Cs521.8 @33# to obtain

f ABC5 f̃ ABC1Cs . ~7!

The constantCs is now used consistently for all aspect rati
in all solidlike phases, but not in the isotropic and nema
phases. We finally have to minimize the free energy w
respect to the orientation distribution to optimize the ma
ping on the effective parallel particles.

2. Plastic crystal phase

In the plastic crystal phase, the center-of-mass coordin
are perfectly ordered on an fcc lattice while the orientat
distribution is constant. By our construction of the effecti
size R̄ for such a rotator solid, we obtain an effective ha
sphere with radiusRmean5D/21L/4. The free volume for
this hard sphere cell model readsv free

pl 5@(A2/r)1/3

22Rmean#
3/A2 and we obtain for the free energy in the pla

tic crystal phase

f pl5 f rot~a50!2 ln~L23v free
pl !1Cs . ~8!

Again, we have corrected our theory by the same cons
Cs .

3. AAA crystal

We describe theAAA structure by stacking two-
dimensional triangular hard-sphere crystals on top of e
other and stretching them in the stacking direction while fi
ing the ratio of the lattice constants to bep11. The free
volume cell for this structure is a hexagonal prism with t
free volumev free

AAA , which is given in Appendix A. The free
energy finally reads

f AAA~a!5 f rot~a!2 ln~L23v free
AAA!1Cs . ~9!

Again, a final minimization with respect to the width of th
orientation distribution is required and consistently the co
stantCs is added.

4. bcc crystal

Contrary to the previously mentioned crystalline stru
tures the bcc solid is built up by layers, where the orien
particles are located on a squared lattice perpendicular to
director. This structure is known only to be metastable
hard spheres; however, as we are also interested in the
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system as a basis for a perturbation theory for long-ra
potentials, we also consider this structure.

By a suitable stretching with a factorp11 of the corre-
sponding bcc hard-sphere crystal we obtain the anisotr
structure for HSCs. The free volume cell of the stretched
crystal is assumed to be the same as the one in the ca
hard spheres, namely, a truncated octahedron with the
volumev free

bcc ; see Appendix A. The free energy from our ce
theory including the constantCs is

f bcc~a!5 f rot~a!2 ln~L23v free
bcc!1Cs . ~10!

5. Columnar phase

The present approach is readily generalized to a colum
phase where aligned particles are fluidlike along tub
which form a two-dimensional hexagonal lattice in the pla
perpendicular to the director. However, in contrast to
computer simulation, the columnar phase will win alwa
against theAAA crystal since a one-dimensional hard-r
system will never freeze@34#. This deficiency was recovere
also in the theory for oriented cylinders@28#. For this reason
our theory overestimates the stability of the columnar pha
In order to circumvent this problem we have discarded
columnar phase altogether.

6. Smectic-A phase

In the smectic phase the particles are oriented and
ranged in layers perpendicular to the director. Within the
layers the particles behave in fluidlike fashion. For the tw
dimensional fluid of effective particles with diameterD* we
use a scaled particle description@35# to obtain the free en-
ergy

f 2D
spat5 ln~L2r2D!1

2h2D* 21

12h2D*
2 ln~12h2D* !, ~11!

where h2D* 5rdpD* 2/4 is the two-dimensional packin
fraction of the effective hard disks andd the spacing between
the smectic layers. In the remaining dimension we calcu
the free energy from a one-dimensional cell model

f 1D
spat52 ln~L21v free

sm !,

with the free volumev free
sm 5d2(D* 1L* ).

The total free energy then reads

f sm~a,d!5 f rot~a!1 f 1D
spat~a,d!1 f 2D

spat~a,d!1Cs/3.
~12!

