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Extended weakly nonlinear theory of planar nematic convection
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We study theoretically convection phenomena in a laterally extended planar nematic layer driven by an
ac-electric fieldelectroconvection in the conduction reginme by a thermal gradierithermoconvection We
use an order-parameter approach and demonstrate that the sequence of bifurcations found experimentally or in
the numerical computations can be recovered, provided a homogeneous twist mode of the director is consid-
ered as a new active mode. Thus we elucidate the bifurcation to the new “abnormal [Bll$lautet al.,
Phys. Rev. Lett79, 2367(1997)]. The coupling between spatial modulations of the twist mode and the mean
flow is shown to give an important mechanism for the long-wavelength zig-zag instability. The twist mode is
also responsible for the widely observed bimodal instability of rolls. Finally, a Hopf bifurcation in the resulting
bimodal structures is found, which consists of director oscillations coupled with a periodic switching between
the two roll amplitudes. A systematic investigation of thecroscopic mechanisms controlling all these
bifurcations is presented. This establishes a close analogy between electroconvection and thermoconvection.
Moreover, a “director—wave-vector frustration” is found to explain most of the bifurcations.
[S1063-651X99)01102-2

PACS numbg(s): 47.20.Ky, 47.20.Bp, 42.70.Df

I. INTRODUCTION In this paper we will concentrate on the “director-
dominated regime” where the slow dynamics of the director
The rich variety of instabilities in nematic liquid crystals field determines the longest characteristic-time scale. This
has always attracted great interest among experimentalistegime corresponds to EC at low frequencies in the conduc-
and theorist$1—3]. Nematic liquid crystals are fluids which tion regime and to ATC in the absence (of at very small
show a long-range uniaxial ordering in the orientation ofstabilizing magnetic fields. Most of the experimental studies
their rodlike molecules. The average orientation defines thef EC have been performed until recently in this regime; the
director fieldn, which is also the local anisotropy axis of the new weak-electrolyte effectg9,10] relevant for high fre-
medium. Due to the coupling of to the other fields of the quencies, thin cells, or nematic materials with a very small
fluid (velocity, temperature, ef¢.specificfocusing mecha- dielectric anisotropye, will not be included. In the director-
nismslead to new convective instabiliti¢d,5]. In the planar dominated regime the sequences of spatio-temporal struc-
setup used by most researchers, a nematic layer is santites found experimentally by slowly increasing the main
wiched between two horizontal plates, where the director izontrol parametefthe applied electric field in EC or the

fixed in a horizontal direction (planar anchoring Since the ~temperature gradient in AT)Care similar in both systems.
rotational symmetry in the layer plane is broken, this systenTypically, normal rolls, with their axid x, are found at on-
has become a prime example for anisotropic convectioset[11,5]. They undergo, at rather smal) the reduced dis-
[3,6]. tance to the convection threshold, modulational or homoge-
Two realizations of convection in a planar nematic layerneous instabilities, leading toward either oblique r¢i#g-
exist. Under the application of a vertid@longz) ac-electric  zags [11-14 or abnormal rolls[15-17. At higher e
field of angular frequencw, charge focusing4,7] leads to  bimodal or grid patterngl8,14 are very often found, which
electroconvection (EC). Thin cells of thickness d  finally become oscillating18—20. Despite the fact that
=10-100 um can be used. Consequently the characteristigome elements of these scenariespecially the last steps
times are small and very large aspect rafiosll width/d)  implying stationary or oscillating bimodal structujesave
can be obtained; also for these reasons EC has been extejten known experimentally for more than 20 years in EC, a

sively studied 6]. Alternatively, by heating a planar nematic comprehensive theoretical description and explanation are
layer from belowheat focusing5] leads to anisotropic ther- sl |acking.

moconvection(ATC). The characteristic times in ATC are  gjince all the bifurcations occur relatively near to the con-

annoyingly long except when a large director-stabilizing pla-vection threshold, one major theoretical approach consists in
nar magnetic field |(x) is applied as in8]. On the other the “order-parameter expansions.” Order parameters are in-
hand, this system is interesting since its theoretical descripgroduced as the amplitudes of tbdgnamically active modes
tion is somewhat simpler than in EC. e.g., the pattern-forming, critically slowed roll modésf
growth ratec~ €) in the framework of the standard weakly
nonlinear (WNL) analysis. A simplified description of the
*Present address: Laboratoire d’Endigge et de Meanique dynamics of the system is then obtained in terms of “ampli-
Theorique et Appligue, 2 av. de la Fotede Haye, 54504 Vandoeu- tude” or “order-parameter equations,” where the nonlin-
vre Cedex, France. earities are truncated at cubic order in the common super-
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critical case[21]. The general structure of these equationstions reveals the existence of a Hopf bifurcation, which ex-
and the allowed couplings between the amplitudes can bplains the oscillating bimodals. The microscopic mechanisms
deduceda priori from the symmetries of the system. Never- controlling the various bifurcations and the structure of the
theless, a trustworthy description requires a systematic capew solutions are systematically analyzed. Comparisons with
culation of the coefficients from the basic “microscopic” numerical results and experimental findings concerning
equations; indeed, except in very simple cases, even the sighainly the nematic materials N5 in EC and 5CB in ATC
of the coefficients is not intuitively known. In nematic con- (Sec. Il A) are presented whenever possible. We also pro-
vection the standard WNL analysis results in either “Lan-Pose a heuristic interpretation of the bifurcation scenarios, in
dau” (without spatial variationsor “Ginzburg-Landau” terms of a competitioior “frustration”) between the focus-
(including spatial degrees of freedpramplitude equations ing mechanisms and the viscous torques exerted on the in-
[3,6]. They have allowed successful studies of many generiglane director(Sec. IV D. The appendixes contain addi-
phenomena near threshdld,20,23,24. Some secondary in- tional information concerning the linear equatigAgppendix
stabilities of the roll structures have been qualitatively ex-A), the calculational metho@ppendix B, analytic approxi-
plained as well[25,26. However, strong quantitative dis- mations of some nonlinear coupling coefficiefégppendix
crepancies concerning the long-wavelength secondarf), and results for the nematic material MBBAppendix
instabilities could only be resolved by the use of fully nu- D).

merical solutions of the basic equations in which all the non-

linearities are kept‘Galerkin computations'[27,28). Such Il. BASIC EQUATIONS — SYMMETRIES

methods were also needed to identify the surprising bifurca- .
In Sec. Il A we recall the basis of the standard nematohy-

tion to abnormal rolls in EG15]. Heavy computations of ) . : )
this kind cannot easily be extended to bimodal structuresdrodynamid1,3] description of EC and ATC; a detailed pre-
entation can be found if25] for EC and in[23,29 for

thus their stability has not been addressed theoretically up o . i - X
now. In any case, the physical origin of bifurcations is hard?TC. The dimensionless units and the sets of material pa-

to extract by numerical methods, whereas a transparent ifameters used are als_o introduced. Section Il B is devo_ted to
vestigation of nonlinear mechanismsbecomes possible e Symmetry properties of the system and to the basic ex-
within the order-parameter approai2s,29. pansion techniques.
The main goal of this paper is to demonstrate that an
order-parameter approach which includesh@mogeneous A. Basic nematohydrodynamic equations —
twist rotationof the director as a new active mode allows us, dimensionless units
in most cases, to reconstruct the whole sequence of bifurca- The director dynamics is determined by
tions. The corresponding new order parametemwhich de-
fines to lowest order the angle between the average in-plane ylnxh=n>< h, (1)

directorng andx [see Eq(39)], has been in fact successfully

introduced at first for nematic convection with homeotropicwhere y; is an anisotropic viscosity, and the dot stands for
(isotropig alignment[30]. In the planar case, the introduc- the material derivatived,+v- V. The molecular fielch [Eq.
tion of this new active mode stems naturally from the resultd3) of [25]] contains elastic contributions proportional to the
of the Galerkin computations and the experiments ifE&}  splay, twist, and bend constartsg ,k,,, andkss, an electric
and from a careful study of the results of the WNL analysiscontribution proportional to the dielectric anisotrogy in

in ATC [29]. After a brief glance at the basic equations andEC, and finally viscous contributiorts, . A convenient form
their symmetries in Sec. Il and at the standard linear properis

ties in Sec. Il A, we show in Sec. Il B that this twist mode

has only a slightly negative growth rate as compared to the h,=—a;D-n—a3n-D, 2
growth rate of the roll modes. In Sec. IV the coupled ampli- o o

tude equations for the roll and twist modes are calculatedvhereD is the tensor gradient of velocity);;=dv;/dXx; .
from the basic nematohydrodynamic equations, and we showince the anisotropic viscosity, is negative and of much
that the twist mode can indeed become active. A quantitativédrger absolute value than the anisotropic viscosity the
description of the bifurcation to abnormal rolls is achieved.main termea, in Eq. (2) tends to rotat@ in such a way that
In Sec. V the amplitude equations are generalized to includthe director-transverse velocity gradients<(D-n) are
long-wavelength modulations together with the mean-flowminimized[29].

effects. A coupling between splay-twist modulations of the The evolution equation for the velocityreads

in-plane director and the mean flow is shown to give a very .

efficient secondary mechanism for the zig-zag instability. A pmv=Ff,q—Vp+divo, 3
subsequent restabilization of abnormal rolls at higheas -

also obtained. The competition between the various instabiliwith p, the fluid density ang the pressure. The stress tensor
ties is analyzed. Section VI is devoted to the study of thes [Eq.(7) of [25]] contains elastic contributions and viscous
short-wavelength instabilities of abnormal or oblique rolls.contributions proportional to the anisotropic viscosities
The amplitude equations of Sec. IV are generalized by thexq, . .. ,a5. We will also use the Miesowicz viscositieg
introduction of a secondary roll amplitude. It is shown that= a,/2, vp=v,+ (az+ ag)/2, andv.= v, + (a5— @,)/2, and
the mechanism towards the bimodal varicose, proposed irefer to the corresponding flow geometred, andc [1].

[26] for ATC on the basis of a WNL analysis, applies gen- Differences between EC and ATC come into play in the
erally. Further investigation of the coupled amplitude equa-expression of the bulk forck,, in Eqg. (3) or equivalently in
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TABLE I. (a) Dimensionless units, frorfi7], used for electroconvectiofiEC). (b) Dimensionless units,
from [23,29, used for anisotropic thermoconvectiohTC).

Quantity Scaling unit Interpretation of the scaling unit
@
Elastic constant ko=10"12 N
Viscosity ap=103% kgm'?! s?
Dielectric constant €,=8.854x107? Fm?! permittivity of free space
Electric conductivity 0o=10"8(Q m)~?
Mass density adlko=10° kgm3
Length d/m inverse of typical roll wave number
Time Top= ad?/ (Kor?) typical vertical director- diffusion time
Electric potential Vo=mKo/€g typical Freedericksz threshold
(b)
Elastic constant ki1 splay elastic constant
Viscosity Vo= ayl2 isotropic viscosity
Heat conductivity K| conductivity perpendicular to the director
Length d/m inverse of typical roll wave number
Time rrp=0d%/(x, 7°) vertical thermal-diffusion time
Temperature vak, 7ol (ged®)

the nature of the scalar field which drives the convectionwith « the thermal expansion coefficieg the gravitational
instability. In EC, it is the modulatio) of the electric po- acceleration.
tential which determines the electric field We assume as usual the incompressibility condiWorv
& =0 and introduce the velocity potentidlandg such that
2V app

—g leogwt)z=dV¢], @ v=ad 0,9, vy=ayd,f—dG, v,=—(R+d)f.

€)
with Vg, the effective applied voltage antkhe thickness of  gincen can be eliminated from the equations by using the
the cell. The modulation of the electric potential is related to, 4 4lization conditiom?=1. the local state vector of the
the ionic charge density, through the Maxwell equation fluid is finally ’
pe=V:[€ E+e4(n-E)n], and its evolution is governed by

E:

charge conservation, V=(¢,ny,n,,f,g) inEC,
pe=—V [0, E+oy(n-E)n], (5) V=(6,n,,n,,f,g) inATC. (10)
where o, and o, are anisotropic conductivities. The bulk The basic equation€Egs. (5), (1), and(3) for EC, Egs.(7),
force is then[right hand side of Eq(2.59 of [3]] (1) and(3) for ATC] take the form
f,o=peE+(P-V)E, (6) D-d,V=Lg-V+N,(V,V)+N5(V,V,V)+h.ot., (11

i.e., the sum of the Coulomb force and of thmurely non- WhereD andLg are linear,N, andNjz are nonlinear differ-
linean ponderomotive force which implies the macroscopic€ntial operators, and h.o.t. denotes “higher-order terms.” In
polarizationP. This latter term had never been systemati-the following, we will, for example, refer to the first line of
cally included in theoretical studies of EC, but it has turnedEg- (11) as the¢ equation(in EC) and to the corresponding
out to have very little influence on the phenomena we studyhonlinearities afN,4,N3,, etc. The main control parameter
In ATC, the relevant scalar field is the differenée=T R with the dimensionless units of Table I, is given by
—(To— ATgpp 2/d) between the actual temperatdrand the )
conductive profile, withT, the mean temperature, and R:(Vipp) inEC. R= agod AT
AT 4pp/d the thermal gradient applied between the lower and Vo ' VoK, T app
upper plates of the convection cell. The evolution fbfs (12)
governed by the heat-diffusion equation

3

in ATC.

