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Stability of texture and shape of circular domains of Langmuir monolayers

David Pettey and T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 15 September 1998!

Finite domains of a Langmuir monolayer in a phase with tilted molecules can be modeled by a simple elastic
free energy of anXY order parameter with isotropic and anisotropic line tension terms. The domains can and
often do contain nontrivial textures, which in turn influence the shape of the domains. Herein we investigate the
properties of a simplified isotropic model with a single elastic constant. For circular domains a first-order phase
transition is found between two distinct textures: an exterior defect~or ‘‘virtual boojum’’ ! texture, and an
interior defect texture. Starting with a circular domain and either of these two textures as a ground state, we
find that shape instabilities develop which depend on the elastic constants and line tensions in the simplified
model. In both cases a necessary but not sufficient condition for the onset of shape instabilities is the possibility
for a local negative effective line tension to develop from the anisotropic line tension term.
@S1063-651X~99!08702-4#

PACS number~s!: 61.30.Cz, 68.55.2a, 61.30.Jf, 68.18.1p
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I. INTRODUCTION

The biological importance of thin films of surfactant
such as dipalmitoylphosphatidylcholine~DPPC! ~a primary
component of human lung surfactant@1#!, and other potentia
commercial applications of self-assembled structures@2#, has
spurred a resurgence of research in the study of Langm
films. For the physicist, monolayers of surfactants at the
water interface provide an interesting two-dimensional s
tem with very rich phase behavior@3,4#. Techniques such a
fluorescence microscopy and Brewster angle microscopy
low direct observation of the system as it proceeds throug
phase transition. X-ray scattering can also be used. Ato
force microscopy on Langmuir-Blodgett films can provi
more detailed information that appears to be consistent w
passive observations of the Langmuir film before extract
@5#.

Typically, as a film is compressed, it passes from a
phase~G! to a more condensed liquid expanded~LE! phase
to an even more ordered liquid condensed~LC! phase, and
then, sometimes, into a solid phase before finally becomin
multilayer film. Experiments have revealed a very comp
variety of patterns, shapes, and textures present in the LC
and LE/G coexistence regions@6,7#. Upon rapid compres-
sion of the film, highly branched structures are often se
These appear to be the result of diffusion limited aggrega
@7#, and typically they relax to more regular shapes. Mo
modest compression rates tend to produce a finite numb
condensed domains that grow in size, but not number@8#, as
the film is compressed through a coexistence region. Fi
composed of enantiomeric surfactants sometimes exhibit
mains with a preferred handedness~chirality! to their shape.
The handedness alternates with the choice of enantio
and in racemic mixtures the domains are achiral@6,9,5#.
Within domains of the ordered phase, complex structures
sometimes be observed as well@10,11#. The addition of cho-
lesterol to these systems often leads to labyrinthine or str
patterns, and to spiral domains of a preferred handedness@9#.

Molecules in LC phases of Langmuir films either alig
normal to the air-water interface, or they can tilt relative
PRE 591063-651X/99/59~2!/1834~12!/$15.00
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the interface@12,13#, thereby defining a two-dimensiona
vector in the plane of the film. In addition some films exhib
hexatic order as well as tilt order@14,15#. Domains of both
tilted and nontilted phases exhibit noncircular shap
@6,11,9,5,16#. Static and dynamic properties of nontilted d
mains as well as modulated equilibrium phases are well
plained by dipole interactions among the electric dipo
aligned normal to the layers@17–24#. Domain shapes and
textures in tilted domains clearly depend on the existence
orientational order in the plane of the film@11,25#. For ex-
ample, it is difficult to explain chiral shapes that appear
chiral films by a dipole model.

In this paper, we will consider a particularly simple mod
for tilted domains in which tilt order is described by an is
tropic XY model and in which coupling between texture a
domain shape arises because of an interaction favoring a
ment of XY vectors at a specific angle with respect to t
domain boundaries. This model is clearly oversimplified, b
it can explain observed shapes and textures in some sys
@11,16,25,26#. A complete model would allow for differen
elastic constants for splay and bend distortions, and
splay-bend coupling in chiral systems@27# in addition to
interactions between electric dipoles with components b
parallel and perpendicular to the film. Nonetheless, this s
plified isotropic model predicts nontrivial shapes and te
tures, the full range of which have yet to be analyzed.
spite of its simplicity, it involves highly nontrivial couplings
between texture and shape that need to be understood b
more realistic models can be studied.

Our model is characterized by three energy paramet
the isotropic elastic constantK ~units of energy!, the isotro-
pic line tensiong @units of ~energy!/~length!# and the line
tensionm favoring alignment of theXY vector m̂ with the
tangent to the domain perimetert̂. We obtain the following
results for this model. Form/g,1, circular domains are glo
bally stable. Circular domains of radiusR can have two equi-
librium textures: one with a strength11 disclination @28#
with core radiusj at the center of the domain, and one d
scribed by a12 defect~virtual boojum! exterior to the do-
main @29#. The interior defect texture is favored for larg
1834 ©1999 The American Physical Society
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PRE 59 1835STABILITY OF TEXTURE AND SHAPE OF CIRCULAR . . .
values ofR/j, whereas the exterior defect texture is favor
for large values ofK/mj. For a circular domain, the exterio
defect texture never becomes locally unstable. The inte
defect texture does, however, become locally unstable w
respect to moving the defect toward the edge of the cir
Whenm/g.1, the circular shape and associated textures
become unstable. When the defect is in the interior, the ci
can become unstable with respect ton-fold modulations as
the domain radiusR is increased. The value ofn that first
becomes unstable depends onm/g. When the defect is out
side, the domain becomes unstable with respect ton52 dis-
tortions first, asR is increased.

We will proceed with our investigations as follows. W
will review the interior and exterior defect textures for
circular domain and then, comparing them, will presen
phase diagram for these two textures. Next, we will exam
the shape stability by taking an initial configuration consi
ing of a circular domain and one of the two extremal te
tures. For each of the two textures we will then allow f
perturbations in the shape and texture, calculate an effec
free energy dependent only upon the shape, and examin
stability of the circular domain with respect to shape def
mations.

