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The evaluation of the isochoric heat capacity)(measurements on the critical isochore of $Erformed
with the newly developed scanning-radiation-calorimeter during the German Spacelab Mission D-2 is being
presented. During cooling in the single-phase region updesonditions the “piston effect” avoids significant
temperature and density inhomogeneities in the fluid. In the two-phase region both phases are continuously
subcooled into the metastable region by the “piston effect” causing a permanent nucleation of small droplets
and bubbles, which keeps the system near its thermodynamic equilibrium. For the slowest cooling run of
dTo/dt=—0.06 Kh'! at T, the ¢, data are distorted by ramp rate effects only f6T—T.)/T,<3
X 1078, Using a range shrinking procedure for the determination of the asymptotic region yields that the
simple power law is valid fof(T—T.)/T.<1.6xX10 “. For the fitting procedure the theoretical constraints
a=a' andB=B' are applied. Fitting the data in the asymptotic region to the simple power law yields for the
exponenta=0.1105 335 and the amplitude ratié /A" =1.919 524, in good agreement with values of the
renormalization-group theory and other experiments for the 3,1-universality class. The validity of the power
law extended by the first Wegner correction is found td@e- T.)/T.| <10 3, giving similar values for the
fitting parameters. Testing the two-scale-factor universality by combining the critical amplitude with the
correlation length give®R,=0.284+0.018, in agreement with theoretical estimates and other experimental
values for fluid systemgS1063-651%99)09502-1]

PACS numbd(s): 65.204+w

[. INTRODUCTION (6p/ 6T),. During cooling into the two phase region both
phases are subcooled continuously into the metastable region
During the D-2 Mission a scanning-radiation calorimeterby the piston effect. There homogeneous nucleation occurs
was employed in order to measure the isochoric heat capa@ both phases; bubbles in the liquid phase and droplets in
ity (c,) of Sk at the critical isochore during heating and the gaseous phase form continuously. This emulsion of
cooling runs. This instrument has been specially developetiubbles and droplets provides a large surface and short paths
to meet the experimental requirements under microgravityor the heat and mass transport during the phase transition.
(ug) conditions. The cooling runs allowed undistorted  Therefore the fluid is kept near its thermodynamic equilib-
measurements in the immediate vicinity of the critical pointrium resulting in an almost undistorteg measurement. For
where earth-bound experiments are affected by the implicia more detailed explanation of these phenomena and further
effect of gravity. information about the experiments performed during the D2
The technique of using cooling runs for tbg measure- mission we refer to Refd1] and[2]. In this paper we pro-
ment near the critical point resulted from the analysis of thevide only a short summary of the main topics of themea-
experiments performed during the D1 mission. In these exsurement and present the results and discussion of the final
periments, the effect of isentropic heatifippiston effect”)  evaluation. For details concerning the construction and op-
caused significant temperature differences in the fluid due teration of the scanning-radiation calorimeter we refer to Ref.
the different isentropic temperature coefficiendg{(op)s of  [3].
both phases. Underglconditions these inhomogenities are
diminished mainly by the effect of buoyancy convection, the
limiting factor of optimizedc, measurementscell height Il. EXPERIMENTAL DETAILS
H=1 mm, heating ratel T,/dt=3.6 mK h 1) is the implicit ) ) )
effect of gravity. Undegg conditions, however, the effectof ~ We used a spherical cell made of copper with a diameter
isentropic heating becomes dominant and leads to a decisivd 19-2 mm, produced by an electrolytic coating process. The
hysteresis ofc, courses derived from the comparison of Cell is equipped with four thermistors; 1 on the wall and 3 at
heating and cooling runs. different radii inside the cell to measure the temperature dis-
Furthermore, during cooling the piston effect determinedribution in the fluid. The sample celstage 0 is heated and
the fluid behavior, though here the effect of isentropic heatcooled passively through heat exchange with the surrounding
ing keeps the fluid near its thermodynamic equilibrium. Ap-stage 1 mainly by radiation. About 10% of the total heat
proaching the critical point, the temperature and density inexchange is carried out by heat conduction via the electrical
homogeneities caused by heat conduction during cooling theonnections between the cell and stage 1. The isochoric heat
sample, are reduced by the increasing influence of the pistoof the sample is determined by the energy balance of the cell
effect due to the increased thermal expansion coefficientading to
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With a wall thickness of 0.35 mm the totgﬂsne(ﬂanlcal FIG. 1. Isochoric heat capacity, measured underg condi-
and thermalcompressibility of the cell is 810 °K™". The  {jons at different cooling rates. For comparisorc,acourse mea-
spherical cell provides an excellent ratio of the total heatyred under 1g conditions at a cooling rate off,/dt=
capacity and that of the fluid of 77% &t-T,=—-0.1Kand —0,1Kh!is given.

