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Extended weakly nonlinear theory of planar nematic convection

Emmanuel Plaut* and Werner Pesch
Physikalisches Institut der Universita¨t Bayreuth, 95440 Bayreuth, Germany

~Received: 13 May 1998!

We study theoretically convection phenomena in a laterally extended planar nematic layer driven by an
ac-electric field~electroconvection in the conduction regime! or by a thermal gradient~thermoconvection!. We
use an order-parameter approach and demonstrate that the sequence of bifurcations found experimentally or in
the numerical computations can be recovered, provided a homogeneous twist mode of the director is consid-
ered as a new active mode. Thus we elucidate the bifurcation to the new ‘‘abnormal rolls’’@E. Plautet al.,
Phys. Rev. Lett.79, 2367~1997!#. The coupling between spatial modulations of the twist mode and the mean
flow is shown to give an important mechanism for the long-wavelength zig-zag instability. The twist mode is
also responsible for the widely observed bimodal instability of rolls. Finally, a Hopf bifurcation in the resulting
bimodal structures is found, which consists of director oscillations coupled with a periodic switching between
the two roll amplitudes. A systematic investigation of themicroscopicmechanisms controlling all these
bifurcations is presented. This establishes a close analogy between electroconvection and thermoconvection.
Moreover, a ‘‘director–wave-vector frustration’’ is found to explain most of the bifurcations.
@S1063-651X~99!01102-2#

PACS number~s!: 47.20.Ky, 47.20.Bp, 42.70.Df
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I. INTRODUCTION

The rich variety of instabilities in nematic liquid crysta
has always attracted great interest among experimenta
and theorists@1–3#. Nematic liquid crystals are fluids whic
show a long-range uniaxial ordering in the orientation
their rodlike molecules. The average orientation defines
director fieldn, which is also the local anisotropy axis of th
medium. Due to the coupling ofn to the other fields of the
fluid ~velocity, temperature, etc.!, specific focusing mecha-
nismslead to new convective instabilities@4,5#. In the planar
setup used by most researchers, a nematic layer is s
wiched between two horizontal plates, where the directo

fixed in a horizontal directionx̂ ~planar anchoring!. Since the
rotational symmetry in the layer plane is broken, this syst
has become a prime example for anisotropic convec
@3,6#.

Two realizations of convection in a planar nematic lay
exist. Under the application of a vertical~alongz) ac-electric
field of angular frequencyv, charge focusing@4,7# leads to
electroconvection ~EC!. Thin cells of thickness d
.10–100 mm can be used. Consequently the characteri
times are small and very large aspect ratios~cell width/d)
can be obtained; also for these reasons EC has been e
sively studied@6#. Alternatively, by heating a planar nemat
layer from belowheat focusing@5# leads to anisotropic ther
moconvection~ATC!. The characteristic times in ATC ar
annoyingly long except when a large director-stabilizing p
nar magnetic field (i x̂) is applied as in@8#. On the other
hand, this system is interesting since its theoretical desc
tion is somewhat simpler than in EC.

*Present address: Laboratoire d’Energe´tique et de Me´canique
Théorique et Applique´e, 2 av. de la Foreˆt de Haye, 54504 Vandoeu
vre Cedex, France.
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In this paper we will concentrate on the ‘‘directo
dominated regime’’ where the slow dynamics of the direc
field determines the longest characteristic-time scale. T
regime corresponds to EC at low frequencies in the cond
tion regime and to ATC in the absence of~or at very small!
stabilizing magnetic fields. Most of the experimental stud
of EC have been performed until recently in this regime;
new weak-electrolyte effects@9,10# relevant for high fre-
quencies, thin cells, or nematic materials with a very sm
dielectric anisotropyea will not be included. In the director-
dominated regime the sequences of spatio-temporal st
tures found experimentally by slowly increasing the ma
control parameter~the applied electric field in EC or the
temperature gradient in ATC! are similar in both systems

Typically, normal rolls, with their axis' x̂, are found at on-
set @11,5#. They undergo, at rather smalle, the reduced dis-
tance to the convection threshold, modulational or homo
neous instabilities, leading toward either oblique rolls~zig-
zags! @11–14# or abnormal rolls @15–17#. At higher e
bimodal or grid patterns@18,14# are very often found, which
finally become oscillating@18–20#. Despite the fact that
some elements of these scenarios~especially the last step
implying stationary or oscillating bimodal structures! have
been known experimentally for more than 20 years in EC
comprehensive theoretical description and explanation
still lacking.

