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Driven inertial oscillations in spherical shells

A. Tilgner
Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany

~Received 24 August 1998!

The flow of a fluid in a rapidly rotating spherical shell whose rotation rate is modulated sinusoidally in time
is simulated numerically. Different inertial modes are excited as the modulation frequency is varied. The
inertial modes are structured by internal layers. Internal layers are reflected at the boundaries such that at
certain modulation frequencies, the layers are focused onto ‘‘attractors’’ after multiple reflections. The geo-
metric properties of these attractors and their relevance for the response of the fluid is investigated.
@S1063-651X~99!06402-8#

PACS number~s!: 47.35.1i, 47.10.1g, 47.52.1j
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I. INTRODUCTION

Both rotating and stably stratified fluids are capable
oscillatory motion; inertial oscillations in the first case a
internal gravity waves in the second. It has recently be
shown by Maas and Lam@1# that rays of internal waves
propagating in irregularly shaped basins tend to be focu
onto an ‘‘attractor.’’ The focusing effect arises from the p
culiar reflection law of internal gravity waves at solid wall
the angle of the wave vector with the direction of gravity
conserved during reflection, rather than the angle form
with the normal to the reflecting surface. Unlike the situati
met with billiards considered in quantum chaos, attractors
internal gravity waves are associated with negat
Lyapunov exponents. It was surmised later on@2# that the
response of a stably stratified or rotating fluid to exter
forcing should be determined by the geometrical proper
of these attractors. In particular, the spectral width of re
nances might be determined by the size of the interva
frequencies in which certain attractors exist. Maaset al. @2#
suggest that past experiments on inertial oscillations in v
ously shaped containers may be interpreted in terms o
tractors. Similar ideas have been expressed before, e.g
Bretherton@3# and Israeli@4#, who considered modes trappe
near the equator of a spherical shell with wave packets t
eling along a closed circuit.

The present paper intends to test some of the ideas
vanced in Ref.@2# in the context of a rapidly rotating spher
cal shell. The ray properties leading to attractors are stri
obtained only for inviscid fluids. Here, numerical simulatio
are presented which include viscosity in order to study
influence on the existence of attractors. The simulated flo
much the same as one which had been studied experim
tally before @5,6#: The rotation rate of the shell is varie
sinusoidally in time at a given frequency. Spectroscopy
the shell is performed by sweeping the modulation f
quency. Numerical simulations allow us to compare the
cited flows with previously computed eigenmodes and to
sess the role of ray attractors.

Inertial modes in rapidly rotating fluids are also of intere
in connection with several geophysical problems. It has b
claimed that such modes in the liquid outer core have b
detected with superconducting gravimeters following stro
earthquakes@7#. Inertial modes are also a useful startin
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point to describe some instabilities: Convection at lo
Prandtl number can be viewed as inertial oscillations p
turbed by buoyancy@8,9# and precessing flows may becom
unstable through triad interactions between inertial mo
@10#. While inertial modes in spheres can be handled anal
cally, much less is known about these oscillations in ell
soidal or even spherical shells. Rieutord and Valdettaro@11#
studied some of the least damped modes in spherical s
and demonstrated the appearance of internal shear la
The geophysical application motivates study of a spher
shell ~as opposed to other container shapes! and in particular
a shell with a ratio of inner to outer radius near 0.35 whi
approximates the geometry of the earth’s core.

After the mathematical model and numerical methods
introduced in Sec. II, ray propagation is studied in Sec.
The relation between ideal rays and real internal layers
investigated in Sec. IV, whereas Sec. V investigates iner
mode spectra and how spectra are influenced by the con
tration of kinetic energy on internal layers in the excit
flows.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM AND NUMERICAL METHODS

A spherical shell of gapd filled with fluid of viscosityn
rotates about thez axis with angular velocity V0

1V1 cosṽt. Using for units of time and length 1/V0 andd,
respectively, one obtains in the frame rotating at the rateV0
about thez axis the nondimensional equation of motion

]

]t
v12ẑ3v52¹p1E¹2v, ¹•v50, ~1!

