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By an efficient algorithm, we evaluate exactly the disorder-averaged statistics of globally neutral self-
avoiding chains with quenched random chargeqi561 in monomeri and nearest neighbor interactions}qiqj

on square~22 monomers! and cubic~16 monomers! lattices. At theQ transition in two dimensions, the radius
of gyration and entropic and crossover exponents are very compatible with the universality class of the
corresponding transition of homopolymers. A further strong indication of such a class comes from direct
comparison with the corresponding annealed problem. In three dimensions, classical exponents are recovered.
The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially
with the chain length.@S1063-651X~98!09212-5#

PACS number~s!: 64.60.2i, 36.20.2r, 33.15.2e, 02.70.2c
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During recent years random heteropolymers have b
the object of intense study: they play a central role in o
understanding of the properties of biologically active m
ecules@1#, and represent a relatively handy model of a d
ordered system, of great interest in statistical mecha
@2–4#. Particular attention has recently been focused on r
domly charged polymers~polyampholytes! @5# interacting
via long- ~Coulomb! and short-range~screened! potentials.
Amino acids in proteins carry electric charges, and elec
static interactions play an important role in determining th
behavior@1#. Thus polyampholyte models are expected to
useful for the investigation of biologically relevant polymer

Due to monomer-monomer and monomer-solvent inter
tions, even in the absence of charges, a linear polymer
dergoes a collapseQ transition as the temperatureT is varied
@6#. In particular, in the case of a homopolymer, forT.TQ

the chain is swollen and its average radius of gyration gro
as Rg}Nn (N is the number of steps,n5 3

4 in two dimen-
sions @7#, andn50.588 in three dimensions@8#!, while for
T,TQ the polymer is compact (n51/d). At T5TQ a dis-
tinct universality class (n5nQ5 4

7 in two dimensions@6# and
1
2 in three dimensions@9#! characterizes scaling.

The existence of a collapse transition is by now well
tablished for polyampholyte models with both short- a
long-range interactions due to randomly distributed charg
In the long-range Coulomb case, the total charge distribu
along the chain must not exceed a critical value (DQ
.AN) in order for theQ transition to occur@10#. In the
PRE 591063-651X/99/59~2!/1887~6!/$15.00
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short-range case there is a collapse transition as long a
charge unbalancex5uN12N2u/(N11N2) is less than
some cutoff value@11#. The collapse of randomly charge
polymers owes much of its importance to the close conn
tion with protein folding@12#, and is similar to that of ho-
mopolymers, with aQ-scaling regime separating compa
and swollen phases. An important yet unsettled issue is
of establishing whether theQ transition of polyampholytes
falls into the same universality class as the collapse of
mopolymers described above.

By a numerical study of randomly charged self-avoidi
walks ~SAW’s! with nearest neighbor interactions on th
square lattice, Kantor and Golding@13# obtainednQ50.60
60.02 for globally neutral polyampholytes, slightly, but a
preciably, different from that of homopolymers (nQ5 4

7 ).
These results, based mostly on Monte Carlo~MC! enumera-
tions~up toN599) and on a relatively limited sampling ove
disorder, suggest that the presence of quenched random
teractions can modify the universality class of theQ transi-
tion. This is quite an intriguing possibility, also in view o
the constant focus on universality issues in the literature
Q transitions@6#. A major limitation of this type of study is
due to the need to perform averages over charge disord
task which, at an exact level, becomes impossible with s
dard algorithms as soon asN.15 in two dimensions. It is
not obvious whether, for relatively short chains, quench
averages over few disorder configurations~10–100 in Ref.
@13#! should be sufficient for a satisfactory determination
1887 ©1999 The American Physical Society
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1888 PRE 59PIETRO MONARI AND ATTILIO L. STELLA
the radius of gyration. Especially in the low-temperature
gime, fluctuations of thermodynamic quantities due
quenched disorder are indeed very large, and random s
pling over a small number of disorder realizations can lead
inaccurate results for quenched averages. The investiga
of the low-temperature phase of random polyampholytes
formidable challenge for MC methods, because of the p
hibitively large samplings it should require. On the oth
hand, even thermal averages become a problem at lowT.
Indeed, dynamic MC methods like the pivot algorithm a
efficient in the high temperature regime but much less r
able as soon as the temperature is lowered belowTQ and
chains are compact@14#. Finally, Markov-chain-based MC
methods do not allow a computation of entropic expone
which would provide a more complete characterization
the universality of the transition.

