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Stability of texture and shape of circular domains of Langmuir monolayers
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Finite domains of a Langmuir monolayer in a phase with tilted molecules can be modeled by a simple elastic
free energy of arXY order parameter with isotropic and anisotropic line tension terms. The domains can and
often do contain nontrivial textures, which in turn influence the shape of the domains. Herein we investigate the
properties of a simplified isotropic model with a single elastic constant. For circular domains a first-order phase
transition is found between two distinct textures: an exterior def@ct'virtual boojum”) texture, and an
interior defect texture. Starting with a circular domain and either of these two textures as a ground state, we
find that shape instabilities develop which depend on the elastic constants and line tensions in the simplified
model. In both cases a necessary but not sufficient condition for the onset of shape instabilities is the possibility
for a local negative effective line tension to develop from the anisotropic line tension term.
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PACS numbegfs): 61.30.Cz, 68.55-a, 61.30.Jf, 68.18:p

I. INTRODUCTION the interface[12,13, thereby defining a two-dimensional
vector in the plane of the film. In addition some films exhibit
The biological importance of thin films of surfactants, hexatic order as well as tilt ord¢4,15. Domains of both
such as dipalmitoylphosphatidylcholif®PPQ (a primary lilted and nontilted phases exhibit noncircular shapes
component of human lung surfactdai), and other potential L6:11,9,5,18 Static and dynamic properties of nontilted do-
commercial applications of self-assembled struct{@éshas ~ Mains as well as modulated equilibrium phases are well ex-
spurred a resurgence of research in the study of Langmuf?lfa'ned by dipole interactions among the_ electric dipoles
films. For the physicist, monolayers of surfactants at the airgl'gned ’.‘O“f“a' to the. layerl7—24. Domain Shap‘?s and
water interface provide an interesting two-dimensional SyS;extures in tilted domains clearly depend on the existence of

tem with very rich phase behavif8,4]. Techniques such as orientatipnal QrQer in the plqne O.f the filf1,29. For ex- .
fluorescence microscopy and Brewster angle microscopy aﬁmple’. It s d|ff|cu_lt to explain chiral shapes that appear in
low direct observation of the system as it proceeds through 8h||ral rf]l_lms by a dlpol_e” mOd(.:‘(Ij‘ icularly simol del
phase transition. X-ray scattering can also be used. AtomiF n this paper, we will consider a particularly simple mode
force microscopy on Langmuir-Blodgett films can provide 1" tilted domains in which tilt order is described by an iso-
more detailed information that appears to be consistent WitﬁrOp'CXY model and in which coupling between texture and

passive observations of the Langmuir film before extractiorfjomaln shape anises because .O.f an mteragnon favoring align-
5] ment of XY vectors at a specific angle with respect to the

Typically, as a film is compressed, it passes from a gagomain bou_ndaries. This model is clearly ove_rsimplified, but
phase(G) to a more condensed liquid expandéd) phase it can explain observed shapes and textures in some systems
to an even more ordered liquid condenge®) phase, and [11’1.6’25'26 A complete model would all_ow fpr different
then, sometimes, into a solid phase before finally becoming glastlc constants. for.splay and bend d'.StO”'Of?S.' and for
multilayer film. Experiments have revealed a very comple play-bgnd coupling in chlral _systenﬁ§_7] in addition to
variety of patterns, shapes, and textures present in the Lc/Lpteractions between electric dipoles with components both

and LE/G coexistence regiongs,7]. Upon rapid compres- parallel and perpendicular to the film. Nonetheless, this sim-
sion of the film, highly branche,d structures are often seenp"ﬁe‘j isotropic model pret;licts nontrivial shapes and tex-
' ures, the full range of which have yet to be analyzed. In

These appear to be the result of diffusion limited aggregatiortn . I . o )
spite of its simplicity, it involves highly nontrivial couplings

[7], and typically they relax to more regular shapes. More
modest compression rates tend to produce a finite number tween t'ex.ture and shape that nged to be understood before
more realistic models can be studied.

condensed domains that grow in size, but not numi8gras . . ]
the film is compressed through a coexistence region. Film Qur mO(_jeI IS c_haractenzed b_y three energy parameters;
composed of enantiomeric surfactants sometimes exhibit d&—.e |§otrop|c .elastlc cpnstaKt (units of energy, the |sot_r o
mains with a preferred handednéshkirality) to their shape. pic line tensiony [units of (energy/(length] arjd the line
The handedness alternates with the choice of enantiomeignsionu favoring alignment of theXY vectorm with the
and in racemic mixtures the domains are ach[®B,5. tangent to the domain perimeterWe obtain the following
Within domains of the ordered phase, complex structures caresults for this model. Fou/y<1, circular domains are glo-
sometimes be observed as wdlD,11. The addition of cho- bally stable. Circular domains of radié&can have two equi-
lesterol to these systems often leads to labyrinthine or stripelibrium textures: one with a strengt 1 disclination[28]
patterns, and to spiral domains of a preferred handed®gss with core radius¢ at the center of the domain, and one de-
Molecules in LC phases of Langmuir films either align scribed by a+ 2 defect(virtual boojun exterior to the do-
normal to the air-water interface, or they can tilt relative tomain [29]. The interior defect texture is favored for large
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values ofR/¢, whereas the exterior defect texture is favored We will now restrict our attention to the one-coupling-
for large values oK/ué. For a circular domain, the exterior constant approximation, simplifying the form of the bulk free
defect texture never becomes locally unstable. The interioenergy. Definingb’ via
defect texture does, however, become locally unstable with R R R
respect to moving the defect toward the edge of the circle. m'=cos®’e,+sind’e,, 3
Whenu/y>1, the circular shape and associated textures can
become unstable. When the defect is in the interior, the circle have
can become unstable with respectrtdold modulations as
the domain radius is increased. The value of that first f [K(V-m')2+ Kb(erﬁ’)z]d2x=Kf Vo' VD' d?x.
becomes unstable depends phy. When the defect is out- JD D
side, the domain becomes unstable with respenot+t@ dis- (4)
tortions first, asR is increased.

We will proceed with our investigations as follows. We
will review the interior and exterior defect textures for a

In Appendix B we show that the transformations

!
circular domain and then, comparing them, will present a q):q)/_tan—l’u__z
phase diagram for these two textures. Next, we will examine 7 2 ’
the shape stability by taking an initial configuration consist-
ing of a circular domain and one of the two extremal tex- w=\u'?+75'? (5)
tures. For each of the two textures we will then allow for
perturbations in the shape and texture, calculate an effective rﬁzcos(pé(Jrsinq)éy

free energy dependent only upon the shape, and examine the
stability of the circular domain with respect to shape defor-simplify the free energy further:
mations.