whereE is the Ekman number defined byE5n/V0d2 andp
is a reduced pressure. The no-slip boundary conditions
quire for the fluid velocityv thatv5(V1 /V0)cos(vt)ẑ3r at
the inner and outer boundaries of radiir i and r 0 with r 0

2r i51 andv5ṽ/V0. Since the study of ‘‘modes’’ presup
poses linear dynamics, the nonlinear term has been drop
from the Navier-Stokes equation andV1 /V0 is arbitrarily set
equal to 1.
1789 ©1999 The American Physical Society
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1790 PRE 59A. TILGNER
Temporal and spatial dependences can be separated b
ansatzv5Re$u(r)eivt%, where Re denotes the real part.u is
decomposed using poloidal and toroidal scalarsF andC:

u5¹3¹3~F r̂!1¹3~C r̂!. ~2!

Only axisymmetric flow is excited by the driving mechanis
considered here so thatF and C can be decomposed int
radial and angular parts using Legendre polynomialsPl in
spherical polar coordinates (r ,u,w):

F5r(
l 51

`

Vl~r !Pl~cosu!, C5r 2(
l 51

`

Wl~r !Pl~cosu!.

~3!

Operating withr̂•¹3 and r̂•¹3¹3 on Eq.~1!, one obtains

ivDlVl2E•Dl
2Vl

52H 2
~ l 12!~ l 13!

2l 13
Wl 112

l 12

2l 13
r

dWl 11

dr

1
~ l 21!~ l 22!

2l 21
Wl 212

l 21

2l 21
r

dWl 21

dr J ,

~4!

ivWl2ES d2

dr2
1

4

r

d

dr
1

22 l ~ l 11!

r 2 D Wl

5
2

r 2H ~ l 12!2

2l 13
Vl 111

l 12

2l 13
r

dVl 11

dr

2
~ l 21!2

2l 21
Vl 211

l 21

2l 21
r

dVl 21

dr J ~5!

with Dl5d2/dr21(2/r )(d/dr)2 l ( l 11)/r 2. Equations~4!
and~5! need to be solved subject to the boundary conditi

Vl5
dVl

dr
50, Wl5d1,l at r 5r i ,r 0 . ~6!

Equations~4! and~5! still need to be discretized in radius. T
this end,Vl andWl are expanded innr Chebychev polyno-
mials Tn as

Vl~r !5 (
n50

nr21

v l ,nTn~x!, Wl~r !5 (
n50

nr21

wl ,nTn~x! ~7!

with 21<x<1 and the dependence ofr on x yet to be
chosen. Equations~4! and ~5! are converted into a set o
algebraic equations by the collocation method, i.e., by
forcing Eqs.~4! and~5! at certain collocation points, and b
truncating the sums in Eq.~3! at someL to retain only Leg-
endre polynomials withl<L. Boundary conditions are en
forced by replacing the dynamic equations at the colloca
points on or next to the boundaries. A detailed description
the discretization scheme and the treatment of boundary
ditions can be found in Ref.@12#.

A popular choice of collocation pointsxn and r n with
Chebychev polynomials is
the

s

-

n
f
n-

xn5cosS p
n21

nr21D , r n5r i1
xn11

2
, n51, . . . ,nr .

~8!

This choice allows one the use of fast transforms to conv
between direct space and Chebychev coefficients when
ting up the matrix. In the present application, it is importa
to resolve the thin Ekman layers and to crowd collocat
points near the boundaries. This is achieved~yet keeping the
possibility of using fast transforms! by stretching the radia
coordinate as follows:

xn5cosS p
n21

nr21D , r n5r i1
1

2S sin~bpxn/2!

sin~bp/2!
11D ,

0,b,1, n51, . . . ,nr . ~9!

The restriction onb ensures invertibility ofr (x), the limit
b→0 recovers the traditional Chebychev collocation poi
~8!. b can be optimized to ensure fast convergence: As
example, Fig. 1 compares the poloidal energiesEpol obtained
with b50 andb50.9 for r i /r 050.35,E51026, v50.633,
andL5128.Epol is computed as

Epol52pE
r i

r 0

(
l 51

L
l ~ l 11!

2l 11 S l ~ l 11!uVl u21Ur dVl

dr
1VlU2Ddr.