II. THE MODEL AND OUR AIMS

Henceforth we will be concerned only with the followin
problem. Find the minimum of the free energy@30,27#,

F5 1
2 E

D
@Ks~“•m̂8!21Kb~“3m̂8!2#d2x

2m8 R
]D

m̂8• t̂ ds2h8 R
]D

m̂83 t̂ ds1g R
]D

ds,

~1!

over all domainsD with fixed areaA (5pR2), and over all
unit vector fieldsm̂8, for given values of the elastic constan
(Ks ,Kb ,m8,h8,g).Ks and Kb are the usual bend and spla
elastic constants,g is a line tension,t̂ is the tangent vector to
the curve]D, andm8 andh8 are the coefficients of sponta
neous bend and splay, respectively. We have chosen to w
the spontaneous bend and splay contributions as line
grals using

E
D
“•m̂8 d2x5 R

]D
m̂83 t̂ ds,

E
D
“3m̂8 d2x5 R

]D
m̂8• t̂ ds. ~2!

This allows us to identify2m8m̂8• t̂2h8m̂83 t̂1g as an
effective anisotropic line tension. Ifg,Am821h82, then
choosingm̂8 to follow t̂ for a given curve]D will allow the
anisotropic line tension to be negative. We will see th
within the context of the one-coupling-constant approxim
tion (K5Ks5Kb), allowing the effective line tension to be
come negative will be a necessary condition for instabilit
in the shape of a circular domain.
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We will now restrict our attention to the one-coupling
constant approximation, simplifying the form of the bulk fre
energy. DefiningF8 via

m̂85cosF8êx1sinF8êy , ~3!

we have

E
D

@Ks~“•m̂8!21Kb~“3m̂8!2#d2x5KE
D
“F8•¹F8 d2x.

~4!

In Appendix B we show that the transformations

F5F82tan21
m8

h8
2

p

2
,

m5Am821h82, ~5!

m̂5cosFêx1sinFêy

simplify the free energy further:

F5
1

2
KE

D
~“F!2 d2x2m R

]D
m̂• t̂ ds1g R

]D
ds. ~6!

We could just as easily have transformed away the spo
neous bend term in favor of an effective coefficient for spo
taneous splay. Thus, although Eq.~6! is a chiral free energy
~the spontaneous bend term is chiral!, chirality can only
manifest itself through the texturem̂ and not through the
domain shapeD ~D is invariant under the transformation, se
Appendix B!.

To make contact with previous work@16#, we note that
we could have written our surface term in the form

R
]D

s~u2F!ds, ~7!

where the outward normal to the boundary is given by

n̂5cosuêx1sinuêy , ~8!

and

s~x!5g1 (
n51

`

~an cosnx1bn sinnx!. ~9!

Takingb152m with all otheran’s andbn’s set to zero will
recover our effective line tension

g R
]D

ds2m R
]D

m̂• t̂ ds. ~10!

Similarly a nonzeroa1 will produce a spontaneous spla
contribution. Transformation~5!, in this language, allows the
elimination of thea1 (b1) term in favor of a new effective
b18 (a18).

Rudnick and Bruinsma@16# demonstrated that a nonzer
a2 , in addition to a nonzeroa1 , leads to noncircular shape
and nontrivial textures in agreement with some experime
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1836 PRE 59DAVID PETTEY AND T. C. LUBENSKY
@25#. However, Rivière and Meunier@11# and Galatola and
Fournier@26# accounted for these same shapes and text
without a nonzeroa2 by incorporating the apparent aniso
ropy betweenKs andKb . We will show that even withKs
5Kb anda250 @as in Eq.~6!# shape instabilitiesstill exist
wheng,m, that is, once a negative effective line tension
allowed.

To see that instabilities should arise, we first identify

Ab5
K

mR
,

~11!

As5
m

g
21

as two independent dimensionless parameters.Ab is a mea-
sure of the competition between the bulk energy and
anisotropic piece of the line tension. For a given]D, Ab
will determine the preferred texture.As measures the relativ
strength of the anisotropic and isotropic contributions to
effective line tension. WhenAs.0, the effective line tension
can be negative.

WhenAb→` we can assume thatK→`, and hence tha
m̂ will be constrained to be a constant. Thus, without loss
generality, we can assume thatm̂5êy . This form for m̂
yields

R
]D

m̂• t̂ ds50 ~12!

for all ]D, and as such the value ofm is irrelevant. In fact,
the free energy is simply

F5g R
]D

ds. ~13!

For a fixed areaA, the preferred shape will simply be
circle.

In contrast, whenAb→0 we assumeK→0 and thusm̂
can take any form it chooses in the bulk. In particular,
can always choosem̂ such thatm̂• t̂51 at all points on the
curve, for any curve]D. Thus now our free energy become

F5~g2m! R
]D

ds. ~14!

If g.m, then certainly we again have a circle as the p
ferred shape. But ifg,m then the domain attempts to max
mize the length of its boundary,]D. This results in patho-
logically distorted shapes, or unbounded domains. Th
when g,m, we anticipate that for largeAb the domain
shapes will be circular, but for smallAb the shapes will begin
to distort. However, wheng.m it would not be at all sur-
prising to find that the circular domains are preferred for
values ofAb .

We are now ready to begin our search for optimal sh
and texture configurations. Although we will restrict our a
tention to the one-coupling-constant approximation, wh
provides us with a particularly simple bulk Euler-Lagran
equation
es

e

e

f

-

s,

ll

e

h

¹2F50, ~15!

it is still not a trivial task to find the optimumF for a generic
domainD. We will approach the problem as follows. Notin
that experimentally the domains appear to be circular
smallA, we will first fix the domain shape to be a circle, an
try to find the optimumF. This is tantamount to assumin
that g is infinite. Having found the optimal texture for
circular domain, we will then allow the shape and texture
deform. Section III will deal with the task of finding th
optimal texture for a circular domain, and Sec. IV will de
with instabilities in the shape of the domain.

III. OPTIMAL TEXTURE
FOR A CIRCULAR DOMAIN

The main question to address here is whether the dom
should contain a topological defect. In experiments
Rivière and Meunier@11# the domain clearly does not con
tain a defect and has the ‘‘virtual boojum’’ texture prev
ously described by Langer and Sethna@29#. However, in Ref.
@10# Qiu et al. observed a star defect inside the doma
which indicates that it may be possible to have an isola
11 defect inside a domain when hexatic order is not pres
~as the hexatic order is lost the arms of the star defect ret
and one is left with a simple11 defect@31–33#!. Also, in
thin films of smectic-C liquid crystals, which can be approxi
mately modeled by the same free energy, isolated11 de-
fects are often observed@28#.