1 A
F=—KJ(V(I>)2 dzx—ﬂjg m~tds+y3£ ds. (6)
D JD dD

Il. THE MODEL AND OUR AIMS 2
Hencefo_rth we WiI_I t_)e concerned only with the following we could just as easily have transformed away the sponta-
problem. Find the minimum of the free ener®0,27, neous bend term in favor of an effective coefficient for spon-
taneous splay. Thus, although E§) is a chiral free energy
F:%J' [K(V-M")2+Ky (VXM )2]d?x (the_spon_taneous bend term is 9r)|,rath|ral|ty can only
D manifest itself through the textunm and not through the

domain shap® (D is invariant under the transformation, see
—u 55 m’-t ds— gz’ § m’xt ds+y 55 ds, Appendix B. , ,
D D D To make contact with previous woikl6], we note that
1) we could have written our surface term in the form

over all domainD with fixed areaA (= wR?), and over all fﬁ a(6—d)ds, (7)
dD

unit vector fieldsm’, for given values of the elastic constants
(Ks, Ky, ', 7', 7). Ks and K, are the usual bend and splay

elastic constantsy is a line tensiont is the tangent vector to
the curvedD, andu’ and %’ are the coefficients of sponta- n=cosée,+sin eéy, 8
neous bend and splay, respectively. We have chosen to write
the spontaneous bend and splay contributions as line intexnd
grals using

where the outward normal to the boundary is given by

A o o(X)=y+ >, (a, cosnx+b, sinnx). 9)
f V-m’ d’= é m’ Xt ds, n=1
D dD
Takingb,;= — u with all othera,’s andb,,’s set to zero will

R L recover our effective line tension
f Vxm' d’x= 3€ m’-t ds. 2

D dD A A

0 f# ds—u 35 m-t ds. (10

. . . A A ~ ~ dD dD
This allows us to identify—u'm’-t—%'m’Xt+y as an
effective anisotropic line tension. <\u'?+7’%, then  Similarly a nonzeroa; will produce a spontaneous splay
choosingm’ to follow t for a given curvesD will allow the  contribution. Transformatio(b), in this language, allows the
anisotropic line tension to be negative. We will see thatelimination of thea; (b;) term in favor of a new effective
within the context of the one-coupling-constant approxima-b; (a;).
tion (K=K =K,), allowing the effective line tension to be- Rudnick and Bruinsmfl6] demonstrated that a nonzero

come negative will be a necessary condition for instabilitiesa,, in addition to a nonzera,, leads to noncircular shapes
in the shape of a circular domain. and nontrivial textures in agreement with some experiments
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[25]. However, Riviee and Meunief11] and Galatola and V2P =0, (15)
Fournier[26] accounted for these same shapes and textures
without a nonzera, by incorporating the apparent anisot- it is still not a trivial task to find the optimur® for a generic
ropy betweerK andK,. We will show that even witlKg ~ domainD. We will approach the problem as follows. Noting
=K, anda,=0 [as in Eq.(6)] shape instabilitiestill exist that experimentally the domains appear to be circular for
wheny<u, that is, once a negative effective line tension issmall A, we will first fix the domain shape to be a circle, and
allowed. try to find the optimum®d. This is tantamount to assuming
To see that instabilities should arise, we first identify ~ that y is infinite. Having found the optimal texture for a
circular domain, we will then allow the shape and texture to

LY deform. Section Il will deal with the task of finding the
b7 uR’ optimal texture for a circular domain, and Sec. IV will deal
(11)  with instabilities in the shape of the domain.
o
AS_§_1 Iil. OPTIMAL TEXTURE

FOR A CIRCULAR DOMAIN

as two independent dimensionless parametggss a mea- . . . .
sure of the competition between the bulk energy and the The main question to address here is whether the domain

anisotropic piece of the line tension. For a gived, A, Snould contain a topological defect. In experiments by
will determine the preferred textur@s measures the relative Riviere dar]:d Meug'?"[ll] ;he“dpmallnbcle.arlxydoes not con-
strength of the anisotropic and isotropic contributions to thd@" @ defect and has the “virtual boojum™ texture previ-

effective line tension. WheA >0, the effective line tension CUS!y described by Langer and Settiag]. However, in Ref.
can be negative. [10] Qiu et al. observed a star defect inside the domain,

WhenA,— we can assume th#t—c, and hence that which indiqate; that it may be possiblg to havg an isolated
A ) ) +1 defect inside a domain when hexatic order is not present
m wil b.e constrained to be a constant Thgs, without '955 Of(as the hexatic order is lost the arms of the star defect retract
generality, we can assume that=e,. This form form  and one is left with a simple- 1 defect[31-33). Also, in
yields thin films of smectic€ liquid crystals, which can be approxi-

mately modeled by the same free energy, isolated de-
jg m-1ds=0 (12) fects are often observd@8].
D Fixing the domain to be a disk, the isotropic line tension
term will be irrelevant to this discussion since it is unaffected
for all 9D, and as such the value pf is irrelevant. In fact, by changes in texture alone. The anisotropic piece of the

the free energy is simply boundary energy, however, favors havimgparallel to the
tangent to the boundary, and thus “prefers” having either a
F=vy § ds. (13 +1 defect inside the domain ora2 defect on the boundary
D (sometimes referred to as a boojurhe bulk portion of the

free energy clearly prefers that simply be uniform within
. the domain. Thus, whether it is preferable to have a defect
circle. S . .
- inside the domain or not depends upon the competition be-
In contrast, whemb—>0 we assumé—0 and t.husm tween the bulk elastic energy and the anisotropic line ten-
can take any form it chooses in the bulk. In particular, Wegjon as well as upon the energy cost required to nucleate a
can always choosm such thatm-t=1 at all points on the melted defect core.
curve, for any curveD. Thus now our free energy becomes  In this section we will first review the virtual boojum
texture, which is an extremal texture for the case where there
o fﬁ is no defect inside the digl.6]. In fact, in Sec. IV A we will
F=(y—u) ds. (14 o o X
9D show that this is a locally minimal texture with respect to our
free energy. Next we will consider textures associated with
If y>pu, then certainly we again have a circle as the prethe defect inside the domain. We will note that the texture
ferred shape. But ify<u then the domain attempts to maxi- for an isolated+1 defect at the center of the domain is
mize the length of its boundaryD. This results in patho- extremal, and foA,<1 it is a local minimum as well. We
logically distorted shapes, or unbounded domains. Thusyill investigate a class of ansatz textures consisting of an
when y<u, we anticipate that for largé\, the domain isolated+ 1 defect located anywhere within the domain. We
shapes will be circular, but for smal, the shapes will begin  will find that within this restricted class of textures, there is a
to distort. However, whery>u it would not be at all sur- first-order transition between the texture with the defect at
prising to find that the circular domains are preferred for allthe center of the disk and a texture with the defect close to
values ofAy. the boundary. Thus we find that not only is the texture of the
We are now ready to begin our search for optimal shape&lefect at the center of the disk unstable Age>1, but that it
and texture configurations. Although we will restrict our at- also fails to be a global minimum for even smaller values of
tention to the one-coupling-constant approximation, whichA, within the class of textures with an enclosed defect. In
provides us with a particularly simple bulk Euler-Lagrangecontrast, the virtual boojum texture is a local minimum for
equation all values ofA;.

