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By an efficient algorithm, we evaluate exactly the disorder-averaged statistics of globally neutral self-
avoiding chains with quenched random chagge + 1 in monomeii and nearest neighbor interactions|;q;
on squarg22 monomersand cubic(16 monomerklattices. At the® transition in two dimensions, the radius
of gyration and entropic and crossover exponents are very compatible with the universality class of the
corresponding transition of homopolymers. A further strong indication of such a class comes from direct
comparison with the corresponding annealed problem. In three dimensions, classical exponents are recovered.
The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially
with the chain length[S1063-651X%98)09212-5

PACS numbes): 64.60—i, 36.20—r, 33.15—¢e, 02.70-C

During recent years random heteropolymers have beeshort-range case there is a collapse transition as long as the
the object of intense study: they play a central role in ourcharge unbalancex=|N,—N_|/(N,+N_) is less than
understanding of the properties of biologically active mol-some cutoff valug11]. The collapse of randomly charged
ecules[1], and represent a relatively handy model of a dis-polymers owes much of its importance to the close connec-
ordered system, of great interest in statistical mechanicion with protein folding[12], and is similar to that of ho-
[2—4]. Particular attention has recently been focused on ranmopolymers, with a®-scaling regime separating compact
domly charged polymergpolyampholytes [5] interacting  and swollen phases. An important yet unsettled issue is that
via long- (Coulomb and short-rangéscreeneji potentials.  of establishing whether th@ transition of polyampholytes
Amino acids in proteins carry electric charges, and electrofalls into the same universality class as the collapse of ho-
static interactions play an important role in determining theirmopolymers described above.
behavior{1]. Thus polyampholyte models are expected to be By a numerical study of randomly charged self-avoiding
useful for the investigation of biologically relevant polymers. walks (SAW’s) with nearest neighbor interactions on the

Due to monomer-monomer and monomer-solvent interacsquare lattice, Kantor and Goldirid3] obtainedvg=0.60
tions, even in the absence of charges, a linear polymer un+0.02 for globally neutral polyampholytes, slightly, but ap-
dergoes a collaps® transition as the temperatufés varied  preciably, different from that of homopolymersd=3).

[6]. In particular, in the case of a homopolymer, TorTg  These results, based mostly on Monte C&NIC) enumera-

the chain is swollen and its average radius of gyration growsions (up toN=99) and on a relatively limited sampling over
asRyxN" (N is the number of steps;=3 in two dimen-  disorder, suggest that the presence of quenched random in-
sions[7], and »=0.588 in three dimensioni8]), while for  teractions can modify the universality class of fetransi-
T<Tg the polymer is compacti(=1/d). At T=Tg a dis- tion. This is quite an intriguing possibility, also in view of
tinct universality class®=vg= % in two dimensiong6] and  the constant focus on universality issues in the literature on
1 in three dimension§9]) characterizes scaling. 0 transitions[6]. A major limitation of this type of study is

The existence of a collapse transition is by now well es-due to the need to perform averages over charge disorder, a
tablished for polyampholyte models with both short- andtask which, at an exact level, becomes impossible with stan-
long-range interactions due to randomly distributed chargesiard algorithms as soon &>15 in two dimensions. It is
In the long-range Coulomb case, the total charge distributedlot obvious whether, for relatively short chains, quenched
along the chain must not exceed a critical valukQ( averages over few disorder configuratiqi®—-100 in Ref.
=N) in order for the® transition to occuf10]. In the  [13]) should be sufficient for a satisfactory determination of
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the radius of gyration. Especially in the low-temperature rewherer=(T—Tg)/Tg is the temperature distance from the
gime, fluctuations of thermodynamic quantities due to® transition, andpg is the crossover exponent. In the case
quenched disorder are indeed very large, and random sarof homopolymers in two dimensionse =% and ¢ =3 [9].
pling over a small number of disorder realizations can lead to The annealed partition function is defined as the average
inaccurate results for quenched averages. The investigatiaf Eq. (3) over all sequences:

of the low-temperature phase of random polyampholytes is a

formidable challenge for MC methods, because of the pro- 1

hibitively large samplings it should require. On the other Z(a)(N,T)=N—E Zi(N,T), (5)
hand, even thermal averages become a problem atTlow afal