Fixing the domain to be a disk, the isotropic line tensi
term will be irrelevant to this discussion since it is unaffect
by changes in texture alone. The anisotropic piece of
boundary energy, however, favors havingm̂ parallel to the
tangent to the boundary, and thus ‘‘prefers’’ having eithe
11 defect inside the domain or a12 defect on the boundary
~sometimes referred to as a boojum!. The bulk portion of the
free energy clearly prefers thatm̂ simply be uniform within
the domain. Thus, whether it is preferable to have a de
inside the domain or not depends upon the competition
tween the bulk elastic energy and the anisotropic line t
sion, as well as upon the energy cost required to nuclea
melted defect core.

In this section we will first review the virtual boojum
texture, which is an extremal texture for the case where th
is no defect inside the disk@16#. In fact, in Sec. IV A we will
show that this is a locally minimal texture with respect to o
free energy. Next we will consider textures associated w
the defect inside the domain. We will note that the textu
for an isolated11 defect at the center of the domain
extremal, and forAb,1 it is a local minimum as well. We
will investigate a class of ansatz textures consisting of
isolated11 defect located anywhere within the domain. W
will find that within this restricted class of textures, there is
first-order transition between the texture with the defect
the center of the disk and a texture with the defect close
the boundary. Thus we find that not only is the texture of
defect at the center of the disk unstable forAb.1, but that it
also fails to be a global minimum for even smaller values
Ab within the class of textures with an enclosed defect.
contrast, the virtual boojum texture is a local minimum f
all values ofAb .
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PRE 59 1837STABILITY OF TEXTURE AND SHAPE OF CIRCULAR . . .
Finally, we compare the virtual boojum texture with th
texture of the defect at the center of the disk. We find
first-order transition between these two textures which
most easily described by the dimensionless parametec
5K/2mj, x5R/j, andg, wherej is the coherence lengt
and g is a phenomenological parameter associated with
energy cost of a defect core~in our calculations we will take
g51).

A. Virtual boojum

Let us now recall the virtual boojum texture@29#. This is
simply the texture produced by a single12 defect sitting
outside the disk~Fig. 1!. With the notation

r5~r cosf,r sinf!5~x,y!,

z5x1 iy , ~16!

f rd
~r !5Im~ lnuz2zdu!5tan21S y2yd

x2xd
D ,

the field for a 12 defect located at rd
5(r d cosfd ,rd sinfd)5(xd ,yd) is just

F52f rd
~r !1C. ~17!

Clearly the texture satisfies the bulk Euler-Lagrange equa
¹2F50. Furthermore, this collection of textures~one for
each rd and C! smoothly varies in its extremes from th
uniform texture (rd→`,m̂→ constant!, which is preferred
when m50, to a texture wherem̂• t̂51 (r d5R), which is
preferred whenm→`.

Taking the domain to be a disk of radiusR centered at the
origin we then find that Eq.~6! yields

F522pK lnF12S R

r d
D 2G12p

m

r d
R2 sin~C1fd!12pgR,

~18!

FIG. 1. Textures arising from a single12 defect. The constan

term in F has been chosen to makem̂ as close tot̂ ~the tangent
vector! as possible. With the defect at the boundary~a! we have

m̂• t̂51 but we also have very large gradients inm̂ near the defect.
In ~b! these large gradients have been expelled along with the de

but now we no longer havem̂• t̂51. The competition between th

ideal boundary (m̂• t̂51) and bulk (] im̂50) conditions leads to a
preferred separation distance between the domain and the def
a
s

e

n

where we have assumed that the defect is outside the dis
least a core radius,j, away from the boundary (r d.R
1j). Minimizing overC, we find the preferred value ofC to
be

C052
p

2
2fd . ~19!

Without loss of generality we can takefd50, and finally
write the energy for a12 defect outside the disk, on th
positivex axis, as

F12522pK lnF12S R

r d
D 2G22p

m

r d
R212pgR. ~20!

For a given value of the dimensionless quantity

Ab5
K

mR
, ~21!

there is a preferred stable minimum value@29,16# for r d
given by

r d
05R~Ab1A11Ab

2!. ~22!

Furthermore, we see that using this value ofr d in our F12

above yieldsF12(r d
0),2pgR, revealing that this texture is

preferred over the uniform texture for all values ofAb .
Rudnick and Bruinsma@16# showed that this texture with

the defect atr d
0 is in fact extremal. We will further show tha

this texture is indeed a local minimum when we investig
shape instabilities in Sec. IV.

B. Defect inside

Here we will look at the class of ansatz textures

F5f rd
~r !1

p

2
, ~23!

where we assumer d,R2j ~i.e., the defect is inside the
disk, and at least a core radiusj away from the boundary!.
Without loss of generality we takefd50, and accordingly
we have already chosen the constant term to be the opt
value. Again, clearly, all such textures satisfy the bulk Eul
Lagrange equation¹2F50 within the domain, except at th
position of the defect. We note that whenr d50, m̂ is par-
allel to the tangent to the boundary~Fig. 2!.

Applying Eq.~6!, we find that the energy of this texture

F115pK lnS R

j D1
pK

2
lnS 12

r d
2

R2D 24mRES r d

R D
12pgR1ecore, ~24!

where we have introduced a term for the core ener
ecore. E(x) is the complete elliptic integral of the secon
kind,

E~x!5E
0

p/2
A12x2 sinf df. ~25!

ct

t.
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FIG. 2. Texture arising from a
11 defect inside the disk. The
textures in~a! and ~b! arise solely
from the interior defect, wherea
the texture in~c! includes the ef-
fects of an image defect outsid
the domain. Notice that in~a! and

~b! we havem̂• t̂51, whereas in
~c! we do not.
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We will see in Sec. IV, when we investigate changes
shape and texture, that whenr d50 andAb,1 this texture is
a local minimum with respect to all variations in the textu
~not just variations within this ansatz class!. However, we
find that r d50 and Ab,1 does not always yield a globa
minimum even within this class~23!.

