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Driven inertial oscillations in spherical shells

A. Tilgner
Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany
(Received 24 August 1998

The flow of a fluid in a rapidly rotating spherical shell whose rotation rate is modulated sinusoidally in time
is simulated numerically. Different inertial modes are excited as the modulation frequency is varied. The
inertial modes are structured by internal layers. Internal layers are reflected at the boundaries such that at
certain modulation frequencies, the layers are focused onto “attractors™” after multiple reflections. The geo-
metric properties of these attractors and their relevance for the response of the fluid is investigated.
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PACS numbd(s): 47.35+i, 47.10+g, 47.52:+j

[. INTRODUCTION point to describe some instabilities: Convection at low
Prandtl number can be viewed as inertial oscillations per-
Both rotating and stably stratified fluids are capable ofturbed by buoyancy8,9] and precessing flows may become
oscillatory motion; inertial oscillations in the first case andunstable through triad interactions between inertial modes
internal gravity waves in the second. It has recently bee10]. While inertial modes in spheres can be handled analyti-
shown by Maas and Larfil] that rays of internal waves cally, much less is known about these oscillations in ellip-
propagating in irregularly shaped basins tend to be focusegoidal or even spherical shells. Rieutord and Valdetfafd
onto an “attractor.” The focusing effect arises from the pe_ studied some of the least damped modes in Spherical shells
culiar reflection law of internal gravity waves at solid walls: and demonstrated the appearance of internal shear layers.
the angle of the wave vector with the direction of gravity is The geophysical application motivates study of a spherical
conserved during reflection, rather than the angle formeg§hell(as opposed to other container shagesd in particular
with the normal to the reflecting surface. Unlike the situation@ shell with a ratio of inner to outer radius near 0.35 which
met with billiards considered in quantum chaos, attractors ofPProximates the geometry of the earth’s core.
interna| gravity waves are associated W|th negative After the.mathematical model and nymerical methods are
Lyapunov exponents_ It was surmised later [dﬂ] that the |ntr0duceq in Sec. ”, ra.y propagatlon IS Stl:ld|ed in Sec. I”
response of a stably stratified or rotating fluid to externaiThe relation between ideal rays and real internal layers is
forcing should be determined by the geometrical propertie§vestigated in Sec. IV, whereas Sec. V investigates inertial
of these attractors. In particular, the spectral width of resomode spectra and how spectra are influenced by the concen-
nances might be determined by the size of the interval ofration of kinetic energy on internal layers in the excited
frequencies in which certain attractors exist. Maasl. [2] flows.
suggest that past experiments on inertial oscillations in vari-
ously shaped containers may be interpreted in terms of at-
tractors. Similar ideas have been expressed before, e.g., by Il. MATHEMATICAL FORMULATION
Bretherton 3] and Israeli4], who considered modes trapped =~ ©OF THE PROBLEM AND NUMERICAL METHODS

near the equator of a spherical shell with wave packets trav- 5 spherical shell of gal filled with fluid of viscosity »

eling along a closed circuit. _ rotates about thez axis with angular velocity Q,
The present paper intends to test some of the ideas ad-

vanced in Ref[2] in the context of a rapidly rotating spheri- +Qlc95wt. Using for gmt; of time and Iength &, andd,
cal shell. The ray properties leading to attractors are strictl;?eSpeCt'Vew' one obtamg n thg frame rota@tmg at thg fhje
obtained only for inviscid fluids. Here, numerical simulationsabOUt thez axis the nondimensional equation of motion
are presented which include viscosity in order to study its

influence on the existence of attractors. The simulated flow is

much the same as one which had been studied experimen- —v+27Xv= —Vp+EV?%, V.v=0, D
tally before[5,6]: The rotation rate of the shell is varied at

sinusoidally in time at a given frequency. Spectroscopy of

the shell is performed by sweeping the modulation fre- . ' 2
guency. Numerical simulations allow us to compare the exyvhereE is the Ekman number defined Iiy= »/od" andp

cited flows with previously computed eigenmodes and to as® @ reduced pressure. The no-slip boundary conditions re-