Indeed, dynamic MC methods like the pivot algorithm are N o ] )

efficient in the high temperature regime but much less reliwhile the quenched partition function is defined in terms of
able as soon as the temperature is lowered béfgnand  the quenched free energy:

chains are compadtl4]. Finally, Markov-chain-based MC

methods do not allow a computation of entropic exponents, 1

which would provide a more complete characterization of Z(q)(N,T)=exp{N—E IN(Z(qy(N, T)) |- ®)

the universality of the transition. atal

The above considerations suggest that an interesting strat-
egy in the study of random polyampholyte models can be
that of extending as far as possible, by appropriate algoP€Cted to scale as
rithms, the range of chain lengths within which we can still
gather exact information. In the present work we perform Z(aiq) (N, T) = () (T) "N V@ (DL, (7)
exact enumerations up to chains with=21 in two dimen-
sions andN=15 in three dimensions for polyampholytes  The connectivityu is lattice and temperature dependent,
with charge disorder and nearest neighbor interactions, anghile y is the universal entropic exponent. As in the ho-
carry out quenched averages over all disorder realizationgnopolymer case, for high the exponenty(T) should iden-

To this purpose we developed a powerful algorithm fortically take the value appropriate to SAW’s in the swollen
short-range interacting SAW's with charge disorder, in suchregime (ysay=%3) [7]. In the presence of & collapse at
a way as to reduce by orders of magnitude the required comf v is expected to assume a different valug, which is
putational effort, compared to more standard methods.  peculiar to the universality class of the transition. At lower

We represent each-steps polymer chain configuration temperatures, because of the globular shapes of the collapsed
by a SAWw (Jw|=N) on a square or cubic lattice. In each polymer, surface effects are present and can modify the
of the N+1 visited sites sits a charged monomer. Theabove scaling form foZ with the appearance of an extra
Hamiltonian takes the form exponential factor besides™ [17].

It is not obviousa priori that © and y should take the
same values for quenched and annealed problems. While this
is plausible at relatively higiT, where quenched disorder
plays a minor role, discrepancies can be anticipated afllow
whereq;= =1 is the charge carried by tlith monomer, and A main issue here is to establish whetfigy is still included
(i,j) indicates pairs of(nonconsecutivenearest neighbor in the highT range.
monomers. The sequence of ther1 charges distributed Different entropic exponents have to be defined when

Both annealed and quenched partition functions are ex-

H({0|},w>=—<i2j> aiq; , (1)

along the chain is denoted Hg}={qo.,q;, ... ,0n} and is  polymers are subject to geometrical constraints: if the poly-
assumed to be globally neutrdl ¢ 1 even. The quenched mer chain is forced to live in half space by an impenetrable
average squared radius of gyration is wall to which one of its ends is fixed, the critical entropic

exponent assumes a valye, different from the bulky [6].
5 1 . Ty T2 The entropic behavior of SAW’s at boundaries already
Rg(N!T):N_E Ziy(N,T) [ 2 e HUB T 2(w) |, played a major role in studies aimed at a precise character-
alal lol= ) ization of the universality class of th® transition of ho-

mopolymers (in two dimensions,ye=2%, y,6=%, and

=_4
whereNj is the total number of charge sequenaggw) is 7’11@h_ 7 [1831q|)' dv of . . v f
the radius of gyration with respect to the center of mass of The numerical study of entropic exponents Is greatly fa-

: - , ; s ilitated by considering simultaneously data for bulk and
the configuratiorw, andZ,, (N, T) is the canonical partition cl i ) ,
function for a given reali{zqgltio{q} of disorder: boundary behaviof20]. Indeed, if the polymer is not ad-
sorbed, the connectivity is insensitive to the presence of

the boundary and remains the same for both bulk and bound-
Zy(N,T)= ; e~ Haho)T, (3)  ary behavior ofZ. Below we indicate byZ""* and z"3" the
o[ =N respective partition functions. Thus the ratio between bulk
] ] o and boundaryZ’'s scales as a power of the difference be-
Near the® point, the radius of gyration is expected 10 yyeen the respective’s, and does not depend qn whose
obey the tricritical scaling form15,16 estimation is then not necessary. Due to these circumstances,

) ) the determination ofy— y; becomes easier and much more
Ry(N,T)=N vof(N%or), (4) accurate.
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TABLE I. Comparison between the number of different contact 1 SN
mapsSy andCy in two dimensions foN=7,8, . . .,21. Also, even RS(N’T) :_2 Z{q}(N,T)’l E e*H({q}yX,Q/Tpé(a) ,
values ofN are reported for completeness. Nq{q} a=1

(10

N SY Cn S

7 40 2172 Zig(N,T)= 2, e HUad X/ Tg(q). (11)