For a fixed areaA, the preferred shape will simply be a
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where we have assumed that the defect is outside the disk at
least a core radius¢, away from the boundaryr{>R

+ £). Minimizing overC, we find the preferred value & to

be

co=—2_4 (19
2 T

Without loss of generality we can takéy=0, and finally
write the energy for a+2 defect outside the disk, on the
r,=(L.5R,0) positivex axis, as
R 2
ot
Id

(a) (b)
For a given value of the dimensionless quantity

o
o _ —27—R?+2myR. (20)
FIG. 1. Textures arising from a single2 defect. The constant g

term in ® has been chosen to make as close td (the tangent
vectop as possible. With the defect at the boundéay we have

m-t=1 but we also have very large gradientstimear the defect. K
In (b) these large gradients have been expelled along with the defect Ap=—o, (21
but now we no longer haven-t=1. The competition between the #R

ideal boundary ifi-t=1) and bulk ¢;m=0) conditions leads to a i

here is a preferred stable minimum val(@9,16| for r
preferred separation distance between the domain and the defect P 29,16 d

given by

Finally, we compare the virtual boojum texture with the 0 v
texture gf the defepct at the center ofJ the disk. We find a Fa=R(Ap T V1+AY).
first-order transition between these two textures which i
most easily described by the dimensionless parameters
=K/2ué, x=R/&, andg, where¢ is the coherence length

andg is a phenomenological parameter associated with thBreF];eurcrii?clg\;r dtréeruﬁ'ggﬂg;ﬁ%ﬁgg:ﬁgt\ﬂgEizﬁ .re with
energy cost of a defect cofm our calculations we will take

g=1) the defect at§ is in fact extremal. We will further show that
' this texture is indeed a local minimum when we investigate
shape instabilities in Sec. IV.

(22

ﬁzurthermore, we see that using this valuer gfin our F, ,
above yieIdsF+2(r8)<27ryR, revealing that this texture is

A. Virtual boojum

Let us now recall the virtual boojum textuf29]. This is B. Defect inside
simply the texture produced by a single2 defect sitting i
outside the diskFig. 1). With the notation Here we will look at the class of ansatz textures
r=(r cose,r sing)=(x,y), _ ™
ouF Sing)=(X.y ®=gp (1) F 5, (23
z=x+iy, (16)

where we assumey<R—¢ (i.e., the defect is inside the

L y—yd) disk, and at least a core radigsaway from the boundajy

¢r (1) =Im(In|z—z4|) =tan Without loss of generality we takeq=0, and accordingly
we have already chosen the constant term to be the optimal

the field for a +2 defect located at ry Value.Again, clearly, all such textures satisfy the bulk Euler-

X—X{g

= (4 COSey.I4 SiNdg)=(Xq.Ya) iS just Lagrange equatiol 2® =0 within the domain, except at the
position of the defect. We note that wheg=0, m is par-
O=2¢, (r)+C. (17 allel to the tangent to the boundaffyig. 2).

Applying Eq.(6), we find that the energy of this texture is
Clearly the texture satisfies the bulk Euler-Lagrange equation

V2d=0. Furthermore, this collection of texturgéene for R\ @K rﬁ rg
eachry and C) smoothly varies in its extremes from the Fii=7Kln E)+7In(l_§ —4MRE(§)
uniform texture (q—o,m— constank, which is preferred

when =0, to a texture wheren-t=1 (ry=R), which is +2myR+ €cores (24)

preferred wheru— . _
Taking the domain to be a disk of radiRcentered atthe Where we have introduced a term for the core energy,

origin we then find that Eq(6) yields €core- E(X) is the complete elliptic integral of the second
kind,
F=—2aKlIn1 (R2+2 P R2 sin(C+ ¢g) +2m7R
=—zZmKInf1—| — m— S d TYR, /2
ld Fd 18 E(x)=f V1—x? sing de. (25)
0
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_ I
2

FIG. 2. Texture arising from a
+1 defect inside the disk. The
textures in(a) and (b) arise solely
from the interior defect, whereas
the texture in(c) includes the ef-
fects of an image defect outside
the domain. Notice that ifa) and
(b) we havem-t=1, whereas in
(c) we do not.

n= 0,0 n= (0.75R,0) n= (0.75R,0)
(a (b) (©

We will see in Sec. IV, when we investigate changes inat best a modest improvement over E2f), and never offers
shape and texture, that wheg=0 andA,<1 this texture is  a lower global minimun{Fig. 4). Of course, whemy=0 this
a local minimum with respect to all variations in the texturetexture is the same as E@3), with r3=0.

(not just variations within this ansatz classlowever, we

find thatry=0 andA,<1 does not always yield a global C. Which texture wins?

minimum even within this clas&3).