Since all the bifurcations occur relatively near to the co
vection threshold, one major theoretical approach consist
the ‘‘order-parameter expansions.’’ Order parameters are
troduced as the amplitudes of thedynamically active modes,
e.g., the pattern-forming, critically slowed roll modes~of
growth rates;e) in the framework of the standard weak
nonlinear ~WNL! analysis. A simplified description of the
dynamics of the system is then obtained in terms of ‘‘amp
tude’’ or ‘‘order-parameter equations,’’ where the nonli
earities are truncated at cubic order in the common su
1747 ©1999 The American Physical Society
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1748 PRE 59EMMANUEL PLAUT AND WERNER PESCH
critical case@21#. The general structure of these equatio
and the allowed couplings between the amplitudes can
deduceda priori from the symmetries of the system. Neve
theless, a trustworthy description requires a systematic
culation of the coefficients from the basic ‘‘microscopic
equations; indeed, except in very simple cases, even the
of the coefficients is not intuitively known. In nematic co
vection the standard WNL analysis results in either ‘‘La
dau’’ ~without spatial variations! or ‘‘Ginzburg-Landau’’
~including spatial degrees of freedom! amplitude equations
@3,6#. They have allowed successful studies of many gen
phenomena near threshold@7,20,23,24#. Some secondary in
stabilities of the roll structures have been qualitatively e
plained as well@25,26#. However, strong quantitative dis
crepancies concerning the long-wavelength second
instabilities could only be resolved by the use of fully n
merical solutions of the basic equations in which all the n
linearities are kept~‘‘Galerkin computations’’@27,28#!. Such
methods were also needed to identify the surprising bifur
tion to abnormal rolls in EC@15#. Heavy computations o
this kind cannot easily be extended to bimodal structu
thus their stability has not been addressed theoretically u
now. In any case, the physical origin of bifurcations is ha
to extract by numerical methods, whereas a transparen
vestigation of nonlinear mechanismsbecomes possible
within the order-parameter approach@26,29#.

The main goal of this paper is to demonstrate that
order-parameter approach which includes ahomogeneous
twist rotationof the director as a new active mode allows u
in most cases, to reconstruct the whole sequence of bifu
tions. The corresponding new order parameterw, which de-
fines to lowest order the angle between the average in-p
directorn0 andx̂ @see Eq.~39!#, has been in fact successful
introduced at first for nematic convection with homeotrop
~isotropic! alignment@30#. In the planar case, the introduc
tion of this new active mode stems naturally from the resu
of the Galerkin computations and the experiments in EC@15#
and from a careful study of the results of the WNL analy
in ATC @29#. After a brief glance at the basic equations a
their symmetries in Sec. II and at the standard linear prop
ties in Sec. III A, we show in Sec. III B that this twist mod
has only a slightly negative growth rate as compared to
growth rate of the roll modes. In Sec. IV the coupled amp
tude equations for the roll and twist modes are calcula
from the basic nematohydrodynamic equations, and we s
that the twist mode can indeed become active. A quantita
description of the bifurcation to abnormal rolls is achieve
In Sec. V the amplitude equations are generalized to incl
long-wavelength modulations together with the mean-fl
effects. A coupling between splay-twist modulations of t
in-plane director and the mean flow is shown to give a v
efficient secondary mechanism for the zig-zag instability
subsequent restabilization of abnormal rolls at highere is
also obtained. The competition between the various insta
ties is analyzed. Section VI is devoted to the study of
short-wavelength instabilities of abnormal or oblique rol
The amplitude equations of Sec. IV are generalized by
introduction of a secondary roll amplitude. It is shown th
the mechanism towards the bimodal varicose, propose
@26# for ATC on the basis of a WNL analysis, applies ge
erally. Further investigation of the coupled amplitude eq
s
be
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tions reveals the existence of a Hopf bifurcation, which e
plains the oscillating bimodals. The microscopic mechanis
controlling the various bifurcations and the structure of t
new solutions are systematically analyzed. Comparisons w
numerical results and experimental findings concern
mainly the nematic materials N5 in EC and 5CB in AT
~Sec. II A! are presented whenever possible. We also p
pose a heuristic interpretation of the bifurcation scenarios
terms of a competition~or ‘‘frustration’’ ! between the focus-
ing mechanisms and the viscous torques exerted on the
plane director~Sec. IV D!. The appendixes contain add
tional information concerning the linear equations~Appendix
A!, the calculational method~Appendix B!, analytic approxi-
mations of some nonlinear coupling coefficients~Appendix
C!, and results for the nematic material MBBA~Appendix
D!.