sess the role of ray attractors. quire for the fluid velocityy thato = (4 /Q,)cost)zxr at
Inertial modes in rapidly rotating fluids are also of interestthe inner and outer boundaries of radjiand ro with rq

in connection with several geophysical problems. It has been r;j=1 andw= w/,. Since the study of “modes” presup-

claimed that such modes in the liquid outer core have beeposes linear dynamics, the nonlinear term has been dropped

detected with superconducting gravimeters following strongrom the Navier-Stokes equation afid /() is arbitrarily set

earthquaked7]. Inertial modes are also a useful startingequal to 1.
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Temporal and spatial dependences can be separated by the 0.25  — .
ansatzo =Re{u(r)e'“'}, where Re denotes the real partis
decomposed using poloidal and toroidal scathrand V': 020 b o |
- - o 1
u=VXVX(Dr)+VX(¥r). (2 E o5l & ]
(o]
Only axisymmetric flow is excited by the driving mechanism N °
considered here so thdt and ¥ can be decomposed into 0.10 - %% ¢ e ° ° 4
radial and angular parts using Legendre polynomiglsn
herical polar rdin : . . .
spherical polar coordinates,@®, ¢) 005 - L -
0 n

M s

d=r, V|(r)P,(cosb), \Ifzrzlz1 W, (r)P;(cosé).

FIG. 1. Poloidal energyE,, of a fluid in a shell withr;/rq
3) =0.35 driven aw=0.633 andE=10"°. Epol is computed with 128
Legendre andh, Chebychev polynomials using=0 (circles and
B=0.9 (diamonds.

1

Operating withr- VX andr-Vx VX on Eq.(1), one obtains

: 2 — +
ioD\V|,—E-D}V, Xﬂ:co{ﬂ':_]i), I‘n:ri+xn21, n=1,...n,
(1+2)(1+3) 1+2 dW,, ' )
=2 " 243 M os ar o
This choice allows one the use of fast transforms to convert
(I-1d-2) _ -1 rdVV|_1] between direct space and Chebychev coefficients when set-
21—-1 "l21-1 dr ) ting up the matrix. In the present application, it is important
(4) to resolve the thin Ekman layers and to crowd collocation
points near the boundaries. This is achie(get keeping the
i d> 4d 2-I1(1+1) possibility of using fast transformdy stretching the radial
oW, — E( mtrat T2 W coordinate as follows:
dre rdr r
2027 142 d xn=005<77n 1), rnzri+3(‘°"r_‘(ﬁ—”Tx;"2)+1),
_r_z m 1+1F ml’ dr n—1 2\ sin(Bml2)
(1—-1)2 -1 dVv,_, 0<B<1, n=1,...n,. 9
2i—1 -1t -1 ar ] ©

The restriction onB ensures invertibility ofr (x), the limit
with D,=d2/dr?+ (2/r)(d/dr)—1(1+1)/r2. Equations(4) B— 0 recovers the traditional Chebychev collocation points

and(5) need to be solved subject to the boundary conditi0n§8)' B can k_:)e optimized to ensure fast convergence. As an
example, Fig. 1 compares the poloidal enerdigs obtained

dv, with =0 andB=0.9 forr;/r,=0.35,E=10 %, ©»=0.633,
V':WZO‘ Wi=6y, atr=rj,rg. (6) andL=128.Ey, is computed as
. . o oo 1(1+1) dv, |2
Equationg4) and(5) still need to be discretized in radius. To Epo|=277f > 21U+ D)V |2+ |r=—+V,| |dr.
this end,V, andW, are expanded im, Chebychev polyno- =1 21+l dr
mials T, as (10
n—1 n—1 It is seen in Fig. 1 that results converge much faster with an

_ _ appropriate distribution of collocation points. Further details

VitN= 2, viaTa(x), W) nEO WinTa(¥) (D) on convergence properties are given in Table I.