_ The applied electric field reads,,= V2R coswt=\2RE,,
0=V [k, VT+ka(n-VT)n], (7)  in EC. Note that for not too thin layers the largest character-
istic time in EC is the director-diffusion timepp [Table
wherex, andk, are anisotropic thermal diffusivities. Under 1(a)], followed by the charge-diffusion timecp=¢€¢, /o, ,
the standard Boussinesq approximation the bulk force readand the viscous-diffusion timeyp=2p,d?/(asm?). To al-
low a direct comparison with15,25 we will display our
foo=—pml1—a(T—To)1do Z. (8)  results as a function abcp=7cp w. Note that



1750 EMMANUEL PLAUT AND WERNER PESCH PRE 59

TABLE II. (a) Dimensionless parameters for the nematics N5 and MBBA used ifsE€text; note that
we have always assumed,=10"3). (b) Dimensionless parameters for the nematic 5CB used in ASE@
text).

k! kI kl ! ! ’ ! ’ ! ’ ! ! !
11 22 33 @y @ az @y Og Qg € € g oy

N5 98 46 114 —-39.0 —-109.3 15 56.3 829 —249 5106 529 7.48 4.4
MBBA 6.66 4.2 861 -18.1 -1104 -11 826 779 —-336 472 525 15 1

(b)

’ ! ! ’ ’ ’ ! ’ ’ ’
kiy ki k33 ag ay ag a, ag ag Kg F Pr

5CB 1 0634 1.303-0.184 —2.343 —-0.132 2 190 —0.575 0.663 790 440

- o' and?o used. We keep at least the two leading vertical modes for
E:Q_,{ where Q= 0 5 °, (13 each field in order to obtain a good numerical accuracy of
co € Kom“€o typically 2% as compared with calculations with many

. . ) ) modes. On the other hand, by keeping only one vertical
and the primes denote the dimensionless Zmaterlgl constantgoge for each fiel@nalytic semiquantitative resulivith an
In ATC the director-diffusion timerpp=y,d"/(ky17%) @ISO gecyracy of typically 109can be obtainedi33]. Therefore
exceeds by far the thermal-diffusion timep [Table kb)]  or results will often be exemplified under this “one-mode
and the viscous-diffusion timeyp, as measured by the 5ppr0ximation” which captures the essential physical fea-

(large dimensionless numbers tures.
Another global symmetry of the system is the reflection
Too K. 7Y1 1D ay symmetry S:y— —y. The corresponding symmetry of EqQ.
o k' e e M avis
D 11 VD PmK

Table Il displays the material parameters used for the cal-
culations. We have focused on standard nematic materials:
N5=Merck Phase 5 at 3 with the parameters defined in
[15] for EC; 5CB at 2PC with the parameters if8] for
ATC. In Appendix D, however, results will be given in EC with the other fields unchanged, (16)
for another common nematic material, MBBA at %5 in-
troduced as MBBA 1 in7].

Sy—-y, ngy—>-ny, g—>—g,

or equivalently for a Fourier mode in E(L5),
B. Symmetries — expansion techniques

We consider as usual the idealization of a nematic layer
infinitely extended in the horizontal plane. The resulting
translational invariance implies that the full solutions of Eq.
(11) can be written as a superposition of horizontal Fourier

modes characterized by théiprizontal wave vectog=qgx  Where it should be noted thad-S(r)=S(q)-r. Conse-
1 py, e.g., in ATC guently, the solution¥ of Eq. (11) can be classified accord-

ing to their symmetry: ifS(V)=V, the symmetryS is not

broken; otherwis&/ andS(V) are two degenerate variants of
_ q q q q q iq-r the same global state.

v Eq: (6%(2).ny(2),nz(2), T(2), g%(z)e™, - (19 The reflection with respect to the midplane of the layer,

z——2z, is also a global symmetry. Two types of Fourier

modes in Eq.(15 can be distinguished according to their

transformation under this reflection: tyge when 69(z) [or

q q . i
and that the fields become time dependent. For a discussi sz)]’r(;zs(iz::qa(szg alg(tergzjlﬁgi?] V(i);nqézlirzs:sa%pz 't?]e
of the symmetry properties of the EC equations with respect o z? the Fouriér modca—(ga o —f Yo Eg a1
to transformations of time, s¢27]; as usual only the lowest a/p the i ant “B o\ ylk z g t, g "
nontrivial Fourier components in time are kept in this paper. ave the important “boussinesg-iike™ symmetry property
With respect to the vertical dependenaez), all fields have
to vanish at the boundaries= = /2 in our scaling. Using a
standard Galerkin techniqyi1], ¢ (or ¢),ny,n,, andg are syn{Nz(a,b)]=—sym@)symb),
expanded in a sine bas{$,(z) =sinn(z+=/2)]}. For the
vertical velocity potentiaf, which must fulfill f=¢,f=0 at
the boundaries, the Chandrasekhar bd€ig(z)} [32] is syn{Ns(a,b,c)]=+syma)symb)sym(c). (17

(gq'ng ,nd 9,99 eld (g9, —nd,nd {9, —g%e'd S

wherer =xx-+yy is the horizontal position in the layer. The
case of EC is very similar, except thétis replaced by,
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Ill. ACTIVE MODE BASIS FOR THE EXTENDED WNL
ANALYSIS

WNL analyses in general rely on a perturbative treatmenth

of the nonlinear terms in the evolution E@L1) for small
amplitudes of convection. Thus they become asymptoticall
exact in the limite— 0, but in practice, as well as in our case,
semiquantitative or qualitative results are often obtaine
even when the amplitudes are not infinitesirfil]. Within

this pertubative approach it is natural to focus at first on the

linearized evolution equations &V=LRV, and to calculate
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ated with thedynamically passive moded negative growth

rate; se¢21] or Appendix B. For planar nematic convection,
e standard family of active modes consists of the roll
odes, the properties of which are reviewed in Sec. Ill A.
However, in Sec. Ill B it is shown that diffusion modes of

¥he director have also to be considered as active, even quite
aclose to the convection threshold.

A. Standard active mode basis: the roll modes
The first studies of EC4,7] and ATC[5] have shown that

the corresponding eigenmodes as the solutions ofhe modes destabilizing the quiescent solutibn0 of Eq.

oDV=LRgV. The solutions of the full problertiLl) are then

(12) areroll modesof wave numbelq| close to 1(i.e., of

constructed as superpositions of these linear eigenmodesalf period=d in physical unit and of thez symmetry type

Among those, thelynamically active modesre the modes of

positive growth rater, and in addition the modes of slightly
negative growth rate- which are nonlinearly excited by cou-
pling with the modes o&->0 [36]. The associated expansion
coefficients are the “amplitudes” or “order parameters.”

+. These roll modes are the solutions of
a(g;R)DV,(q;R)=LgV1(q;R), (18)

where the eigenvaluas(q; R) are always real in the absence

Their evolution equations will be calculated after adiabaticof weak-electrolyte effectf9] and correspond to the growth
elimination of the remaining expansion coefficients associrates. In the one-mode approximation the eigenvectors read

((pe '+ ¢* €'Y Sy(2),n,S,(2),in,Sy(2),TC1(2),9S,(2))€'""  inEC,

Vi(g;R)=

SinceV in Eqg. (11) is real,V,(—q;R)=(V1(qg;R))* holds,
and one can focus on the modes withx=0. Then, a phase
choice can be made such tilgt=1, Re(®), Im(¢$), 6§ and

T are positive(rea) numbers, ana, andg are real numbers.
The focusing mechanisms are the following oriese also
the linear equations in Appendix)AIn EC, a splay-bend
director fluctuation(field n,) excites a charge or potential
modulation (field ¢) via the charge-focusing term
—0,QE,d4N, in the ¢ equation(Al); a mass flow(field f)

is induced via the Coulomb forog\6); this flow reinforces
the initial director distortion via the viscous torque
+|ay]dgv, in the n, equation(A3). In ATC, a splay-bend
distortion of the director leads to a temperature modulatio
(field @) via the heat-focusing term x;Rd,n, in the heat
equation(Al); a flow is excited by the buoyancy for€A7);
this flow reinforces the initial director distortion exactly as in
EC.

(6S1(2),nyS,(2),in,S(2),7C1(2),9S,(2))€'9

(19
in ATC,

instability [34]. The symmetry properties discussed in Sec. Il
lead to the distinction between two types of roll moi@s]:

thenormal rolls, of wave vectox parallel toX, whereS (16)
is not broken, consequentlyp,=g=0: normal rolls are
purely two-dimensional modes; and tloblique rolls of

wave vectorq=qgx+py with qp+0, whereS is broken.
Consequently two variants exist: the *“zigs” with,p>0
and the “zags” withq>0,p<0. These modes are three di-
mensional sinceé, andg are nonzerdnevertheless the ver-
tical averages oh, andg vanish.

In ATC one has critical normal roll23]. In EC, at loww
one finds critical oblique rolls, whereas forlarger than the

Nifshitz frequencwazo.&gé the critical modes are of the

normal-roll type. At largew, but still below the crossover
frequency to the dielectric regimew6=4.07-gé), the
charge-focusing mechanism becomes less efficient. Conse-

When the destabilizing forces overcome the stabilizingduently, the convection only sets in with narrower rolég (

ones, i.e., wheR exceedsR;, the growth rater(q;R) of the
so-called critical roll mode atj=q. becomes positive. By
continuity, whenR>R_, there exists a wave-vector band of
roll modes of positive growth rates, which can be, for
=R/R;—1 not too large, written as

R—Ro(a) _ e~ eo(a)

o(q;R)= R
q'tc

(20
Tq

Ro(9)[€0(q)] is the (reduced threshold of the roll mode
(“neutral surface’), and, is a characteristic time. Note that
€0(9.) =0, and thatr,]Ic is the characteristic time of the

increases withw), where all gradients increase for compen-
sation, and at higher voltageR({ increases withw). In this
“high-energy” limit where also the dielectric torque stabi-
lizing the planar configuration gets very large, the damping
constant 1# of the “forced” roll mode is very large.

B. The director modes

At fixed g, in addition to the roll mode¥;(q;R) (19),
there exists an infinite number of linear eigenmodes
Vn(9;R) with discrete eigenvalues,(q;R). ForR close to
R., the corresponding growth rates (8g,(q;R)) are nega-
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tive for all m and g and typically maximal in thdomoge- modes ny=S(z),n,=0, and the n, modes n,=0n,
neouscaseq=0 [37]. In our regime where the damping of =S(z). We call the modes of largest growth rdfer m
the director field is by far the weakest, the small values of=1, i.e., with an even cosine profif (z) = cosg)] the twist
|Re(o(0;R))| are associated with director modes. They aremode and the splay mode, respectively. For the twist mode

determined by the linear diffusion equations fgy andn,
with d,=d,=0 (then n does not couple with the other
fields):

Y9Ny = I(22‘7§ny » o Y10in,= (k11‘9§+ eR)n, (21
for EC[see, e.g., EA3)]. The equations for ATC are simi-
lar except for the absence of the dielectric torquef). The

system(21) admits two families of linear eigenmodes: the

VT:(OISI(Z)101010)1 (22)
with the notationg10), one finds, e.g., the growth rate

K k
or=— -2 inEC, o;=-—inATC.