66% atT—T.=+0.1K, respectively. The cell volume de-

termined by several measurements V&=3,7626CM 100 a-/A* are the amplitude values below and above the

+0.24%. The sample mass iBg=2.773*0.22%,  iical tem :
S i = 5 peratureT,, 7 is the reduced temperaturd (
yielding a sample density qi=737.2kgm=+0.27%. The _ 1 ;1" s the critical exponent, andl the regular back-

sample purity was determined by the supplier to be 99.998%q,,nq term. Our analysis follows the predictions of scaling
impurities are mainly Ch N,, H,O. The maximum leak

N . theory that the critical exponemnt has the same value below
rate of the cell measured by repeatedly weighting the fille y P

= nd abover =¢a'). In accordance to the renormalization
cell over several days was less than 0.024% yedrthe ther- e (a=a’)

| istanceRe (T q at : ¢ theory we applied the constraild=B’, and since the
mal resistanc tn01(T) was measured at various empera'sample density was proved to meet the critical density @f SF
tures in a temperature region of 12 K aroufd The stan-

dard deviation of the fit of these data to a cubic function was\(;Vithin 1%, we applied the same critical temperature for the
less than 0.02%, the accuracy B oi(T) is 0.47%. The ata above and belowl{ =T_). Therefore we did not treat

heating power of the thermisté(T) considered in Eq(l) thrzngﬁi Sikr)‘r(])l\;lfar? qust?elowc separately but fitted both
is less than 1% for all ramp rates. After the cell was emptiedb y:

. ) . Equations of the form as E@3) are nonlinear, nonana-
the heat capacity of the cellc was determined with a heat- Vi : :
. ; tic functions that have a strong correlation between the
ing and a cooling run t&C.=2.03JK . The temperature y g

fficient of . idered 10 b liaible in th parameters. This means that there are many parameter sets
Coel |C|t_en 'Oth copri_er ":’ gonSI ere @0 € ;;g '2'” §1m €that describe the data almost equally well. This is elucidated
evaluation, the estimated accuracy t is 2%. ! ther- by our analysis where a shift of the critical temperature of
mistors were calibrated at 10 temperature levels in the temc')nly 0.1 mK yields a change of the exponent value of ap-
_petraturte (;a_nge tOf 151K %r:annlﬁ'g with two Pt-2|‘_5bsetn(sjo[)s, ¢ roximately 4% without a significant change of the least-
Integrated In stage 1. These sensors are calibrated by %uare sum. To confirm that the fitting procedure yields the
supplier Rosemount with an accuracy of 2 mK. To reduce

the drift of the thermistors they were aged artificially yield- ?Azaiiir?gn;ggzlh?; tTEeq E? Sli |ssqtli :;?ezui Ig(ljiﬁzg??f:étgn
ing a stability of dT/dt<0.5mKyear®. The resistance- ' !

i ) ' . by the following procedure. A number of fits is performed
temperature-course of each thermistor was fitted with th(\a/vith fixed values ofT . and« for each fit. By the variation of

Steinhart-Hart equation, the mean standard deviation be- ; . oL - .
= oth parameters with a certain grid size and within sensible
tween data and fit is less than 0.5 mK for the measurement Q!