II. BASIC EQUATIONS — SYMMETRIES

In Sec. II A we recall the basis of the standard nemato
drodynamic@1,3# description of EC and ATC; a detailed pre
sentation can be found in@25# for EC and in @23,29# for
ATC. The dimensionless units and the sets of material
rameters used are also introduced. Section II B is devote
the symmetry properties of the system and to the basic
pansion techniques.

A. Basic nematohydrodynamic equations —
dimensionless units

The director dynamics is determined by

g1n3ṅ5n3h, ~1!

whereg1 is an anisotropic viscosity, and the dot stands
the material derivative] t1v•“. The molecular fieldh †Eq.
~3! of @25#‡ contains elastic contributions proportional to th
splay, twist, and bend constantsk11,k22, andk33, an electric
contribution proportional to the dielectric anisotropyea in
EC, and finally viscous contributionshv . A convenient form
is

hv52a2 D•n2a3 n•D, ~2!

where D is the tensor gradient of velocity,Di j 5]v i /]xj .
Since the anisotropic viscositya2 is negative and of much
larger absolute value than the anisotropic viscositya3 , the
main term}a2 in Eq. ~2! tends to rotaten in such a way that
the director-transverse velocity gradientsn3(D•n) are
minimized @29#.

The evolution equation for the velocityv reads

rmv̇5fvol2“p1divs, ~3!

with rm the fluid density andp the pressure. The stress tens
s †Eq. ~7! of @25#‡ contains elastic contributions and visco
contributions proportional to the anisotropic viscositi
a1 , . . . ,a6 . We will also use the Miesowicz viscositiesna
5a4/2, nb5na1(a31a6)/2, andnc5na1(a52a2)/2, and
refer to the corresponding flow geometriesa,b, andc @1#.

Differences between EC and ATC come into play in t
expression of the bulk forcefvol in Eq. ~3! or equivalently in
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TABLE I. ~a! Dimensionless units, from@7#, used for electroconvection~EC!. ~b! Dimensionless units,
from @23,29#, used for anisotropic thermoconvection~ATC!.

Quantity Scaling unit Interpretation of the scaling unit

~a!

Elastic constant k0510212 N
Viscosity a051023 kg m21 s21

Dielectric constant e058.854310212 F m21 permittivity of free space
Electric conductivity s051028(V m)21

Mass density a0
2/k05106 kg m23

Length d/p inverse of typical roll wave number
Time tDD5a0d2/(k0p2) typical vertical director- diffusion time
Electric potential V05pAk0 /e0 typical Fréedericksz threshold

~b!