Consistent with the treatment of the crystalline structures,
add a third of the constantCs to the free energy in the smec
tic phase as the system is solidlike in only one dimensi
For d→D* 1L* the free energyf 1D

spatdiverges. On the othe
hand, whend→4/rpD* 2 the termf 2D

spatgoes to infinity. Con-
sequently there is a minimum of the free energyf sm(a,d) for
intermediate layer spacings. We finally minimize the fr
energy numerically with respect to the orientation distrib
tion and the layer spacing.
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7. Nematic phase

In the nematic phase all the particles are pointing by pr
erence along the nematic directorvW 0 while the center-of-
mass coordinate shows no order. We approximate the
energy of this phase by considering a fluid of parallel ha
spherocylinders with an effective diameterD* and an effec-
tive lengthL* . The scaled particle expression for the exce
free energy of parallel hard spherocylinders reads@36#

f nem
ex 5

3h* 2h* 2~3/21B2/6!

~12h* !2
2 ln~12h* !, ~13!

with B5rpL* D* 2/4. The packing fraction of the effective
parallel hard spherocylinders was denoted byh* 5rv0* ,
with v0* 5p(D* 3/61D* 2L* /4) being the volume of the ef
fective spherocylinder. To optimize the mapping we fina
minimize

f̃ nem~a!5 f rot~a!1 f id1 f nem
ex ~a! ~14!

with respect to the width of the orientation distribution~2!.
In order to compensate for the lack of configurations due
this crude mapping description we add a second empir
fitting parameterCn522.25 to the free energy per particle
The value of this constant settles the isotropic-nema
smectic as well as the isotropic-nematic-solid triple point a
was chosen in comparison with computer simulations@14#.
Hence the free energy of the nematic phase reads fin
f nem5 f̃ nem1Cn .

8. Isotropic phase

In the isotropic~fluid! phase the excess free energy p
particle is given within the scaled particle theory@26# as

f iso
ex5

ah1~a2/62a!h2

~12h!2
2 ln~12h!, ~15!

with

a5
3~11p!~11p/2!

11~3/2!p
. ~16!

In the hard-sphere limit this expression corresponds to
Percus-Yevick approximation@37#. Hereh5rv0 is the vol-
ume fraction of the HSC withv05p(D3/61LD2/4) the vol-
ume of one HSC.

The remaining parts of the free energy are the contri
tion from the ideal rotatorsf rot51/4p and the ideal gas con
tribution f id5 ln(L3r)21. Thus the total free energy in th
isotropic phase becomes

f iso5 f rot1 f id1 f iso
ex . ~17!

F. Results

The result of our theoretical description is shown in F
2, where the phase behavior is shown as a function of
length-to-width ratiop and the reduced densityr* . The
shaded areas correspond to the coexistence regions. S
rods freeze with increasing density first into a plastic cr
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talline structure (P). For higher densities this plastic cryst
then transforms into an orientationally orderedABC crystal.
Note that our theory respects the close-packed limit, i.e.,
free energy diverges when approaching this structure.
length-to-width ratios larger thanp50.522 the plastic crysta
becomes metastable and the isotropic fluid~I! directly
freezes into the ordered solid. Beyond an aspect ratio op
53.4 a smectic-A phase ~SmA! becomes stable. For
slightly larger length-to-width ratio the isotropic fluid tran
forms first with increasing density into a nematic phase (N),
then into a smectic-A phase, and finally into anABC solid.
Long HSCs withp>5.19 first freeze into anAAA structure.
The stretched bcc crystalline phase was never stable w
our theory.

Comparison with the computer simulations of Bolhu
and Frenkel@14# shows good overall agreement. These d
are included in Fig. 2 as dots. All stable phases and
topology of the phase diagram are remarkably well rep
duced by our simple theory. Additionally, the theory reve
the correct slopes of all coexistence lines. However, one
serves when comparing the results to simulational data
the theory shows some deviations for longer rods, e.g.,
stability of the AAA structure is overestimated. Also, th
isotropic-nematic transition in our theory does not resp
the Onsager limit and density jumps are overestimated.