The above considerations suggest that an interesting s
egy in the study of random polyampholyte models can
that of extending as far as possible, by appropriate a
rithms, the range of chain lengths within which we can s
gather exact information. In the present work we perfo
exact enumerations up to chains withN521 in two dimen-
sions andN515 in three dimensions for polyampholyte
with charge disorder and nearest neighbor interactions,
carry out quenched averages over all disorder realizati
To this purpose we developed a powerful algorithm
short-range interacting SAW’s with charge disorder, in su
a way as to reduce by orders of magnitude the required c
putational effort, compared to more standard methods.

We represent eachN-steps polymer chain configuratio
by a SAWv (uvu5N) on a square or cubic lattice. In eac
of the N11 visited sites sits a charged monomer. T
Hamiltonian takes the form

H~$q%,v!52(
^ i , j &

qiqj , ~1!

whereqi561 is the charge carried by thei th monomer, and
^ i , j & indicates pairs of~nonconsecutive! nearest neighbo
monomers. The sequence of theN11 charges distributed
along the chain is denoted by$q%5$q0 ,q1 , . . . ,qN% and is
assumed to be globally neutral (N11 even!. The quenched
average squared radius of gyration is

Rg
2~N,T!5

1

Nq
(
$q%

Z$q%~N,T!21F (
uvu5N

e2H~$q%,v!/Tr g
2~v!G ,

~2!

whereNq is the total number of charge sequences,r g(v) is
the radius of gyration with respect to the center of mass
the configurationv, andZ$q%(N,T) is the canonical partition
function for a given realization$q% of disorder:

Z$q%~N,T!5 (
uvu5N

e2H~$q%,v!/T. ~3!

Near theQ point, the radius of gyration is expected
obey the tricritical scaling form@15,16#

Rg
2~N,T!.N2nQ f ~NfQt!, ~4!
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wheret5(T2TQ)/TQ is the temperature distance from th
Q transition, andfQ is the crossover exponent. In the ca
of homopolymers in two dimensions,nQ5 4

7 andfQ5 3
7 @9#.

The annealed partition function is defined as the aver
of Eq. ~3! over all sequences:

Z~a!~N,T!5
1

Nq
(
$q%

Z$q%~N,T!, ~5!

while the quenched partition function is defined in terms
the quenched free energy:

Z~q!~N,T!5expF 1

Nq
(
$q%

ln„Z$q%~N,T!…G . ~6!

Both annealed and quenched partition functions are
pected to scale as

Z~a/q!~N,T!.m~a/q!~T!NNg~a/q!~T!21. ~7!

The connectivitym is lattice and temperature depende
while g is the universal entropic exponent. As in the h
mopolymer case, for highT the exponentg(T) should iden-
tically take the value appropriate to SAW’s in the swolle
regime (gSAW5 43

32 ) @7#. In the presence of aQ collapse at
TQ , g is expected to assume a different valuegQ , which is
peculiar to the universality class of the transition. At low
temperatures, because of the globular shapes of the colla
polymer, surface effects are present and can modify
above scaling form forZ with the appearance of an extr
exponential factor besidesmN @17#.

It is not obviousa priori that m and g should take the
same values for quenched and annealed problems. While
is plausible at relatively highT, where quenched disorde
plays a minor role, discrepancies can be anticipated at lowT.
A main issue here is to establish whetherTQ is still included
in the high-T range.