To—T, and 2.2 mK forT, respectively. f|:r1]|§i,otr:1?OS;nge;;tvaalsu; of; of all fits indicates the best fit
With that the accuracy of the, data aboveT. is calcu- '

lated to be about 3 and 4.5 % for the ramp raddg/dt=

—0.4 and—0.06 K h %, respectively. Belowl . the accuracy A. Final data file

is approximately 1.5-2.5% fodT,/dt=—0.4 and —0.06 The final dat t includes data f | i
K h™%, respectively. The precision of the data used for the € final data set includes data from several cooling runs

VSis i 1% in the whol . erf_ormed unde_pg conditions cleared up by the data which
?Or;a“){s_ls_rls|<a:bigur;|< o In the whole temperature region excerﬁs distorted obviously by ramp rate effects. The results of
c .

heating runs were not included sincg data measured dur-
ing heating runs is significantly influenced by ramp rate ef-
fects in a wide temperature region arouid. Figure 1
To obtain the asymptotic behavior of the specific iso-shows that the, data obtained by cooling undgig condi-
choric heat we used the simple power law for data fitting: tions is distorted only in the immediate vicinity of the critical
point in spite of the comparatively high ramp rates. It must
c,=A""*|7|"*+B. (3  be mentioned that the total mission time did not allow us to

Ill. REGRESSION ANALYSIS AND DISCUSSION
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= 600 the data. Therefore it is not possible to assign a certain stan-
i: dard deviation to a certain run or a certain ramp rate.
Z sl Instead an individual uncertainty or rather a weighting

factor for each data point is determined for the analysis con-
cerning the asymptotic behavior af . In addition the in-

400 [ creasing temperature uncertainty of each data point ap-
proachingT, is considered:

Cy

300 —

, dCy i
L W'// Uizzo-gv,i+ # O'T,Tg. (4)
200 —
L The individual uncertaintiex?ré)’i are obtained from the de-
100 . : L . . viation between thec, data and a smoothing cubic spline
40 30 20 <10 0.0 L0 2.0 3.0 applied to thec, data in logarithmic form. With that a bias
T-T, [K] effect on the individual uncertainties is avoided to the great-

est possible extent since a smoothing spline represents the
data without a functional dependency. In addition, smoothing
thec, data in a logarithmic form provides the advantage that
he increased noise when approachingcan be smoothed
out by a “harder” spline without imposing a bias effect in
that region where the, course has the maximum increase.
produce smaller ramp rates spanning a wide temperatuespecially nearT. a wrong estimation of the individual
range. A double-logarithmic representati@ee Ref[1]) re-  weighting factors would influence the result of the
veals that a ramp rate effect in tlog course of the slowest asymptotic analysis significantly. The spline parameder
cooling run undepug-conditions is obvious only in the tem- representing the weight of each data point for the spline fit-
perature region of(T—T.)/T,/<3x 1078 Thec, data of a ting, must be chosen in the appropriate way. For higher val-
run with the ramp rate T,/dt=—0.4 K h ! has a significant ues of S the smoothing spline change into an interpolating
distortion only between —1X10 °<(T—T)/T.<2 spline underestimating the real standard deviation of the
%1075, The comparison witlt, measurements of pure flu- d_ata. On the contrary, values Bthat are too small Iegd toa
ids using a scanning-ratio-calorimeter elucidates the advarflistorted representation of theg course and the weighting
tage of the cooling technique undeg conditions. Even with  fctors, respectively. _ _ _
heating rates ofiT,/dt=3.6 mK h ! the c, data is typically In EqQ. (4) the temperature uncertam'byrr_TC is estimated
distorted by ramp rate effects in a region |¢T—T.)/T| to be 500K, the factor @C,;/dT) is taken from the
<3.5x10°° (Refs.[4—6]). smoothing spline. _The weighting fa(_:tors are determined Wlth
The final data set includes more than 70000 data pointéhe data set consisting of 2500 paints. The datq set used in
mainly from the slowest runs, in a temperature region oiihe regression analyss was red.uced a second time. Th_e ap-
—35<T-T,<2.4K (see Fig. 2 Due to the decreasing propriate weighting factors of this data set were determined

ramp rate of the quasiexponential runs, both the data densi§»y a\ijerabgmg the individual factors in the same way as men-
and noise of data of the final data set increase with decreased "€ 800ve.
distance toT .