Elastic constant k11 splay elastic constant
Viscosity na5a4/2 isotropic viscosity
Heat conductivity k' conductivity perpendicular to the director
Length d/p inverse of typical roll wave number
Time tTD5d2/(k'p2) vertical thermal-diffusion time
Temperature nak'p3/(ag0d3)
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the nature of the scalar field which drives the convect
instability. In EC, it is the modulationf of the electric po-
tential which determines the electric field

E5
A2Vapp

d
@cos~vt !ẑ2d“f#, ~4!

with Vapp the effective applied voltage andd the thickness of
the cell. The modulation of the electric potential is related
the ionic charge densityre through the Maxwell equation
re5“•@e'E1ea(n•E)n#, and its evolution is governed b
charge conservation,

ṙe52“•@s'E1sa~n•E!n#, ~5!

where s' and sa are anisotropic conductivities. The bu
force is then†right hand side of Eq.~2.59! of @3#‡

fvol5reE1~P•“ !E, ~6!

i.e., the sum of the Coulomb force and of the~purely non-
linear! ponderomotive force which implies the macroscop
polarizationP. This latter term had never been systema
cally included in theoretical studies of EC, but it has turn
out to have very little influence on the phenomena we stu

In ATC, the relevant scalar field is the differenceu5T
2(T02DTapp z/d) between the actual temperatureT and the
conductive profile, withT0 the mean temperature, an
DTapp/d the thermal gradient applied between the lower a
upper plates of the convection cell. The evolution ofu is
governed by the heat-diffusion equation

u̇5“•@k'“T1ka~n•“T!n#, ~7!

wherek' andka are anisotropic thermal diffusivities. Unde
the standard Boussinesq approximation the bulk force re

fvol52rm@12a~T2T0!#g0 ẑ, ~8!
n

o

-
d
y.

d

ds

with a the thermal expansion coefficient,g0 the gravitational
acceleration.

We assume as usual the incompressibility condition“•v
50 and introduce the velocity potentialsf andg such that

vx5]x]zf 1]yg, vy5]y]zf 2]xg, vz52~]x
21]y

2! f .
~9!

Sincenx can be eliminated from the equations by using t
normalization conditionn251, the local state vector of the
fluid is finally

V5~f,ny ,nz , f ,g! in EC,

V5~u,ny ,nz , f ,g! in ATC. ~10!

The basic equations@Eqs.~5!, ~1!, and~3! for EC, Eqs.~7!,
~1! and ~3! for ATC# take the form

D•] tV5LR•V1N2~V,V!1N3~V,V,V!1h.o.t., ~11!

whereD andLR are linear,N2 andN3 are nonlinear differ-
ential operators, and h.o.t. denotes ‘‘higher-order terms.’
the following, we will, for example, refer to the first line o
Eq. ~11! as thef equation~in EC! and to the corresponding
nonlinearities asN2f ,N3f , etc. The main control paramete
R, with the dimensionless units of Table I, is given by

R5S Vapp

V0
D 2

in EC, R5
ag0d3

nak'p4
DTapp in ATC.

~12!

The applied electric field readsEapp5A2R cosvt5A2REac
in EC. Note that for not too thin layers the largest charact
istic time in EC is the director-diffusion timetDD @Table
I~a!#, followed by the charge-diffusion timetCD5e' /s' ,
and the viscous-diffusion timetVD52rmd2/(a4p2). To al-
low a direct comparison with@15,25# we will display our
results as a function ofvCD5tCD v. Note that
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TABLE II. ~a! Dimensionless parameters for the nematics N5 and MBBA used in EC~see text; note that
we have always assumedrm8 51023). ~b! Dimensionless parameters for the nematic 5CB used in ATC~see
text!.