~10!

It is seen in Fig. 1 that results converge much faster with
appropriate distribution of collocation points. Further deta
on convergence properties are given in Table I.

The highest resolution used in this work wasnr5161, L
5200 ~e.g., in Fig. 8!. Typical spectra were obtained wit
nr582 andL5128 ~all with b50.9). The experience accu
mulated in the course of this work is that better resolution
necessary for a given accuracy with increasing freque
because the oscillatory Ekman layers become thinner.
structure of the flow is, however, well reproduced by poo
resolved computations even if they yield a poloidal energy
error by a factor of 4 or more. Also, the location of spect
lines is accurate for such underresolved runs. In the spect
for E51027 in Fig. 9, the estimated error in the poloid
energy increases with frequency to reach about 30% at
highest frequency, whereas the error stays below 5% foE

FIG. 1. Poloidal energyEpol of a fluid in a shell withr i /r 0

50.35 driven atv50.633 andE51026. Epol is computed with 128
Legendre andnr Chebychev polynomials usingb50 ~circles! and
b50.9 ~diamonds!.
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PRE 59 1791DRIVEN INTERTIAL OSCILLATIONS IN SPHERICAL SHELLS
51026. No effort has been made to improve the situation
E51027 because of the computational burden that wo
ensue and because the main interest was in locating reso
frequencies rather than obtaining precise amplitudes.

The driving mechanism under study excites modes wh
are symmetric about thez axis and the equator. It follows
that onlyVl with l even andWl with l odd are different from
zero. If the nonzerov l ,n andwl ,n are appropriately arrange
in a single vector, the matrix representing Eqs.~4! and ~5!
becomes block-tridiagonal. The system of equations can
be solved with standard methods of LU decomposition a
backsubstitution formulated for banded matrices.

The code has been validated by comparing resonant fl
and frequencies of a shell withr i /r 050.01 with the eigen-
modes of a full sphere@13# and by comparing results fo
r i /r 050.35 with eigenmodes obtained in@14#.

III. RAY GEOMETRY

In an inviscid unbounded fluid, inertial waves of wav
vector k have the angular frequencyv562uk• ẑu/uku, inde-
pendent ofuku @13#. The group velocity is perpendicular t
the phase velocity and directed along the characteristic
Eq. ~4! for E50. The characteristics form the angleq r with
thez axis such that tanq r56(4/v221)21/2. Waves excited
at the angular frequencyv can therefore superpose to for
rays inclined at angleq r . Singularities may also develop o
the characteristics in time periodic inviscid flows. In
spherical shell, characteristics are tangent to boundarie
‘‘critical’’ latitudes qc with tanqc56(4/v221)21/2.

When a ray crosses a boundary, it is reflected such
the angle enclosed with the rotation axis remains unchan
~see Fig. 2!. This unusual reflection law opens the possibil
for rays to converge to ‘‘caustics,’’ ‘‘limit cycles,’’ or ‘‘at-
tractors’’ after multiple reflection. This process is demo

FIG. 2. Ray attractors in a shell withr i /r 050.35 for v
50.532 ~left!, v50.81 ~center, the dashed line indicates a seco
attractor!, andv51.322~right!. The rotation axis is vertical in this
figure.

FIG. 3. Ray reflections on the outer sphere at colatitudeu as a
function of v ~see text!.
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strated in Fig. 3. A ray has been started in poleward direc
from the inner sphere at northern critical latitude and
flected 1500 times on the boundaries of a spherical shell w
r i /r 050.35. For the next 500 reflections, a dot is placed
Fig. 3 at the colatitudeu at which a reflection off the oute
boundary occurs. This procedure is repeated for differenv
with a step sizeDv50.002. For somev the ray path covers
more or less the entire shell, whereas for otherv, the ray
reaches a periodic orbit. Examples of simple attractors
shown in Fig. 2.