FIG. 2. Finalc,-data set consisting of 250@,, T—T,) pairs
covering the temperature region3.5 K<T—T.<+2.4Kin a lin-
ear representation. This data set is available for use and furth
evaluation by others.

C. Determination of the asymptotic region

B. Data file averaging A range shrinking method was used to determine the ex-

For data file averaging we made use of the fact that in 4&nt of the asymptotic region where the simple power law is
double-logarithmic representation of, versus r=(T  Valid for the description o€, data. For this task the critical
—T.)/T, thec, slope is approximately linear. Each decadeteémperaturd used in the fitting procedure is a fixed param-
of 7 is divided intoj segments and for each segment the€ter, because the determination of the best-fit function in the
covered data are averaged b data points €,;,T;). A asymptotic regionT; is l_Jsed as a free parameter. From the
reduced data set was created consisting of 26Q0T) pairs, ~ C,-course measured with the slowest cooling raV{/dt
which is available for further use by others. The varied un-=—0.06 Kh™*) the critical temperature of the sample was
certainties of, data obtained with different ramp rates were found to beT~318.680 K-0.5 mK. The outer limitry,y is
not considered in the averaging procedure. This resulted in ¥aried between 8107 °<|7y,|<2x107°, the inner limit
higher weighting of data obtained with the slow runs com-Tmin is fixed for all fits to| 7,|=3x107°. The largest fitting
pared to those of the faster ruiisee below. In order to  region includes 203 data points, the smallest region 81, 40
obtain a reasonable CPU time for the regression analysis, tf@bove and 41 belowl .. The range shrinking was deter-
2500 pairs were reduced in the same manner to 40 dafa@ined by discarding a data point from above and below
points per decade of. The statistical uncertainty of the,  after each fit.
data depends mainly on the ramp rate and the distance from Figure 3 showsX? courses obtained by this method using
T. since the cell temperature is not actively controlled butfour different values for the spline parametfor the esti-
depends orc,. In addition the irregular dynamic of the mation of the weighting factors. It is obvious th)éf; reaches
phase transition in the two-phase region changes the noise afnearly constant level between 1.05 and 1.2|#qy,,|<1.6



1798 A. HAUPT AND J. STRAUB PRE 59

4.0

increased, the morﬁf goes up. Increasing the parameger

results in a decreased smoothing of the data resulting in an
0 - - . underestimation of the actual standard deviation. On the con-

- 0.1 S ff:/ trary decreasindgs gives a harder spline which tends to a
30 ] - ?,;2,‘,. = > systematic deviation between the spline and ¢hecourse

o | / and a decreasing significance to find the asymptotic region.

Spline weighting factor $§

For these reasons the spline param&el0.1 is chosen for

the estimation of the individual uncertainties for the com-
2.0

[ plete data set.
y"‘jm To find out any dependencies of the extent of the
anans asymptotic region on the inner and outer limit of the data set,
I eo 00 these were varied betweenx30 °<|r,,;,|<8x107° and
10 - 1X1074<| 71nad<1.6x 1074, respectively. The values af
T T and the amplitude ratio show an insignificant change of only
1% whenr,, is varied, the dependency an,., is approxi-
FIG. 3. Semilog plot of the reduce¥ as a function of the mately 2—4 % verifying an appropriate determination of the
reduced temperaturer obtained by varying the fitting region asymptotic region.
(“range shrinking”) and the standard deviation of the data. The | comparisongc, measurements on G®4] yield an ex-
standard deviation of the final data set was determined by fitting thgant of the asymptotic region ¢f|=4.5x 104, ¢, measure-
data by a smoothing cubic spline. To find the best estimate for thg,ants on a binary mixtur&7] give |7|=6x10"%. We as-
standard deviation of the data the spline param8teras varied sume that this small difference is due to the different
between 0.5smooth, nearly interpolating splinand 0.001(hard rocedures estimating the standard deviation of the data and