Different entropic exponents have to be defined wh
polymers are subject to geometrical constraints: if the po
mer chain is forced to live in half space by an impenetra
wall to which one of its ends is fixed, the critical entrop
exponent assumes a valueg1 , different from the bulkg @6#.
The entropic behavior of SAW’s at boundaries alrea
played a major role in studies aimed at a precise charac
ization of the universality class of theQ transition of ho-
mopolymers ~in two dimensions,gQ5 8

7 , g1Q5 4
7 , and

g11Q52 4
7 @18,19#!.

The numerical study of entropic exponents is greatly
cilitated by considering simultaneously data for bulk a
boundary behavior@20#. Indeed, if the polymer is not ad
sorbed, the connectivitym is insensitive to the presence o
the boundary and remains the same for both bulk and bou
ary behavior ofZ. Below we indicate byZbulk andZhalf the
respective partition functions. Thus the ratio between b
and boundaryZ’s scales as a power of the difference b
tween the respectiveg ’s, and does not depend onm, whose
estimation is then not necessary. Due to these circumstan
the determination ofg2g1 becomes easier and much mo
accurate.
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PRE 59 1889Q-POINT UNIVERSALITY OF RANDOM . . .
Here we call contact a pair of nonconsecutive monom
on nearest neighbor sites, i.e., two interacting monom
The contact map of a given SAW configurationv is the set
of all contacts it contains:

X~v!5ˆ~ i , j !:u$r %$v~ i !%2$r %$v~ j !%u51,u i 2 j u.1‰.
~8!

A contact map of anN-steps SAW can also be represent
by an (N11)3(N11) matrix, whose (i , j ) element is 1 or
0, according to whether the monomersi and j are interacting
or not, respectively. For any given$q%, the energy of a con-
figuration v is fully determined by its contact mapX(v).
Two configurationsv andv8 which are characterized by th
same structure of contacts@X(v)5X(v8)# have the same
energy for every$q%, and can be considered as equivale
The set of allv ’s of a given length can be partitioned int
equivalence classes, each of them containing all the w
which are characterized by a given contact map. The num
of equivalence classes is equal to the number,SN , of distin-
guishable contact mapsXa , a51, . . . ,SN . Each equiva-
lence classCa5$v:X(v)5Xa% is characterized by its own
degeneracyg(a) and cumulative squared radius of gyratio
rg

2(a):

g~a!5 (
vPCa

1, rg
2~a!5 (

vPCa

r g
2~v!. ~9!

g(a) is expected to grow exponentially with the differen
between the number of stepsN and the number of contacts i
Xa @21#. This means thatSN still grows exponentialy withN,
but much more slowly than the total number of SAW’sCN
~see Table I!. In particular the ratioSN /CN is expected to
approach zero exponentially.

The sum over configurationsv in Eqs.~2! and~3! can be
replaced by the sum over equivalence classes, each of
taken with its own degeneracy and cumulative squared
dius of gyration:

TABLE I. Comparison between the number of different conta
mapsSN andCN in two dimensions forN57,8, . . .,21. Also, even
values ofN are reported for completeness.

N SN CN

7 40 2172
8 77 5916
9 211 16 268

10 423 44 100
11 1112 120 292
12 2308 324 932
13 5952 881 500
14 12 494 2 374 444
15 31 939 6 416 596
16 67 388 17 245 332
17 170 669 46 466 676
18 363 009 124 658 732
19 910 971 335 116 620
20 1 953 846 897 697 164
21 4 868 342 2 408 806 028
rs
s.

.
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er

em
a-

Rg
2~N,T!5

1

Nq
(
$q%

Z$q%~N,T!21F (
a51

SN

e2H~$q%,Xa!/Trg
2~a!G ,

~10!

Z$q%~N,T!5 (
a51

SN

e2H~$q%,Xa!/Tg~a!. ~11!

In terms of computational cost, the last equations are c
siderably cheaper than Eqs.~2! and ~3!. The main improve-
ment regards the thermal averages over configurationsv,
which are made considerably faster, due to the fact that t
involve summations overSN rather thanCN terms. Detailed
enumeration of allv ’s for each given sequence$q%, would
become unfeasible as soon asN.15, when computing exac
averages over disorder.