8 77 5916 a=1

9 211 16 268 In terms of computational cost, the last equations are con-
10 423 44100 siderably cheaper than Eq®) and (3). The main improve-
11 1112 120292 ment regards the thermal averages over configurations
12 2308 324932 which are made considerably faster, due to the fact that they
13 5952 881500 involve summations ove®y rather thanCy terms. Detailed
14 12494 2374444 enumeration of all’s for each given sequendg}, would
15 31939 6416 596 become unfeasible as soonMs 15, when computing exact
16 67388 17245332 averages over disorder.
17 170669 46 466 676 In the present work, Eq$10) and(11) have been imple-
18 363009 124 658 732 mented by an efficient algorithm, in which SAW'’s of a given
19 910971 335116620 length are generated once and for all. The structure of con-
20 1953 846 897 697 164 tacts of each walk is registered on a binary map. Whenever a
21 4868 342 2 408 806 028 new walk is generated, its contact map is analyzed and

sorted: if the contact configuration has already occurred, its
degeneracy and cumulative gyration radius are updated; oth-
Here we call contact a pair of nonconsecutive monomergrwise, a new contact map is added.

on nearest neighbor sites, i.e., two interacting monomers. Once SAW'’s are fully enumerated, all contact mafys

The contact map of a given SAW configuratienis the set  are stored together with thei(«) and pg(a). Disorder av-

of all contacts it contains: erages of thermodynamic and geometric observables are then
calculated over half the number of neutral sequences, the
Hamiltonian invariant being unddg}—{—q}.

(8 On a DEC 600 DIGITAL work station, an exact enumera-

tion of SAW’s and a complete quenching over all sequences
A contact map of alN-steps SAW can also be representedrequires few minutes of CPU time for 16 monomer chains

by an (N+1)X(N+1) matrix, whose i(,j) elementis 1 or and about 130 hours for 22 monomer chains. The same al-
0, according to whether the monomerandj are interacting  gorithm was adapted later on in order to compute annealed
or not, respectively. For any givelj}, the energy of a con-  averages over the same realizations of disorder. The compu-
figuration w is fully determined by its contact ma}(w).  tation of annealed averages is slightly faster than that of
Two configurationse andw’ which are characterized by the quenched averages. Thus, we could easily obtain exact re-
same structure of contacfX(w)=X(w")] have the same sults with annealed disorder fot up to 21 in two dimen-
energy for every{q}, and can be considered as equivalent.sjons.

The set of allw’s of a given length can be partitioned into In order to study the® point we computed effective
equivalence classes, each of them containing all the walksxponents

which are characterized by a given contact map. The number

X()={({.)):{rH{o)} —{r{o()}=1]i—j[>1}.

of equivalence classes is equal to the numBgr, of distin- 1 R3(N,T) -1
guishable contact maps,, a=1,...Sy. Each equiva- v(N,K,T)=3In R N_K.T ng—x| - @2
lence clasC,={w:X(w)=X,} is characterized by its own gl 1)

degeneracy(«a) and cumulative squared radius of gyration

o In the N— o limit these curves should be step functions
pgla): of T. However, at finiteN, they show a rounded step. If the
trends of approach of thbl—oov values in the high- and
_ 1. pXa)= r2(w). 9 low-T phases are from opposite directions, cur(e®d are
9(e) wezca pyla) wEECa ol @) © expected to intersect among themselves in the neighborhood

of the ® point. They indeed show such behavior: effective
o(«) is expected to grow exponentially with the difference exponents likev(N,2,T) are monotonically increasing func-
between the number of stepsand the number of contacts in tions of N at highT and decreasing at not too loWw Linear
X, [21]. This means tha®y, still grows exponentialy with\, extrapolation of these curves with respect ttN,1in the
but much more slowly than the total number of SAVCg 1/N—O0 limit, allows one to estimate an exponent(T)
(see Table )l In particular the ratioSy/Cy is expected to which is close to or even below the compact-polymer value
approach zero exponentially. v=0.5 for T just below the intersection region. On the other
The sum over configurations in Egs.(2) and(3) can be hand, v..(T) is almost equal to the swollen SAW value
replaced by the sum over equivalence classes, each of them0.75 at highT (Fig. 1). Intersections of all the curves
taken with its own degeneracy and cumulative squared rar(N,K,T) occur in a small region of thel(,v) plane, within
dius of gyration: which one can suppose the transition to be located. Follow-
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FIG. 1. Effectiver(N,K=2,T) exponentgsolid lines and their FIG. 2. Values ofy;, as a function of M. Rhombs indicate