spline. Regardless of the s;andard deviation used for fitting the dat e criterion applied to the determination of the asymptotic
to the simple power lawX; reaches a nearly constant value for region

| 7] < 1.6x 10 * indicating the extent of the asymptotic region of the
¢, data.

D. Analysis in the asymptotic region

% 10™* independent of the value &or rather the weighting The data set betweenx@L0 < |7|<1.6X 10~* consists
factors used for fitting the data to the simple power law. Agf 113 data pointsT. is now treated as a free parameter
value of X2 near unity stands for both a good estimation of pepween 318.678 and 318.682 K in steps of 0.05 mK. To
the data uncertainties and a good suitability of the simpljetermine the best fit parameteris varied as mentioned
power law for describing the data in this temperature regionpreviously between 0.06 and 0.15 in steps of 0.0001. This
As shown in Fig. 4 the fit parametets A"/A™, andB  apalysis containing 7200 fits yields the critical temperature
increase in a similar manner when the outer limif,x is  to be T,=318.6801K, 0.1 mK higher than the fixed value

decreased and reach nearly constant valuedgs{<1.6  used above. The best-fit parameters for the asymptotic region
X104, too. For these reasons the extent of the asymptotigre

region for thec, data of Sk is fixed to|r7|=1.6x10*.
As shown in Fig. 3 fof 7,4d>1.6X 10~* X2 increases for «=0.1105+0.004,

larger fitting regions depend on the valuefThe moreSis
A*=69.430.06 JmoltK™,

20 r 1.90  0.110
A~ =133.2-0.07 Jmol*K™,
B=19.92-0.20 Jmol*K™,
0r &
SRR AIAT=1.919,
185 | 0.105
[ ras with X5=1.135 as the global minimum. The uncertainties
of given for the parameter represent the diagonal elements of
the error matrix. They do not represent the absolute error
oo s since they depend on the statistical uncertainty of the data
: s used in the analysis. A more realistic estimation of the un-
-l0L 180 L 0.100 T . . . . .
4105 10+ 105 certainties is given by the determination of the confidence
T - T T level of the estimated parametésee, i.e.[8]). We deter-
FIG. 4. Semilog plot of the parametess A"/A*, andB as a mined the range of parameters that meet
function of the reduced temperatureobtained by varying the fit- X2— X2
ting region (range shrinking The plotted courses were obtained v ”’ng N—p). (5)
with S=0.1; the results for other values & are effectively the Xv,o (P P

same. Regardless of the standard deviation used for fitting the data2 ) )

to the simple power law all parameters reach a nearly constanX; is the reduced square sum of a certain parameteK%,%t,
value for |7/<1.6x 10 * indicating the extent of the asymptotic iS the global minimum value of the best-fit function. For the
region of thec, data. degree of freedom beinl—p=109 (N is the number of
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FIG. 5. Contours of constarX; in the T.-a parameter space FIG. 6. Deviations of the reduced data set from the best-fit func-

representing the 95%( o9 and 99% F, 1) confidence level for  tion in the asymptotic region measured in percentage units. Beyond
the values ofa and T, determined in the asymptotic region. The the asymptotic region both the, data forT<T. (marked byX)
global minimum of the fit withT ; as a free parameter is marked by andT>T, (marked byJ) show a significant increase of the devia-

X (T, is found to be 318.6801 )the local minimum obtained with  tion to the best-fit function of the asymptotic region.

T, fixed to 318.680 K is marked b@.