The free energy24) has an interesting behavior as we
varyry. As we move the defect off center, there is an ener X ;
inczeadse from the boundary term but a decrease in ene?g{gund a local minimum for a(!l values ok, ['Eq. (,17) with
from the bulk term. The two contributions have quite differ- ?a=0 and Eq(22) with ry=rg]. For the-+1 interior defect
ent functional forms, and we find that, depending upon thd€xture we found a local minimum only fé,<1 [Eq. (23),

value of A,=K/uR, it may be preferable either to keep the with r4q=0]. Furtherm_org, we found t.halt this local minimum
defect at the origin or to allow it to migrate toward the Was not the global minimum even within the class of ansatz

boundary. Maintaining &r4<R— ¢ we find the following textures(23). Here we will compare the energies of the two

We have presented two textures which are local minima
)})f the free energy6). For the+ 2 exterior defect texture we

behavior of Eq(24) within this class of textures: locally minimal textures to see which is favored.
For smallR the bulk energy dominates the boundary en-
A,<0.23—, r4=0 is aglobal minimum, ergy and we expect the uniform texture to win. Since thg
defect texture produces the uniform texture in the lisjt
A,<1l—, ry=0 isalocal minimum, (26) —o (R—0), we anticipate that for smaR this texture will
A,>1—, ry=0 isalocal maximum. E/R=1/1000

This behavior is summarized in Fig. 3. We see that within
this class of textures there is a first-order transition in the
position of the defect as we chandg. Whenr =0 be-
comes the global minimum, it may in fact already be the case
that the energy barrier that must be overcome in order for the
defect to migrate from the boundary to the origin may al-
ready be too high for this to be a physically probable event.
Note that we have limited our attention only to a particular
subset of potential textures and this barrier may not remain if
we were to consider all possible textures. However, we are
aware of no experimental observations corresponding to a
single +1 defect near the boundary of the domain. Thus,
overall we conclude that when a defect is present within the
domain it is very likely to be at the origin in a stable local
minimum.

We note that one can also consider the texture

FIG. 3. Plots ofF,,/K vs ryq/R for a disk of radiusR for
T several values of\,. We have taker¢/R=1/1000 and have re-
b= d)rd(r)-l— ¢de2/f§(r)_§’ (27) strictedr4/R to be less than 41/1000, so that the entire defect
core is within the disk. We have also not included the core energy

. - . .. 1€core OF the isotropic line tension2yuR in F 4, which here are
which corresponds to a defect inside the domain along W'ﬂ;’nerely uninteresting constants. Note thgt0 is a local minimum

an image defect outside theA dAomam which enforces strong,heneverAb<l andr ;~R appears to be a local minimum for all
pinning boundary conditionsn-t=1 (where again we take of the plots. WhenA,<0.23 thenr4=0 appears to be the true
¢4=0). Within this class textures the defect always preferaminimum. Notice that the barrier separating the two minima is ap-
to be at the origin, and whefy,>0.23 this texture provides proximately 4 at A,=0.23.
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&/R=1/1000 Note in Fig. 5 that we have also included the cuAg

A=023 . Yy =1 which is the boundary at which the interior defect solu-
Ein| 422 b Eia tion becomes unstable. There is a large separation between

18 this boundary and the transition lidé In the region above
1 the A,=1 curve both textures are local minima, and hence a
o 02 0.6 i physical system may well find itself trapped in a metastable
4 E, Fm local minimum whenA,<1. Furthermore, in Sec. lll B we

Iy 0 02 06 1 1 found some circumstantial evidence suggesting that the bar-

R R rier preventing the expulsion of the interior defect may be

FIG. 4. A comparison of the energy of an isolated defectin  dUite large for physically realizable values Af, (Fig. 3).
the disk,F , , with the energy of a+ 1 defect inside along with an Indeed in an experimei25] that apparently has an exterior
image defect outside enforcing strong pinning boundary condition§lefect texture, taking~100 nm yieldsc~2. HOWQVG",_the
(M-t=1), F.,.,. Note that the energies are equalRyt=0. At radii of the domains appears to be as large agd0, which
the boundary of the diskrg=R—¢&) F,, is always lower. Even IS much larger than the critical radius fer=2 [Re(2)

though for some intermediate valuesrgf F., ., is smaller than =2 um], suggesting that it may be the case that this texture
F.,, it is never substantially smaller. is a metastable equilibrium state.

To identify the transition we simply compaie,, and

be favored. For larg® (A,—0) both textures satisfy strong F+2- TaKing ecoe= 7K and noting that,=2c/x, we can
pinning boundary conditions, and thus have equal contribuVrite Ed.(24) as
tions from the surface energy. However, the bulk energy cost
of the exterior defect texture is greater than that of the inte- 2c 2c
rior defect texture. This can be understood qualitatively by F+1:7TMR(Y|n X=2+ -
recalling that the bulk energy cost of a defect of chagge
centered in a disk of radiuR is wKqg? In(R/¢) [28]. In the
limit of large R the +1 defect energy will berK In(Rl&) ~ With ¢4=0 andry=r§, we can also write Eq20) as
whereas thet 2 defect energy will be=(1/2) 22K In(R/€).

2c 2c

1|l )
X X

R
&

+27yR. (29

The factor of (1/2) arises because the? defect is at the 4c
boundary of the disk, not the center. F.oo,= w,uR{ ——In
Thus, we will find a first-order transition between the two X
textures. In discussing this transition we find it more conve-

nient to refer to the dimensionless quantities

+2m7yR,
(30)

where
—K d R (289
c= and x=—
2ué 3
h(y)= ——. (3D)

rather thanA, and R/§. Assuming thatR> ¢ we find that y+ ity
when ¢<0.85 the interior defect solution is favored. For
larger values ofc, there is a critical radiuRR.(c) above ExaminingF ,;—F,,, we find that whenc<c*~0.85
which the interior defect texture is favored and below whichthe interior defect solution is preferred for all valuesRufor,
the exterior texture is favored. Th&s,;(c) defines the first- equivalently, all values o%, since we are assuming thais

order phase boundaly in Fig. 5. constank For larger values af we find that there is a critical
value ofR, R;(c), below which the exterior defect solution
is favored(Fig. 5.
[ T, & r— (Fig. 5
Jloya:
8 800
IV. SHAPE CHANGES
4 Q Towo O For circular domains we have found two distinct textures
(W ri,=1 which are local minima of the free ener@is will be dem-
T 3 5 0" 100 300 500 onstrated sogn Now for each of these textures we would
¢ ¢ like to know if the configurationd,®,), whereD is a disk
@ (b) and @, is either of the two textures, is a minimum with

FIG. 5. The two figures display at different scales the IOhase(espect to changes in shape and_ texture. We will find in each
diagram for the+ 1 defect at the center of the disk vs the exterior @S€ that although the texture is stable when the shape is
+2 defect texture. The curde is R=R.;(c), whereR.;(c) is the f|xed,. the configuratior{(shape and tgxtu}es unstable for
critical radius for a given value af as discussed in Sec. Il C. The Certain values ofA, and As. We will see that whenu
lower curve isAp=1. To the left and abov& the interior defect >7Y (As>0) instabilities will begin to arise.
texture is favored; below, the exterior defect is favored. However, TO examine the stability of the configurations we need to
the interior defect texture is a local minimum in the region aboveintroduce perturbations in the shape and texture. To this end
the curve A,=1 and the exterior region is a local minimum we takeD to be the region bounded by the curve, given in
throughout the region. polar coordinates by
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, distorted equilibrium shapes. Unfortunately this is a prohibi-
[(p)=Ro+ > pue? tively difficult task. Alternatively, we would like to calculate
nez-{0} F < to high enough order i such that the effective energy
is bounded below. This would provide approximations of the
equilibrium values of thep,,’s, and thus approximations of
distorted equilibrium domain shapes. Calculatifg; to
where O(e*), while difficult but not impossible, is not sufficient.
This appears to be due to the form g ,5ds as a function
pn=p*,=3(an—iby), (33)  of the p,’s. Although this isotropic line tension term should
_ ] be stabilizing the boundary against deformations, the fourth-
andR is defined by order coefficients are negative and as such they ledg.4o
12 being unbounded below aD(e*). Because of extensive
mode coupling and the exponential increase in the number of
terms inF ., we have not proceeded @(e®).