The free energy~24! has an interesting behavior as w
vary r d . As we move the defect off center, there is an ene
increase from the boundary term but a decrease in en
from the bulk term. The two contributions have quite diffe
ent functional forms, and we find that, depending upon
value ofAb5K/mR, it may be preferable either to keep th
defect at the origin or to allow it to migrate toward th
boundary. Maintaining 0,r d,R2j we find the following
behavior of Eq.~24! within this class of textures:

Ab,0.23→, r d50 is a global minimum,

Ab,1→, r d50 is a local minimum, ~26!

Ab.1→, r d50 is a local maximum.

This behavior is summarized in Fig. 3. We see that wit
this class of textures there is a first-order transition in
position of the defect as we changeAb . When r d50 be-
comes the global minimum, it may in fact already be the c
that the energy barrier that must be overcome in order for
defect to migrate from the boundary to the origin may
ready be too high for this to be a physically probable eve
Note that we have limited our attention only to a particu
subset of potential textures and this barrier may not rema
we were to consider all possible textures. However, we
aware of no experimental observations corresponding
single 11 defect near the boundary of the domain. Th
overall we conclude that when a defect is present within
domain it is very likely to be at the origin in a stable loc
minimum.

We note that one can also consider the texture

F5f rd
~r !1f rdR2/r

d
2~r !2

p

2
, ~27!

which corresponds to a defect inside the domain along w
an image defect outside the domain which enforces str
pinning boundary conditions,m̂• t̂51 ~where again we take
fd50). Within this class textures the defect always pref
to be at the origin, and whenAb.0.23 this texture provides
y
gy

e

e

e
e

-
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r
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a
,
e

h
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s

at best a modest improvement over Eq.~23!, and never offers
a lower global minimum~Fig. 4!. Of course, whenr d50 this
texture is the same as Eq.~23!, with r d50.

C. Which texture wins?

We have presented two textures which are local mini
of the free energy~6!. For the12 exterior defect texture we
found a local minimum for all values ofAb @Eq. ~17! with
fd50 and Eq.~22! with r d5r d

0#. For the11 interior defect
texture we found a local minimum only forAb,1 @Eq. ~23!,
with rd50#. Furthermore, we found that this local minimu
was not the global minimum even within the class of ans
textures~23!. Here we will compare the energies of the tw
locally minimal textures to see which is favored.

For smallR the bulk energy dominates the boundary e
ergy and we expect the uniform texture to win. Since the12
defect texture produces the uniform texture in the limitAb
→` (R→0), we anticipate that for smallR this texture will

FIG. 3. Plots ofF11 /K vs r d /R for a disk of radiusR for
several values ofAb . We have takenj/R51/1000 and have re-
stricted r d /R to be less than 121/1000, so that the entire defec
core is within the disk. We have also not included the core ene
ecore or the isotropic line tension 2pgmR in F11 , which here are
merely uninteresting constants. Note thatr d50 is a local minimum
wheneverAb,1 andr d'R appears to be a local minimum for a
of the plots. WhenAb,0.23 thenr d50 appears to be the tru
minimum. Notice that the barrier separating the two minima is
proximately 4K at Ab50.23.
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PRE 59 1839STABILITY OF TEXTURE AND SHAPE OF CIRCULAR . . .
be favored. For largeR (Ab→0) both textures satisfy stron
pinning boundary conditions, and thus have equal contri
tions from the surface energy. However, the bulk energy c
of the exterior defect texture is greater than that of the in
rior defect texture. This can be understood qualitatively
recalling that the bulk energy cost of a defect of chargeq
centered in a disk of radiusR is pKq2 ln(R/j) @28#. In the
limit of large R the 11 defect energy will bepK ln(R/j)
whereas the12 defect energy will be'(1/2)22pK ln(R/j).
The factor of (1/2) arises because the12 defect is at the
boundary of the disk, not the center.

Thus, we will find a first-order transition between the tw
textures. In discussing this transition we find it more con
nient to refer to the dimensionless quantities

c5
K

2mj
and x5

R

j
~28!

rather thanAb and R/j. Assuming thatR.j we find that
when c,0.85 the interior defect solution is favored. F
larger values ofc, there is a critical radiusRcrit(c) above
which the interior defect texture is favored and below wh
the exterior texture is favored. ThusRcrit(c) defines the first-
order phase boundaryG in Fig. 5.

FIG. 4. A comparison of the energy of an isolated11 defect in
the disk,F11 with the energy of a11 defect inside along with an
image defect outside enforcing strong pinning boundary conditi

(m̂• t̂51), F11,11 . Note that the energies are equal atRd50. At
the boundary of the disk (r d5R2j) F11 is always lower. Even
though for some intermediate values ofr d, F11,11 is smaller than
F11, it is never substantially smaller.

FIG. 5. The two figures display at different scales the ph
diagram for the11 defect at the center of the disk vs the exter
12 defect texture. The curveG is R5Rcrit(c), whereRcrit(c) is the
critical radius for a given value ofc as discussed in Sec. III C. Th
lower curve isAb51. To the left and aboveG the interior defect
texture is favored; below, the exterior defect is favored. Howev
the interior defect texture is a local minimum in the region abo
the curve Ab51 and the exterior region is a local minimum
throughout the region.
-
st
-

y

-

Note in Fig. 5 that we have also included the curveAb
51 which is the boundary at which the interior defect so
tion becomes unstable. There is a large separation betw
this boundary and the transition lineG. In the region above
theAb51 curve both textures are local minima, and henc
physical system may well find itself trapped in a metasta
local minimum whenAb,1. Furthermore, in Sec. III B we
found some circumstantial evidence suggesting that the
rier preventing the expulsion of the interior defect may
quite large for physically realizable values ofAb ~Fig. 3!.
Indeed in an experiment@25# that apparently has an exterio
defect texture, takingj'100 nm yieldsc'2. However, the
radii of the domains appears to be as large as 10mm, which
is much larger than the critical radius forc52 @Rcrit(2)
'2 mm#, suggesting that it may be the case that this text
is a metastable equilibrium state.

To identify the transition we simply compareF11 and
F12 . Taking ecore5pK and noting thatAb52c/x, we can
write Eq. ~24! as

F115pmRS 2c

x
ln x221

2c

x D12pgR. ~29!