III. PERTURBATION THEORY FOR SOFT
INTERACTIONS

A. Model for the interaction

In this section we illustrate how to treat the soft intera
tions between the TMVs by a thermodynamic perturbat
theory. We describe the TMV as a stiff cylinder with
~physical! length l TMV5300 nm and diameterdTMV
518 nm @8#. Furthermore, since we are interested only
mesoscopic length scales we ignore the detailed molec
structure. In an aqueous solution protons dissociate from

FIG. 2. Phase diagram for HSC in ther*-p plane, wherer*
5r/rCP. The shaded area corresponds to the coexistence re
calculated within the cell theory and the dots are the simulation d
from Ref. @14#. There is an alignedAAA solid, an alignedABC
solid, a plastic crystal (P), an isotropic fluid (I ), and a nematic~N!
and a smectic-A (SmA) phase. The symbols for the simulation
data are1, I -ABC transition; L, I -P transition; h, I -SmA
transition; l, I -N transition; 3 N-SmA transition;
*, SmA-ABC transition;m, P-ABC transition.
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surface proteins leading, at apH of 7, to a line charge of
10220 e/nm in titration experiments. However, some
these charges recondense at the surface. As only the bo
ary value of the counterion charge density at the Wign
Seitz cell is responsible for the pair interaction, the to
charge has to be renormalized to a lower value when con
ering the pair interaction@38–40#. A total charge number of
roughlyZ53002500 was able to reproduce the static stru
ture factor of light scattering experiments@41,42#. Here we
thus take a fixed value ofZ5390 for the total effective rod
charge.

By density functional perturbation theory it was recen
demonstrated how to obtain the effective Derjaguin-Land
Verwey-Overbeek pair interaction within the primitiv
model @43,16,44#. By this derivation, additional ‘‘volume
terms’’ show up, which shift the phase boundaries parti
larly for salt-free suspensions. Although these studies
done for spherical macro-ions, a similar derivation is po
sible for rodlike macro-ions@45# where the charge is distrib
uted on segmentlike beads along the rods.

Still the rods retain a~physical! spherocylindric hard core
The total pair interaction between rods possessing orie
tions vW 1 and vW 2 and a center-of-mass difference vectorrW2

2rW1 reads

u~rW22rW1 ,vW 1 ,vW 2!

5H ` if the physical hard cores overlap

~Ze/Ns!
2

e (
a,b51

Ns exp@2kr ab#

r ab
otherwise.

~18!

on
ta

FIG. 3. Yukawa-segment model for the pair interaction of tw
charged rods The physical parameters are the lengthl TMV and the
width dTMV of the virus particles. We model the pair interaction

two rods pointing in thevW 1 andvW 2 directions and being a distanc

rW12rW2 apart by a Yukawa-segment model. There areNs517 beads
in a distancedseg aligned on the rods and their mutual distance

urWabu.
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Here the sum runs overNs beads labeleda and b, which
have a distanceurWabu ~see Fig. 3!. Each of these beads carrie
a chargeZ/Ns ; e is the dielectric constant of the solven
.The segments are arranged in such a spacingdseg that the
quadrupole moments of the uniformly charged rod and
segment rod are identical, which leads to

dseg5
l TMV

A~Ns21!~Ns11!
. ~19!

Two contributions enter into the inverse Debye screen
length

k5A4pe2

ekBT
~Zr12ns!, ~20!

namely, the density of the counterions stemming from
macroparticlesZr, and the salt concentrationns . In Eq. ~20!
kBT is the thermal energy andr5N/V the rod density.

B. Splitting the potential and treatment of the reference system

The key idea of perturbation theory is to separate
dominant behavior of the pair interaction and to treat
remaining part as a perturbation. The free energy splits in
reference partF0 and a term describing the perturbationF pert

as

F5F01F pert. ~21!

As a reference system we take hard spherocylinders with
effectivesize, namely, an effective diameterdeff and an ef-
fective lengthl eff . These effective sizes for the hard bod
instead of the physical ones take into account the slow de
of the potential in the case of low added salt.