The main properties of the attractors are summarized
Figs. 4 and 5. In Fig. 4, the periodP of the orbits is evaluated
by counting the number of reflections after which the r
returns to a position it had passed previously. The fig
contains two curves because two independent attrac
~which cannot be transformed into each other by a symm
operation! coexist in a spherical shell at some frequenc
~see Fig. 2!. These attractors have been found by start
rays from the inner sphere at critical latitude in the directi
towards the pole or the equator. A case with three coexis
attractors has been searched for by starting rays from a
trary positions but no example could be found. Figure
shows a Lyapunov exponentl defined by

l5
1

N(
n51

N

lnUdun11~un!

dun
U, ~11!

d

FIG. 4. 1/P, with P the period of an attractor, as a function ofv
for a shell withr i /r 050.35. Periods larger than 100 have not be
determined and are set to 100 in this plot. The period of an attra
found by starting a ray from critical latitude at the inner sphe
towards the pole~equator! is indicated with the continuous~dot-
dashed! line.

TABLE I. Poloidal energyEpol computed forr i /r 050.35, E
51026 and v50.633 using a resolution ofnr Chebychev andL
Legendre polynomials. Collocation points are distributed withb
50.9.

nr L Epol

33 128 0.1482
65 32 0.0898
65 64 0.1020
65 128 0.1058
65 256 0.1054
82 128 0.1058
82 256 0.1056
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1792 PRE 59A. TILGNER
whereun measures the colatitude of thenth reflection off the
outer boundary andN is a large number~e.g., 500!. The sum
in Eq. ~11! is computed for a ray which has already expe
enced a large number of reflections~e.g., 1500!. l is mostly
negative and never large when it is positive, which justifi
the use of the word ‘‘attractor.’’

Some simple periodic cycles may actually be missed
plots like Fig. 4. For instance, there is a trivial cycle
period 4 atv5A2 which does not show up in Fig. 4 becau
A2 falls in between the values ofv for which the period has
been evaluated.

The property of focusing rays onto attractors is a comm
feature of spherical shells. The Lyapunov exponents fo
different shell (r i /r 050.8) are given in Fig. 6. Attractors d
not exist in a full sphere and become rare in shells with sm
cores because the probability of a ray hitting the core
creases and rays are seldom deflected from the path
would follow in a full sphere.

IV. FLOW STRUCTURE

The most conspicuous feature of the flows to be descri
in this section are internal layers in which the kinetic ene
density reaches a local maximum. These layers may be
garded as viscously broadened singularities of an invis
solution and obey the reflection law discussed above. If
ternal layers can be approximated by rays at smallE, one
would expect~at low enoughE and at frequencies at whic
attractors exist! to find internal layers at the location of th
attractor, because where else could these layers surviv
they end up on the attractor after multiple reflections? Wh
comparing plots of simulated flows~Figs. 7 and 8! with at-

FIG. 5. Lyapunov exponentl as a function ofv for a shell with
r i /r 050.35. The meaning of continuous and dot-dashed trace
the same as in Fig. 4.

FIG. 6. Same as Fig. 5 withr i /r 050.8.
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tractors, bear in mind that the flows are axisymmetric a
that the attractors in Fig. 2 can also be reflected about
equator to yield additional attractors.

The simulations show that the internal layers in driv
flows are indeed located on a predicted attractor if its per
is small ~10 or less!. The frequencies at which period
change in Fig. 4 do not always coincide precisely with
change in morphology of the flow. The simple pattern
internal layers atv51.32 ~Fig. 8! corresponds best to th
attractor atv51.322 ~Fig. 2! but not to the one at exactly
v51.32~see also the examples given in@11#!. The compari-
son is still lacking in this case because the pattern av
51.32 is equator symmetric whereas the attractor atv
51.322 is not.

However, the main difference with the attractor shape
that the pattern of internal layers may remain connected
the critical latitudes where rays are tangent to the inner c
v50.532 andv50.9474~Fig. 7! provide examples of rays
which emanate from critical latitudes and dissipate away
fore they reach an attractor because of too many reflect
or because they propagate close to a boundary. Attracto
nearby values ofv have a large period (.28) and do not
appear in the actual flows.