With fd50 andr d5r d
0 , we can also write Eq.~20! as

F125pmRH 2
4c

x
lnF12h2S 2c

x D G22hS 2c

x D J 12pgR,

~30!

where

h~y!5
1

y1A11y2
. ~31!

Examining F112F12 , we find that whenc,c* '0.85
the interior defect solution is preferred for all values ofR ~or,
equivalently, all values ofx, since we are assuming thatj is
constant!. For larger values ofc we find that there is a critica
value ofR, Rcrit(c), below which the exterior defect solutio
is favored~Fig. 5!.

IV. SHAPE CHANGES

For circular domains we have found two distinct textur
which are local minima of the free energy~this will be dem-
onstrated soon!. Now for each of these textures we wou
like to know if the configuration (D,F0), whereD is a disk
and F0 is either of the two textures, is a minimum wit
respect to changes in shape and texture. We will find in e
case that although the texture is stable when the shap
fixed, the configuration~shape and texture! is unstable for
certain values ofAb and As . We will see that whenm
.g (As.0) instabilities will begin to arise.

To examine the stability of the configurations we need
introduce perturbations in the shape and texture. To this
we takeD to be the region bounded by the curve, given
polar coordinates by

s

e

r,
e
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r ~f!5R01 (
nPZ2$0%

rneinf

5R01 (
nPZ1

~an cosnf1bn sinnf!, ~32!

where

rn5r2n* 5 1
2 ~an2 ibn!, ~33!

andR is defined by

R05RS 12 (
nPZ2$0%

rnr2n

R2 D 1/2

5RS 12
1

2 (
nPZ1

an
21bn

2

R2 D 1/2

.

~34!

With this parametrization the area of the domain is simp

A5pR2. ~35!

Thus keepingR fixed keeps the area constant. Note that
have included then51 terms in Eq.~32!. Although these
modes can usually be ignored as being just translations oD
~to lowest order in the Fourier coefficients!, here the texture
distinguishes a particular origin for the coordinate syst
and as such translations ofD are associated with nontrivia
changes in the configuration~see Appendix A!.

To allow for perturbations in the texture we will take

F~r !5F0~r !1 (
nPZ2$0%

r unuPneinf with Pn5P2n* ,

~36!

where F0(r ) is one of the two textures found in Sec. I
@Eqs.~17! and~23!#, and the perturbation is the most gene
nonsingular addition allowed by the Euler-Lagrange eq
tion ¹2F50. Taking O(Pn)5O(rn)5O(e) we will pro-
ceed to calculateF to ordere2. This will provide us with an
approximation of

F~r,P,K,g,m,R!, ~37!

where

r5~r1 ,r21 ,r2 ,r22 , . . . !,
~38!

P5~P1 ,P21 ,P2 ,P22 , . . . !.

Minimizing this overP we will obtain the effective free en
ergy

Feff~r,K,g,m,R! ~39!

as a function of the elastic constants, the radius, and
shape perturbation parameters correct toO(e2).

In both cases we find thatFeff contains no terms o
O(e)—that is, no terms linear inrn—demonstrating that the
configurations are extremal. We also find that whenm.g
shape instabilities will be present for certain values ofAb and
As . In fact, for any givenAs.0 we find that instabilities
arise for sufficiently smallAb’s.

Ideally we would like to calculateFeff correct to all orders
in $rn%. Then minimization ofFeff over thern’s would yield
e

l
-

e

distorted equilibrium shapes. Unfortunately this is a prohi
tively difficult task. Alternatively, we would like to calculate
Feff to high enough order ine such that the effective energ
is bounded below. This would provide approximations of t
equilibrium values of thern’s, and thus approximations o
distorted equilibrium domain shapes. CalculatingFeff to
O(e4), while difficult but not impossible, is not sufficient
This appears to be due to the form ofgr]Dds as a function
of the rn’s. Although this isotropic line tension term shou
be stabilizing the boundary against deformations, the fou
order coefficients are negative and as such they lead toFeff
being unbounded below atO(e4). Because of extensive
mode coupling and the exponential increase in the numbe
terms inFeff, we have not proceeded toO(e6).

A. Exterior defect

We will now apply the outlined procedure to the case
the exterior defect. We takeD as in Eq.~32!, and we take

F052f r
d
0~r !2

p

2
, ~40!

the preferred texture for a disk, as found in Sec. III A. W
will not allow rd

0 to vary, nor will we allow for variations in
the constant term (C52p/2). Allowing rd

0 to vary would
present us with a redundancy in the definition ofF @Eq.
~36!#. That is, changes inrd

0 are already accounted for by th
Pn’s in Eq. ~36!. If we wished to have

F52f rd
2

p

2
, ~41!

where rdÞrd
0 , this could be achieved by an appropria

choice of thePn’s in Eq. ~36! since the perturbative term
form a complete set of solutions to Laplace’s equation in
disk.

Noting the sin(C1fd) term in Eq.~18!, we see that rotat-
ing the defect about the center of the disk and simultaneo
adjustingC to maintainC1fd52p/2 costs no energy. As
we have just noted, an appropriate choice of thePn’s will
produce this rotation, and thus ifC were allowed to vary, we
would discover this Goldstone mode eventually. By fixingC
to be2p/2 we freeze out this mode. Experimental eviden
suggests that this is the appropriate course to take. The
ture associated with a12 virtual defect has been observe
@11,25#, demonstrating that on the time scale of the obser
tions the virtual defect does not freely rotate about the
main. If the defect did execute such a motion, then the ti
averaged texture would appear as the trivial texture. Tho
a careful consideration of the dynamics might be in order
this paper we will not concern ourselves further with t
origin of the observed angular stability of the virtual defe

We find it more convenient now to use the real rather th
the complex Fourier coefficients in calculatingF:

An52 Re@Pn#, Bn52 Im@Pn#,

Pn5 1
2 ~An1 iBn!, an52 Re@rn#, ~42!

bn52 Im@rn#, rn5 1
2 ~an1 ibn!.
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Thus, nowA5(A1 ,A2 , . . . ) andB5(B1 ,B2 , . . . ) describe
texture changes, whereasa5(a1 ,a2 , . . . ) and b
5(b1 ,b2 , . . . ) describe shape changes. TakingK51 and
R51 to set our energy and length scales, and performin
plethora of contour integrals, we eventually find

F~A,B,a,b,Ab ,As!