Y1 F @3

The ratio ofo; to the growth rate of the critical roll mode is

k22

-— > e inEC
o1 B Kas0g + KaoPpg + K11~ €aRc
1
a(Qeie) T Kk 2
Cs
- ———2 ¢ inATC,
ka0 + KaoPg + K11

where simple approximations of the characteristic times
have been usddee Fig. 1a) for a comparison with rigorous
calculations in EG The order of magnitude of the rat{@4)

is — Koo/ (Kgzt+ kqp) € 1=—0.25"1: it is very negative only
for very smalle. The twist mode should therefore be in-

resonant terms in the standard amplitude equations. Thus the
treatment of the quadratic nonlinearities requires some care;
for this reason a general extended WNL scheme is intro-
duced in Appendix B. In Sec. IV A this scheme is applied to
calculate the amplitude equations which couple the ampli-

cluded in the active mode basis. Indeed, we will show in Sectude A of a roll mode to the amplitude of the twist mode
IV that its slow linear damping can be compensated either dtEq. (29)]. In Sec. IV B the abnormal-roll solutions of these

quadratic ordeftermN,(V,V) in Eqg. (11)] or at cubic order
[term N3(V,V,V) in Eq. (11)] by a coupling with two roll
modes. On the other hand, the splay modé

equations are studied, and in Sec. IV C the oblique-roll so-
lutions are studied. The nonlinearities controlling the values
of all the coefficients introduced in Sec. IV A are given. This

=(0,0,5,(2),0,0), which has a growth rate of the same allows one to give a precise physical interpretation of the
magnitude asor, can only be excited at cubic order for mechanisms involved and to introduce in Sec. IV D a general
symmetry reasoni38]. We have checked that the excitation principle to interpret the roll-twist interactions.
of Vg always occurs far above the threshejg; of excitation
of V1 (Sec. V). Therefore the splay mode will not be kept in
the active mode basis here. Note that ¢fuasihomogeneous
twist modes with long-wavelength variations of small wave We apply the scheme of Appendix B to roll structures of
vector q play no role for perfect roll or bimodal structures fixed wave vectoqg. Only two active modes have to be con-
and have only to be considered in the case of modulategidered: the roll modé&/,(q) (19) and the twist mode/+
structuregSec. . (22). According to Egs(B8) and (B12), the corresponding
WNL solution assumes the form

A. Calculation of the roll-twist amplitude equations

IV. NONLINEAR ROLL SOLUTIONS V=V, +V, =[AVi(q)+c.cl+oVi+V,, (25

The inclusion of the twist mode in the active mode basis
lifts the simple symmetry rules which exclude quadraticwhere the passive part reads

FIG. 1. In EC(for N5), as a function of the
dimensionless frequencycp= 7cpw: (@ solid
line: growth ratec; of the homogeneous twist
mode, in units of the normal-roll characteristic
time 7, at q=q.x. Dotted line: analytic approxi-
mation (24). (b) Saturation coefficieng, (30) of
L the normal rolls.

rigorous
approximation
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V==L NV 4,V.0)—(U1(a),Nx(V 4,V 4))DVi(0)
—(U1(—a),No(V 4,V 4))DV4i(—0q)
—<U-|— ,NZ(VA,VA)>DV-|—].

U,(g) andU+ are the adjoint roll and twist modésee Eq.

(B3)]. Introducing the coefficients
B2(a)=(U1(a),No(V1(a) V7)),

Y(@)=—(Ur,No(V1(q)| V(= @), (26)

one obtains
V. =|AI?Vy(a,—a) +[A?V,(q,0) +c.c]
+ ¢ [AV,(q,T)+c.cl, 27
where
Va(q,— @)=~ L {Na(V1(@)|Va(—a))+ »(@)D- V1],
V5(0,9)= — L~ Na(V1(9),V1(@)),

Vo(q,T)=—L 1 Ny(V1(aQ)|V1)— B2(q)D - V1(q)].
(28

By projecting Eq.(11) onto U;(q) and U [see also Eq.
(B13)], one arrives at our first set of coupled amplitude equa-

tions

~e(q)
R g Al Ba@) e~ Bo(a) 62|,

(299
(29b

z9tA=

dhe=[or—0,@*+T(a)|Al*le—y(a)|A[?,
where additional coefficients have been defined:

9q= —(U1(a),Na(V1(Q)|Va(a,—))
+No(V1(—a)[Va(a,0)) + Na(Vi(a) V(o) [ V1i(—a))),

(30
B3(a@)=—(U1(a),No(V1|Va(q,T))+ N3 (V| V1| Vi(a))),
(31)
_ _ | oy
g<p__<UTrN3(VT|VT|VT)>_?a (32

F'(q)=T2q)+3(q), with

I'2(q)=(Ut,N(V1(q)|Va(—q,T))
+No(Vi(—0)|Va(q,T))),

I'3(q)=(U1,N3(V1(Q)|Vi(—a)|V7)). (33
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B. Rolls with a normal wave vector

The amplitude equation®9) must be invariant under the
global symmetns (16), which transformgy into S(q) and¢
into — ¢. Therefore the coefficient8,(q) and y(q) vanish
for rolls with a normal wave vectoqzqf( such thatq
=95(q). After elimination of|A|? in Eq. (299 and insertion
into (29b), one has to solve

[o1—9,¢°+T(a)|A(G; € 0)[?]e=0 (34

for the stationary solutions. Clearly the brangk-0 corre-
sponds to the standard normal-roll solutions,

) _
|A|—\/—quq . ¢=0. (35

The effect of the coefficient' (q) in Eq. (29b), which turns
out to be always positive, is to enhance a fluctuationpof
about the normal-roll solutiofB5). Indeed, two roots of the
cubic equation ing (34), which were complex at smad,
become real wheer gets larger than

Ja_

I'(q)
(36)

ear(Q) = €0(Q) + €pr(q), where epr(q)=|7q07]|

At this point a bifurcation from normalg(|x,¢=0) to ab-

normal rolls (q||§<,<p¢0) occurs, which corresponds to
breaking the symmetn$ (16) without tilting the rolls (see
[15] for an identification of this instability in EC We will
now study the coefficients determining the threshold of this
bifurcation and the ensuing saturation of the twist amplitude
¢; if not otherwise stated, we will consider rolls @t q. .

1. Threshold of the abnormal-roll bifurcation

The abnormal-roll thresholé,z(q) (36) is controlled lin-
early by the growth raterr of the twist mode inr, ! units,
nonlinearly by the saturation facta, in the A equation
(293, and by the coupling coefficiemt(q) in the ¢ equation
(29b).

In EC, the linear effects tend to favor the abnormal rolls at
high w, where|ro;| becomes very smallFig. 1(a)]. This
indicates that the rotation of the director in the horizontal
plane becomes relatively easier at highas compared with
the excitation of the splay-bend mode associated with the
roll modes|cf. Eq. (24) for ror=e€ot/o(q;€), and the dis-
cussion in Sec. Il A

The first important nonlinear effect is the saturation of the
amplitude expressed by the coefficiegy. This has been
first studied systematically for ATC29]. In EC, the most
important saturating(positive contributions are(P1) the
contributions  of N3,(V1(q)|V1(a)[Vi(—q)) due to
30,Q Eacaxni’, which indicate that the charge focusing be-
comes less efficient with increasing, [compare with the
linear term— o ,QE,.d4n, of EQ. (A1), quoted in Sec. IIl A,

Note that for =0, Eq. (299 reduces to the well-known and note the opposite signand (P2 the contributions of
Landau equation for the roll amplitude describing a super- Nan (V1(@)|V1(@)|V1(—q)) due toa(dxw)n , which indi-
critical bifurcation sinceg,>0. We have not scaled out,  cate that the shear exerted on the director by the vertical
and g, as usual, in order to clearly separate the linear andlows diminishes when the director rotates upwdsnpare
nonlinear effects controlling the value &f with the linear term— a,d,v, in Eq. (A3)]. Both (P1) and
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FIG. 2. In EC, for rolls with wave vectoq=q.(w)X: (a) nonlinear interaction coefficierit(q) (thick line) between the roll and twist
modes]cf. Egs.(29b), (33)]. The contributiond",(q) (thin line) andI';(q) (dotted ling of the quadratic and cubic nonlinearities in g
equation are showrfb) Reduced abnormal-roll thresho&dz(q) obtained from the extended WNL expressi@6) (thick line) or from the
numerical computationgl5] (thin line). The normal-roll threshold(q), only slightly positive for frequencies smaller than the Lifshitz
frequencyw, =0.8r2, is shown with the dotted curve.

(P2 are generated by the quadratic correctionstalue to  velocity gradients and therefore out of the £) plane due
the distortion of the director field above onset of convectionto the a, term in Eq. (2). There exists also a second-
i.e., by inserting in the equatiomg(zl—%(n§+ ng) from  ary mechanism of elastic origin, due to the termkz(
the director-normalization conditiar’= 1. We therefore call — kzz)(axnz)zny, which corresponds to a release of bend by
(P1) and(P2 “geometrical corrections” to the quoted linear twist. Since the bend energy is proportionalgf{ ), this
terms, wheren,= 1 is taken. The dependence gf{w) (cor-  mechanism is only efficient in EC for the narrow rollsf
responding to horizontal gradientsf the contributiongP1), largeq.) at high frequencyw (Appendix Q. The contribu-
together with the fact thafé/n,| in the linear mode(19)  tion I'y(q) (33) of the quadratic nonlinearities indicates an
decreases strongly with, lead to a strong increase of the indirect renormalization of the damping @f, which occurs
contributions(P1) to g, whenw increases. The dependence through the (possiblg excitation of the quadratic mode
on q.(w) of the contributiongP2) renders them also much V2(q,T). In EC,I'5(q) becomes large only at high [Fig.
larger whenw increases. The most important antisaturating2(@]; in ATC, I'5(q) is always one order of magnitude
(negative contributions are (N1) the contributions of smaller thanI's(q). The corresponding mechanisms are
Nan (V1(@)|V1(0)|V1(—a)) due toa,(d,v,)nZ, which indi-  studied in Appendix C. . .

cate that when the director tilts upwards, it becomes sensitive In EC, the increase dr(q) with it [Fig. 2a)], favorable

to the horizontal flows which tilt the director further as do © the gbnormal roll$§ee Eq.(_36)], Is roughly compensated
the vertical flows at linear ordetN2) the contributions of Y the increase afq with w [Fig. 1(b)]. Thus the decrease of

_ 1 2.3 - the linear growth ratéro+| [Fig. 1(a)] appears to be the
Nan,(V1(a)[V1(a) [ Va(~q)) due to —3eq(Eqpy°n,, which main cause for the decrease of the abnormal-roll threshold

exr(0) (36) with increasingw [Fig. 2(b)]. The values of
enr(0) (36) match those of the fully nonlinear calculations
[15] at high frequency. At low frequency, discrepancies

how up which are due to nonlinear effects of higher order

ot included in Eq(29). Their influence grows in the limit
w—0, since there the bifurcation to abnormal rolls occurs at
increasingly highere and A. In ATC, we find exr(Q)
=0.11, a value larger thasy, (Sec. V). This agrees with the
experiments, where the normal rolls at smalare first de-
stabilized by zig-zag modulatiorjg4].

signify that the stabilizing dielectric torqusee Eq(A4)] is
reduced with increasing,; and (N3) the contributions of
N3t (V1(9)|V1(a)|V1(—0q)) due to the source ternmag + a»
+a3)ﬁx[(<9xuz)n§] in the evolution equation fov,. This
indicates a decrease of the effective viscosity for the vertic
flows in the rolls, since with increasing, the highest
Miesowicz viscosity geometrg is gradually left for these
flows. The negative contribution®N1), (N2), (N3) increase
less strongly withw than the saturating onéB1), (P2). Con-
sequentlyg, increases witho [Fig. 1(b)]. Note that all the
effects controlling the value af, in EC exist also in ATC

[29], provided that the charge focusing(iRl) is replaced by 2. Saturation of the abnormal-roll bifurcation
the heat focusingsee Sec. 4.2 of29]) or that the electric _ _ ) )
field in (N2) is replaced by a planar magnetic figttis was The saturation of the director rotatiop ¢ 0) in abnormal

predicted to lead to a subcritical bifurcation in ATC[28]).  folls appears to béndirect it is not controlled by the clas-
The nonlinear coefficient directly responsible for the bi-Sical saturating term-g,¢° in the ¢ equation(29b), but

furcation (36) towards abnormal rolls is[(q)=I,(q) rather by the coupling term-B5(q)¢?A in the A equation

+T4(q) (33). In Appendix C we give an analytic approxi- (293. Indeed, the abnormal-roll solutions of E@Q9) read,

mation of I'(q) within the one-mode approximation. The for €>e€ar(0),

contribution I'3(q) of the cubic nonlinearities indicates a 1 b

renormalization of the damping of the twist mode by a cou- _ \/ a

pling to the roll modes. It ispdgminated by the contr)i/butions A=, 1+b, €ar(@+ 77 bqe €o(@),

of a,(dv,)nny in N3ny(V1(q)|Vl(—q)|VT). The corre-

sponding mechanism can be interpreted according to the . 1 e—enr(Q) (37

principle that the director tends to rotate away from the = N1+ by TgB3(Q)
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fly, OF 71, o~ > ~ ~ "
B R n=xy1l-ny—n;+yny+zn,=ng+zn,+h.ot,
o9 [ a -
os | _dn,inNR with ng=x+ye. (39
zz L 1n (=) in AR Note also that the order-parameter scheme up to cubic order
os L / Y breaks down ifn, or ¢ becomes larger than 1. The ampli-
04 I o z ' n.in AR tudesn,(€) =2A(€) and¢(€) (37) match the numerical pre-
03 L ° ° M dictions of{ 15] only for € not too large, such as<0.2 in the
0z L example of Fig. 3. At highee, the values ofp(€) (37) get
o1l systematically much larger than those given by the fully non-
00 . . . A . linear Galerkin computations. Indeed, the saturatiorp af

000 005 g R 010 05 020 025 030 Eq. (29) is very weak; i.e., in the full equations, higher-order

€ . .
effects not included in the order-parameter approach come

into play at these highe, high ¢ values. The deviations
(solid line) for EC in roll solutions atq=qX,wcp=3 [see Eq. become more important at low in EC, whereg; is very
(38)]. The normal roll(NR) branchn,(e)~ e, ¢(€)=0 becomes small and thusp(€) (37) reaches 1 for rather smadl e.g.,
unstable ak= exg With respect to the twist mode. In the subsequentfor e=0.15 atw=0.

abnormal rollSAR), n,(€) remains roughly constant, wherepge) There exist special cases whe8g(q) can become nega-
increases as/e— exr [see Eq.(37)]. The open and closed circles tive, i.e., the abnormal-roll bifurcation does not saturate in
show the numerical resulfd5] for n,(e) and ¢(e), respectively.  the framework of Eqs(29) [40]. This occurs in EC at low
frequency forg larger tharg., e.g.,0>1.209; atwcp=1, or

in ATC for g>1.45.. The important negative term in
B3(q), which counteracts the effect of the positive terms
discussed here above, is a contribution of
Nan (V1,V7,V1(q)) due to3(2kp—3ksngdin, . It signi-
fies a reinforcement of elastic origin of thmg distortion in

rolls when the director rotates towardsy. Such “narrow
abnormal rolls” are nevertheless obtained in the Galerkin
computations, where apparently higher-order terms not in-
cluded in Eq.(29) become important.