In the present work, Eqs.~10! and~11! have been imple-
mented by an efficient algorithm, in which SAW’s of a give
length are generated once and for all. The structure of c
tacts of each walk is registered on a binary map. Whenev
new walk is generated, its contact map is analyzed
sorted: if the contact configuration has already occurred
degeneracy and cumulative gyration radius are updated;
erwise, a new contact map is added.

Once SAW’s are fully enumerated, all contact mapsXa

are stored together with theirg(a) andrg
2(a). Disorder av-

erages of thermodynamic and geometric observables are
calculated over half the number of neutral sequences,
Hamiltonian invariant being under$q%→$2q%.

On a DEC 600 DIGITAL work station, an exact enumer
tion of SAW’s and a complete quenching over all sequen
requires few minutes of CPU time for 16 monomer cha
and about 130 hours for 22 monomer chains. The same
gorithm was adapted later on in order to compute annea
averages over the same realizations of disorder. The com
tation of annealed averages is slightly faster than that
quenched averages. Thus, we could easily obtain exac
sults with annealed disorder forN up to 21 in two dimen-
sions.

In order to study theQ point we computed effectiven
exponents

n~N,K,T!5
1

2
lnF Rg

2~N,T!

Rg
2~N2K,T!

G lnF N

N2K G21

. ~12!

In the N→` limit these curves should be step functio
of T. However, at finiteN, they show a rounded step. If th
trends of approach of theN→`n values in the high- and
low-T phases are from opposite directions, curves~12! are
expected to intersect among themselves in the neighborh
of the Q point. They indeed show such behavior: effecti
exponents liken(N,2,T) are monotonically increasing func
tions of N at highT and decreasing at not too lowT. Linear
extrapolation of these curves with respect to 1/N, in the
1/N→0 limit, allows one to estimate an exponentn`(T)
which is close to or even below the compact-polymer va
n50.5 for T just below the intersection region. On the oth
hand,n`(T) is almost equal to the swollen SAW valuen
50.75 at highT ~Fig. 1!. Intersections of all the curve
n(N,K,T) occur in a small region of the (T,n) plane, within
which one can suppose the transition to be located. Foll

t



r

e

te

po

ts

-

ave
-

alue

ove

ect
s

the

am-

ffi
, t
lik

1890 PRE 59PIETRO MONARI AND ATTILIO L. STELLA
ing Privman@22#, in order to pinpoint theQ transition quan-
titatively, we calculated the coordinates (Tint ,n int) of all in-
tersections between every pair of curvesn(N,K,T),
n(N8,K8,T), and plotted these points against 1/Neff52/(N
1N8). The definition ofNeff is of course subjective. In ou
choice no role is played by the integersK andK8 because of
the weak dependence of the intersection locations on th
parameters. For each 1/Neff , we computed the means, ofTint
andn int of the corresponding intersections, and extrapola
them linearly as a function of 1/Neff ~Fig. 2!, obtaining the
estimatesnQ50.5860.02 andTQ50.8060.03. Uncertainty
estimates are also based on comparison between extra
tions from data in different ranges of 1/Neff . The exponent is
fully compatible with homopolymerQ-point universality.

Another method can be applied in order to estimatenQ

and TQ . As illustrated above, the effective exponen
nN(T)5n(N,2,T) are monotonic functions of 1/N, decreas-
ing for T.TQ and increasing forT,TQ . Their linear cor-
relation with respect to 1/N can be analyzed with the corre
lation coefficient defined by@23#

r ~T!5

(
N

~1/N21/N!„nN~T!2nN~T!…

A(
N

~1/N21/N!2(
N

„nN~T!2nN~T!…2

,

~13!