5^AuHAAuA&1^BuHBBuB&1^auHaaua&1^buHbbub&

1^AuUAbub&1^BuUBaua&1F12 , ~43!

where

~HAA!n,m5~HBB!n,m5
2mp

4 S 1

~r d
0!m1n21

2
1

~r d
0!m1n11D

2
mp

4 S 12dm,n

~r d
0! um2nu21

2
12dm,n

~r d
0! um2nu11D 1

mp

2r d
0

dm,n

12pmdm,n , ~44!
e

a

tu
o
s

n
en
e
s
ic
-

a

~UAb!n,m5
mp

r d
0 S 1

~r d
0!m1n

1~21!n2m11

32
12dm,n

~r d
0! un2mu

22mdm,nD , ~45!

~UBa!n,m5
mp

r d
0 S 1

~r d
0!m1n

1~21!n2m2
12dm,n

~r d
0! un2mu

12mdm,nD ,

~46!

and

~Haa!n,m5 1
2 @h~n,m!1h~n,2m!#1 1

2 pg~n221!dm,n ,
~47!

~Hbb!n,m5 1
2 @2h~n,m!1h~n,2m!#1 1

2 pg~n221!dm,n ,
~48!

where
h~n,m!5pm~12dm,2n!F um1nu22

2 S um1nu11

~r d
0! um1nu11

2
um1nu21

~r d
0! um1nu21D 1

~ um1nu22!~ um1nu21!

2~r d
0! um1nu21

2
um1nu~ um1nu11!

2~r d
0! um1nu11 G

2
2p

~r d
0!221

dm,2n1
2p

~r d
0! um1nuS um1nu11

~r d
0!221

1
2

„~r d
0!221…2

D . ~49!
r
in

cal
vec-

ith

in
For convenience, we have chosen to leave the abov
terms ofm,g, andr d

0 . With K51 andR51 we have,

m5
1

Ab
,

r d
05Ab1AAb

211, ~50!

g5
m

As11
5

Ab

As11
.

Note the absence of any terms linear in$A,B,a,b% in Eq.
~43!. This confirms that the unperturbed configuration is
extremum. Furthermore,HAA , HBB , Haa , andHbb are all
positive definite. Thus the unperturbed configuration is ac
ally a minimum with respect to changes in either texture
shape alone. Any instabilities must therefore arise as a re
of the couplingsUAb andUBa between shape and texture.

Before minimizing overA andB to find Feff , we note that
two Goldstone modes are still present. A simultaneous tra
lation of the domain and the defect will not change the
ergy, F. This implies the existence of two zero eigenvalu
in F, one for horizontal and one for vertical translation
These translations are achieved through appropriate cho
for A, B, a, andb. For example, the infinitesimal transla
tion eêx is achieved by taking
in

n

-
r
ult

s-
-
s
.
es

a15e,

Bn52
2e

~r d
0!n11

. ~51!

The two Goldstone modes should be present inFeff , and we
will use their existence as a check on our calculations.

Symbolically, calculatingFeff is straightforward,

Feff~a,b!5^auHaa1Qaaua&1^buHbb1Qbbub&, ~52!

where

Qaa52 1
4 UBa

T HBB
21UBa ,

~53!
Qbb52 1

4 UAb
T HAA

21UAb .

However, the actual calculation ofFeff is not so easy. Neithe
HAA nor HBB is diagonal, the off-diagonal terms are not
general small, and the higher order harmonics~in A andB)
are not necessarily unimportant. We will resort to numeri
procedures to aid us in finding the eigenvalues and eigen
tors of Feff .

If r d
0 is large, then the higher harmonics inA and B do

become less important, and we anticipate that working w
finite dimensionalHAA’s and HBB’s will provide a reason-
able approximation ofFeff . Furthermore, ifgÞ0 then the
higher harmonics ina and b are also rapidly suppressed
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Haa and Hbb , allowing us to work with finite dimensiona
Haa’s, Hbb’s, andU’s as well.

Noting that a5(1,0) and b5(1,0) are the Goldstone
modes forFeff provides us with one gauge of how well w
have approximatedFeff with finite dimensional matrices
Even if we do include too few modes to correctly identi
these Goldstone modes, we will still find bounds on the s
bility. Including more modes will only make the syste
more unstable. Figure 6 shows the stability boundary
Haa1Qaa and Hbb1Qbb in the (Ab ,As) plane. We have
used 12 texture modes and six shape modes in the nume
calculations. Below are the unstable eigenmodes at the
bility boundary for the points indicated in Fig. 6:

~1! a'~0.70,20.71,0.01,0!,

b'~0.70,20.71,0.01,0!;

~2! a'~0.04,20.99,0.01,0!,

b'~0.04,20.99,0.01,0!;
~54!

~3! a'~0,1.0,0!,

b'~0,1.0,0!;

~4! a'~0,1.0,0!,

b'~0,1.0,0!.

We see that whenAs is small the first unstable mod
contains significant contributions from then51 mode, indi-
cating that the Goldstone modesa5(1,0) andb5(1,0) have
not been properly identified within the numerical approxim

FIG. 6. The stability boundary for (Haa1Qaa) and (Hbb

1Qbb) as found by using 12 texture modes and six shape mo
The two boundaries are apparently the same within the accurac
the calculation ('10%). The unstable eigenmodes associated w
the noted points are given in the text, one mode each for (Haa

1Qaa) and (Hbb1Qbb). Above these points on the boundary th
unstable modes appear to be puren52 modes. As noted in the tex
it seems likely that the true unstable modes are always then52
modes.
-

r

cal
ta-

-

tion. For larger values ofAs the first unstable modes are pu
n52 modes, and the numerical calculation also correc
identifies then51 modes as zero-eigenvalue mode. No
looking back at the eigenmodes for smallAs , we note that
only then51 and 2 modes contribute significantly, sugge
ing that the puren52 mode is always the first mode to g
unstable.

Figure 6 shows us that, for anyAs.0, there is a critical
value of Ab below which the system becomes unstab
Though not shown in the figure, we remark that asAb be-
comes even smaller, more and more modes become unst
This should not be surprising since, ifAb50 andAs.0 then
all modes are unstable.