~a!

k118 k228 k338 a18 a28 a38 a48 a58 a68 e i8 e'8 s i8 s'8

N5 9.8 4.6 11.4 239.0 2109.3 1.5 56.3 82.9 224.9 5.106 5.29 7.48 4.4
MBBA 6.66 4.2 8.61 218.1 2110.4 21.1 82.6 77.9 233.6 4.72 5.25 1.5 1

~b!

k118 k228 k338 a18 a28 a38 a48 a58 a68 ka8 F Pr

5CB 1 0.634 1.303 20.184 22.343 20.132 2 1.90 20.575 0.663 790 440
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tDD

tCD
5Q

s'8

e'8
, where Q5

a0d2s0

k0p2e0

, ~13!

and the primes denote the dimensionless material const
In ATC the director-diffusion timetDD5g1d2/(k11p

2) also
exceeds by far the thermal-diffusion timetTD @Table I~b!#
and the viscous-diffusion timetVD , as measured by th
~large! dimensionless numbers

F5
tDD

tTD
5

k'g1

k11
, Pr5

tTD

tVD
5

a4

2rmk'

. ~14!

Table II displays the material parameters used for the
culations. We have focused on standard nematic mater
N55Merck Phase 5 at 30oC with the parameters defined i
@15# for EC; 5CB at 27oC with the parameters in@8# for
ATC. In Appendix D, however, results will be given in E
for another common nematic material, MBBA at 25oC, in-
troduced as MBBA I in@7#.

B. Symmetries — expansion techniques

We consider as usual the idealization of a nematic la
infinitely extended in the horizontal plane. The resulti
translational invariance implies that the full solutions of E
~11! can be written as a superposition of horizontal Four
modes characterized by theirhorizontal wave vectorq5qx̂
1pŷ, e.g., in ATC,

V5(
q

„uq~z!,ny
q~z!,nz

q~z!, f q~z!,gq~z!…eiq•r, ~15!

wherer5xx̂1yŷ is the horizontal position in the layer. Th
case of EC is very similar, except thatu is replaced byf,
and that the fields become time dependent. For a discus
of the symmetry properties of the EC equations with resp
to transformations of time, see@27#; as usual only the lowes
nontrivial Fourier components in time are kept in this pap
With respect to the vertical dependence~in z), all fields have
to vanish at the boundariesz56p/2 in our scaling. Using a
standard Galerkin technique@31#, u ~or f),ny ,nz , andg are
expanded in a sine basis$Sn(z)5sin@n(z1p/2)#%. For the
vertical velocity potentialf, which must fulfill f 5]zf 50 at
the boundaries, the Chandrasekhar basis$Cn(z)% @32# is
ts.

l-
ls:

r

.
r
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used. We keep at least the two leading vertical modes
each field in order to obtain a good numerical accuracy
typically 2% as compared with calculations with man
modes. On the other hand, by keeping only one vert
mode for each fieldanalyticsemiquantitative results~with an
accuracy of typically 10%! can be obtained@33#. Therefore
our results will often be exemplified under this ‘‘one-mod
approximation’’ which captures the essential physical fe
tures.

Another global symmetry of the system is the reflecti
symmetryS:y°2y. The corresponding symmetry of Eq
~11! is

S:y°2y, ny°2ny , g°2g,

with the other fields unchanged, ~16!

or equivalently for a Fourier mode in Eq.~15!,

~uq,ny
q ,nz

q , f q,gq!eiq•r°~uq,2ny
q ,nz

q , f q,2gq!eiq•S~r !,

where it should be noted thatq•S(r )5S(q)•r . Conse-
quently, the solutionsV of Eq. ~11! can be classified accord
ing to their symmetry: ifS(V)5V, the symmetryS is not
broken; otherwiseV andS(V) are two degenerate variants o
the same global state.