To obtain these effective sizes we make use of a sim
generalization of the scheme proposed by Kanget al. @46#.
First we define a typical in-plane distancer 0 between paral-
lel oriented rods by putting all particles on a distorted f
lattice. At this splitting range

r 05@A2/~r l TMV /dTMV !#1/3 ~22!

we then split the two-dimensional potential of two paral
in-plane rods into a short-range partu0

2D(r ) and a long-range
part w2D(r ) such thatu2D(r )5u0

2D(r )1w2D(r ). In particu-
lar,

u0
2D~r !5H u2D~r !2G~r ! for r<r 0

0 otherwise,
~23!

w2D~r !5H G~r ! for r<r 0

u2D~r ! otherwise,
~24!

where the linear function

G~r !5u2D~r 0!2
du2D~r !

dr U
r 5r 0

~r 02r ! ~25!

guarantees continuity ofu2D(r ) andw2D(r ) and their deriva-
tives atr 5r 0 . We now use the short-range potential to co
e

g

e

e
e
a

an

ay

le

l

-

struct an effective~two-dimensional! diameter by applying
the Barker-Henderson formula@47#

deff5E
0

`

@12e2bu0
2D

~r !#dr, ~26!

while the effective length for the HSC reference system
given by l eff5(Ns21)dseg.

C. Treatment of the long-range perturbation

The remaining perturbation is treated in a mean-field fa
ion. In particular, we split the full pair potential a
u(x1 ,x2)5u0(x1 ,x2)1w(x1 ,x2), wherex[(rW,vW ). The po-
tential ul5u01lw interpolates, by the parameterl
P@0,1#, between the reference potentialu0 and the full po-
tential by adding the perturbationw.

By thermodynamic integration one obtains the exact re
tion @37# for the total free energyF,

F5F01F pert

5F01
1

2E0

1

dlE E rl
~2!~x1 ,x2!w~x1 ,x2!dx1dx2 .

~27!

F0 denotes the HSC reference free energy, which is appr
mately known in the different liquid-crystalline phases fro
Sec. III B. rl

(2)(x1 ,x2) is the two-particle density for the po
tential ul(x1 ,x2) in the different phases.

To evaluate the perturbative part of the free energyF pert

the pair interaction is split on the level of the single beads
using the same~scaled! support functionG(r ) from the two-
dimensional case. We thus approximate the short- and lo
range potentials for the rods with an orientational degree
freedom by

u0~rW12,vW 1 ,vW 2!

5 (
a,b51

Ns

3H ~Ze/Ns!
2

e

e2kr ab

r ab
2

G~r ab!

Ns
2

for r ab<r 0

0 otherwise,

~28!

w~rW12,vW 1 ,vW 2!5 (
a,b51

Ns

35
G~r ab!

Ns
2

for r ab<r 0

~Ze/Ns!
2

e

e2kr ab

r ab
otherwise.

~29!

D. Treatment of the different phases

As already explained, the free energy of the referen
system is described within our cell theory from Sec. II. T
reference system also fixes any variational parameters
as the widtha* of the orientation distribution and, for th
smectic phase, the layer spacingd* . In the spirit of first-
order perturbation theory, these parameters will be kept
changed to evaluate the perturbative part.
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1. Isotropic phase

Here the particle density is uniformr iso(x)5r iso
5r/4p. We use a high-temperature approximation to
pair distribution function, obtaining

rl
~2!~x1 ,x2!5r iso~x1! r iso~x2! e2bul~x1 ,x2!. ~30!

Doing the final integration overl one gets

F pert5
1

2
kBTE E dx1dx2r iso~x1!r iso~x2!

3e2bu0~x1 ,x2!@12e2bw~x1 ,x2!#

'
1

2E E dx1dx2r iso~x1!r iso~x2!e2bu0~x1 ,x2!w~x1 ,x2!,

~31!

where we again made a high-temperature approximation
It is convenient to expand the expressionh(rW,vW 1 ,vW 2)

[e2bu0(rW,vW 1 ,vW 2)w(rW,vW 1 ,vW 2) from Eq.~31! into spherical in-
variants:

h~rW,vW 1 ,vW 2!5(
L

ĥL~r !FL~vW 12,vW 1 ,vW 2!. ~32!

Due to the symmetric properties, the summation runs o
over the multidimensional indexL5( l ,l 1 ,l 2), involving
only even l ,l 1 ,l 2 . The derivation of the expansion coeffi
cients ĥL can be found in Appendix B. This simplifies th
expression~31! further to

F iso
pert5

N

2
r

1

A4p
E

0

`

dr r 2ĥ000~r !. ~33!