Ilnear_ extrapolﬁtlogxw(T) for 1/IN—0 (dot-dashed Iln)e_ Tempera- i the means of the exponent extimates at fikgg, while horizontal
ture is normalized to monomer-monomer interaction. For suffi-p .o imit the variance of their distribution.

ciently low T, the sequences cease to be monotonic. Of course, the

relatively short length of the chains rounds off the expected steplike - _ .
shape o);v at theg transition. P P where bars indicate averages oderThe coefficient (T) is

close to—1 for T>Tg and to 1 forT<Tg meaning that, in
these regions, data are very well linear correlated and have
g : ! opposite monotony. In th® regionr(T) undergoes a sud-
titatively, we calculated the coordinate®f;,vin) of all in- gen jump between 1 and 1. Its derivative with respect to
tersections between every pair of curvegN,K,T),  temperature shows a high and sharp peak whose mean value
v(N',K",T), and plotted these points againsNi¢=2/(N  ang width localizeT, and determine its uncertaintyTe, .
+N’). The definition ofNe is of course subjective. In our The extremal values taken by, (T) in the interval[Te
choice no role is played by the integ&¢sandK ' because of —ATe,To+ATe] give an estimate ofe , and of the cor-

the weak dependence of the intersection locations on thegr%sponding ermorAve. Te and ve obtained with this

parameters. For eachNJ;, we computed the means, ©f  method are almost identical to the values determined above
and Vint of the correspon_dlng mtersec_tlons, and _e>_<trapolatecﬂ)y extrapolating the intersections, and T, respectively.
them linearly as a function of By (Fig. 2), obtaining the In order to obtain the crossover exponent we analyzed
estimatesv =0.58+0.02 andT=0.80+0.03. Uncertainty  the derivative of the squared radius of gyration with respect

estimates are also based on comparison between extrapolg-temperature. Near th@ point this quantity should scale as
tions from data in different ranges ofiNl;. The exponent is

fully compatible with homopolyme®-point universality. d

Another method can be applied in order to estimage —R2(N,T)=N?%e(M+2uT), (14)
and Tg. As illustrated above, the effective exponents d7" 9
vn(T)=v(N,2,T) are monotonic functions of B, decreas-
ing for T>Tg and increasing folf <Tg . Their linear cor- The effective exponent curves corresponding#te 2v do
relation with respect to N can be analyzed with the corre- not clearly intersect each other in a narrow region of the
lation coefficient defined bj23] (T,¢+2v) plane. So the method used for determining
cannot be applied in this case, because it would lead to am-
biguous results. Following Ref22], we then calculated, for
each intersection Ty,vin) between »(N,K,T) and
v(N’,K’,T), with N>N’, the quantity

ing Privman[22], in order to pinpoint thé transition quan-

> (1IN—1N) (v (T) = wy(T))
r(T)=

\/2 (AN=IN)2ZS ()= n(T))? il RN Tin)/dT |[ N
N

-1
— 2V, (15
N (13 dRG(IN—K, Tip)/dT n N—K} Vi (19
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FIG. 3. Extrapolation of the crossover exponeny. FIG. 4. Extrapolation ofy— y, for annealeddashed ling and

. . . guencheddot-dashed linedisorder. The values are almost identi-
Extrapolation of these data inN{; leads to the estimate ; -

¢e=0.40+0.08 (Fig. 3. The computation of the crossover cal in a range of temperatures extending befy-0.80.

exponent for homopolyme® transitions is usually rather

difficult and often leads to considerable overestimates _Z?g)g)(N,T)w (=D
[24,25. Our result is very compatible with the exact ho- Zag(N,T)= Zhalt (N T) =N @t (16)
mopolymer valuapg = 3/7=0.42[9]. Attempts to determine @/t

¢ on the basis of data collapse fits 18y [Eq. (4)] were not
very successful because the collapse quality does not depend
sensibly enough on this exponent.