Thus we find that for the free energy~6! the configuration
consisting of the disk with the preferred exterior defect te
ture @Eq. ~17! with fd50 and Eq.~22! with r d5r d

0# is un-
stable with respect to correlated changes of the shape
texture whenAs.0. Furthermore, the absence of linear term
in a andb in F arises from a cancellation between the bu
and boundary portions of the free energy. Hence, chang
the structure of either will generically generate such line
terms leading to linear shape instabilities. This helps us
derstand why either altering the form of the boundary ene
or accounting for deviations from the one-coupling-const
approximation also leads to shape instabilities.

B. Interior defect

Now we will examine the situation with the interior de
fect. Again, we takeD as in Eq.~32! and now we take

F05f1
p

2
, ~55!

the preferred texture for a disk as found in Sec. III B. Th
time, since the defect is inside the disk, it is not possible
make an appropriate choice of thePn’s in Eq. ~36! to change
the position of the defect. Nevertheless, we will not allow t
defect location to vary. This merely has the effect of remo
ing the Goldstone modes associated with simultaneous tr
lations of the texture and the shape.

We will again work only to quadratic order inr and P,
and extract an effective free energyFeff(r,K,g,m,R). As
with the exterior defect calculation thisFeff will contain no
linear terms inr, and the quadratic terms will not always b
positive. We will be able to investigate analytically the st
bility criteria in this case, and we will find again that for an
As.0 and for small enoughAb shape instabilities arise. Th
answer to the question of which mode becomes unstable
will be much more interesting here. We will find that for th
kth harmonic mode there is always a value ofAs , such that
this mode is the first to go unstable asAb is lowered from 1.
It will always be assumed thatAb,1, since for larger values
we already know from Sec. III B that the defect would pref
to move away from the origin. This will appear in our cu
rent analysis as an instability in then51 mode.

As with the exterior defect case, here again it would
necessary to proceed to sixth order inr in the calculation of
Feff in order to calculate equilibrium shapes. Again this ta
appears formidable and we will only be examining the s
bility of the configurations.

s.
of
h
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FIG. 7. Stability boundaries in the (Ab ,As) plane for a few modes. Note then51 boundary in~a!, this mode is the first to go unstabl
asAb increases beyond 1; instabilities in the other modes forAb.1 are not shown. This instability corresponds to the defect wishing to m
away from the origin. In all three pictures note the crossing of the stability boundaries. Starting in the stable region, asAb is lowered, which
mode goes unstable first clearly depends upon the value ofAs . For completeness we note that thenth stability curve has an asymptote
Ab5121/n as one can see in~a! for the n52 and 3 curves.
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Proceeding, we have

F5pK lnS R

j D2pK (
nPZ2$0%

rnr2n

R2

12pK (
nPZ2$0%

inPnRunu r2n

R
12pK (

n51
nPnP2nR2n

22pmR1pmR (
nPZ2$0%

rnr2n

R2

1pmR (
nPZ2$0%

R2unuPnP2n

22p imR (
nPZ2$0%

nRunuPn

r2n

R
12pgR

1pgR (
nPZ2$0%

~n221!
rnr2n

R2
. ~56!

The absence of any terms linear inP with no r’s confirms
the extremal nature of the texture. The positive definiten
of the quadratic form associated with theP’s confirms that
the texture is in fact a minimum with respect to variatio
that do not change the position of the defect.

To calculateFeff , we simply demand that]F/]Pj50 and
solve forPj (rn):

]F

]Pj
52pS Ki jR u j u r2 j

R
1Ku j uP2 jR

2u j u D
12pS mRR2u j uP2 j2m i jRRu j u r2 j

R D ~57!

yields

Pj5 i
j

u j u
d j

1

Ru j u

r j

R
, ~58!

where

d j5
K2mR

K1
1

u j u
mR

. ~59!
ss

Substituting into Eq.~56!, we have

Feff5pK lnS R

j D22pmR12pgR12pmR(
n51

Vn

rnr2n

R2

1O~r3!, ~60!

where

Vn52S Ab211n
~Ab21!2

Ab1
1

n

2
1

11As
~n221!D . ~61!

Note that toO(r2) Feff is block diagonal in thern’s, and
diagonal in the correspondingan’s andbn’s. We can exam-
ine the stability of the circle simply by looking at the sign
Vn . If Vn is negative, then thenth harmonic is unstable.

The stability of then51 mode is independent ofAs and
we can easily see that this mode is unstable whenAb.1.
This corresponds precisely to our earlier finding@Eq. ~26!#
that the origin becomes a local maximum for the position
the defect whenAb.1.

For the other modes the boundary between the stable
unstable regions in the (Ab ,As) plane is more complex. Fo
thenth mode this boundary is given by the curveVn50, or,
equivalently, by

As
0~n,Ab!52

Ab

12Ab

n21n212nAb

nAb2n11
. ~62!

We are only interested in the region (As.21,0,Ab,1),
since physically we require (Ab.0,As.21) and we have
already seen that then51 mode becomes unstable whe
Ab.1. In Fig. 7 we plotAs

0(n,Ab) in this region for several
values ofn. Within this piece of the (Ab ,As) plane thenth
harmonic mode is stable in the region to the right
As

0(n,Ab), and unstable to the left of this curve.
Fixing the physical elastic constants of the system a

allowing the size of the domain~R! to change is, in the
(Ab ,As) plane, equivalent to fixingAs and allowingAb to
vary. Thus, a growing domain traces out a horizontal line
the (Ab ,As) plane. Starting in the stable region~to the right
of the stability curves!, as the domain grows which stabilit
boundary the horizontal line crosses first will clearly depe
upon the value ofAs . In fact, for
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m424m315m224m11

2m21
,As,

m42m222m21

2m11
,

~63!

the stability boundary for themth harmonic mode will be the
first such boundary crossed. Thus the domain will beco
unstable with respect tom-fold shape perturbations first. O
course, as the domain grows further it will become unsta
with respect to more and more modes. Furthermore ther
extensive mode coupling at higher order inr, and as such
the equilibrium shape may not exhibitm-fold shape distor-
tions. Nevertheless, this behavior is markedly different fr
what we found in the case of the exterior defect. There
appeared that then52 mode always became unstable fir
Interestingly, in the extensively investigated dipole mod
the n52 mode also appears to be the first mode to beco
unstable. While in both of these cases higher harmonics
become unstable as the domain grows larger, and mode
pling is present, it is still a possibility thatm-fold shape
distortions may be more easily accounted for by the pres
model with a captured defect.