2. Nematic phase

For the perturbative part we start with the one-parti
densityrnem(x)5r,g(vW ;a* ), where the width of the orien
tation distributiona* was already fixed by the reference sy
tem of the effective HSC. Approximating again the pair d
tribution function by a low-density expression~30!, the
perturbation contribution is similar to the isotropic case~31!.
Expanded into spherical harmonics, this yields

F nem
pert5

N

2
r

1

A4p
(

l even
A2l 11E dr r 2ĥl l 0~r !

3F E g~vW ;a* !Pl~vW •vW 0!d2vW G2

, ~34!

wherePl(x) is the l th Legendre polynomial.

3. Smectic phase

We approximate the one-particle density by

rsm~x!5r2D(
n

d~r z2nd* ! g~vW ;a* !, ~35!
e

ly

-

describing a homogeneous fluid of particles exactly confin
in layers a distanced* apart. In Eq.~35! the spatial coordi-
nate perpendicular to the layers is denoted byr z and r2D

5rd* is the effective two-dimensional density.
The two-particle density is further approximated by

r~2!~x1 ,x2!5~r2D!2S (n
d~r z1

2nd* !

3d~r z2
2nd* !g0~rW1 ,rW2!

1 (
n,n8

d~r z1
2nd* !d~r z2

2n8d* !D
3g~vW 1 ,a* !g~vW 2 ,a* !. ~36!

Hereg0(rW1 ,rW2) is the pair distribution function of the cente
of-mass coordinates of two hard spherocylinders in the
erence system.

The perturbative part of the free energy~27! thus splits as

F sm
pert5F sm

pert, 1D1F sm
pert, 2D. ~37!

By using Eqs.~27!, ~36!, and ~37! the two-dimensional flu-
idlike expression reads

F sm
pert, 2D5

N

2
r2DE

s2D

`

d2r g2D~r ! w̃2D~r ;a* !, ~38!

where we introduced the~two-dimensional! hard-disk pair
distribution functiong2D(r ), which is obtained fromg0(rW2

2rW1) via

g2D~r !5g0~Ar x
21r y

2![E drzg0~rW !d~r z!. ~39!

Here rW5(r x ,r y ,r z). In the calculations we use an approx
mate density expansion forg2D(r ), which is valid for area
fractions up to'O(0.4) @48#. Furthermore, in Eq.~38! we
defined, starting from the orientationally averaged lon
range potential

w̃~rW22rW1 ;a* !5E d2vW 1E d2vW 2g~vW 1 ,a* !

3g~vW 2 ,a* !w~x1 ,x2!, ~40!

a two-dimensional equivalent by

w̃2D~r ;a* !5E drzd~r z!w̃~rW;a* !, ~41!

with r 5Ar x
21r y

2.
The mean-field part in the remaining solidlike dimensi

is a lattice sum

F sm
pert, 1D5

N

2 (
n

w̃lay~nd* ;a* !, ~42!
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with the in-layer averaged potentialw̃lay(r z ;a* )
5r2D*drx*dryw̃(rW;a* ). The summation in Eq.~42! ac-
counts for the distinct layers.

4. ABC solid

As for the distinct layers in the smectic phase, we assu
the particles in the perturbative part of the solid free ene
to be exactly localized at their lattice positionsRW i :

rABC~x!5(
RW i

d~rW2RW i !g~vW ;a* !. ~43!

Most of the structural information is contained in the on
particle densities. The two-particle density is thus given

r~2!~x1 ,x2!5 (
RW i ,RW j

d~rW12RW i !d~rW22RW j !

3g~vW 1 ;a* !g~vW 2 ;a* !. ~44!

The mean-field contribution~27! then reads

F ABC
pert 5

N

2 (
RW i

w̃~RW i ;a* !, ~45!

summing over the lattice points of the distorted fcc lattice

5. AAA solid

As for theABC solid one has

F AAA
pert 5

N

2 (
RW i

w̃~RW i ;a* !, ~46!

where the summation runs now over the lattice positions
an AAA structure.