=Ry+ 2, (a,cosng+b,sinng), (32

nez*

1/2
/ aZ+b?
=R

1
1—52

1 2 PnP—n
nezt R2

Ry=R
0 nez-{0} R?

(34
A. Exterior defect

With this parametrization the area of the domain is simply i ,
We will now apply the outlined procedure to the case of

A=7R? (35)  the exterior defect. We tak® as in Eq.(32), and we take

Thus keepingR fixed keeps the area constant. Note that we
have included then=1 terms in Eq.(32). Although these
modes can usually be ignored as being just translatioris of
(to lowest order in the Fourier coefficieithere the texture the preferred texture for a disk, as found in Sec. lll A. We
distinguishes a particular origin for the coordinate systenmwill not allow rg to vary, nor will we allow for variations in
and as such translations bf are associated with nontrivial the constant term@= — 7/2). Allowing r$ to vary would
changes in the configuratidsee Appendix A present us with a redundancy in the definition ®f[Eq.
To allow for perturbations in the texture we will take (36)]. That is, changes ing are already accounted for by the
P.'s in Eq. (36). If we wished to have

Bo=24y9(1)— -, (40

D(r)=do(r)+ > P with P,=P*
nezZ—{0} T
(36) O=2¢,~ 7. (41)

where ®y(r) is one of the two textures found in Sec. IlI 0 ) ) _
[Egs.(17) and(23)], and the perturbation is the most generalWhere rq#rg, this could be achieved by an appropriate
nonsingular addition allowed by the Euler-Lagrange equachoice of theP,'s in Eq. (36) since the perturbative terms
tion V2d=0. Taking O(P,)=0(p,)=0(e) we will pro-  form a complete set of solutions to Laplace’s equation in the
ceed to calculat€ to ordere?. This will provide us with an ~ disk. _ _
approximation of Noting the sinC+ ¢y) term in Eq.(18), we see that rotat-
ing the defect about the center of the disk and simultaneously
F(p,P.K,y,u,R), (37 adjustingC to maintainC+ ¢4= — 7/2 costs no energy. As
we have just noted, an appropriate choice of Ehés will
where produce this rotation, and thus@were allowed to vary, we
would discover this Goldstone mode eventually. By fixibg
P=(P1:p-1:P2:P=2, - - ), to be — 77/2 we freeze out this mode. Experimental evidence
P—(P,.P_,.P,.P ) (39 suggests that this is the appropriate course to take. The tex-
e ture associated with & 2 virtual defect has been observed
[11,25, demonstrating that on the time scale of the observa-
tions the virtual defect does not freely rotate about the do-
main. If the defect did execute such a motion, then the time
Feit(p.K,7,1,R) (39 averaged texture would appear as the trivial texture. Though
a careful consideration of the dynamics might be in order, in
as a function of the elastic constants, the radius, and ththis paper we will not concern ourselves further with the
shape perturbation parameters correcO(@?). origin of the observed angular stability of the virtual defect.
In both cases we find thaE. contains no terms of We find it more convenient now to use the real rather than
O(€)—that is, no terms linear ip,—demonstrating that the the complex Fourier coefficients in calculatifg
configurations are extremal. We also find that wher y

Minimizing this overP we will obtain the effective free en-
ergy

shape instabilities will be present for certain valueégfind An=2R4P,], B,=2ImP,],
As. In fact, for any givenA;>0 we find that instabilities
arise for sufficiently smalf,’s. P,=3(A,+iBy), a,=2Rdp,], (42

Ideally we would like to calculaté . correct to all orders
in {p,}. Then minimization of . over thep,’s would yield b,=21mp,], pn=3(a,+ib,).
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Thus, nowA=(A;,A,, ...) andB=(B,,B,, ...) describe wr
texture changes, whereasa=(a;,a,,...) and b (Uabnm=—5 5 m+n+(—1)”*m+l
=(by,b,, ...) describe shape changes. Takikg-1 and rg \ (ra)
R=1 to set our energy and length scales, and performing a 1—-s
plethora of contour integrals, we eventually find Xz(ro)mT’n:\ _2m5m’n) ' (45)
F(A,B,a,b,Ab,As) d
=(A|Hap|A) +(B|Hgg|B)+(alH,,|a) +(b|H,|b 1-46
(AIHAnA)  (BIHeelB) + (@bala) + (OlHalD) (gl L, nT';|+2m6m,n),
+(A|Uap|b) +(B|Ugqla) + F 2, (43 fa \(ra) (ra) A
where
and
Hade e (Hagame 27 — L1 =1[h h L y(n?
( AA)n,m_( BB)n,m_ 4 \(rg)m““l (rg)m+”+1 (Haa)n,m_i[ (n,m)+h(n,—m)]+3my(n —1)5m,n(’47)
A A 0ma 170w | AT (Hup)gm= 50— h(n,m)+h(n, = m)]+ ay(n°= 1) S,
Al rgimoni=t(rymonier ) org 48
+2mMdy s (44  where

|m+n|—2/|m+n|+1 Im+n|—1\ (Jm+n|=2)(Jm+n|—1) |m+n|(jm+n|+1)
h(nam):ﬂ'M(l_‘Sm,fn) -

2 \(rg)|m+n|+l_ (rg)|m+n\—l Z(rg)\m+n|—1 2(r3)|m+n|+l
2@ s 27 /|m+n|+l+ 2 49
r2=1 " " el (-1 (r§Z-12)
|
For convenience, we have chosen to leave the above in a;=e,
terms of u, v, andrg. With K=1 andR=1 we have,
B=— (51)
i n (rg)nJrl'

The two Goldstone modes should be preserf p, and we
will use their existence as a check on our calculations.
rd=Ap+ VAZ+1,