E. Analysis beyond the asymptotic region

data points in the asymptotic regiqnthe number of param- 14 describe the data beyond the asymptotic region the

eters of the simple power lgvthe 5%F-distribution param-  gimple power law is extended by the first Wegner correction
eter isFg os=2.46, the 1%-distribution parameter i§g g, [9]:

=3.50.
Figure 5 shows two projections of constaxg into the c,=A""*|7|"*(1+D"*|7*)+B. (6)
a-T.-parameter space representing the 95% and 99% confi-
dence level of the best-fit parameters above. There is a 95%ne temperature region where this model is a good represen-
(99%) probability that the real parameter values are withiniaiion of the data is determined with a range shrinking
these contours. In the plot the global MiNMuNX>(  method as used for the asymptotic region. For this analysis
=1.135) with T as a free parameter is given and the localthe exponentA is set to the theoretical value O[%0], the
minimum (X2=1.197) with the critical temperature fixed to critical temperature is fixed t@,=318.680K, the other pa-
T.=318.680 K. This analysis yields the following estimation rameters of Eq(6) are treated as free parameters. The inner
for the uncertainties of the exponeat the amplitude ratio limit is fixed again af | =3x10"®, the outer limit is var-
A”/A", and the regular background teidn ied between &K 10 *<|7,/<1X1072. After each fit the
data set is reduced by discarding a data point from above and
below T.. The analysis yields a monotonically decreasing
XZ until | 7p{=1.0xX1073; in the temperature regior |
<1.0x10 3 the reduced square sum reaches a nearly con-
A-JA*=1.919 024 stant level aX?~1.2. This indicates both a good estimation
weTeen of the standard deviation and a good suitability of the ex-
tended model for describing the data in this temperature
— 223 11 region.
B=19.92' 255 Jmol 'K, To find the best-fit function of Eq(6) for |7mad<1.0
X 103 the amount of 175 points in this temperature region
The plot reveals the strong correlation between the criticalS fitted by varyinga from 0.08 to 0.13step of 0.000Land
exponent and the critical temperature. The slight changdc between 318.679 and 318.681 K in steps of 0.1 mK, the
from the fixed value off, to the value found in the analysis €xponenta is fixed to 0.5. The analysis yields;=1.189
with T as a free parameter of only 0.1 mK causes a changand the critical temperature to g =318.6802K, only 0.1
in « of 4%. mK higher than the value determined in the asymptotic re-
Figure 6 shows the deviations between the reduced da@on. The value of the critical exponent shows only a small
set and the best-fit parameters determined in the asymptotiiange compared to the best-fit function in the asymptotic
region. The absence of any unbalanced deviations for botfegion toa=0.1115 3532, The parameters, A", andB
the data below and above, verifies again the best-fit func- show a distinct shift of approximately 10%, the amplitude
tion to be a good representation of the experimental data iratio turns out to beA /A" =2.01"333, clearly within the
the asymptotic region. The increasing systematic deviation85% confidence level of the value in the asymptotic region.
of both courses from the best-fit function beyopd=1.6  The estimated uncertainties given for the exponent and the
X 10 * elucidate that the simple power law must be ex-amplitude ratio represents the 95% confidence level for the
tended by additional terms outside the asymptotic region. best-fit function. The larger number of degrees of freedom

a=0.1105 5023,
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FIG. 7. Deviations of the reduced data set from the best-fit func- FIG. 8. Deviations of the reduced data set from the best-fit func-
tion using the first Wegner correction. Flri>1x10"2 both the  tion using the second Wegner correction. For2x 1073 the c,
c, data forT<T, (marked byl) andT>T, (marked by+) shows  data forT<T, (marked by[d) show a significant increase of the
a significant increase of the deviation to the best fit function of thisdeviation to the best-fit function of this region. In contrast the de-
region. viations ofc, data abovél. (marked by+) are below 1%, indicat-
ing a good representation by the model.