FIG. 3. Director amplitudes(¢€) (thin line) andny(e)=¢(¢)

with ag=1/7494,04=949,/[ B3(a)T'(q)]. This latter coef-
ficient is always small, for instance, in Ef;=0.077 at
ocp=0.5 andb,=0.0015 atwcp=4, while in ATC, by
=0.034. Thus, to lowest order in,, the amplitudeA stays
constant fore> e,g, and the saturation af is clearly due to
the B; effect. Forq nearq.,B3(q) is always positive, indi-
cating a negative feedback— A in Eg. (29b). In EC and
ATC, two leading contributions dl;(V+,V+,V4(q)) domi-
nate all the other ones i@3(q). One leading contribution is
due 103 ,QEpgx(n7n,) from Nau(Vr,Vr,Vi(a)) in EC
and3 kaRax(n7n,) from Nay(Vr,Vr,V4(q)) in ATC. These
terms are geometrical correctiofenalogous in principle to
the term (P1) of Sec. IVB 1] to the focusing-mechanism In the case ofzigs of wave vectorq=qx-+ py with q,p
terms in Eqs(Al) and(A2) for the scalar field. These terms >0, the coefficients/(q) andB,(q) in Eq.(29) are nonzero.
indicate that a director rotation away from the roll wave vec-The symmetry rule(16) now only imposes that/(qg) and
tor (n, large diminishes the charge and heat focusing. Theg,(q) change sign when passing from the zjgo the zag

second dominant contribution 185(q) (31 2|s, both in EC S(q)=gx—py. The corresponding stationary solutions of
and ATC, due to the term—[apni(dw,) from  Eq.(29) can still be calculated by elimination @ and so-
N3n (V1.,V7,Vi(0)). Itis a correction to the linear torque |ution of a cubic equation irp, but the expressions become

| o] 940, in the n, equation(A3), which indicates that when quite lengthy. The result is the existence of a “generalized
the director rotates, the shear inducing of themodulation  abnormal-roll threshold”e r(q), which reduces to E(36)

also becomes less efficient. In E®3(q) drastically in- for p=0, and which increases with increasihg|. For e
creases with the frequency;=0.036 atw=0, while 85 <epr(q) only one root is real, i.e., only one solution branch
=2.99 atwcp=4. This is mainly due to the fact that the roll exists; whereas foe> epr(q) all the three roots are real, i.e.,
modes at high frequency become more sensitive tefthed  two additional solution branches appear. Since the new solu-
n, effects mentioned above. Typical amplitudege) and  tions, which one might call “anomalous” oblique rol[41],
¢(e) of the n, and n, distortions given in abnormal-roll are typically unstable against long-wavelength perturbations
solutions by (except under certain conditions at rather laggesee, e.g.,
[15]), we will discuss here only the structure of the first,
most stable solutions. They are well approximated at senall
by the standard WNL solutions, where the cubic effectg in
are neglected, i.ef3,9,,I'=0 in Eq.(29). One finds, with

Cq= B2(a) ¥(a)/(gg| 1)),
_ |€—€0(Q) A
according to Eqg25), (19), and(22), are shown for EC at an |Al=aq 1+cq ' LA |o1] A% (40)
intermediate frequency in Fig. 3. Note thatdetermines to

lowest order the in-plane director at the midplane of the layein zigs (p>0), due to the “torque”— y(q)|A|? in the ¢ Eq.
since therd 39] (29b), where y(q) is always positive, the director rotates

C. Oblique rolls

n,=—n,(€)S;(z)sing-r+h.o.t.
=—2A(€)S;(2)sing-r+h.o.t.,

ny=¢(€)Sy(2) +h.ot, (38)
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n,(€) n,(€) = O(€) FIG. 4. In ATC (for 5CB),
0‘9»"'"""""""""""'__',_1--'-: 00 P T T ' ] comparison between results of the
08 ] o1k . standard WNL theory and the ex-
07 1 ] o2 b N e ] tended WNL theory[i.e., T',;
06 I » #0 in Eq.(29)] for the amplitude
05 - 03 ] of n, (left) and of the twist mode
04 I 04 [ - (right) in an oblique-roll solution
03 - ] 05 L ] of Eq. (29). The linear threshold
o2 /S 0 e standard WNL Lo standard WNL €,(9)=0.013 is marked with the
01 | extended WNL ] 06 - extended WNL crosses. Note the increasing de-
Y 2 A N A I W 07 b b Loy | L L viations from the WNL results\
000 005 010 015 020 025 000 005 010

€

(¢<0) towards the direction of the axis of the rolls or,

equivalently, away from the wave vectgqp$<0). This ef-
fect has been in fact pointed out j26,29 for ATC. The
quadratic nonlinearities of the, equation which control the
value of y(q) (26) are the advection term y,v,d,ny, the
a, termsay(dyw )Ny and|ay|(3,v{)n, [the superscript de-
noting the velocity components generated by the potefitial
see EQ.(9)], and the elastic ternfonly important in EG

— (k111 k33— 2Ky (d5n,) (dyn;). Since thea, contributions

015 020 025
! #Je=eo(0), o[ e~ eo(q)].

The amplitudes plotted in Fig. 4 are still defined according to
Eqg. (38); in fact in oblique rolls there is also a periodic
contribution of the roll mod€19) to ny, but this contribution

ocA(e)Fly is dominated by the contributiom ¢(€) even at
very smalle values, e.g., foe=0.04 in the example of Fig.
4. The strong deviation from the standard WNL law
n,(€),A(e)x+e—eg(q) (40), has been observed experimen-
tally [20] (see Fig. 9a thejeand constitutes an experimental
confirmation of our analysis for ATC. The correction to the

are in general dominant, this torque exerted by the rolis oYVNL solution (40) for ¢, 5¢ (41), is usually negafivéas in
the director can also be understood from the principle thaFi9- 4 sincegg|or|I'(a)>B3(q) y*(q). Provided the reduc-
the director tends to avoid the velocity gradients. The satulion of A due to thegs term is not too strong, the angle|

ration of the roll amplitude in Eq40) is clearly enhanced by
the 3, effect[cf. c4>B8,(q)]. Indeed, sinced,(q) is positive
for all zigs atg=q_. in the normal-roll regiméusual case in
ATC, casew> o, in EC), the + 8,(q) A term in Eq.(293
indicates that the rotation of the director toward§ in zigs
(¢<0) induces a negative feedback An(as does also the
B3 term, but at a higher orderWe find thatB,(q) (26) is
dominated by two contributions df,(V+,V1(q)). The first
one comes from the term o,QE,,gy(nyn,) in the electric
potential equation in EC and from the termx,Rd,(nyn,)

increases because of theeffect. It is only wheng; gets
very large, for instance, for the oblique rolls@tin EC at
very low frequency, that the corrections can become posi-
tive: the reduction oA is then so strong that the angle of the
in-plane rotation is diminished. Note that the range eof
where the standard WNL solutiorid0) remain a good ap-
proximation typically extends with increasirg The con-
tinuous transformation from a quasilinear lap{e)o—[e€
—e€o(q)] at largep [cf. Eq. (40)] to the square root law
o(€)x—+e—epg atp=0 [cf. Eq.(37)] is visible in Fig. 2 of
[15]. Thus the zig solutionp>0,p<0 are continuously at-

in the heat equation in ATC. The second dominant contributached to the abnormal-roll solutions wigh<0 in Eq.(37).

tion arises both in EC and ATC from the tefia,|n,(d,v,)

It appears therefore justified to introduce as a generalized

in the n, equation. These terms are corrections to the lineadefinition of “zigs” the criterion ¢ <0, with which both the

focusing term[see Eqs(Al) and (A2)] and to the viscous
torque in then, equation(A3). They also signify that a di-

oblique rolls withp>0,0<0 and the abnormal rolls witp
=0,p<0 are considered to belong to the same class of so-

rector rotation away from the direction of the wave vectorlutions. ) o
(pn,<0) reduces the efficiency of the focusing mechanisms In some special casgg;(q) can become negative in zigs

of convection A diminishes.
The simple expressions E¢40) of the standard WNL

for p>0, i.e., the in-plane director rotation reinforces the roll
amplitude to lowest orddric, becomes negative in EG40)].

oblique-roll solutions are of course modified by the inclusion This occurs first in the oblique-roll regime in EC fas

of the effects ofB83,9,, andI in Eq. (29). The corrections
read at smalk

5A|= _ Y DLA(DT(D) + Bs(@) ¥(9)]
R 512 |2
2(1+cq)™orl’gq

[e— eo(@)]*?

Q) Bs()Y(D/gglorl—T(q
l+cq

S¢ ) A% (4D

|CTT|2

Because of thé&' and 85 effects,5|A|<0: the roll amplitude

<w_. Then, atg=q,,B,(q) is slightly negative for 8p
=<p. and becomes positive fg=p.. The important nega-
tive term inB,(q), which counteracts the positive terms dis-
cussed above, is a contribution bk, (V1(q),Vy) due to
2(kaz— ko) dx(dyn)ny. It implies an elastic reinforcement
of the n, distortion in zigs when the director rotates towards
—§/. This term leads also, at fixqy to a decrease g8,(q)
with increasingg. Thus in EC and ATC in the normal-roll
range,3,(q) can become negative at fixpdor g larger than
g. (e.g.,, atp=0.05., for q>1.19. in ATC, for q
>1.04y, in EC atwcp=1).

is always strongly reduced due to the in-plane director rota-

tion, as shown in Fig. 4 for ATC. The full solutions of Eq.

D. Interpretation: director —wave-vector frustration

(29) have been calculated for a representative experimental The amplitude equation&9) display, in the most com-

oblique-roll wave vector=1.070(X cos 8°+y sin 8°) [14].

mon normal-roll regimgwhen g,=q.X, andq=gx+py is
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not too far fromq,), the competition between two opposite discrepancies can be resolved by taking into account addi-
tendencies. On the one hand, the roll dynamics (83 is tional cubic nonlinearitiefEq. (46)], which couple the twist
controlled in this regime by the fact thaB,(q)p  Mode and two roll modes. These terms are considered to be
>0, B3(q)>0, these coefficients being dominated by non-Of higher order in the standard WNL approach. We will also
linear corrections to the linear focusing mechanism tefims ~analyze in detail the microscopic mechanisms controlling the
the loose sense, i.e., including all the terms contributing t&ig-zag instability and the subsequent restabilization of the
the instability loop quoted in Sec. Il A, in particular, the abnormal rolls in EC.

viscous torque in the, equation. TheseB, and B3 terms

change the linear growth rate of the roll mod@§) into an A. Roll-twist-mean-flow amplitude equations

effective (“nonlinear”) growth rate To describe long-wavelength instabilities, the scheme in-

e—eo(Q) troduced in Sec. IV A has to be generalized in order to cal-
————+ Bo(q) o — B3(q) 2. culate modulated-roll solutions. The scheme must also be

q combined with the method explained [i#5] to extract the
(possibly singular mean flow. One starts with a superposi-
tion of roll modes(19)

o®(g;e) =

This effective growth rate is maximal fok=@.(0)
=B2(a)/[2B3(q)]. Sincepyp(q) is typically between 0 and
p/q, this means thaiM1) the focusing mechanisms are more
efficient when the roll wave vector is roughly parallel to the Vrolls:f dg A(q)Vi(g)+c.c=A(r)Vi(qc) +c.c.,
director. On the other hand, the dynamics of the twist mode M) 42)
Eq. (29b is controlled in this regime by the fact that

¥(q)p>0'(g)>0. These coefficients are dominated by the\ynere)(q.) is a domain centered aroung, and the slowly
a, contributions signifying the tendency of the director t0 ygrying envelope

rotate due to the viscous torques away from the velocity

gradients and therefore away from the wave vector of the ‘

rolls. They andI" terms thus indicate thaM2) the director A(f)=f dq A(qg)e'@ %) (43
is pushed by the rolls away from their wave vector. The Nae)
competition betweefiM1) and(M2) results in a “director—
wave vector frustration.” A first manifestation of this frus-
tration is the bifurcation from the normal to the abnormalfin
rolls, in which the rolls almost “destroy” themselves: in
abnormal rolls the director rotation is clearly due(id2), Do Viw—LViw=I>
and the subsequent saturation of the roll amplitude

has been introduced.
The long-wavelength palt,,, of the solution is then de-
ed to lowest order by

(JA|~const fore> e,g) due to(M1). We will see in the rest _ q da A
of the paper that this frustration has other important conse- ST N (@)
quences. ¢

XA(=g+9)Nx(Vi () |Vi(—g+9)).