The highest resolution used in this work was=161, L
with —1=<x=<1 and the dependence ofon x yet to be =200 (e.g., in Fig. 8. Typical spectra were obtained with
chosen. Equation¢4) and (5) are converted into a set of n,=82 andL =128 (all with 8=0.9). The experience accu-
algebraic equations by the collocation method, i.e., by enmulated in the course of this work is that better resolution is
forcing Egs.(4) and(5) at certain collocation points, and by necessary for a given accuracy with increasing frequency
truncating the sums in E¢3) at somel to retain only Leg- because the oscillatory Ekman layers become thinner. The
endre polynomials witH<L. Boundary conditions are en- structure of the flow is, however, well reproduced by poorly
forced by replacing the dynamic equations at the collocatiomesolved computations even if they yield a poloidal energy in
points on or next to the boundaries. A detailed description o&rror by a factor of 4 or more. Also, the location of spectral
the discretization scheme and the treatment of boundary cotines is accurate for such underresolved runs. In the spectrum
ditions can be found in Ref12]. for E=10"7 in Fig. 9, the estimated error in the poloidal

A popular choice of collocation points, andr, with  energy increases with frequency to reach about 30% at the
Chebychev polynomials is highest frequency, whereas the error stays below 5%for

n=
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FIG. 2. Ray attractors in a shell with;/r;=0.35 for w
=0.532(left), w=0.81 (center, the dashed line indicates a second
attractoj, andw=1.322(right). The rotation axis is vertical in this
figure.

=10"%. No effort has been made to improve the situation at ) ] )
E=10 7 because of the computational burden that would F'GH 4” P . W'/th ﬁghgspeFr)loq ((’jf aln attra;tor, fgoahfunctnona;))f
ensue and because the main interest was in locating reson%ﬁrtta she C;N't crii fo= it '108r.'0 tﬁ' arglgetr Erk?n . da\;e nottt eetn
frequencies rather than obtaining precise amplitudes. etermined and are set to 10U/In this piot. The period of an attractor

o . . . found by starting a ray from critical latitude at the inner sphere

The driving mechanism under study excites modes which S : i
; . towards the polgequatoy is indicated with the continuou&ot-

are symmetric about the axis and the equator. It follows dashedl line
that onlyV, with | even andV, with | odd are different from '

zero. If the nonzer andw, , are appropriately arranged - . L
in a single vector (D{k']'g matri;'nrepresggtin% E(q@y and (59)] strated in Fig. 3. A ray has been started in poleward direction
becomes block-tridiagonal. The system of equations can the]c om the Inner sphere at norther_n critical Iatltgde and re-
be solved with standard methods of LU decomposition an lected 1500 times on the boundarles_ ofasphen(_:al shell vv_|th
backsubstitution formulated for banded matrices. ri_/r0=0.35. For the next 500. reflectlons,_a dot is placed in
The code has been validated by comparing resonant rovxE'g' 3 at the coIatnucj&) at which a reflection off the_ outer
and frequencies of a shell with /ry=0.01 with the eigen- bc_)undary occurs. This procedure is repeated for diffeaent
modes of a full spher&13] and by comparing results for with a step S|ze&w=0_.002. For some the ray path covers
r,/ro=0.35 with eigenmodes obtained [ib4] more or less the entire shell, whereas for otherthe ray
o ' reaches a periodic orbit. Examples of simple attractors are
shown in Fig. 2.
ll. RAY GEOMETRY The main properties of the attractors are summarized in

In an inviscid unbounded fluid, inertial waves of wave Figs. 4 and 5. In Fig. 4, the periddiof the orbits is evaluated
vectork have the angular frequeney=i2|k-2|/|k|, inde- by counting the number of reflections after which the ray

pendent offk| [13]. The group velocity is perpendicular to returns to a position it had passed previously. The figure

; ) L (%ontains two curves because two independent attractors
the phase velocity and directed along the characteristics O(which cannot be transformed into each other by a symmetry
Eq. (4) for E=0. The characteristics form the angle with

the z axis such that ta, = + (4/w?— 1) Y2 Waves excited operation coexist in a spherical shell at some frequencies

at the angular frequency can therefore superpose to form (see Fig. 2 These attractors have been found by starting

ravs inclined at anale). . Sinqularities may also develop on rays from the inner sphere at critical latitude in the direction
y it angle’, . singularities may ai P towards the pole or the equator. A case with three coexisting
the characteristics in time periodic inviscid flows. In a