when fitting the data to Eq6) results inevitably in an in-

creased uncertainty of the best-fit function compared to the With this analysis it is not clear whether the reason for the

uncertainties of the best-fit function of E). observed deviations between ayy data and the model ex-
Figure 7 shows the deviations between the complete dat@nded by the second Wegner correction lies inquiata or

set and the best-fit function in the temperature region menin the model. The analysis of high-precision measurements

tioned above. The plot verifies that the asymptotic power lawsf the isochoric heat of COn Ref.[4] yielded a good suit-

extended by the first Wegner correction is a good represemability of Eq. (7) in a temperature region of 5xX 10 ?<r

tation of the data set fory,ad<1.0< 10~°. For larger tem- <2 7x 10" 2. However, an inspection of o, data does not

perature regions the plot clearly reveals increasing deviationshow any significant misbehavior in this region. A bias effect

for thec, courses both above and beldw. To describe the due to the averaging procedure is highly unlikely since the

data beyond/>1.0x10"° Eq. (6) was extended by the analysis of the original data set shows the same deviation in
second Wegner correction: this temperature region.

C”:A_l+|7|_a(1+D_/+|T|A+ E_/+|T|2A)+B' ™ F. Two scale factor universality

The complete data set of 254 dataigoints, which covers a Tq check the validity of hyperscaling, the parameters of
temperature region of aboli| =2x 1077, was fitted to this  the best-fit function, which were determined for the
function with the critical temperature fixed tol.  asymptotic region, were combined with the correlation

=318.6801K and the exponett fixed to the theoretical |ength for Sk. The universal factor was determined using
value 0.5. The other parameters of Ed@) were treated as

free parameters; the analysis was performed by varying the aATp R\ M
critical exponent between 0.68x<0.13 with a step oA« TS0l T
=0.0001. The analysis yields slightly changed parameter
values, but a relatively high value ﬁﬁ=2.14 indicating that to be R,=0.284+0.018, where&;=2.016x 10 m [11]
Eq. (7) is an insufficient representation of the complete dataand R=56.92Jg*K 1. p. is the sample densitykg the
set. This is confirmed by Fig. 8 which shows the deviationsBoltzmann constant and=3. As shown in Table | this
between the complete data set and the best fit-function in thealue coincides with experiments on other 3,1 systems and
complete temperature region. The data in the two-phase theoretical calculations.
region belowr< —2x 103 shows a significant deviation to
the best-fit function; in contrast, the deviation of the one- G. Comparison with other experiments and theory
phase data does not increase by 1% for the complete tem-
perature region.

In addition, instead of Eq.7), the following model use
in Refs.[5] and[7] was applied to the analysis of the com-
plete data set:

€)

The statistical analysis in the asymptotic region yields the
d critical temperature of the sample to bg=318.6801 K; the
estimated uncertainty with 95% confidence level+i§.4/
—0.9 mK (see Fig. 5 The accuracy of the temperature mea-
surement was calibrated to bel0 mK. This value matches
CU=A‘/+|t|‘“(1+ D_/+|T|A)+E_/+|T|2A+ B. (8 the position of thec, singularity measured during the slow-
est cooling run within a few 1/10 mK. However, the value is
The higher value 0@(,2;:2.26 indicates that this is a worse approximately 50 mK below the values of experiments using
representation of the complete data set than(Eq. high-quality samples. For 5.4gFpurity 99.9994% the mea-
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TABLE I. Comparison of the curve fitting in the asymptotic region of this work to other experiments and to theoretical calculations of
the critical parameters.