V. LONG-WAVELENGTH ZIG-ZAG INSTABILITY (44
OF ROLLS WITH A NORMAL WAVE VECTOR
) o The velocity field in Eq.(44) can be treated with the tech-

In EC for frequencies larger than the Lifshitz frequency nique introduced if25]. One solves for a modified right
o, orin ATC for usual nematics, one finds near onset N0r15nd side where only the source term in thefield is
mal rolls atg=q.=q.X. According to Sec. IV, these normal retained and projected onto the Hagen-Poisseulle pro-
rolls can undergo a secondary bifurcation to abnormal rollile P,(z)=3(w?%/4—2?) according to Lag—(l2g)=(6/
at rather smallk= e, . However, another possible second- 772)<P1(z),lzg(s; z)); this gives the mean-flow contribution.
ary bifurcation is the long-wavelength zig-zag instability, We also isolate the twist amplitude as the amplitude of
where undulations along the roll axis are amplified. This in-S,(z) in the n, field of Vi [cf. Eq. (22)] and get after
stability is a generic feature of planar nematic convectiorgdiabatic elimination of the other fields
[27], which thus competes with the abnormal-roll instability
(cf. Fig. 3 of[15]). On the basis of a WNL analysis in EC, a or isr .\ res
first mechanism has been identified for the zig-zag instabil-  Viw= fwo)dw(s)VTe +G(s)Vure'® '+ Viw(9)]
ity, which relies on the coupling with the so-called mean-
flow modeq 25]. These are passive modes that are excited by
roll undulations, but since their adiabatic elimination can
lead to nonanalyticities, a separate equafianalogous in
principle to Eq.(B11)] has to be kept for them. Nevertheless, with Vy;==(0,0,0,0P(2)).
strong discrepancies have remained between the results of Finally, there are passive, short-wavelength contributions
the standard WNL analysis as exposed 25,23 and the to the solution. The harmonics about2q. are standard.
Galerkin computations or the experiments. Typically, theAdditionally, we take into account the terms generated by
standard WNL thresholds for the long-wavelength instabili-N,(V,(q)|V€'S"), with wave vectors around g, . The re-
ties are much too large as was noted 27] for EC and in  sulting quadratic mode¥,1(q,s) are calculated with the
[14] for ATC. In this section we want to show that these projector technique of Appendix B. They contribute to the

=o(r)Vi+G(r)Vye+ L(O)dsv[efv‘(s), (45)
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5 T | | T for A(q),¢(s), and G(s) obtained in Fourier space. This
) - SV 1 77 yields from expansions of the coefficients in powers of the
= S . ~ wave vectors corresponding derivative terms. One arrives at
5 the following system of equations for the roll envelofehe
8 twist amplitudee, and the mean-flow amplituds:
o
E | T A=[ €(1—e307) +1,051A—|Al2A—aq| A|255A
': .
5 -10 standard WNL, £=0.15 —agA2a;A* —ag(dyA)?A* —ayd dyAlPA—is;Ad,G
SO-‘D | I | extenfied WIIVL, 8=(|)062 b _iblA(?yQD_ibz(P(?yA_ﬂ(PzA, (478)
-15
20 30 40 50 60 70 80 90 .
de=(or+Ki)e+iy (A*aA—AIA*)
arg s (deg)
-9, &+, |A]%, (47b)
FIG. 5. Growth rates of long-wavelength perturbation modes
éV=a,V,(q.+s)+a_Vi(g.—9) of the normal rolls atg=q, in 0=vbr?2G+iq4<92(A*o’? A—AJ A*)+FG0’?2(|A|2<p),
ATC as a function of the modulation angle agg(The prediction y y y y y (470

of a zig-zag instability at=e,,=0.062 from the extended WNL

analysis(thick line) agrees with full numerical results and the ex- where we have recalled on the left hand side some of the
periments. The standard WNL analystbin line) predicts errone-  ime_derivative term§42]. Note that theA equation has been
ously a skewed-varicose instability at aspp{-50° €= €sy=0.15. multiplied by the characteristic time, and that the roll
modes have been rescaled for convenience by a fagtcor

. . ) =1/ this amounts to rescaling the amplitudes by a
we include in our analysis are the terms of ordéx gen- Yo ( g P y

erated by these quadratic modes and directly by the couplin{°t0" 18q,). Some coefficients in Eq47) are linked to the
of the twist mode with the roll modes: we add to the right coefficients appearing in E¢29) for nonmodulated rolls:
hand sidd , of Eq. (44) a contribution

solution with an amplitudé\¢. The higher-order termghat

9Ba(dc+ PY)
bZZTﬁzg—ppy ) B:Tﬁ3(qc)v
|3=J dsj qu dq’ ¢(s)A(a)A(q") P=0
V(0) W(dc) W(—dc)
X[(N2(V2r(@,9)]V4(@)+ No(Var(d,9)| Va(@) yr:agé%;py)po, r=a2l(q). (49

+Na(Va(a)|Va(a") VeI (46)

A typical set of coefficients is given for EC in Table Ill. Note
This addition is consistent with the scheme of Sec. IV A,that to lowest order in the amplitud€d?) reduces to the
since a particular contribution of E¢46) in then, equation  anisotropic Ginzburg-Landau equation farif ¢ andG are
leads for 6,0,9")=(0,d.,—q.) to the term+T(q.)|Al%¢  adiabatically eliminated or to the roll-mean-flow system
responsible of the abnormal-roll bifurcation. The important(35), (36) of [25] if ¢ is adiabatically eliminated. In Secs.
point is that Eq.(46) also induces corrections to the mean-v B and V C we will study the stability of the normal-roll
flow equations which turn out to resolve the difficulties solutionsA= \/e,p=0 of Egs.(47), and in Sec. V D we will
quoted in our Introduction. For instance, in ATC the standardstudy the stability of the abnormal-roll solution
WNL analysis predicts a skewed-varicose instability of the— /(e T he)/(1+b), ¢=(e—ear)/[B(1+D)] of Egs.
critical normal rolls ategy,=0.15, in contradiction to the ex- (47), whereeg=— o1 /T, andb=g,/(8T,).
perimental findings which show rather a zig-zag instability at ¢ ¢ ¢
much smallere(e,>=0.05 according to Fig. 4 df14]). The
inclusion of the termg46) in the perturbation analysis of
normal rolls drastically changes the form of the growth rate The results of the standard WNL analysis concerning the
as a function of the modulation anglgig. 5) and leads to a zig-zag instability of normal rolls are recovered if the cubic
zig-zag instability ate;,=0.062 comparable to the experi- terms implying the twist amplitude> are dropped in Eq.
ments. Since the zig-zag modulations are also for EC thé47), i.e., if one assumeB,=I'¢=0(8 andg, do not inter-
most dangerous destabilizing modes of rolls with a normalene at this stageln contrast td 25] the twist amplitudep
wave vector, we now disregard the general skewed-varicodeas not been adiabatically eliminated. Thus the contribution
case. Using the method exposed, for instancd 2B, we  of the twist dynamics appears now explicif43] in our
apply an inverse Fourier transform to the evolution equation$ormula for the zig-zag threshold,

B. Stability of normal rolls: Standard zig-zag mechanisms

TABLE 1. Coefficients of the roll-twist-mean-flow amplitude equatios), in EC for N5 atwcp=1.5.

€3 ) az ag dg aip S1 by b, B oT K1 Y e r, Vp Qs e

0.17 0.10 -0.20 0.027 0.28 033 20 0.19 0.23 0.26-0.042 0.088 0.16 0.0052 0.37 164 454 36.8
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TABLE IV. Coefficients determining the standard zig-zag threshid® for the critical normal rolls in
ATC (first line), and in EC at two different frequencidsecond and third line Note that the largest
contributions tod, (49) are always the twist contributionb?2y’/or and the mean-flow contribution

231q4/1/b .

r2 e3 a.7_a8 2b1'}/’/0"r 231Q4/Vb d2
ATC 0.22 0.29 —1.05 —3.29 1.16 —-1.13
EC atwcp=1 0.033 0.26 —0.22 —0.83 1.22 +0.43
EC atwcp=2 0.158 0.085 —-0.25 —2.09 1.07 —-1.19

2byy' 25,04 mean flow, quite different from the standard advection
t—. mechanismgdue to the ternv- Vo, in thev, equation rel-
(49) evant for isotropic fluids wherg,<<0. In EC, additionally
the term Zis(anS)(&f,(ﬁ) from the x component of the
The numerator , is the square of the coherence length in theCoulomb force gives large contributions tp,. It corre-
y direction, which vanishes at the Lifshitz point in EG:  sponds to an electric mechanism of generation of the mean
—0% whenw— | ; the denominatod, has to be positive flow. The coefficients; in Eq. (478 is dominated by the
for a destabilization to occur. Sindg and y' are always contributions of— yjv,dyn, in the n, equation for EC and
positive (and o1<<0), the twist contribution2b,y’'/o is  for ATC. Thus the mean flow51), by advection of the di-
negative, i.e., stabilizing. The coefficierlts and y’ appear rector field in the rolls, reinforces the zig-zag perturbation
to be dominated by the same nonlinearitiegasndy (Sec.  (Fig. 7). In ATC, this primary zig-zag mechanism cannot
IV C): the fact that the rolls get stiffer by an excitation of the compensate the stabilizing twist contribution, as shown in
twist is also a direct consequence of the “frustratio{8ec.  the first line of Table 1V:d,<0 in Eq.(49), i.e., no zig-zag
IV D). This becomes clear by inspection of thg andn, instability is predicted by the standard WNL analysis. The
fields generated by a zig-zag perturbation of the normal rollstwist contribution is overcompensated by the mean-flow one
Using the fact that the amplitudes for the modulation waveonly at low frequencies in EC, for instance @¢p=1 (sec-
vectors= py in a long-wavelength instability are almost op- ond line of Table IV. At higher », by and —2b,y'/or
posite, one finds to lowest order in the perturbation ampliincrease strongly, and, also becomes negativsee, e.g.,

Iz .
eézzd—z, with d,=e;+a;—ag+ - e

tudea: the third line of Table IV. The increase of the twist contri-
butions results from the contribution tb; due to term
n, €,Rdy(nyn,) in thez component of the Coulomb force. This
= =[—2Asin(qcx) +acogqcX)sin(py)]S;(z) term introduces an electric mechanism of stabilization of the
Nz zZig-zag perturbation by the twighote that it would become
a destabilizing for nematics witla,>0) which is only impor-
=-2A Sir{qcx— 24 SINPY) [$1(2), (503
0.25 —
Y’ Nz |
e=aA—pcogpy). (50b 020 -, ! -
eat L\ i
™
The zig-zag perturbation creates locally some obliqueness of ¢ 015 B S € ]
the rolls, i.e., a modulated, component of the local wave — . _ 1
vector, g,=— (a/2A)p cospy). According to (M2) (Sec. 0.10 = N > ]
IV D), the in-plane director in the regions of obliqueness I . |
is pushed away from the local wave vector: this creates 0.05 3% €22 Ear S
the splay-twist modulatio50b) (Fig. 7) [44]. According to 1
(M1), the feed-back of this twist modulation on the roll per- 0-0%3' i ' ; ;; 4
turbation is negative. The only destabilizing termslin(49) L w

are the one oé; (at least at not too large frequeneyin EC)
and more importantly thenean-flow contributio2s,q,4 /vy,
wheres; andq, are always positivg45]. The zig-zag per-
turbation(509 creates the mean flow

FIG. 6. Stability diagram for rolls aj=q.x in EC calculated
from Egs.(47), as a function of the dimensionless frequengyp
=7cpw. The unstable regions are in gray. Fof<w<wpgr, the
normal rolls are first destabilized af, (523 towards oblique rolls