FIG. 1. Effectiven(N,K52,T) exponents~solid lines! and their
linear extrapolationn`(T) for 1/N→0 ~dot-dashed line!. Tempera-
ture is normalized to monomer-monomer interaction. For su
ciently low T, the sequences cease to be monotonic. Of course
relatively short length of the chains rounds off the expected step
shape ofn` at theQ transition.
se

d

la-

where bars indicate averages overN. The coefficientr (T) is
close to21 for T.TQ and to 1 forT,TQ meaning that, in
these regions, data are very well linear correlated and h
opposite monotony. In theQ region r (T) undergoes a sud
den jump between 1 and21. Its derivative with respect to
temperature shows a high and sharp peak whose mean v
and width localizeTQ and determine its uncertaintyDTQ .
The extremal values taken byn`(T) in the interval @TQ

2DTQ ,TQ1DTQ# give an estimate ofnQ , and of the cor-
responding errorDnQ . TQ and nQ obtained with this
method are almost identical to the values determined ab
by extrapolating the intersectionsn int andTint , respectively.

In order to obtain the crossover exponentfQ we analyzed
the derivative of the squared radius of gyration with resp
to temperature. Near theQ point this quantity should scale a

d

dT
Rg

2~N,T!.NfQ~T!12n~T!. ~14!

The effective exponent curves corresponding tof12n do
not clearly intersect each other in a narrow region of
(T,f12n) plane. So the method used for determiningnQ

cannot be applied in this case, because it would lead to
biguous results. Following Ref.@22#, we then calculated, for
each intersection (Tint ,n int) between n(N,K,T) and
n(N8,K8,T), with N.N8, the quantity

lnF dRg
2~N,Tint!/dT

dRg
2~N2K,Tint!/dT

G lnF N

N2K G21

22n int . ~15!

-
he
e

FIG. 2. Values ofn int as a function of 1/Neff . Rhombs indicate
the means of the exponent extimates at fixedNeff , while horizontal
bars limit the variance of their distribution.
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PRE 59 1891Q-POINT UNIVERSALITY OF RANDOM . . .
Extrapolation of these data in 1/Neff leads to the estimate
fQ50.4060.08 ~Fig. 3!. The computation of the crossove
exponent for homopolymerQ transitions is usually rathe
difficult and often leads to considerable overestima
@24,25#. Our result is very compatible with the exact h
mopolymer valuefQ53/7.0.42@9#. Attempts to determine
f on the basis of data collapse fits forRg @Eq. ~4!# were not
very successful because the collapse quality does not de
sensibly enough on this exponent.

In the annealed system, frustration effects peculiar
quenched disorder are ruled out. The charges distribu
along the chain are indeed free to rearrange among th
selves in such a way to let nearest neighbor interactions
able to minimize the energy of each SAW configurationv. It
seems very plausible that such a rearrangement can pro
a collapse in the same universality class as theQ point of an
ordered polymer with nearest neighbor attractive interacti
for all monomers. Because of these reasons we expec
nealed disorder to be irrelevant for the collapse transiti
This conjecture is well confirmed by the analysis of our e
act enumeration results for the annealed system~22 mono-
mers!. The analysis followed the lines of the quenched ca
The transition exponents of the annealed model were e
mated asnQ50.5860.02 andfQ50.4160.08.

A direct comparison between annealed and quenched
tition functions then turns out to be a very significant test,
view of the fact that the annealed system represents a so
substitute of the pure one. As explained above, to avoid
ficulties due to the calculation of the nonuniversal const
m, in the case of both quenched and annealed charges
analyzed the ratioZ between the partitions of SAW’s in th
bulk and in the presence of the boundary, which is expec
to scale as

FIG. 3. Extrapolation of the crossover exponentfQ .
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Z~a/q!~N,T!5
Z~a/q!

bulk ~N,T!

Z~a/q!
half ~N,T!

.N~g2g1!~a/q!~T!. ~16!

Effective exponents can be obtained from

F Z~a/q!~N,T!

Z~a/q!~N22,T!G
1/2

511
1

N
~g2g1!~a/q!~N,T!1oS 1

N2D .

~17!