(50) Symbolically, calculating-. is straightforward,
Mm Ab Feff(ayb):<a|Haa+ Qaa|a>+<b|be+be|b>v (52)
VAL AT where
Note the absence of any terms lineaf #,B,a,b} in Eq. Qaa=— 4 UgaHggUga,
(43). This confirms that the unperturbed configuration is an (53
extremum. Furthermorédn, Hgg, Haa, andHy, are all Qu=-—1% UXbH;/-l\UAb'

positive definite. Thus the unperturbed configuration is actu-

ally a minimum with respect to changes in either texture orHowever, the actual calculation Bf is not so easy. Neither

shape alone. Any instabilities must therefore arise as a resuM, , nor Hg is diagonal, the off-diagonal terms are not in

of the couplingsU 5, andUg, between shape and texture. general small, and the higher order harmorfiosA andB)
Before minimizing oveA andB to find F, we note that  are not necessarily unimportant. We will resort to numerical

two Goldstone modes are still present. A simultaneous trangsrocedures to aid us in finding the eigenvalues and eigenvec-

lation of the domain and the defect will not change the entors of F .

ergy, F. This implies the existence of two zero eigenvalues |f rg is large, then the higher harmonics Anand B do

in F, one for horizontal and one for vertical translations. pecome less important, and we anticipate that working with

These translations are achieved through appropriate choicggijte dimensionalH ,»’s and Hgg's will provide a reason-

for A,A B, a, andb. For example, the infinitesimal transla- gple approximation ofF .. Furthermore, ify#0 then the

tion ee, is achieved by taking higher harmonics ira andb are also rapidly suppressed in
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20 tion. For larger values oA, the first unstable modes are pure
Ag ° n=2 modes, and the numerical calculation also correctly
identifies then=1 modes as zero-eigenvalue mode. Now
looking back at the eigenmodes for smAll, we note that
15 @) only then=1 and 2 modes contribute significantly, suggest-
¢ ing that the puren=2 mode is always the first mode to go
Unstable unstable.
10 o Figure 6 shows us that, for amy,>0, there is a critical
value of A, below which the system becomes unstable.
(3) Though not shown in the figure, we remark thatfgsbe-
¢ comes even smaller, more and more modes become unstable.
5 ° This should not be surprising since Af,=0 andA,>0 then
@) Stable all modes are unstable.
. ° Thus we find that for the free enerd§) the configuration
(ll consisting of the disk with the preferred exterior defect tex-
ture [Eq. (17) with ¢4=0 and Eq.(22) with rdzrg] is un-
0 02 04 0.6 08 1.0 stable with respect to correlated changes of the shape and
A texture whermAs>0. Furthermore, the absence of linear terms
FIG. 6. The stability boundary for Haat Qss) and Hyp in aandb in F arises from a cancellation between the bulk

+Qyy) as found by using 12 texture modes and six shape mode@Nd boundary portions of the free energy. Hence, changing
The two boundaries are apparently the same within the accuracy ¢R€ structure of either will generically generate such linear
the calculation £10%). The unstable eigenmodes associated witit€rms leading to linear shape instabilities. This helps us un-
the noted points are given in the text, one mode each Kby, (  derstand why either altering the form of the boundary energy
+Qaa) and Hpy+Qpp). Above these points on the boundary the Or accounting for deviations from the one-coupling-constant
unstable modes appear to be pore2 modes. As noted in the text, approximation also leads to shape instabilities.

it seems likely that the true unstable modes are alwaysthé@

modes. B. Interior defect

Haa and be’ a||owing us to work with finite dimensional Now vye will examine .the situation with the interior de-

H..'s, Hpp's, andU’s as well. fect. Again, we take as in Eq.(32) and now we take
Noting that a=(1,0) and b=(1,0) are the Goldstone

modes forF ¢ provides us with one gauge of how well we Do=p+ Z, (55)

have approximated-.+ with finite dimensional matrices. 2

Even if we do include too few modes to correctly identify

these Goldstone modes, we will still find bounds on the stathe preferred texture for a disk as found in Sec. Il B. This
bility. Including more modes will only make the system time, since the defect is inside the disk, it is not possible to
more unstable. Figure 6 shows the stability boundary fomake an appropriate choice of tRg’s in Eqg. (36) to change
Haat Qaa and Hyy+ Qg in the (A, ,A,) plane. We have the position of the defect. Nevertheless, we will not allow the
used 12 texture modes and six shape modes in the numerigd¢fect location to vary. This merely has the effect of remov-
calculations. Below are the unstable eigenmodes at the sting the Goldstone modes associated with simultaneous trans-

bility boundary for the points indicated in Fig. 6: lations of the texture and the shape.
We will again work only to quadratic order ip andP,
(1) a=~(0.70,-0.71,0.010), and extract an effective free ener@u(p,K,y,u,R). As
with the exterior defect calculation this,4 will contain no
b~(0.70,-0.71,0.010); linear terms inp, and the quadratic terms will not always be

positive. We will be able to investigate analytically the sta-
bility criteria in this case, and we will find again that for any
As>0 and for small enough,, shape instabilities arise. The
answer to the question of which mode becomes unstable first

(2) a=~(0.04,-0.99,0.010),

b~(0.04,-0.99,0.010);
(54

(3) a~(0,1.00) will be much more interesting here. We will find that for the
R kth harmonic mode there is always a valuefqf, such that
b~(0,1.00): this mode is the first to go unstable Ag is lowered from 1.
It will always be assumed tha&t,<1, since for larger values
(4) a~(0,1.00), we already know from Sec. Il B that the defect would prefer
to move away from the origin. This will appear in our cur-
b~(0,1.00). rent analysis as an instability in thre=1 mode.