V. CONCLUSIONS

After a brief review of the relevant types of order prese
in domains appearing in the coexistence regions of mo
layer films, we focused on the effects of the tilt order throu
the simpleXY model. We have shown the possible existen
of a first-order transition in the texture for a circular doma
from a virtual defect texture to a captured defect texture.
then examined the shape instabilities for both of these
tures. Through a slightly different parametrization of the d
main, we were able to reproduce the result of Rudnick a
Bruinsma@16# that the circle is an extremum for the virtu
defect texture. However, we find that it is not always a mi
mum and shape instabilities can arise whenever there is
possibility, locally, of a negative effective line tension (As
.0). For the interior defect texture we have found a co
plex stability landscape for the Fourier modes associa
with the domain shape, again arising whenAs.0. In both
cases larger domains become unstable with respect to
Fourier modes. With the exterior defect texture, then52
mode apparently is always the first to become unstable. W
the interior defect texture which mode becomes unstable
depends upon the physical parameters of the system.

While the dipole model can also have shape instabili
in its Fourier modes, it cannot produce chiral domain shap
However, for unequal elastic constants theXY model may
yield chiral shapes. Of course, a general system may h
important contributions from the dipole model and from t
XY model.
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APPENDIX A: SHAPE PARAMETRIZATION

Here we review some of the properties, including adv
tages and shortcomings, of our choice of parametrization
e
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the boundary of the domainD. Recall Eq.~32!,

r ~f!5R01 (
nPZ1

~an cosnf1bn sinnf!. ~A1!

Next recall that a domain,D, is said to be star shaped if ther
exists a pointP0PD such that, for allPPD the line segment
connectingP0 to P is contained inD. The boundary of any
star-shaped domain, where the origin can serve as the p
P0eD, can be described by Eq.~A1!. Correspondingly, a
curve given by Eq.~A1!, if it is also a bounded simple close
curve, serves as the boundary of a star-shaped domain w
the origin can be chosen asP0 .

A priori, we have no reason to restrict our attention
star-shaped domains. Unfortunately our parametrization d
not allow the description of domains that are not star sha
and that have boundaries that are simple closed curves~Fig.
8!. Furthermore, parametrization~A1! admits curves that are
not simple closed curves, and that we would consider to
physically irrelevant~Fig. 8!. Thus if we were to attempt to
find highly distorted equilibrium domain shapes, we wou
be well advised to use a different parametrization.

In this paper, however, we are only interested in inve
gating the stability of a circular domain. This can be acco
plished with the parametrization~A1!, since the circular do-
main is star shaped and physically relevant infinitesim
perturbations will also be star shaped.

Another potential difficulty with this parametrization i
the special role the origin assumes. That is, we must be
lowed to choose the origin as our special pointP0 . Thus, for
example, a circle of radius 1 centered about~2,0! cannot be
described by parametrization~A1!.

If we are only concerned with theshapeof the domain,
then, if it is star shaped, we can always choose the origin
be a point in the domain satisfying the properties ofP0. But
now if we are not concerned with the position of the doma
with respect to the origin of the coordinate system, then
parametrization contains redundancies. That is, for e
point in the domain that satisfies the required properties
P0 , we can find a parametrization of the form of Eq.~A1!
which produces the correct boundary. For example, fo
disk any interior point could be chosen as the origin. Tra
lating a domain around in general involves changing all
the Fourier coefficients and so removing this redundanc
not necessarily trivial. However, again, being interested o
in small perturbations of a circular domain allows us to d
easily with this redundancy. Starting with a circular boun
ary centered at the origin,

FIG. 8. The simple closed curve in~a! is admitted by parametri-
zation~A1!, and it bounds a star-shaped domain. In~b! this simple
closed curve does not bound a star-shaped domain, and is no
mitted by the parametrization~A1!. Finally in ~c! we have a closed
curve with self-intersections which is admitted by Eq.~A1!.
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r ~f!5R, ~A2!

one finds that, for an infinitesimal translatio
(e cosc,e sinc), the translated boundary is given by,

r ~f!5R1~e cosc!cosf1~e sinc!sinf1O~e2!.
~A3!

That is, toO(e) only the n51 modes are altered. It is fo
this reason that one often ignores then51 modes when us
ing this parametrization. To lowest order these modes
merely translations of the domain, and as such merely p
duce annoying redundancies in the parametrization if on
interested only in theshapeof the domain. However, in ou
problems we also have a nontrivial texture present wh
breaks the isotropy of space. Thus the position of the dom
relative to a fixed origin~provided by the texture! is now
physically relevant. The redundancies are now in the sim
taneous translations of the texture field and the domain.

APPENDIX B: CHOICE OF h50

We would like to comment here on the invariance of o
results with respect to our choice of boundary ener
namely,h50 in Eq. ~6!.

Let us consider the two free energies

Fc5 1
2 KE

D
~¹F!2 d2x1h R

]D
m̂•n̂ ds2m R

]D
m̂• t̂ ds

1g R
]D

ds ~B1!
,

J.

ev

. A

hy
re
o-
is

h
in

l-

r
,

and

Fa5 1
2 KE

D
~¹F8!2 d2x1h8 R

]D
m̂8•n̂ ds1g R

]D
ds.

~B2!

Under the transformations

F85F81tan21
m

h
,

h85Am21h2, ~B3!

we see thatFc5Fa . Thus, it is trivial to extend our result
for h50 to arbitrary values ofh andm.

Interestingly, the domainD does not participate in the
transformation. Thus, althoughFc contains a chiral term, in-

dicating that the equilibrium configuration (D,m̂) should be
chiral, we expectD to be achiral. This follows from the
expectation that the equilibrium configuration fo
Fa , (D,m̂8), should be achiral sinceFa contains no chiral
terms. Thus the chirality only manifests itself in the equili
rium configuration through the texturem̂ and not through the
shapeD.
. A
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