E. Inclusion of the volume terms

The volume terms depend on the thermodynamic par
eters, but are assumed to be independent of the phas
detail, they read as@16,17#

Fvol5F1
0 1F2

0 1F1, ~47!

with

F1
0 5N1kBT@ ln~L1

3 r̄1!21#, ~48!

F2
0 5N2kBT@ ln~L2

3 r̄2!21#, ~49!

F152
1

2FNm

Z2e2

e

k

Ns~11kdTMV/2!

1kBT~N12N2!S r̄12 r̄2

r̄11 r̄2
D G , ~50!

whereN1 (r1) and N2 (r2) are the total number~den-
sity! of positive and negative micro-ions in the solution, i.
r1[ns1uZur and r2[ns . L1 and L2 denote the de
Broglie wavelength of the positive and negative ions, resp
e
y

-

f

-
In

,

c-

tively. A finite size correction@16# due to the physical core
of the rods is included by considering it as a string ofNs
517 spheres. To obtain phase equilibria we equate the t
pressure and the chemical potential of the tobacco mo
virus particles as well as the chemical potential of the ne
tively charged salt ions in coexistence.

For high salt concentrations the volume terms can be
glected@17#. In order to speed up the phase coexistence
culations, we have included them only in the caseZr
.2ns , i.e., when the number of ions stemming from t
macro-ions is larger than the number of salt ions.

IV. RESULTS FOR THE PHASE DIAGRAM

The sample parameters we used are the usual one
aqueous solutions~dielectric constante581 at room tem-
peratureT5298 K). For the number of sites,Ns517 was
chosen. The resulting phase diagram is shown in Fig. 4
high salt concentrations the typical sequence in the ph
behavior of long hard rods is obtained: With increasing d
sity the fluid transforms into a nematic, a smectic, and fina
an AAA crystal. The close-packed structure, theABC crys-
tal, will become stable at very high densities out of the ran
considered here. Below a salt concentration ofns53.1mM
theAAA structure is replaced by anABC crystal. This is due
to the reduction of the effective length-to-width ratio for d
creasing salt concentration. Finally, belowns52.25mM the
smectic phase becomes unstable.

Another interesting feature of the phase diagram is are-
entrant behavior of the nematic phasefor fixed density and
increasing salt concentration (r l TMV

3 '100). The nematic
phase is stable for strongly deionized samples. By increa
the salt concentration the system freezes into anABC crys-

FIG. 4. Phase diagram of the tobacco mosaic virus. The co
istence densities in units of 1/l TMV

3 are plotted versus the concentr
tion ns of added monovalent salt. We observe a cascade of liq
crystalline phases: In addition to the isotropic (I ), nematic (N), and
smectic-A(SmA) phases, two different colloidal crystalline struc
tures, with anAAA and anABC stacking, become stable. The e
perimental data are depicted as follows.d, I -N coexistence den-
sities from Fradenet al. @51#; s, I -N coexistence densities andh,
density values where a smectic-A phase is stable from Hiraiet al.
@54#; * smectic-A values reported by Wenet al. @6#; L, a colloidal
crystalline structure for vanishing additional salt concentrations
ported by Kreibig and Wetter@4# and Fradenet al. @5#. For a salt
concentration of 1mM computer simulations forI -N coexistence
densities are available@49# (().
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1940 PRE 59HARTMUT GRAF AND HARTMUT LÖWEN
tal, which then transforms into a smectic phase. For e
higher salt concentration, the system again gets into a n
atic phase. This theoretical prediction can be verified in
periments. Still, we do not know at present whether
counterintuitive reentrant nematic phase is an artifact of
approximations.

We make three remarks about other possible phases. F
as our theory for the reference system overestimates the
bility of a columnar phase, we do not consider this struct
here. Second, the aspect ratio of our effective particle
always of order one and larger. Thus a plastic crystal will
be stable. Third, by explicit calculations, the stability of t
cubic bcc structure was ruled out.