V= (&yG)Pl(z):aA%pz sin(py)P1(2) (51) by a zig-zag instability. Fow> wag, the first instabili;y is_ akeag
Vp towards stable abnormal rolls. Abnormal rolls exist in general
o ) o abovee,g and restabilize fow< wag aboveepgga,- Note that the
sketched |n_F|g. 7.In EC gnd ATC, |mp9rtant contrlbytlonsstandard WNL zig-zag thresholdS, (49) [T's=T,=0 in Eq.
to g4 are given by the viscous terms in thg equation  (479], which diverges ab~1.23, is totally misleading. The results
as[ dy(Dyny) +d,(Dyn,) ], whereD,,= dwi=029,f. They  of the Galerkin computatiorid5] for the linese,, (diamonds$ and
signify anisotropic viscous mechanisms of creation of theesgga, (Squaresare included.
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tant at highw whereR gets large. Thus the standard zig-zag

thresholde3, diverges atwcp=1.23(Fig. 6) in distinct con-

tradiction to the experiments as well as to the Galerkin cal-
culations which have shown the existence of a zig-zag insta-

C. Stability of normal rolls: Secondary zig-zag mechanism

By inclusion of the higher-order ternis, andI'g in Eq.
(47), the zig-zag threshold, (49) is modified to

r

GZZ:d_z, with
1 (4
d3—§ d2+ mrz
r, 2 46T
+\/(d2—mr2 +8—|UT| rz), (529
sr— S - Pip (52b)
Vp ¢ |UT| ¢

If only ', is kept, thendI is negative and the argument of

the square root is usually negatit@xcept in EC forw very

close tow,), i.e., the divergence of the zig-zag threshol

persistgit is even more dramatic than with EG19), e.g., it
occurs now atwcp=~0.9 in EC). Indeed, the ternt’, |A[%¢p

in Eq. (47b) reduces the damping &f: it thus produces the

normal — abnormal roll instability, but it also enhances the
stabilizing influence of the twist dynamics on the zig-zag
instability. On the contrary, keeping only the contribution of

I'c in Eq. (52) yields a positivesI” sincel’g turns out to be
always positive. Thewl; reduces to

1 "or
6o ol e

dz= > (53

which stays positive finite even whah,— —«, i.e., even
when the WNL zig-zag threshol@9) diverges totally. The
exact zig-zag threshol@23 is shown in Fig. 6 for EG46].
The first correction to the standard WNL thresheff can
be calculated analytically: foro—w, and r,—0", €5,
—07, one finds

!

Y
€77= E;Z_ m 5F(E§Z)2+ 0(632)3,

EMMANUEL PLAUT AND WERNER PESCH
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FIG. 7. Sketch of the mechanisms driving the zig-zag instability
of normal rolls. The thick lines represent slightly undulated rolls,
i.e., with a modulated local wave vector [see Eq.(503]. The
ensuing roll curvature produces a mean flew(dashed arrows
which in turn advects the rolls and reinforces the undulations. In a
secondary mechanism, the undulations generate a splay- twist
modulation of the in-plane directan, (small arrows inside the
rolls), which in turn strongly reinforces, via a kind of “flow focus-
ing,” the mean-flow.

by a balance between tH&; effects mainly responsible for
the zig-zag instability(it occurs first if 5I'>0) and thel’,
deffects mainly responsible for the abnormal-roll instability
occurs first if SI'<<0). More quantitatively, for EC, our ex-
tended WNL computations reproduce the results of the
Galerkin computationgcompare Fig. 6 to Fig. 3 of15])
very well at smalle, whereas fore=0.07 our values o€,
become slightly too small; thus we find the crossover point at
wpr=2.9 instead ofw,g=2.4 from the Galerkin computa-
tions. This agreement is satisfactory, and our analysis has the
advantage of allowing for analytic modeling. For instance,
by adjustingr, andb;, using otherwise the coefficients of
Table IIl, one can perfectly reproduce the results of the full
numerical calculation. Such an adjustment could possibly be
used also for modeling experimental resuége also Sec.
V D).

The new zig-zag mechanism expressed byltheeffect
can be understood by inspecting the corrections to the per-
turbation fields. Without™,, one finds that the roll50a and
twist perturbationg50b) are unchanged, whereas the hori-
zontal velocity(51) is modified according to
2T Az)pzsimpywl(z). (54)

|<TT|

1
UX:aAV_b q4+

Thus the reinforcement of the zig-zag instability due to the

where, for EC, the prefactor ok},)? is —40. Thus, whereas TI'g term is a three-step procedu(Eig. 7). First, the roll
the slope of the zig-zag threshold at the Lifshitz point is notcurvature induces the splay-twist modulati&@®h). Second,
changed as compared with the standard WNL analysis, thiis splay-twist modulation reinforces the mean flow already
domain of validity of the standard WNL analysis appears toinduced by the roll curvaturé&erm ocq, in vy). Third, this

be very limited. The zig-zag thresholg,, (529 increases

with frequency essentially because of a strong increasg of
andb; with w. Eventuallye,, meets the abnormal-roll line

ear=|o7|/T, at a crossover frequencwar where dj
=r,/ear=r,I',,/|o|; according to Eq(52a, oI vanishes
at the crossover pointyI'>0 for w<wag,d'<0 for w

mean flow(as known already from the standard mechafism
reinforces the roll curvature. We find that in EC and in
ATC the dominant nonlinearities il are contribu-
tions from the viscous terms in the, equation 3[(as
_a’2)(azv>f<)nz(‘9yny)+(a’5+az)(axvz)nz(ayny)]r which
signifies a kind of “velocity focusing” associated with the

>wpr. The competition between the zig-zag and thelong-wavelength splay termyn, (Fig. 7). It would be inter-
abnormal-roll instabilities appears therefore to be controlledesting to confirm this mechanism experimentally by optical
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observations of the in-plane director: this should reveal, atl,,I',, anddI'' =y’ éI'/T",. The linear coefficients should
the onset of the zig-zag instability, the splay-twist modula-be relatively easy to determine in experiments. Measure-

tion shown in Fig. 7. ments ofexg for w>war, together with an extrapolation in
the domainw<war (observe thate g(w) is very smooth
D. Restabilization of abnormal rolls at higher e [Fig. 2b)]), would then yield the values df,. The remain-

ng coefficientsd, and SI'" could then be determined by

In the parameter region where the normal rolls are first. = .
destabilized by the zig-zag instabilitgasew< wag in EC, fnttmg the expressiong2g and(55) of ez; andeprspto the
measured values of the zig-zag and abnormal-roll restabili-

usual case in ATE abnormal-roll solutions nevertheless ex- _ .

. . zation thresholds.

ist for e>epg™>€,7. FOr symmetry reasons it seems clear

that a sulfficiently large rotation of the in-plane director will

render these abnormal rolls stiff against long-wavelength VI. NONLINEAR BIMODAL SOLUTIONS

zig-zag perturbations where the resonant interaction between Abnormal or oblique rolls of wave vectay are stable

the two modulation modes at py is important. A stability  against long-wavelength perturbations in an intermedéate
analysis of Eq(47) does reveal the existence of a third sta- range; e.g., in EC the abnormal rolls for exrgap. EXpeTi-
bility boundary earstar> €ar™> €2z Where the zig-zag modu- ments(see, e.g.[20,19), as well as numerical simulations
lations of the abnormal-roll solutions are damped out. ThE{27] or WNL analysegsee, e.g.[26]), have shown that they
y——y symmetry in Eq.(47) is broken by theb, and 8 are rather destabilized in this regime by a short-wavelength
terms in theA equation(47a), the termsg, andl', inthe  mode of wave vectok leading to a bimodal structure. Am-
equation(47b), and the ternT’g in the mean-flow equation plitude equations modeling such instabilities can be derived
(470). The coefficientd, andg, seem to play no important \ith calculations similar to those of Sec. IV A, where we add
role since their suppression only changes sliglily less g secondary roll mode to the basic ansatz for the extended
than 2%) the value Opgsian Assuming thereford, =g, WNL solutions(25), now

=0 in Eq. (47), one obtains the following approximate for-

mula: V=V +V,=[AV.(q)+BVy(k)+c.c]+oVi+V, .

y (57)
—1= 5Fd_4’ with One should realize that since we leave the “very snadll

region, no quantitative results are to be expected in general.
ST Nevertheless, we will obtain in some regim&C at highw)
df%[ﬁrz—dﬁ 27'F— semiguantitative results, and, more importantly, qualitative
T ¢ results concerning the origin of the bimodal instability and
\/ . the further stability of the bimodal solutions themselves
+ r

r 2 r

—ry—dy+2y'—| —4dezy'=|. (55 (which had never been studied theoretically

|0-T| r(p F‘p
This shows clearly that the lines;,exr, and earstan MUSt A. Bimodal-twist amplitude equations
meet at the crossover poial'=0 in EC. An expansion of  \yjth the scheme of Appendix B and calculations per-
Egs. (528 and (59) in the vicinity of this point @  fymed atR=R,(q) in order to avoidR dependencies of the

€ARstab

€AR

—wpr I EC) yields a relation between their slopes: nonlinear coefficients in the amplitude equations, we get
(6 . , from Eq. (57)
ARstab zz Y
——1)~—2 ——1)~—6F.
€ € T (ro/epng—dy) €—€0(Q)
& . LETRTE 5 HA=| —— g AP+ Bo@) o~ Ba(a)¢? | A
q
This constraint on the slopes of the linegrgf @) and —gkq|B|2A,
e,7(w) at the crossover point could be easily tested experi-
mentally  [47]. Here we  predict esg=0.076 gt(p:[gT_g¢¢2+r(q)|A|2+r(k)|B|2]¢
—0.030w, €prstan/ €Ear— 1=—0.19%w or equivalently 5 5
€arstar=0.076-0.0480 for Sw=w—war=0(1), with — Y(@[A]*= ¥(k)[B[%,
frequencies in units of-gé. The line exrstad @) calculated
without approximations is shown in Fig. 6 for EC and _[e—el(k) ) 3 )
matches roughly the numerical reslt$] for not too small B= e 9kl Bl“+ Ba(k) o — B3(k) ¢*| B

w. However, e rsaf @) increases too steeply with decreas- )
ing w in contrast with the full numerical resultsee the —JqlAl“B. (58)
squares in Fig. 6 and Fig. 3 ¢15]). Indeed at low frequen- ) o .
cies, very high amplitudes are attained fer0.15 (Sec.  1he coupling coefficiengq is
IV B 2) and the WNL perturbation approach is no longer
justified. Igk=—(U1(k),No(V1(—a)|V,(q,k))
Note that only a few parameters determine the position of +No (V1 ()| Vol — q,k)) + No(Va(G, — q)| V4 (K))
the bifurcation linesez; (528, epg and earsian (55): the lin-
ear coefficients ,,e;, ando and the nonlinear coefficients +N3(Vi(@)[Vi(—a)|V1(k))), (59)
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TABLE V. Coefficients of the bimodal-twist amplitude equatiofa8), in ATC for an experimental zig wave vectgrand the corre-
sponding dual wave vectdr (see texk

Tq €0(0) Jq B2(0) B3(0) kg Tk €o(K) Ok Bo(K) B3(K) gk
267 0.013 0.0054 0.00010 0.0011 0.013 431 0.16 0.0024—-0.0010 0.0017 0.0025
o7 9 I'(a) I'(k) ¥(a) ¥(K)
—0.00081 0.00010 0.0077 0.0034 0.0014 —0.0048

where the second harmonics are defined as in(E), e.g., [14]. The corresponding coefficienFable V) will be used
in Sec. VI C for numerical simulations of the syst¢&8).
Vz(q,k)z—LF}Ol(q)-NZ(Vl(q)lvl(k)). (60) For all these bimodal instabilities, the leading positive
contribution to ogy(q;K;egy) (61) is always B,(k)e,
whereas thétypically negative contribution of B3(k) ¢? is
B. Bimodal instability smaller in magnitud¢51]. This proves that the director ro-
Consider a primary solution of the zig type characterized@tion (¢<<0) in the primary rolls is the main cause for the
by a wave vectorq=q§<+ p§/ with p=0, an amplitudeA excitation of_ a mode with wave vector m_the zag region. This
=A(g;e), and an in-plane director rotatiop= ¢(q;€)<0 holds for primary abnormal|i_=0) or obl_lque rolls =>0)
(this can include both abnormal-and oblique-roll solutions,ar".j generalizes the mechanism |dent|f|<_ac[26] for ATC,
see the discussion at the end of Sec. IV The growth rate which appears to be also valid for EC. Finally, note that this

of the short-wavelength perturbation of wave vedtode- mechanism can also be understood from the frustration in-

; troduced in Sec. IV D: the director rotation in zigs being
duced from Eq(58) is driven by(M2) and the subsequent excitation of a zag roll by
B e—e€g(K) ) (M1).
opv(GK; €)=—5== T—k+ﬁz(k) ¢—PB3(k) ¢