The reflection with respect to the midplane of the lay
z°2z, is also a global symmetry. Two types of Fouri
modes in Eq.~15! can be distinguished according to the
transformation under this reflection: type1 whenuq(z) @or
fq(z)],nz

q(z), f q(z) are even,ny
q(z),gq(z) are odd; type2 in

the opposite case. Introducing sym(a)561 according to the
type of the Fourier modea5(u,ny ,nz , f ,g)eiq•r, Eq. ~11!
have the important ‘‘Boussinesq-like’’ symmetry property

sym@N2~a,b!#52sym~a!sym~b!,

sym@N3~a,b,c!#51sym~a!sym~b!sym~c!. ~17!
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III. ACTIVE MODE BASIS FOR THE EXTENDED WNL
ANALYSIS

WNL analyses in general rely on a perturbative treatm
of the nonlinear terms in the evolution Eq.~11! for small
amplitudes of convection. Thus they become asymptotic
exact in the limite→0, but in practice, as well as in our cas
semiquantitative or qualitative results are often obtain
even when the amplitudes are not infinitesimal@21#. Within
this pertubative approach it is natural to focus at first on
linearized evolution equations D] tV5LRV, and to calculate
the corresponding eigenmodes as the solutions
sDV5LRV. The solutions of the full problem~11! are then
constructed as superpositions of these linear eigenmo
Among those, thedynamically active modesare the modes o
positive growth rates, and in addition the modes of slightl
negative growth rates which are nonlinearly excited by cou
pling with the modes ofs.0 @36#. The associated expansio
coefficients are the ‘‘amplitudes’’ or ‘‘order parameters
Their evolution equations will be calculated after adiaba
elimination of the remaining expansion coefficients asso
.
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ated with thedynamically passive modesof negative growth
rate; see@21# or Appendix B. For planar nematic convection
the standard family of active modes consists of the ro
modes, the properties of which are reviewed in Sec. III
However, in Sec. III B it is shown that diffusion modes o
the director have also to be considered as active, even q
close to the convection threshold.

A. Standard active mode basis: the roll modes

The first studies of EC@4,7# and ATC@5# have shown that
the modes destabilizing the quiescent solutionV50 of Eq.
~11! are roll modesof wave numberuqu close to 1~i.e., of
half period.d in physical units! and of thez symmetry type
1. These roll modes are the solutions of

s~q;R!DV1~q;R!5LRV1~q;R!, ~18!

where the eigenvaluess(q;R) are always real in the absenc
of weak-electrolyte effects@9# and correspond to the growth
rates. In the one-mode approximation the eigenvectors re
V1~q;R!5H „~f̃e2 ivt1f̃* eivt!S1~z!,ñyS2~z!,i ñzS1~z!, f̃ C1~z!,g̃S2~z!…eiq•r in EC,

„ũS1~z!,ñyS2~z!,i ñzS1~z!, f̃ C1~z!,g̃S2~z!…eiq•r in ATC,
~19!
. II
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SinceV in Eq. ~11! is real,V1(2q;R)5„V1(q;R)…* holds,
and one can focus on the modes withq• x̂>0. Then, a phase
choice can be made such thatñz51, Re(f̃), Im(f̃), ũ and
f̃ are positive~real! numbers, andñy andg̃ are real numbers
The focusing mechanisms are the following ones~see also
the linear equations in Appendix A!. In EC, a splay-bend
director fluctuation~field nz) excites a charge or potentia
modulation ~field f) via the charge-focusing term
2saQEac]xnz in thef equation~A1!; a mass flow~field f )
is induced via the Coulomb force~A6!; this flow reinforces
the initial director distortion via the viscous torqu
1ua2u]xvz in the nz equation~A3!. In ATC, a splay-bend
distortion of the director leads to a temperature modulat
~field u) via the heat-focusing term2kaR]xnz in the heat
equation~A1!; a flow is excited by the buoyancy force~A7!;
this flow reinforces the initial director distortion exactly as
EC.

When the destabilizing forces overcome the stabiliz
ones, i.e., whenR exceedsRc , the growth rates(q;R) of the
so-called critical roll mode atq5qc becomes positive. By
continuity, whenR.Rc , there exists a wave-vector band
roll modes of positive growth rates, which can be, fore
5R/Rc21 not too large, written as

s~q;R!.
R2R0~q!

tqRc
5

e2e0~q!

tq
. ~20!