System Model Fitting region a AT/AT R Reference
SK; c,=A""|77*+B 3x10 °<|7|<1.6x10°* 0.1105 1.919-0.2#0.24 0.284 This work
—0.027#0.025 +0.018
Sk c,=A""|7"*+B 3.5x10 5<|7|<2x10°3 0.098+0.01 1.83-0.02 0.273 (5]
Sk c,=A""|7"*+B 5% 1075<|7|<1.6x1073 0.1075-0.0054  1.86:0.06 0.263 [16]
co, c,=A""|77+BY"  4X1075<|7/<5x10°3 0.124+0.005 1.86-0.06 (6]
CO, c,=A""|77%+B 4x1075<|7|<5x 1073 0.105 1.90 [17]
CO, c,=A"""|77*+B 4x1075<|7|<4.5x1074 0.1084-0.0023  1.9650.03 0.259 [4]
+0.016
Ar C,=TIT(AS |7]7¢  1X107%<|7|<1x10°2 «*:0.115-0.008 1.92 [27]
+A] ATt «~:0.117+0.003
+AT+A D)
3EA- ¢,=A""|7]7%+B 7X10°8<|7/<6.0x1074 0.107+0.002 1.750.03 0.26 [7]
D,0 +0.03
HTS 0.112+0.008 1.9¢° 0.2547  See labeling
+0.007
RGT 0.11G+0.00%' 1.82—2.089" 0.2699  See labeling
3,1- 0.1094-0.000% +0.0008"
System
*Referencd18]. Referencd 23].
bReferencd19]. 9Referencd 24].
°‘Referencd20]. "Referencd 25].
dReferencd 21]. iReferenced 26).
*Referencd22).
surement of [12] vyields T,=318.730K and p, work seem to be rather high compared to the results of the

=742.1kgm?3, for 5.5Sk the measurements ¢fi3] and  other experiments, which give uncertainties of about 2 to 5%
[14] gives T.=318.736K, p.=738.8kgm?3 and T, for the critical parameters. One reason for this difference lies
=318.723K, p.=734.4kgm 3, respectively. The compari- in method used to estimate the statistical uncertainties. The
son of the measuredl, and the quality of the sample fluid diagonal elements of the error matrix usually yield smaller
for several experiments in the literature show tigatde-  uncertainties than the determination by the confidence level.
creases with decreasing quality since the impurities ar&@he error matrix method is used in Ref§], [7], and[16].
mainly O,, N,, and CH, Since the density of our sample  Furthermore, the estimated uncertainty depends on the ex-
matches the critical density of §Rithin 1%, the difference tent of the region fitted by the simple power law. The larger
in T is caused only by impurities. According to the analysisthe fitting region is, the more data with a smaller standard
mentioned previously the critical temperature of our samplejeviation are included in the fit resulting in a smaller uncer-
indicates that the quality of our sample is better than 3.8. Theainty of the fit parameters. As previously mentioned the un-
original quality measured by the fluid supplier was 4.8. Wecertainties depend on the strong correlation between the fit-
suspect that the additional impurities come from the fact thafing parametergsee Fig. 5. Edwards[4] determines the
the cell could not be evacuated at high temperatures beforgitical temperature of the sample by independent time con-
filling due to the soft soldered thermistors in the cell. stant measurements with an uncertainty of on§.15 mK.
Several investigations reveal that the behavior of the criti-therefore, Edwards can reduce the estimated uncertainty de-
cal exponentr of fluid systems does not change significantly tarmined by the confidence level method of about 10% com-
even for impurities of a few percent of the sample volumepared to the values shown in Table I.
([6,15)). Therefore any effect of the small amount of impu-~ A more precise determination df, in this work would
rities (<0.02%9 in our sample on the universal parametersaye peen possible only by much smaller ramp rates reduc-
can be excluded. _ e ing the rounding of the, singularity when passing the criti-
Table | gives a comparison of the curve fitting in the c3| point. However, the slowest ramp rates realized during
asymptotic region between this work and other experimentge p2 mission approached both the technical limits of the

and the results of theoretical calculations. It is shown that the,,aratus and the time resources of a Spacelab mission.
values of the critical exponermt and the universal amplitude

ratio A/A* determined in the asymptotic region coincide
with other experiments and theoretical results for 3,1 sys-
tems. The extent of the asymptotic region determined in this This research was supported by Deutsche Agentuor fu
work is smaller compared to other experiments. At firstRaumfahrtangelegenheiteARA) under Project No. 50

glance the estimated uncertainties ofand A/A* of this  QV 8948. The authors are very grateful to everyone who
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