The special role of the critical latitudes leads, on the ot
hand, to simple patterns for somev at which no attractor
with a clearly negativel exists. At v5A2, for instance,
internal layers appear on a rectangle inclined at 45° w
respect to thez axis with two sides tangent to the inner cor
This pattern is of course a periodic cycle for rays, but it is n
an attractor in the sense that a nearby ray will not be focu
on this particular rectangle~infinitely many neighboring rect-
angles are also closed cycles for rays!. Another example is
the nonaxisymmetric flow excited by precession (v51). A
ray started from the inner sphere at critical latitude in a sh
with r i /r 050.35 runs in a closed cycle which is not an a
tractor. This pattern is nevertheless observed in the spin o
mode@15# and simulations of precession driven flows@16#.

It has been noted by many authors that the Ekman lay
break down and spawn internal shear layers at critical l
tudes. However, the structure of the flow driven atv
50.9474 with free slip boundary conditions on the inn

is

FIG. 7. Flow patterns in a shell withr i /r 050.35 driven
at v50.532, E51026 ~left!; v50.81, E51027 ~center!;
and v50.9474, E51026 ~right!. The upper half of each
panel shows meridional streamlines@contour lines of
2( lRe(Vle

ivt)r sinu dPl /du], the lower half azimuthal velocity
uw . The Ekman layers have been removed from the plots ofuw for
clarity. Continuous lines correspond to positive values, dashed l
to negative values. Streamlines are shown at a time at which
instantaneous poloidal energy is maximum,uw is shown a quarter
cycle of the driving force earlier. The rotation axis is vertical in th
figure.
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PRE 59 1793DRIVEN INTERTIAL OSCILLATIONS IN SPHERICAL SHELLS
sphere cannot be visually distinguished from the correspo
ing plot in Fig. 7 except for a missing Ekman layer. Simil
observations are reported in@17#. The special role of the
critical latitudes and the structure of internal layers is n
necessarily determined by a no-slip surface. Stewartson
Rickard @18# even found discontinuities tangential to the i
ner sphere ininviscid inertial modes of a spherical shel
Note that internal layers seem to be absent from the eig
modes obtained in Refs.@8,9# which are localized near th
outer surface and are little influenced by the presence o
inner core.

Another curiosity shows up atv50.81 ~Fig. 7!. A ray
may start from the north pole of the inner core, reflect on
from the outer boundary in the northern hemisphere, an
second time in the southern hemisphere such that the
returns exactly upon itself. Such a closed circuit exists
ideal rays at anv near 0.8324 forr i /r 050.35 and is again
not an attractor, but it appears in the flow shown in Fig.

The Ekman numbers within reach of today’s comput
are still many orders of magnitude above the Earth’s e
mated Ekman number (10215). Figure 8 presents a study o
the Ekman number dependence atv51.32. The internal lay-
ers narrow with decreasingE but do not seem to converge t
ideal rays: In the poloidal component, the number of strea
lines lying outside of what is perceived as a region of la
velocity remains constant fromE51026 to 1028. Deviations
of internal layers from an ideal ray are a source of discr
ancy between the attractor picture and real flows.

Several unfruitful attempts have been made to ex
trapped modes of short wavelength as envisioned by Bret
ton @3#. Figure 2 shows an example of a trapped attracto
v50.81, but another attractor extending to the poles a
exists at the samev. The trapped attractor is hardly excite
in Fig. 7. The boundary conditions have then been chan
so that the shell~or only the inner or only the outer spher!
moves only within a narrow strip around the latitudes visit
by the trapped ray pattern. Various frequencies and s
geometries have also been tried in which trapped attrac
pass through critical latitudes. In all cases, the intensity
layers in the polar region was at least comparable to
intensity of layers near the equator. The layers in these fl

FIG. 8. Same as Fig. 7 forv51.32 and Ekman numbers 1025

~top left!, 1026 ~top right!, 1027 ~bottom left!, and 1028 ~bottom
right!.
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are not rays of infinitesimal width and some energy alwa
escapes from the trapped attractor to excite other, glo
modes. Because modes of the Bretherton type must
strongly damped, they do not dominate in amplitude ot
extended, less damped modes which also contain inte
layers and are inevitably excited, too.