R0(q)@e0(q)# is the ~reduced! threshold of the roll modeq
~‘‘neutral surface’’!, andtq is a characteristic time. Note tha
e0(qc)50, and thattqc

is the characteristic timet of the
n

g

instability @34#. The symmetry properties discussed in Sec
lead to the distinction between two types of roll modes@35#:

thenormal rolls, of wave vectorq parallel tox̂, whereS ~16!
is not broken, consequentlyny5g50: normal rolls are
purely two-dimensional modes; and theoblique rolls, of

wave vectorq5qx̂1pŷ with qpÞ0, whereS is broken.
Consequently two variants exist: the ‘‘zigs’’ withq,p.0
and the ‘‘zags’’ withq.0,p,0. These modes are three d
mensional sinceny andg are nonzero~nevertheless the ver
tical averages ofny andg vanish!.

In ATC one has critical normal rolls@23#. In EC, at lowv
one finds critical oblique rolls, whereas forv larger than the
Lifshitz frequencyvL50.8tCD

21 the critical modes are of the
normal-roll type. At largev, but still below the crossove
frequency to the dielectric regime (vD54.0tCD

21), the
charge-focusing mechanism becomes less efficient. Co
quently, the convection only sets in with narrower rolls (qc

increases withv), where all gradients increase for compe
sation, and at higher voltages (Rc increases withv). In this
‘‘high-energy’’ limit where also the dielectric torque stab
lizing the planar configuration gets very large, the damp
constant 1/t of the ‘‘forced’’ roll mode is very large.

B. The director modes

At fixed q, in addition to the roll modesV1(q;R) ~19!,
there exists an infinite number of linear eigenmod
Vm(q;R) with discrete eigenvaluessm(q;R). For R close to
Rc , the corresponding growth rates Re„sm(q;R)… are nega-
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tive for all m and q and typically maximal in thehomoge-
neouscaseq50 @37#. In our regime where the damping o
the director field is by far the weakest, the small values
uRe„sm(0;R)…u are associated with director modes. They a
determined by the linear diffusion equations forny and nz
with ]x5]y50 ~then n does not couple with the othe
fields!:

g1] tny5k22]z
2ny , g1] tnz5~k11]z

21eaR!nz ~21!

for EC @see, e.g., Eq.~A3!#. The equations for ATC are simi
lar except for the absence of the dielectric torque (}ea). The
system~21! admits two families of linear eigenmodes: theny
s

-
e
r

e
r
n

in
s
ve
s
te

si
tic
f
e

modes ny5Sm(z),nz50, and the nz modes ny50,nz
5Sm(z). We call the modes of largest growth rate@for m
51, i.e., with an even cosine profileS1(z)5cos(z)] the twist
mode and the splay mode, respectively. For the twist mo

VT5„0,S1~z!,0,0,0…, ~22!

with the notations~10!, one finds, e.g., the growth rate

sT52
k22

g1
in EC, sT52

k22

F
in ATC. ~23!

The ratio ofsT to the growth rate of the critical roll mode i
sT

s~qc ;e!
5tsTe21.5 2

k22

k33qc
21k22pc

21k112eaRc

e21 in EC

2
k22

k33qc
21k22pc

21k11

e21 in ATC,

~24!
the
are;
tro-
to
pli-

e
so-
es
is

the
ral

of
-

where simple approximations of the characteristic timet
have been used@see Fig. 1~a! for a comparison with rigorous
calculations in EC#. The order of magnitude of the ratio~24!
is 2k22/(k331k11)e

21.20.25e21: it is very negative only
for very small e. The twist mode should therefore be in
cluded in the active mode basis. Indeed, we will show in S
IV that its slow linear damping can be compensated eithe
quadratic order@termN2(V,V) in Eq. ~11!# or at cubic order
@term N3(V,V,V) in Eq. ~11!# by a coupling with two roll
modes. On the other hand, the splay modeVS
5„0,0,S1(z),0,0…, which has a growth rate of the sam
magnitude assT , can only be excited at cubic order fo
symmetry reasons@38#. We have checked that the excitatio
of VS always occurs far above the thresholdeAR of excitation
of VT ~Sec. IV!. Therefore the splay mode will not be kept
the active mode basis here. Note that thequasihomogeneou
twist modes with long-wavelength variations of small wa
vector q play no role for perfect roll or bimodal structure
and have only to be considered in the case of modula
structures~Sec. V!.