As with the exterior defect case, here again it would be
We see that wher\s is small the first unstable mode necessary to proceed to sixth ordempiin the calculation of
contains significant contributions from time=1 mode, indi- F in order to calculate equilibrium shapes. Again this task
cating that the Goldstone modas (1,0) andb=(1,0) have  appears formidable and we will only be examining the sta-
not been properly identified within the numerical approxima-bility of the configurations.
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20[  Unstable

A

s

10

00.1 0

0.3

0.1 0.2 0.3

(b)

FIG. 7. Stability boundaries in theA ,A) plane for a few modes. Note the=1 boundary in(a), this mode is the first to go unstable
asA, increases beyond 1; instabilities in the other mode#\fpr 1 are not shown. This instability corresponds to the defect wishing to move
away from the origin. In all three pictures note the crossing of the stability boundaries. Starting in the stable refyias Jasered, which

(©

mode goes unstable first clearly depends upon the valdg ofor completeness we note that tfith stability curve has an asymptote at

Ap,=1-1/n as one can see i@ for then=2 and 3 curves.
Proceeding, we have

:

£

PnP—n
R2

F=wK In(

—aK 2

nez—{0}

PoniomkS nP.p R
R A=1

+27K >,
nez—{o}

inP,RI"

—27uR+ muR 2 %

nez—{o}

+m7uR D, RMp P

nezZ-{0}

P—n

nR"P, =

—2miuR 2
nez—{0}

+2m7yR

PnP—n

(-1

+7yR 2
neZ—{O}

(56)

The absence of any terms linear fhwith no p's confirms

the extremal nature of the texture. The positive definitenes

of the quadratic form associated with tRé&s confirms that
the texture is in fact a minimum with respect to variations
that do not change the position of the defect.

To calculateF o, we simply demand thatF/9P;j=0 and
solve forP;(pp):

JoF AP .
R RHTEZL i Rr2lil
7P 27T<KIJR R+K|1|P,]R )
+om ,uRRziP_j—,uinR“%) (57)
yields
Pj—l| |5jﬁ§’ (58)
where
K—uR
K+m/,LR

Substituting into Eq(56), we have

Feff:1TK|n(_ —2mpuR+2myR+2TuR Y, annp—n
§ n=1 R2
where
(Ap—1)? 2
Qp=—[ Ap=14n———7-(n*=1) | (61)
Ab+ﬁ

Note that toO(p?) Fg is block diagonal in thep,’s, and
diagonal in the correspondiray,’s andb,’s. We can exam-
ine the stability of the circle simply by looking at the sign of
Q,. If Q, is negative, then thath harmonic is unstable.

The stability of then=1 mode is independent & and
we can easily see that this mode is unstable wAgr 1.
This corresponds precisely to our earlier findiigg. (26)]
that the origin becomes a local maximum for the position of
ghe defect whe,> 1.

For the other modes the boundary between the stable and
unstable regions in theA;,A;) plane is more complex. For
the nth mode this boundary is given by the cudg=0, or,
equivalently, by

Ap
1-A,

n+n—1-nA,
nA,—n+1

Ad(n,Ap)=— (62)

We are only interested in the regioA{>—1,0<A,<1),
since physically we requireA,>0,A;>—1) and we have
already seen that the=1 mode becomes unstable when
Ap>1. In Fig. 7 we pIotAS(n,Ab) in this region for several
values ofn. Within this piece of the A, ,As) plane thenth
harmonic mode is stable in the region to the right of
A(S’(n,Ab), and unstable to the left of this curve.

Fixing the physical elastic constants of the system and
allowing the size of the domaiR) to change is, in the
(Ap,As) plane, equivalent to fixing\s and allowingA, to
vary. Thus, a growing domain traces out a horizontal line in
the (A,,As) plane. Starting in the stable regidio the right
of the stability curvel as the domain grows which stability
boundary the horizontal line crosses first will clearly depend
upon the value of\g. In fact, for
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m*—4m2+5m?—4m+1 A m*—m?—2m—1
2m—1 s 2m+1 '
(63

the stability boundary for thenth harmonic mode will be the

first such boundary crossed. Thus the domain will become () (b) ©)

unstable with respect to-fold shape perturbations first. Of

course, as the domain grows further it will become unstable FIG. 8. The simple closed curve {a) is admitted by parametri-
with respect to more and more modes. Furthermore there &ation(Al), and it bounds a star-shaped domain(ihthis simple
extensive mode coupling at higher ordergnand as such closed curve does not bound a star-shaped domain, and is not ad-
the equilibrium shape may not exhibitfold shape distor- Mitted by the pz'arametriz.atio(ml).. Fipally in. (c) we have a closed
tions. Nevertheless, this behavior is markedly different fromcurve with self-intersections which is admitted by E41).

what we found in the case of the exterior defect. There it

appeared that the=2 mode always became unstable first.the boundary of the domaid. Recall Eq.(32),
Interestingly, in the extensively investigated dipole model,

the n=2 mode also appears to be the first mode to become .

unstable. While in both of these cases higher harmonics also r(¢):R°+nEZ+ (a, cosng+D, sinne). (A1)
become unstable as the domain grows larger, and mode cou- °

pling is present, it is still a possibility than-fold shape  Ney recall that a domairD, is said to be star shaped if there
d|stort|ons may be more easily accounted for by the presentyicis a poinP, e D such that, for alP € D the line segment
model with a captured defect. connectingP, to P is contained inD. The boundary of any
star-shaped domain, where the origin can serve as the point
Po,eD, can be described by E¢Al). Correspondingly, a
After a brief review of the relevant types of order presentcurve given by Eq(Al), if it is also a bounded simple closed
in domains appearing in the coexistence regions of monoeurve, serves as the boundary of a star-shaped domain where
layer films, we focused on the effects of the tilt order throughthe origin can be chosen & .
the simpleXY model. We have shown the possible existence A priori, we have no reason to restrict our attention to
of a first-order transition in the texture for a circular domain star-shaped domains. Unfortunately our parametrization does
from a virtual defect texture to a captured defect texture. Wenot allow the description of domains that are not star shaped
then examined the shape instabilities for both of these texand that have boundaries that are simple closed cuRigs
tures. Through a slightly different parametrization of the do-8). Furthermore, parametrizati¢A1) admits curves that are
main, we were able to reproduce the result of Rudnick andhot simple closed curves, and that we would consider to be
Bruinsma[16] that the circle is an extremum for the virtual physically irrelevantFig. 8). Thus if we were to attempt to
defect texture. However, we find that it is not always a mini-find highly distorted equilibrium domain shapes, we would
mum and shape instabilities can arise whenever there is tHee well advised to use a different parametrization.
possibility, locally, of a negative effective line tensioAy( In this paper, however, we are only interested in investi-
>0). For the interior defect texture we have found a com-gating the stability of a circular domain. This can be accom-
plex stability landscape for the Fourier modes associate@lished with the parametrizatiai1), since the circular do-
with the domain shape, again arising wh&g>0. In both  main is star shaped and physically relevant infinitesimal
cases larger domains become unstable with respect to therturbations will also be star shaped.
Fourier modes. With the exterior defect texture, tive 2 Another potential difficulty with this parametrization is
mode apparently is always the first to become unstable. Witkhe special role the origin assumes. That is, we must be al-
the interior defect texture which mode becomes unstable firdowed to choose the origin as our special pdtgt Thus, for
depends upon the physical parameters of the system. example, a circle of radius 1 centered ab@j0) cannot be
While the dipole model can also have shape instabilitieglescribed by parametrizatidAl).
in its Fourier modes, it cannot produce chiral domain shapes. If we are only concerned with thehapeof the domain,
However, for unequal elastic constants ¥ model may then, if it is star shaped, we can always choose the origin to
yield chiral shapes. Of course, a general system may havee a point in the domain satisfying the propertiegf But
important contributions from the dipole model and from thenow if we are not concerned with the position of the domain
XY model. with respect to the origin of the coordinate system, then our
parametrization contains redundancies. That is, for each
ACKNOWLEDGMENTS point in the domain that satisfies the required properties of
Py, we can find a parametrization of the form of E&1)
hich produces the correct boundary. For example, for a
isk any interior point could be chosen as the origin. Trans-
ating a domain around in general involves changing all of
the Fourier coefficients and so removing this redundancy is
not necessarily trivial. However, again, being interested only
in small perturbations of a circular domain allows us to deal
Here we review some of the properties, including advan-easily with this redundancy. Starting with a circular bound-
tages and shortcomings, of our choice of parametrization foary centered at the origin,
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APPENDIX A: SHAPE PARAMETRIZATION
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r(é)=R, (A2) and