V. SPECTRA

The poloidal energy is chosen throughout this section
the representative quantity to measure the response o
fluid. The toroidal energy reveals essentially identical spec
with an additional peak atv50. The frequencies chosen a
examples in previous figures correspond to resonances o
fluid. In experiments@5,6#, spectra of pressure difference
are measured. Comparison of linear theory with experim
has been made by Rieutord@19# and will not be repeated
here.

The first observation about the spectra in Fig. 9 is that
obvious connection exists between the spectral response
the attractor geometry as quantified by the period
Lyapunov exponent, although rays are very prominent in
structure of the excited flows. Upon decreasingE, spectral
lines narrow and become more numerous to emerge from
background. Theory predicts that linewidths and frequen
displacements due to variation ofE are of orderE1/2. These
predictions are compatible with Fig. 9 but cannot be put
serious test because spectral lines often contain the resp
of several modes. However, there is no indication that
width of the lines is limited by the characteristic spect
width of the geometric properties of ray attractors in Fig.

The height of some peaks decreases dramatically with
creasingE, e.g., atv50.78, 1.32, or 1.63. The amplitudeA
of the fluid response is given toO(E1/2) by equation 2.14.8
of Ref. @13#. Apart from frequency and Ekman number ind
pendent factors, the expression forA near resonance with a
mode with eigenvaluev01 iE1/2s anduE1/2su!v0 simplifies
to

A}S 12
v0

2

4 Dv0
2

2

E1/2

Dv2 iE1/2s
, ~12!

whereDv is the detuningv2v0. Exactly at resonance,A is
independent ofE. The height of a peak in the spectrum~mea-
sured from the background level to which many modes c

FIG. 9. Poloidal energy spectra for a shell withr i /r 050.35 at
Ekman numbers 1025 ~upper continuous trace!, 1026 ~dashed line!,
and 1027 ~lower continuous trace!.
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1794 PRE 59A. TILGNER
tribute! must therefore not depend onE if the spectral line
contains a single mode. The situation is different for a m
tiple line. Take the example of two modesu1 andu2 resonant
at v1 and v2, driven at v, and excited with amplitudes
A1(v) andA2(v). The kinetic energy contained in the flo
is given by the volume integral* uA1(v)u11A2(v)u2u2dV.
Inviscid inertial modes are exactly orthogonal to each ot
~in the sense of*u1* •u2dV50@13#!, and modes at smallE
are still nearly orthogonal. The total kinetic energy is th
approximately given bye1(v)1e2(v), wheree1 ande2 are
the energies of both modes taken individually. For, sayv
5v1, the excited energy is independent ofE if there is no
spectral overlap with the line due to the second mode. O
erwise, the energy in the fluid driven atv1 decreases with
decreasingE because the line aroundv2 becomes narrowe
and its contribution to the energy atv1 is reducing.

VI. CONCLUSION

The propagation of rays of inertial waves in a closed c
tainer is governed by a reflection law which allows rays
converge to attractors after multiple reflections. In a sph
cal shell, two attractors can coexist at the same excita
frequency. In this respect, spherical shells are different fr
,

l-

r

s

h-

-

i-
n

the containers considered in the oceanographic contex
Maas and Lam@1#.

Ray attractors have surprisingly little influence on glob
quantities like the energy contained in driven motion desp
the direct bearing of ray geometry on flow structures. In
earthlike shell withr i /r 050.35, resonant frequencies a
within a few percent of the frequencies of the correspond
eigenmodes of a full sphere@14#, a geometry in which no ray
attractors exist at all.

The simulated flows have revealed patterns of inter
shear layers which coincide with ray attractors of small p
riod, but shear layers on a ‘‘trapped’’ attractor confined
the equatorial region have never been observed. On the o
hand, shear layers may appear on closed cycles which ar
attractors. The special role played by critical latitudes in
tating fluids also leads to patterns in which shear layers e
nate from critical latitudes but dissipate away after seve
reflections before they reach an attractor predicted by
theory. It remains an open question whether internal layer
all v are eventually confined to the corresponding attract
for low enough Ekman numbers. This behavior would
expected if rays are an increasingly better approximation
internal layers with decreasingE. Figure 8 suggests that thi
may not be the case.
ys.
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