There is one special coexistence point of theI -N transi-
tion where computer simulation data are available@49#,
namely, for a salt concentration of 1mM. The simulation
was done for the same Yukawa-segment model and the s
parameters we used in our theoretical calculations. The c
parison with our theory is fair~see again Fig. 4!, proving that
our approximations for the isotropic and nematic phases
reasonable.

V. COMPARISON OF THEORY AND EXPERIMENT

The full phase behavior of pure monodisperse TM
samples is experimentally still unknown. A major difficul
is due to polydispersity of the particles: The TMV has
tendency to aggregate top on top and experimental sam
can be spoiled by broken rods. An important caveat for
comparison with our theory is that coexistence data for
TMV are reported for various experimental condition
Samples are suspended in different buffers at different va
of the pH. There is no obvious reason why the bare cha
of the macroparticles should remain unaffected, which w
one of our basic assumptions for the effective interactio
Additionally, the ions in these buffers are not necessa
monovalent as we assumed in our calculations.

Let us now briefly summarize the experimental data av
able. As experiments on theI -N transition@1# had been per-
formed on probably polydisperse systems, coexistence
sities as a function of the ionic strength had been reexam
in detail by Fraden and co-workers@50,51,8,52#, who ex-
plored the transition densities for many different salt conc
trations. A crystalline structure in the absence of added
had been explored. Oster@3# observed at low ionic strength
phase structured perpendicular to the director, i.e., eith
smectic or a crystalline phase. Kreibig and Wetter@4# mea-
sured the layer spacing for these samples by light scatte
However, they observed a large variety of values stemm
from different droplets within one sample. Fradenet al. @5#
examined by x-ray scattering the structure within these l
ers and observed a crystalline structure, proving that for lo
est ionic strengths a colloidal crystal is the stable structu
However, for extremely deionized samples evidence fo
columnar phase has been claimed@7#. The structure of the
samples with added salt was considered in various exp
ments. One observation was due to Kreibig and Wetter@4#,
who noted that the addition of salt destroys the liquid crys
in pure water irreversibly. Definite results for smectic pha
had been reported by Meyer and co-workers@6,53#. The full
range of virus particle concentrations for one fixed buf
n
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concentration (10mM sodium phosphate! was examined by
Hirai et al. @54#. They reported the known sequence for lo
hard spherocylinders: isotropic, nematic, smectic-A, and pre-
crystal phases. Even at the highest measured virus con
tration, the structure within the layers remains only wea
ordered, implying that the full crystalline phase is not a
ready obtained.

The experimental results are often given in terms o
calculated ionic strength, assuming a specific value of
virus particle charge. Thus we identify approximately equ
ionic strengths of experimental samples with correspond
additional salt concentrations in our model and include
this way known experimental results to our phase diagram
Fig. 4. In particular, we reduced the experimental given io
strength by the salt-free value and then assumed monova
ions. Due to these caveats this data plot should only be
derstood as an attempt to make trends visible.

The increase of the coexistence densities of the isotro
nematic transition with growing salt concentration is rep
duced within our theory. Additionally, we observe a ful
crystalline structure at vanishing salt concentration. Un
these conditions a smectic phase is experimentally not
served, as within our theory. From the phase diagram
could also be explained that the colloidal crystal at vanish
additional salt concentrations could be transformed to m
disordered structures by adding salt. Hence general tre
are in good agreement with our theory, but a full quantitat
comparison is not possible at the moment.

VI. CONCLUSION

In conclusion, we have presented a theory for the differ
liquid-crystalline phases for suspensions of TMV particle
The resulting phase diagram is quite rich, showing the s
bility of different phases including a reentrant nematic tra
sition. It would be interesting to perform further comput
simulations of our model in order to check quantitatively o
theory for the phase diagram.