Effective exponents can be obtained from

1/2
In the annealed system, frustration effects peculiar to M :1+£ — v e (N, T) + i
quenched disorder are ruled out. The charges distributedl Z(ara)( ) N
along the chain are indeed free to rearrange among them- 17
selves in such a way to let nearest neighbor interactions be )
able to minimize the energy of each SAW configuratianit The sequencesy(-y1)aiq)(N,T), plotted against N,

seems very plausible that such a rearrangement can produébOW remarkably good linear correlation. Their extrapolation
a collapse in the same universality class as@hgoint of an ~ for 1/N—0 gives a reasonable estimate of the expected (
ordered polymer with nearest neighbor attractive interactions™ Y1) (a/q) in the highT range and close tdg . Even more
for all monomers. Because of these reasons we expect aRrecise is the comparison between the annealed and
nealed disorder to be irrelevant for the collapse transitionquenched cases based on thgsey; estimates. It turns out
This conjecture is well confirmed by the analysis of our ex-that the difference/— v, is almost identical for annealed and
act enumeration results for the annealed systgtnmono- quenched systems on a range of temperatures which clearly
mer9. The analysis followed the lines of the quenched caseextends below the® temperature(Fig. 4). We estimated
The transition exponents of the annealed model were est-y— ¥1)~0.50 and ¢/— ;) ~0.39 at the® point and in the
mated asg=0.58+0.02 and¢g=0.41+0.08. high-T region, respectively. Th&-point determination is

A direct comparison between annealed and quenched paslightly below the homopolymer valud y— y1)e =% [18]],
tition functions then turns out to be a very significant test, inwhile the highT one almost coincides with the SAW one:
view of the fact that the annealed system represents a sort b€y — ¥1) saw= 25/64[6]].
substitute of the pure one. As explained above, to avoid dif- In three dimensions, for a homopolymer, is expected
ficulties due to the calculation of the nonuniversal constanto be equal to; with logarithmic correctiong9]. Indeedd
., in the case of both quenched and annealed charges, we3 is the upper critical dimension for the transition. We
analyzed the ratic® between the partitions of SAW’s in the applied our methods to our model of random polyampholytes
bulk and in the presence of the boundary, which is expecteth three dimensions, and computed exact averages for chains
to scale as up to 15 monomers. A simple analysis of the radius of gyra-
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tion, not including logarithmic corrections, giveg, =0.51 While for T approaching zero homopolymers collapse to
+0.04, again consistent with the homopolymer universalitymany compact conformations with the same ground state
class. energy, most heteropolymer sequences usually collapse to
Altogether the above results give very strong evidence/ery few lowest-energy conformatioitsee, e.g., Re{.26]).
that the collapse transition of the globally neutral randomin general, in order to better represent properties of real pro-
polyampholyte model falls in the same universality class ad€ins, a heteropolymer model is expected to admit a unique
the ® point of homopolymers. Support for such a conclusion€ompact conformation with lowest energy, i.e., a nondegen-
comes from the exponent determinations we were able t§'at€ ground state, at least for some sequences. The percent-
perform. Further evidence comes from our comparativeé?d€ Of sequences admitting a unique ground state for the
analysis of entropic properties in the case of quenched an -P heteropolylmer model is be"e."ed fromznumerr]lcal analy-
annealed disorders. Our study of v, shows that annealed ?T:s éoIriemag\Aa\\Nmi?]s\thr:]ci)nﬁtantr?Br;]ncr:e?nseri 72]' :\_ \?H_ifh "
and quenched partition functions start to deviate appreciabl odet s a ch each monomer can have erner a

t some temperature falling definitively below th timat ydrophobic or a polar character, with short-range interac-
at some temperature fafling de ely belo € esSUIMaeq; s to the nearest neighbor solvent molecules. This model
Teg . In order to obtain a collapse with exponents different

‘has been applied often to protein folding studfsse, e.g.,
from those of homopolymer models, one should have condlhef_ [26,28). Here we investigated the numbéy of se-

tions such that the effect of quenched disorder become 'mduences having a unique “native state” in our two dimen-

Zjonal model. This analysis was performed by applying the

ture. The identification and investigation of models Whereexact method described above to the investigation of ground

such conditions could possibly be realized remains an IMpOrs, i of Hamiltonian walki29] on the square lattice, for

tant open issue in the field, whose solution would sensibly

increment our understanding of the possible role played bchain lengths up to 25. [t turns out thigf grows withN at a
N X g ot P play ¥educed exponential rate with respect to the total number of
chain disorder in polymer statistics.

. ; sequenced\,. In particular we found y=1.83", while Nq
With the exact enumeration methods developed for the_\-125N 15 the percentage of sequences which possess
study of the® transition, we could also perform an analysis

of how the actual partition function at fixgdj}, Zyqy, devi-

ates from its(annealeyl average at low temperature. Histo-

grams of quantities likeZ;,(N,T)/Z5(N,T) show very
clearly a lack of self-averaging &t sufficiently lower than
T . While in a range of highT including T they are narrow

a unique ground state tends asymptotically to zeroNas
— o0, This behavior is in sharp contrast with that found in the
H-P model[27].
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