. . . r rs h n rched for rting r from arbi-
spherical shell, characteristics are tangent to boundaries %t actors has been searched for by starting rays from arb

“critical” latitudes ¥, with tand,— + (42— 1)~ 12 ry positions but no example could be found. Figure 5
c Cc - "

When a ray crosses a boundary, it is reflected such tha'lsihowS a Lyapunov exponehtdefined by

the angle enclosed with the rotation axis remains unchanged
(see Fig. 2 This unusual reflection law opens the possibility 1

for rays to converge to “caustics,” “limit cycles,” or “at- A= N&4
tractors” after multiple reflection. This process is demon-

d‘9n+1( en)

N
i

: (11)

TABLE |. Poloidal energyE,, computed forr;/r,=0.35, E
=10% and w=0.633 using a resolution af, Chebychev and.
Legendre polynomials. Collocation points are distributed with

=0.9.
n, L Epol
33 128 0.1482
65 32 0.0898
65 64 0.1020
65 128 0.1058
65 256 0.1054
82 128 0.1058
FIG. 3. Ray reflections on the outer sphere at colatitddes a 82 256 0.1056

function of w (see text
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FIG. 7. Flow patterns in a shell withr;/ry=0.35 driven

BT s o 15 20 at ©=0.532, E=10"°% (left)y ©=0.81, E=10"" (centey;
: . . . : - e
o and ©=0.9474, E=10° (right). The upper half of each
_ ) panel shows meridional streamlinedcontour lines of
FIG. 5. Lyapunov exponent as a function o for a shell with  — s Re(v,e!“!)r singdP,/dé], the lower half azimuthal velocity
ri/ry=0.35. The meaning of continuous and dot-dashed traces i§,,. The Ekman layers have been removed from the plots,dbr
the same as in Fig. 4. clarity. Continuous lines correspond to positive values, dashed lines

) ) to negative values. Streamlines are shown at a time at which the
where g, measures the colatitude of thth reflection off the  instantaneous poloidal energy is maximumy, is shown a quarter

outer boundary anlll is a large numbefe.qg., 500. The sum  cycle of the driving force earlier. The rotation axis is vertical in this
in Eqg. (11) is computed for a ray which has already experi-figure.
enced a large number of reflectiofesg., 1500. N is mostly

negative and never large when it is positive, which Jusuflestractors, bear in mind that the flows are axisymmetric and

the use of _the word _attractor. . . that the attractors in Fig. 2 can also be reflected about the
Some simple periodic cycles may actually be missed in

plots like Fig. 4. For instance, there is a trivial cycle of equator fo yield additional attractors.

. ~ . - The simulations show that the internal layers in driven
period 4 atw = V2 which does not show up in Fig. 4 becauserows are indeed located on a predicted attractor if its period

\2 falls in between the values af for which the period has is small (10 or les3. The frequencies at which periods
been evaluated. _ _ change in Fig. 4 do not always coincide precisely with a
The property of focusing rays onto attractors is a Commorl:hange in morphology of the flow. The simple pattern of

feature of spherical shells. The Lyapunov exponents for 3hternal layers ato=1.32 (Fig. 8 corresponds best to the

different shell ¢;/r,=0.8) are given in Fig. 6. Attractors do pttractor atw=1.322(Fig. 2) but not to the one at exactly
not exEt in a full rs]pherebanbo.ll_become rareh|.n lshellr? with sn:jalw: 1.32(see also the examples given[itl]). The compari-
cores because the probability of a ray hitting the core deg, o il acking in this case because the patternwat

creases and rays are seldom deflected from the path th@/l_32 is equator symmetric whereas the attractorwat

would follow in a full sphere. —1.322 is not
However, the main difference with the attractor shapes is
IV. FLOW STRUCTURE that the pattern of internal layers may remain connected to