We finish with two remarks. First, experimental studi
on the isotropic-nematic transition of rodlike colloidal pa
ticles in anexternal alternating electric fieldshow a critical
point @9#. This is a general feature between phases of
same spatial symmetry but with a different degree of ori
tational order. Thus, by external fields a critical point b
tween the plastic solid and theABC-stacked crystal might
exist. It would be interesting to generalize our approach
such external fields coupling to the orientational degree
freedom. Second, a more microscopic theory is provided
the density functional approach of anisotropic particl
These theories, however, require a large numerical eff
Until now there had been no functional available, which ge
erates the full phase behavior of HSCs. Still, some kind
weighted-density approximations@24# should be tested for
the stability of the crystalline phases in order to get the f
phase diagram. Our future work lies along these directio
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APPENDIX A: FREE VOLUME OF SOLID HSC PHASES

The basic assumption of our cell theory is that the HS
have the same free volume cell as the corresponding h
sphere crystal.

1. ABC solid

For the ABC solid the free volume cell is a rhombi
dodecahedron. The free volume depends on the direction
tween two particles in two succeeding layers, measured w
respect to the preference direction perpendicular to the la
u fcc , or, equivalently, on the angle in an equilateral pyram
and is given by

v free
ABC54A2y3, ~A1!

with

y5a/22R̄~p/2,@g# !,

a52c1
c2

b1/3
1b1/3,

b522c312A2/r1A~2/r24A2c3!/r ,

c5R̄~u fcc ,@g# !2R̄~p/2,@g# !,

whereR̄(u fcc ,@g#) is defined in Eq.~4!.

2. AAA solid

The shape of the free volume cell in anAAA crystal is a
hexagonal prism. We fix the ratio of the long to short latti
constant to be equal to the full aspect ratiox5p11. The free
volume reads

v free
AAA56

a

A3
S a

2
2R̄~p/2,@g# ! D 2S x22

R̄~0,@g# !

a
D ,

~A2!

with

a5~2/A3rx!1/3.

3. bcc solid

The free volume cell has the shape of a truncated octa
dron and reads

v free
bcc54y3, ~A3!

with

y5a/22R̄~p/2,@g# !,
s
rd-

e-
th
rs
,

e-

a52c/31
c2

3b1/3
1

b1/3

3
,

b52c3127/r13A3A~27/r22c3!/r,

c52A6R̄~ubcc,@g# !23A2R̄~p/2,@g# !.

APPENDIX B: EXPANSION IN SPHERICAL INVARIANTS

Here we anticipate the conventions of Gray and Gubb
@55#. The quantityh(rW,vW 1 ,vW 2) @Eq. ~32!# depends on the
unit vectorvW 5rW/urWu. The rotational invariants

FL~vW ,vW 1 ,vW 2!

5 (
m52 l

l

(
m152 l 1

l 1

(
m252 l 2

l 2

C~ l 1l 2l ,m1m2m!

3Yl 1m1
~vW 1!Yl 2m2

~vW 2!Ylm* ~vW !, ~B1!

with Ylm being spherical harmonics andC( l 1l 2l ,m1m2m)
the Clebsch-Gordan coefficients, remain unchanged unde
multaneous rotations ofvW 1,vW 2, andvW . We expand therefore

h~rW,vW 1 ,vW 2!5(
L

ĥL~r !FL~vW ,vW 1 ,vW 2!, ~B2!

where the summation is running over the tripleL
5( l 1 ,l 2 ,l )PN0

3 . The expansion coefficients read

ĥL~r !5
4p

2l 11ES2

d2vW 1E
S2

d2vW 2 h~r ;vW 1 ,vW 2,vW !

3FL* ~vW ,vW 1 ,vW 2!. ~B3!

As they are rotationally invariant, we fixvW pointing along
the z axis, vW 5êz , to calculate them. The expansion coef
cients thus read, withm̄52m,

ĥL~r !5A 4p

2l 11E d2vW 1E d2vW 2

3 (
m52min~ l 1 ,l 2!

min~ l 1 ,l 2!

C~ l 1l 2l ;mm̄,0!Yl 1m* ~vW 1!

3Yl 2m̄
* ~vW 2!h~r ,vW 1 ,vW 2 ;vW 5êz!. ~B4!

Using the invariance ofh(rW,vW 1 ,vW 2) if one of the vW ’s
changes sign, only those expansion coefficients with e
l 1 ,l 2 ,l are nonzero.
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