one finds that, for an infinitesimal translation

(e cosyresiny), the translated boundary is given by, A
m’-n ds+yfﬁ ds.

JD dD

(A3) (B2)

Fangf (VO')2 d*+ 7' é;
r(¢)=R+ (e cosy)cosd+ (esiny)sing+ O(e?). D

That is, toO(€) only then=1 modes are altered. It is for

this reason that one often ignores tihe 1 modes when us- Under the transformations

ing this parametrization. To lowest order these modes are

merely translations of the domain, and as such merely pro-

duce annoying redundancies in the parametrization if one is w
interested only in thehapeof the domain. However, in our ¢'=d' +tan 1 —,
problems we also have a nontrivial texture present which K
breaks the isotropy of space. Thus the position of the domain

relative to a fixed origin(provided by the textuneis now

physically relevant. The redundancies are now in the simul- 7' =+ 7, (B3)
taneous translations of the texture field and the domain.

APPENDIX B: CHOICE OF 5=0 we see thaF.=F,. Thus, it is trivial to extend our results

. ] . for =0 to arbitrary values of; and w.
We would like to comment here on the invariance of our Interestingly, the domaiD does not participate in the

results with respect to our choice of boundary energyyansformation. Thus, although, contains a chiral term, in-

namely,»=0 in Eq. (6). o I ' . -
Let us consider the two free energies d|gat|ng that the equilibrium co.nflgura'gom)(m) should be
chiral, we expectD to be achiral. This follows from the
-~ A ~ A expectation that the equilibrium configuration for
m-nds—,u§ m-t ds = -, . . . .
9D a» (D,m"), should be achiral sincé, contains no chiral
terms. Thus the chirality only manifests itself in the equilib-

+y fﬁ ds (1)  Mum configuration through the texture and not through the
D shapeD.

Fc:%Kf (V)2 d*x+ 7 fﬁ
D dD

[1] M. M. Lipp, K. Y. C. Lee, J. A. Zasadzinski, and A. J. Waring, [18] T. K. Vanderlick and H. Mohwald, J. Phys. Che®4, 886

Science273 1196(1996. (1990.
[2] G. G. Roberts, inLangmuir-Blodgett Filmsedited by G. G. [19] H. M. McConnell, J. Phys. Chen84, 4728(1990.
Roberts(Plenum, New York, 1990 p. 317. [20] R. de Koker and H. M. McConnell, J. Phys. Chedi, 13 419
[3] C. M. Knobler and R. C. Desai, Annu. Rev. Phys. Chd3). (1993.
207 (1992.

[21] S. A. Langer, R. E. Goldstein, and D. P. Jackson, Phys. Rev. A

[4] H. Mohwald, Annu. Rev. Phys. Cheml, 441 (1990. 46, 4894(1992),

[5] X. Yang, D. Xiao, S. Xiao, Z. Lu, and Y. Wei, Phys. Lett. A

[6] R. M. Weis and H. M. McConnell, Naturéondon 310, 47  [23] K. Y. C. Lee and H. M. McConnell, Biophys. .8, 1740
(1984. (1995.
[7] C. Knobler, Scienc&49, 870(1990. [24] H. M. McConnell and V. T. Moy, J. Phys. Cherf2, 4520
[8] C. A. Helm and H. Mohwald, J. Phys. CheB2, 1262(1989. (1988. .
[9] R. M. Weis and H. M. McConnell, J. Phys. CheBg, 4453  [25] J. Fang, E. Teer, C. M. Knobler, K. K. Loh, and J. Rudnick,
(1985. Phys. Rev. E56, 1859(1997).
[10] X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, and J. [26] P. Galatola and J. B. Fournier, Phys. Rev. L&, 3297
Selinger, Phys. Rev. Let67, 703(1991). (1995. _
[11] S. Riviere and J. Meunier, Phys. Rev. LeTd, 2495(1995. [27] I. Kraus, and R. B. Meyer, e-print cond-mat/9811023.
[12] X. Zhai and M. Kleijn, Biophys. J72, 2651(1997. [28] P. Chaikin and T. C. Lubenskrinciples of Condensed Mat-
[13] T. Rasing, Y. R. Shen, M. W. Kim, and S. Grubb, Phys. Rev. ter Physics(Cambridge University Press, Cambridge, 1095
Lett. 55, 2903(1985. [29] S. A. Langer and J. P. Sethna, Phys. Re\34A5035(1986.
[14] S. W. Hui and H. Yu, Biophys. B4, 150(1993. [30] In general, there will be an additional term in chiral systems:
[15] G. S. Smith, E. B. Sirota, C. R. Safinya, R. J. Plano, and N. A.  Kgy(V-m)(Vxm).
Clark, J. Chem. Phy€2, 4519(1990. [31] S. B. Dierker, R. Pindak, and R. B. Meyer, Phys. Rev. L%if.
[16] J. Rudnick and R. Bruinsma, Phys. Rev. L&#, 2491(1995. 1819(1986.

[17] D. Andelman, F. Brochard, and J.-F. Joanny, J. Chem. Phyd:32] J. V. Selinger and D. R. Nelson, Phys. Rev3% 3135(1989.
86, 3673(1987). [33] D. Pettey and T. C. Lubensky, J. Phys3|11571(1993.