The most conspicuous feature of the flows to be describetne critical latitudes where rays are tangent to the inner core.
in this section are internal layers in which the kinetic energy® = 0-532 andw=0.9474(Fig. 7) provide examples of rays
density reaches a local maximum. These layers may be rdvhich emanate from critical latitudes and dissipate away _be-
garded as viscously broadened singularities of an inviscidr® they reach an attractor because of too many reflections
solution and obey the reflection law discussed above. If inO" Pecause they propagate close to a boundary. Attractors at
ternal layers can be approximated by rays at sralbne ~ nearby values of» have a large period=<28) and do not
would expect(at low enoughE and at frequencies at which aPpear in the actual flows. _
attractors existto find internal layers at the location of the 1 Ne special role of the critical latitudes leads, on the other
attractor, because where else could these layers survive ff2nd, to simple patterns for some at which no attractor
they end up on the attractor after multiple reflections? WheVith a clearly negativex exists. Atw= 2, for instance,

comparing plots of simulated flow@&igs. 7 and 8with at-  internal layers appear on a rectangle inclined at 45° with
respect to the axis with two sides tangent to the inner core.

1.0 — This pattern is of course a periodic cycle for rays, but it is not
an attractor in the sense that a nearby ray will not be focused
on this particular rectangkénfinitely many neighboring rect-
angles are also closed cycles for ray&nother example is
the nonaxisymmetric flow excited by precessien=(1). A

ray started from the inner sphere at critical latitude in a shell
with r; /r;=0.35 runs in a closed cycle which is not an at-

-2.0 - i tractor. This pattern is nevertheless observed in the spin over
. f ] mode[15] and simulations of precession driven flo{is].

S T S It has been noted by many authors that the Ekman layers
0.0 05 1.0 15 20 break down and spawn internal shear layers at critical lati-

tudes. However, the structure of the flow driven at
FIG. 6. Same as Fig. 5 with /r;=0.8. =0.9474 with free slip boundary conditions on the inner
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FIG. 9. Poloidal energy spectra for a shell withr;=0.35 at
Ekman numbers I® (upper continuous tragel0 ® (dashed ling
and 107 (lower continuous trade

FIG. 8. Same as Fig. 7 fap=1.32 and Ekman numbers 10~ &€ not rays of infinitesimal width and some energy always
(top left, 10°° (top right, 10~7 (bottom lefy, and 10°8 (bottom  €SCapes from the trapped attractor to excite other, global
right). modes. Because modes of the Bretherton type must be

strongly damped, they do not dominate in amplitude other
xtended, less damped modes which also contain internal

sphere cannot be visually distinguished from the correspon ayers and are inevitably excited, too.

ing plot in Fig. 7 except for a missing Ekman layer. Similar
observations are reported [17]. The special role of the

critical latitudes and the structure of internal layers is not V. SPECTRA
necessarily determined by a no-slip surface. Stewartson and
Rickard[18] even found discontinuities tangential to the in-
ner sphere ininviscid inertial modes of a spherical shell.

The poloidal energy is chosen throughout this section as
the representative quantity to measure the response of the
; - fluid. The toroidal energy reveals essentially identical spectra
Note that internal layers seem to be absent from the eigeniith an additional peak ab=0. The frequencies chosen as

modes obtained in Ref$8,9] which are localized near the ¢, njes in previous figures correspond to resonances of the
outer surface and are little influenced by the presence of afiq |n experimentg5,6], spectra of pressure differences

Inner core. are measured. Comparison of linear theory with experiment

Another curiosity shows up ab=0.81 (Fig. 7). A 18y  pag peen made by Rieutofd9] and will not be repeated
may start from the north pole of the inner core, reflect oncg,q,q

from the outer boundary in the northern hemisphere, and & g first ohservation about the spectra in Fig. 9 is that no

second time in the sputhern hemisphere Sl_JCh _that.the "%Bbvious connection exists between the spectral response and
returns exactly upon itself. Such a closed circuit exists fobha  attractor geometry as quantified by the period or
ideal rays at anw near 0.8324 for;/ro=0.35 and is again | yahnov exponent, although rays are very prominent in the
not an attractor, but it appears in the flow shown in Fig. 7. grycture of the excited flows. Upon decreastigspectral