The sequences (g2g1)(a/q)(N,T), plotted against 1/N,
show remarkably good linear correlation. Their extrapolat
for 1/N→0 gives a reasonable estimate of the expectedg
2g1)(a/q) in the high-T range and close toTQ . Even more
precise is the comparison between the annealed
quenched cases based on theseg2g1 estimates. It turns ou
that the differenceg2g1 is almost identical for annealed an
quenched systems on a range of temperatures which cle
extends below theQ temperature~Fig. 4!. We estimated
(g2g1);0.50 and (g2g1);0.39 at theQ point and in the
high-T region, respectively. TheQ-point determination is
slightly below the homopolymer value@(g2g1)Q5 4

7 @18##,
while the high-T one almost coincides with the SAW one
@(g2g1)SAW525/64 @6##.

In three dimensions, for a homopolymer,nQ is expected
to be equal to1

2 with logarithmic corrections@9#. Indeedd
53 is the upper critical dimension for the transition. W
applied our methods to our model of random polyampholy
in three dimensions, and computed exact averages for ch
up to 15 monomers. A simple analysis of the radius of gy

FIG. 4. Extrapolation ofg2g1 for annealed~dashed line! and
quenched~dot-dashed line! disorder. The values are almost iden
cal in a range of temperatures extending belowTQ;0.80.
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1892 PRE 59PIETRO MONARI AND ATTILIO L. STELLA
tion, not including logarithmic corrections, givesnQ50.51
60.04, again consistent with the homopolymer universa
class.

Altogether the above results give very strong eviden
that the collapse transition of the globally neutral rand
polyampholyte model falls in the same universality class
theQ point of homopolymers. Support for such a conclusi
comes from the exponent determinations we were able
perform. Further evidence comes from our comparat
analysis of entropic properties in the case of quenched
annealed disorders. Our study ofg2g1 shows that anneale
and quenched partition functions start to deviate apprecia
at some temperature falling definitively below the estima
TQ . In order to obtain a collapse with exponents differe
from those of homopolymer models, one should have con
tions such that the effect of quenched disorder become
portant above or, at least, at the collapse transition temp
ture. The identification and investigation of models whe
such conditions could possibly be realized remains an imp
tant open issue in the field, whose solution would sens
increment our understanding of the possible role played
chain disorder in polymer statistics.

With the exact enumeration methods developed for
study of theQ transition, we could also perform an analys
of how the actual partition function at fixed$q%, Z$q% , devi-
ates from its~annealed! average at low temperature. Histo
grams of quantities likeZ$q%(N,T)/Z(a)(N,T) show very
clearly a lack of self-averaging atT sufficiently lower than
TQ . While in a range of highT includingTQ they are narrow
peaked around the value 1, for lower temperature they
quite broad. At very lowT such histograms acquire a spar
structure, and allow one to investigate folding properties
the model.
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While for T approaching zero homopolymers collapse
many compact conformations with the same ground s
energy, most heteropolymer sequences usually collaps
very few lowest-energy conformations~see, e.g., Ref.@26#!.
In general, in order to better represent properties of real p
teins, a heteropolymer model is expected to admit a uni
compact conformation with lowest energy, i.e., a nondeg
erate ground state, at least for some sequences. The per
age of sequences admitting a unique ground state for
H-P heteropolymer model is believed from numerical ana
sis to remain almost constant asN increases@27#. The H-P
model is a SAW in which each monomer can have eithe
hydrophobic or a polar character, with short-range inter
tions to the nearest neighbor solvent molecules. This mo
has been applied often to protein folding studies~see, e.g.,
Ref. @26,28#!. Here we investigated the numberf N of se-
quences having a unique ‘‘native state’’ in our two dime
sional model. This analysis was performed by applying
exact method described above to the investigation of gro
states of Hamiltonian walks@29# on the square lattice, fo
chain lengths up to 25. It turns out thatf N grows withN at a
reduced exponential rate with respect to the total numbe
sequencesNq . In particular we foundf N.1.85N, while Nq
.N21/22N. Thus the percentage of sequences which pos
a unique ground state tends asymptotically to zero asN
→`. This behavior is in sharp contrast with that found in t
H-P model @27#.
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