C. Bimodal-twist solutions—Hopf bifurcation

_ 2
qulA' : (6D The main advantage of the model systés) is that ap-

proximate bimodal solutions can be calculated, and that their
stability can now be studied. LeA,B+#0, then Eq.(58)
))/ields a cubic equation fop after the elimination of A|?
and|B|2. For primary abnormal rolls, there exists a unique
stable solution fokegy, < €< €pqps (SEE below foreyqy), and
the bimodal bifurcation is supercritical. For primary oblique
rolls, we find a stable solution in a slightly largerdomain,

€gy — Oegy< €< €pqp: the bimodal bifurcation is, in fact,
slightly subcritical. With the parameters of Table ¥egy,
=0.002<1: the corresponding hysteresis appears to be im-
possible to observe experimentally. However, the jum@ in
and ¢ at e= egy are not small and might be observalkéee
the left side of Fig. 8 Note that after the bimodal transition,

¢ increases steeply owing to the teray(k)|B|? in the ¢
equation, wherey(k) <0 sincek is zag. The stability of the
bimodal branch against perturbationsAnB, and ¢ can be
studied by linearization of E458). One always finds a Hopf

In EC and in ATC,ogy first becomes positive at= eg,, for

a certain wave vectok (the “dual” of q) of the zag type
(ky<<0). This selection can be heuristically understood b
noticing that the growth ratergy(q;k;e) at the dualk is
much larger thawg,(q;k’; €) for ak’ in the zig region, e.g.,
atk’=S(k). Since the coefficientsy(k), 7, andB5(k) are
unchanged under the application & and gq. is only
slightly modified [52], one obtains ogy(q;k;e)
=oy(0;S(k); e)+285(k) : the fact thatB,(k) is large
and negative in the zag regidand ¢<0) explains the se-
lection. Typicallyk+# S(q) so the resulting unsymmetric bi-
modal is of the “bimodal varicose” typgl4].

In EC for the abnormal rolls aj=q., we find values of
egy that are too small at low. The reason is thdtp(q; €)|
gets too large when compared with the Galerkin computa
tions (Sec. IV B 2. However, the position of the dual is

qualitatively correct. For instance, alcp=1 we find k| g, rcation at sufficiently largee™ ey qpr. With the coeffi-
=118y, argk=—67 0[48]’ to be cqmpared W!th|k| cients of Table V,eyop=0.22, and the development of the
=1.01q;,argk=—61 ° from the Galerkin computations. At ¢ hifyrcation is shown, on the right side of Fig. 8, by a
h|gher.w, since the abnqrmal-roll solutions are closer to the;mea_forward simulation of Eq(58) after a jump frome
numerical Galerkin solutiontSec. IV B 2 and Fig. B both =0.22 to 0.228. The two amplitudes oscillate roughly out of
egy and k agree reasonably well with the ones from the jnaqe a5 observed experimentally in the oscillating bimodals
Galerkin computations. For instance, @gp=2.4, we find  (see, e.g.[19] or Fig. 12 of[20]). The calculated period of
epy=0.186|k| =0.98]c ,arge=—33 [49]0' to be compared  hegehimodal-twist oscillationss T=48r,=447, which is

with egy=0.183]k|=0.95 ,argk=—26 ° from the Galer- o 100 far from the periods measured experimentally,
kin computations. We mention that the bifurcation to the:lST [20]. The existence of these oscillations is robust

bimodal vgricose ha_s also begn eVide”9ed recently in EC c};(gainst changes in the parameters of Table V, provided that
the nematic 152 at high electric conductivitg0]. their sign is left unchanged.

In ATC, for the primary zig modeq=1.07q(x cos 8° In order to analyze the origin of these oscillations, we
+y sin 8°), we findegy=0.176|k|=0.86q|,argk=—32°, in  now focus on the simpler case of a symmetric bimoklal
gualitative agreement with the experimental observations=S(q). Such symmetric bimodals are often observed at
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FIG. 8. Solutions of the coupled amplitude equati@® modeling the interactions between two roll modes of wave vegt@ig) and
k (zag and the homogeneous twist mode. The coefficients of Table V have been used, and the roll am¥litbotelne), B (dotted ling
have been multiplied by 2 in order to display the leading amplitudes ohihigeld in Eq. (57), n,=—[2Asing-r+2B sink-r]S;(z)
+h.o.t. The amplitude (thick line) determines to lowest order the angle between the average in-plane directorlaftipanel: stationary
solutions obtained in the “lowe” regime. For ey(q)<e<egy, one has monomode solutiond£0B=0). At e=e€g,, a subcritical
bifurcation towards a bimodalA;B+#0) occurs; only the stable bimodal solutions are then shown. Right panel: behavior just above the
threshold of the Hopf bifurcatiosy,ps. After a jump frome=0.22< €41 t0 €=0.228> €44, regular out of phase oscillations AfandB
develop, which are mediated by an oscillation of the in-plane director.

rather high values of the control parameter in EC and in ATCovercompensate the damping of the moldesa and ¢, i.e.,
after an evolution withR of the wave vectors of the bimodal if the trace of the matriX63) is positive:
varicose[53]. In this symmetric case, assuming that Esf)

is still valid to describe the dynamics of the system, an ana- 2¢'(l'+g—1)+o1>0=I'>1-g,

lytic calculation of the Hopf threshold becomes tractable.

Since the phases & andB are not coupled by the system L, 1 oy

(58), we can consider these amplitudes to be real without € = €opt— 5 T+g-1 (64)
loss of generality. After some simple rescalings, EsR)

takes the simpler form b—a will even change sign and thus make the director rotate

in the opposite directiotnow towards the zagThus a Hopf
bifurcation will occur, under the additional conditions that
the discriminant of the systeni63) is negative ate’

A= (e= A+ Brp— B3p?)A—gB?A,

do=[07r—0,0°+T(A2+B?) ]+ y(BZ-A?),

:EI,—Iopf:
9B=(e—B’— Bop— B3¢?)B—gA’B, (62) 4o-]
T
- —1)2=2B,y(I' +g—1)]<0,
where  g=gs(g)=9s(a)q:B2= B2(d) = — B2(S(0))>0,y (F+g—1)2[|UT|(g )" 2B2y(T+g=1)]
=v(q)=—y(S(q))>0. Forg>—1, this system admits sta- (65)

tionary bimodal solutions given byA=B=e€/(1+Q)
=€ ,0=0. If we perturb these solutions according to and that a stationary instability does not occur before:

A=\e'+a, B=\e'+b, ¢=0+¢, lor|(g—1)—28,¥<0. (66)

it turns out that the modes+ b andb—a are decoupled, and These conditions are typically fulfilled sinde| is small
that the former is always damped. The perturbation systerwhereas the produgs,y is large in oblique rolls. This, to-

then reduces to gether with the fact that the instability conditio®4) is easy
to realize with the largé’ expected for nematic convection,
d(b—a)=—-2€'(1—-g)(b—a)— 2,82\/?go, proves that the bimodal-twist oscillations are generic, as ex-

pected from the experiments. The leading mechanism,
dp=2y\e (b—a)+(or+2le)e. (63  clearly linked to the fact thaB,(q) and y(q) change sign

when passing from the zig to the zag, is sketched in Fig. 9. It
If we suppose that a fluctuation in the roll amplitudes favorscan be interpreted in terms of the director—wave-vector frus-
the zag modeB, then the director will avoid the stronger tration introduced in Sec. IV D. Indeed, if a fluctuation fa-
gradients along the zag wave vector by rotating towards thgors one roll amplitude in the bimodal, accordingk2) the
Zig: ¢ then becomes positive due to thigerm in the second director will be pushed away from the wave vector of this
equation. But this rotation will then favak, at the expense roll mode. Thus the director will approach the wave vector of
of B, due to theB, term in the first equatiorb—a will now  the other roll mode, which will be reinforced according to
decrease. If thé'e’ term in Eq.(63) is sufficiently large to  (M1), and so on(Fig. 9.
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almost parallel to the roll wave vectors, whereas the viscous
torques always push it awapec. IV D. This explains the
close analogy between electroconvection and thermoconvec-
tion.

A systematic calculation of the order-parameter equations
as presented here might also provide a better understanding
of the microscopic mechanisms for other systems where
slow modes play an important role. Examples are binary

FIG. 9. Sketch of the mechanism driving the bimodal-twist os-fI id i ith s| trati é'gl
cillations. The thin arrows show the zigontinuous ling and the uid convection with slow concentration modésl] or nem-

zag(dashed linpwave vectors of the two roll modes in the bimo- &tiC elgctrogonvecnon in the presence of weak?electrolyte ef-
dal. The magnitude of the corresponding amplitudeand B is ~ T€CtS, in which slow charge modes allegedly drive the forma-
symbolized by the size of the Fourier spots attached to these wa#n of the surprising “worms”[55]. .
vectors. The in-plane directog,, such thany-y =, is drawn with We hope that our resuIFs will stimulate new expenmental
the thick arrow. The four elementary steps during one oscillatiorStudies of electroconvection and thermoconvection, where
are shown side by side. The torquer, exerted by the rolls on the SOMe features characteristic of the roll-twist-mean-flow inter-
director is sketched with the vertical arrows, and the posiinega- ~ actions could be evidenced: e.g., the dynamics at the zig-zag
tive) feedback from the director to the roll amplitudes is indicatedinstability (Fig. 7), the in-plane director oscillations underly-
with the +(—). ing the bimodal oscillationgFig. 9), or the change in the
trajectory trace quoted in Appendix C. Since all the basic
In fact, secondary indirect mechanisms for the feedbackstructures and instability lines are now well understood, this
oA implied in this instability loop are provided by the work also establishes a starting point for a systematic theo-
interactionsp«— B andB+« A. For instance, an increase ¢f  retical study of more complicated nonperiodic patterns. For
leads to an increase @f (second step of Fig.)®ue to the instance, the rich dynamics of structures with point defects
term in 8,(q)>0 in Eq. (58), but also because it first pro- or walls [56] needs further investigation. In particular, the
duces a decrease Bf[due to the terms i8,(k)<0,85(k)  spatiotemporal chaos observed under certain experimental
>0] which then drives an increase Af(due to the term in conditions might be better described and understood from
Okg>0). In a similar way, an increase éfdrives a decrease envelope equations of a type similar to E¢47). For that
of ¢ (third step of Fig. 9 directly due to they(q) term  purpose, an extension of these equations to the case of a
[ ¥(g)>0], or indirectly, via a decrease & due to thegyy general spatial dependencboth dy and 9,#0) is under
and y(k) terms[gq>0 andy(k)<0]. An important con- ~Way. It would also be interesting to reanalyze the phase dy-
sequence of these indirect mechanisms is that the oscillatiof&mics in the oscillating bimodals, which had been previ-
also develop in a bimodal constructed on primary abnormapusly described on the basis of phenomenological models
rolls for which B8,(q) = y(q) =0. Indeed, simulations of Eq. [57].
(58 with a set of coefficients calculated in EC of N5 at We note finally the similarities with homeotropic nematic
wcp=2.4 for the bimodal constructed on the abnormal rollselectroconvection, where one sats-z at the plates and
at g=q. show the same sequence as in Fig. 8, now withtherefore the rotational symmetry aroumds initially not
egy=0.186 andey,,=0.24. Of course, these oscillations broken. Convection sets in after an electric’ detericksz

disappear ifgq, or gyq are set negative. transition where the in-plane director orientation is selected,
and the associated Goldstone mode plays a role analogous to
VIl. CONCLUSION our twist mode in planar convection. In fact, the first experi-

o o ) ) ments pointing to the existence of abnormal rolls were per-

A minimal description of planar nematic convection hasformed in homeotropic electroconvecti¢sg], and the am-
been obtained which captures the generic bifurcation seyjitude equations derived for this system[B0] are similar
quences known experimentally. It is based on a systematig, our amplitude equations in their simplest fof®]. In the
WNL analysis where the active mode basis has been exyresence of a planar magnetic field, the homeotropic system
tended: besides the standard roll modes, “slow modes” conpecomes anisotropic. Galerkin computatipd@] and experi-
sisting of homogeneous or quasihomogeneous twist modegients[61] have then shown sequences of bifurcations iden-
of the director have also been included. The evolution equaca| to the ones observed in the planar case. It would be
tions coupling the corresponding order parametevith the  interesting to systematically calculate the corresponding
roll amplitudesA (or B) and with the mean-flow amplitud®  order-parameter equations, particularly to elucidate the role
[Egs. (29), (47), and (58)] have allowed a quantitative de- of the mean flow in this homeotropic case.
scription of the first bifurcations at small(see, e.g., Fig. 11

and a qualitative description of the subsequent bifurcations at

highere (see, e.g., Fig.)8 Due to the semianalytic nature of ACKNOWLEDGMENTS

the calculations, the dominant nonlinear microscopic mecha-
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APPENDIX A: LINEAR EQUATIONS Da,V=LV+N,(V,V)+Nz(V,V,V), (B1)
FOR THE FOCUSING MECHANISMS