The Ekman numbers within reach of today’s computersjnes narrow and become more numerous to emerge from the

are still many orders of msagni_tude above the Earth’s estip,cyaround. Theory predicts that linewidths and frequency
mated Ekman number (16%). Figure 8 presents a study of displacements due to variation Bfare of orderEY2 These

the Ekman number dependencewat 1.32. The internal lay-  hreqictions are compatible with Fig. 9 but cannot be put to
ers narrow with decreasirgbut do not seem to converge 10 ggrigys test because spectral lines often contain the response
ideal rays: In the poloidal component, the number of streamay geyeral modes. However, there is no indication that the
lines lying outside of what is percel\éed as a region of largeidth of the lines is limited by the characteristic spectral
velocity remains constant frof§=10""to 10 ". Deviations  igth of the geometric properties of ray attractors in Fig. 4.

of internal layers from an ideal ray are a source of discrep- Tpe height of some peaks decreases dramatically with de-
ancy between the attractor picture and real flows. creasingE, e.g., atw=0.78, 1.32, or 1.63. The amplitude

Several unfruitful attempts have been made to excitgy ihe fluid response is given ©(EY?) by equation 2.14.8
trapped modes of short wavelength as envisioned by Brethep; pet. [13]. Apart from frequency and Ekman number inde-

ton[3]. Figure 2 shows an example of a trapped attractor afengent factors, the expression ®mear resonance with a
»=0.81, but another attractor extending to the poles als

ode with eigenvaluey+iEY?%s and|EY%s| < w, simplifies
exists at the same. The trapped attractor is hardly excited g 0 | <@g P
in Fig. 7. The boundary conditions have then been changeé’
so that the shellor only the inner or only the outer sphere

2\ 2 12
moves only within a narrow strip around the latitudes visited Aoc( 1— @)@ E— (12)
by the trapped ray pattern. Various frequencies and shell 4)2 Ao—iEY?S

geometries have also been tried in which trapped attractors

pass through critical latitudes. In all cases, the intensity ofvhereA w is the detunings — wy. Exactly at resonancd is
layers in the polar region was at least comparable to théindependent oE. The height of a peak in the spectriymea-
intensity of layers near the equator. The layers in these flowsured from the background level to which many modes con-
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tribute) must therefore not depend dnif the spectral line the containers considered in the oceanographic context by
contains a single mode. The situation is different for a mul-Maas and Lani1].

tiple line. Take the example of two modegsandu, resonant Ray attractors have surprisingly little influence on global
at w; and w,, driven atw, and excited with amplitudes quantities like the energy contained in driven motion despite
A, (w) andA,(w). The kinetic energy contained in the flow the direct bearing of ray geometry on flow structures. In an
is given by the volume integrdl|A;(w)u; + Ay(w)u,|2dV.  earthlike shell withr;/rq=0.35, resonant frequencies are
Inviscid inertial modes are exactly orthogonal to each othewithin a few percent of the frequencies of the corresponding
(in the sense of uf -u,dV=0[13]), and modes at smaf  eigenmodes of a full sphef@4], a geometry in which no ray

are still nearly orthogonal. The total kinetic energy is thusattractors exist at all.

approximately given by, (o) + e,(w), wheree; ande, are The simulated flows have revealed patterns of internal
the energies of both modes taken individually. For, say, shear layers which coincide with ray attractors of small pe-
= w4, the excited energy is independent®fif there is no riod, but shear layers on a “trapped” attractor confined to
spectral overlap with the line due to the second mode. Oththe equatorial region have never been observed. On the other
erwise, the energy in the fluid driven at; decreases with hand, shear layers may appear on closed cycles which are not

and its contribution to the energy at is reducing. tating fluids also leads to patterns in which shear layers ema-

nate from critical latitudes but dissipate away after several
reflections before they reach an attractor predicted by ray
theory. It remains an open question whether internal layers at

The propagation of rays of inertial waves in a closed con-all w are eventually confined to the corresponding attractors
tainer is governed by a reflection law which allows rays tofor low enough Ekman numbers. This behavior would be
converge to attractors after multiple reflections. In a spheriexpected if rays are an increasingly better approximation for
cal shell, two attractors can coexist at the same excitatiomternal layers with decreasirig Figure 8 suggests that this
frequency. In this respect, spherical shells are different fronmay not be the case.

VI. CONCLUSION
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