The focusing mechanisms and the analogy between E@ith the order-parameter approach. The main control param-
and ATC become clearer by inspection of the correspondingter R (not recalled in order to simplify the notations
dimensionless linear equations. In EC, the evolution of thdixed. The linear modes, the solutions of
scalar field, the electric potentidl, is governed by Eq(5),

a(m)DVy(m)=LV,(m), (B2)
- (GLVZ"_ 6a07>2<) d1p+ €20((Eacdyny)
_ P N are indexed by a collection of numberg for instance, in
Qo Vo 0adi) b= QoaBac(dxnz), (AD) the “extended layer” geometrym=(q,n) whereq is the
_ _ _ _ horizontal wave vector and indexes the vertical depen-
with E,c=coswt. This equation presents the same kind ofdence(in z). These linear modes are assumed to form a basis
focusing terms ¢dsn,) as the evolution equation for the in Vv space. With the help of a Hermitian scalar produc¥in
temperature modulatiof in ATC which follows from Eq.  space, U.V)—(U,V), we define the adjoint linear operators
(), D" andL" by (U,D-V)=(D'-U,V), and the adjoint linear
modes as the solutions of
3.0= (K, V2+ Kaﬁi)0+ Rv,—Rkzdn, . (A2)
o(mD™ U (m)=L"U;(m). (B3)
The evolution equation fon,, deduced from Eq(1), con-
tains in both cases the same elastic and viscous terms,  They can be normalized such that

Y10tN,= (K305 + Kopdg +K1192)N, (Uy(m),DVy(m"))=8(m—m"). (B4)

+ (k1= ko) dyd Ny — a2y ,— azdu+hy e
(k1™ Kz0) 9y 9oy = apdy0 .~ aadyvcthy The growth rateso(m) are assumed real. We distinguish

(A3)  between theactive mode®f growth rates(m) > —c (which
defines a domaimd in m spacé and thepassive modesf

with the dimensionless units for EC; the important term heregrowth rateo(m)<—c (which defines a domaiP in m
is the viscous torque d,v,. In EC additional electric terms spacg. Usually in the solutions of EqB1) there is a clear
come in, separation between the growth rates of the excited active
modes and the growth rates of the excited passive m@ges
r_ below), and therefore the exact value ofs not very impor-
h; = €aRn~ 2€aREacdud, (Ad) tant. We assume the existence of a primary inst);tbili‘t)y:
which.are only .important at high frequencies. F_inally, the maxo(m) = >0, (B5)
evolution equation forw,, deduced from Eq(3), is also me A
rather similar for both systems,

5 , 5 with e<<c. The orthogonality rul¢B4) allows the definition
Pmtz— @201 03N;= (Vedy+ vady+ vad;) v, of a projector onto the active mode space by

1
Z Ayt fuol, (AB
+ 2(a2+ as) vyt fyor, (AD) PAV:mEA (U1(m),DV)V,(m), (B6)

with the dimensionless units for EGor ATC one has only _
to changep,, into 1/Pr), with the bulk force being given by and onto the passive mode space by
the Coulomb forcé6) in EC,

fom €aRON,— 2REo(€, Vot 602 (AG) (1-PV= X (Uy(m'),DV)Vy(m').  (B7)

m' eP
and by the buoyancy forc@) in ATC, Thus a natural decomposition of possible approximate solu-
tions of the evolution equatio(B1l) is
fuo= 0. (A7)
V=V, +V,
APPENDIX B: EXTENSDCED WEAKLY NONLINEAR =P V+(1-P )V
HEME
In this appendix we show how to calculate approximate = > AMVim)+ 2, B(m)Vy(m'). (B8)
me A m' eP

WNL solutions of a problem of the form
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where we have introduced the notatiguised in the rest of

A modeV,(m) orV,(m’) is “excited” if the corresponding the paper for the cubic order

amplitudeA(m) or B(m') is nonzero; theA(m) constitute,
in fact, the “active amplitudes” or “order parameters”
which will define the solution. In order to show this, we
introduce the coprojectd?’, defined by

N,(alb)=N,(a,b)+Ny(b,a),
Nj(ajalb)=Ns(a,a,b)+Ns(a,b,a)+Ns(b,a,a),

PQVzmgA (U1(m),V)DV4(m), (B9) Nj(alb|c)=Ns;(a,b,c) +Ns(a,c,b)+Ng(b,a,c)
+Nj3(c,a,b)+Nj3(b,c,a) +Nj(c,b,a).

such thatP’,D=DP 4 and P,L=LP 4. The application of (B14)

(1-P/) on Eq.(B1) then gives to lowest order

DoV, =LV, +(1—P/ONo(V4,V.0), (810)  In practice, often the eigenmodes the operators andN,)
at the control parametd® are not used to calculate the non-
which shows that it , is assumed to be of ordéy; VV, is of linear coefficients of the amplitude equations since this
order A%>. Moreover, the projection of Eq(B10) onto  would introduce arR dependence of these coefficients. In-

U,(m’) gives stead, one uses, for instance, in convection the neutral roll
, , , , modesV,(q) :=V(q;Ry(q)) instead ofV,(q;R) or evaluates
aB(m")=o(m")B(m’)+(Us(m"),Ny(V 4,V4)). L~ '=Lg'in Eq.(B12) atR=Ry(q); clearly this introduces

only small numerical corrections to the scheme. Note finally

Assuming thaw, is of the order of the maximum growth rate that the scalar product in our layer geometry is defined by

of the active mode€B5), we getd,<|a(m’)| and can there-

fore perform amadiabatic eliminationof B(m’), . o
(U(2)e'9",V(z)e'? ")

1
N ’ 2 (z=wl2
B(m')= a'(m’)<U1(m ):N2(V4,Vy0), (Bl :5(q_q’);JZ:,,,,2U*(Z)t V(z)dz (B15)

or equivalently solve EqB10) by
APPENDIX C: ANALYTIC APPROXIMATION

—_| 11 _p
Vi=—L 7 (1=PYN2AV4, V). (B12) OF THE NONLINEAR ROLL-TWIST COEFFICIENT I’
The projection of Eq(B1) onto theU;(m) gives the final In this appendix we use the lowest-order Galerkin expan-
active amplitude equations sion to give analytic approximations of the coefficidi(i)

(33) and to elucidate the corresponding mechanigaisy
dA(M)=o(m)A(m)+{U;(m),No(V 4,V 1) +Nx(V 4V ~ . . . "
A= a(MAM) +(U(M)Nao(Vs, V.0 +Na(Val Vi) =q.x). The contribution['5(q) of the cubic nonlinearities

+N3(V4, V4, V), (B13)  then reads

- ~ 6(Kag—kp) 05— 2kazt koo, 3 ~ o~ o~ ~
2.2 a|qcFn, + 1.56xaq T, + 7 nZ+ 7 dcReN($+¢*)—4q$[°] in EC

I'3(q)=
7l 6(kas—Ka2) 05— 2Kazt Koo, (CY

ACFT7,) n; inATC,

2.21| a,|qcfn,+ 1.56053Fn,+

where the numerical constants arise from Galerkin overlapve will now focus. With the use of the quadratic mode

integrals. Since for EC the electric contributiond,) is al-  V,(q,T) (28), which reads

ways negligible, the same effects control the valuéd gffq)

in EC and in ATC. Typically, the first term proportional to —(ORT =T igcx

a, (noted hereafteF 5,;) is by far the largest, followed by Va(a.1)=(0ny%(2),0.0g7S,(2))e, €23

the elastic contributionI(5e5g) . FOr instance, in EC abcp !

—0.5, one has Ty oM aunt =10.84,0.18T'5(q), while at "€ finds

wcp= 44T ayise, [ 3elast ={0.66,0.321"3(q); in ATC, 5 o 5

{T 3visc: T setast ={0.91,0.07T 3(q). 1l 2(0) =2.30 2| qZFny + 2| a5/ qcn,g" - 0.6462502Tn]
There are also contributions of the quadratic nonlineari- ——

ties tol'(q) (33), which are only important in EC on which + (K1~ Kz gen Ny , (C3
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] FIG. 10. In EC for MBBA (like Fig. 1): (a)

] growth rateo; of the homogeneous twist mode
3 in units of the characteristic time (b) saturation

. coefficientgqc of the critical normal rolls.
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where the first two terms dominate. They originate fram
terms in NZny(Vl(—q)lvz(q,T)), namely a,v-Vn,

— ay(dwx)ny for the termecn] , and — ayny(d,v,) for the
termecg". The first term in Eq(C3), «ny, is always posi-
tive. This is due to the fact thit;> 0, as can be seen from
the result of the adiabatic elimination E@8),

Ny =[4kortkaa0?2] (M) +|as0%gT),  (C4a
9" =[02(4v,+vad)] Yg’, (C4b
where
=~ 737 Ki1—Ksz ~
ny=(0.323a2|—1.15a3)qcf+ 5 gch,, (C53

9’ =(0.735; +0.618 arp| + 0.36 73— 0.206w5

+0.367a) Q7T + 1.2 g+ ) 92T (C5b
In Eqg. (C53, ﬁ; is dominated by thev, contribution origi-
nating from the termu,(dyv,)ny in N2ny(V1(CI)|VT)§ in Eq.

(C4a, ny is also dominated by this contribution fronj,.
Thus a, mechanisms impose the positive value Iof(q)
C3.

( 'Izhe increase of ,(q) with the frequencyw [Fig. 2(8)] is
in fact due to a change of sign of the second tergl in Eq.
(C3). Equation(C5b) gives g’ =(13.92—28.5)3%f which
shows thatg” and'g’ are negative at low» whereq is
small, and positive at highh whereq, becomes large. This
change of sign is mainly due to the, contribution in Eq.
(C5b) originating from the term a,dy(v,d,ny) in

15

=qX+ py with p=0; ¢<0) one expects according to Egs.
(25), (27) for the component of the velocity parallel to the
axis of the rollg[Eqg. (B.4) of [29]],

v;=2A[al[g(a)+¢a"(a)]Sx(2)sin(q-r) +h.o.t.
For smallp,g(a)=0,p, and therefore

v|=2A0[9:p+ ¢ (0cX)1S,(2)sin(g-1).  (CH)

Sinceg,>0, one hagy;p>0 in zig oblique rolls, whereas

¢§T(qc>§)<0. Thus, wherp decreasegthis happens sponta-
neously under certain conditions in EC, see, ¢1p]), one
expects a change of sign of arctayi¢, ), the angle between
the trajectories and the wave vector of the rfils being the
velocity perpendicular to the axis of the rollg;, =

—2ch"f(qC>A<)C1(z)sin(q~ r) according to Eq(B.3) of [29]].

APPENDIX D: RESULTS FOR THE
ELECTROCONVECTION OF THE NEMATIC MBBA

The (commonly used nematic MBBA is an interesting
example of material without a Lifshitz point. Moreover, in
recent experiments the excitation of the twist mode has just
been evidenced directly with some special optical methods
[17]. For MBBA, the crossover frequency to the dielectric
regime iSwD=2.3TEEl). We show in Fig. 10 the standard
WNL coefficients and in Fig. 11 the predictions of the ex-
tended WNL theory concerning the bifurcations of rolls with
a normal wave vector. Note that the quadratic effeéts) (
determining the value oF (33) become dominant at high
frequency. Concerning the long-wavelength instabilities, one
sees that the standard WNL zig-zag lieg, is always lo-
cated above the abnormal-roll lirgg: thus no zig-zag in-

Nz, (V1(q)[V7) [62]. It has some consequences on the anglatapility would be predicted to occur below the abnormal-
between the projection of the trajectories in the horizontakoll threshold if the new terni’; were not included in Eqg.
plane and the axis of the rolls, which could be observed47¢. Within the extended WNL theory, the crossover be-

experimentally. In “zig” abnormal or oblique rolls

tween the zig-zag and the abnormal-roll instability occurs at

FIG. 11. In EC for MBBA:(a) coupling co-
efficientI’(q.) (33) between the critical rolls and
the twist mode, as in Fig.(8) for N5; (b) stability
diagram, as in Fig. 6 for N5. The closed squares
and diamonds display the results of the full non-
linear Galerkin computations3,28].
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wAR=1.3, with GAR:OOQS_OOS%Q), fARstab/EAR_l
=—-0.415w or equivalently earsias=0.095-0.0975w for
dw=w—war=0(1), with frequencies in units ofrc3.
Note the good agreement efriap With the numerical cal-

EMMANUEL PLAUT AND WERNER PESCH

PRE 59

culations; this is due to the fact that the amplitudes are
smaller in MBBA than in N5. Note also that the bifurcations
at zero frequency are similar to those for ATC of 5CB at zero
magnetic field.
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