IV. NONLINEAR ROLL SOLUTIONS

The inclusion of the twist mode in the active mode ba
lifts the simple symmetry rules which exclude quadra
c.
at

d

s

resonant terms in the standard amplitude equations. Thus
treatment of the quadratic nonlinearities requires some c
for this reason a general extended WNL scheme is in
duced in Appendix B. In Sec. IV A this scheme is applied
calculate the amplitude equations which couple the am
tudeA of a roll mode to the amplitudew of the twist mode
@Eq. ~29!#. In Sec. IV B the abnormal-roll solutions of thes
equations are studied, and in Sec. IV C the oblique-roll
lutions are studied. The nonlinearities controlling the valu
of all the coefficients introduced in Sec. IV A are given. Th
allows one to give a precise physical interpretation of
mechanisms involved and to introduce in Sec. IV D a gene
principle to interpret the roll-twist interactions.

A. Calculation of the roll-twist amplitude equations

We apply the scheme of Appendix B to roll structures
fixed wave vectorq. Only two active modes have to be con
sidered: the roll modeV1(q) ~19! and the twist modeVT
~22!. According to Eqs.~B8! and ~B12!, the corresponding
WNL solution assumes the form

V5VA1V'5@AV1~q!1c.c.#1wVT1V' , ~25!

where the passive part reads
t
ic
FIG. 1. In EC ~for N5!, as a function of the
dimensionless frequencyvCD5tCDv: ~a! solid
line: growth ratesT of the homogeneous twis
mode, in units of the normal-roll characterist

time tq at q5qcx̂. Dotted line: analytic approxi-
mation ~24!. ~b! Saturation coefficientgq ~30! of
the normal rolls.
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V'52L21@N2~VA ,VA!2^U1~q!,N2~VA ,VA!&DV1~q!

2^U1~2q!,N2~VA ,VA!&DV1~2q!

2^UT ,N2~VA ,VA!&DVT#.

U1(q) andUT are the adjoint roll and twist modes@see Eq.
~B3!#. Introducing the coefficients

b2~q!5^U1~q!,N2„V1~q!uVT…&,

g~q!52^UT ,N2„V1~q!uV1~2q!…&, ~26!

one obtains

V'5uAu2 V2~q,2q!1@A2 V2~q,q!1c.c.#

1w @AV2~q,T!1c.c.#, ~27!

where

V2~q,2q!52L21@N2„V1~q!uV1~2q!…1g~q!D•VT#,

V2~q,q!52L21N2„V1~q!,V1~q!…,

V2~q,T!52L21@N2„V1~q!uVT…2b2~q!D•V1~q!#.
~28!

By projecting Eq.~11! onto U1(q) and UT @see also Eq.
~B13!#, one arrives at our first set of coupled amplitude eq
tions

] tA5S e2e0~q!

tq
2gquAu21b2~q!w2b3~q!w2DA,

~29a!

] tw5@sT2gww21G~q!uAu2#w2g~q!uAu2, ~29b!

where additional coefficients have been defined:

gq52^U1~q!,N2„V1~q!uV2~q,2q!…

1N2„V1~2q!uV2~q,q!…1N3„V1~q!uV1~q!uV1~2q!…&,

~30!

b3~q!52^U1~q!,N2„VTuV2~q,T!…1N3„VTuVTuV1~q!…&,

~31!

gw52^UT ,N3~VTuVTuVT!&5
usTu

8
, ~32!

G~q!5G2~q!1G3~q!, with

G2~q!5^UT ,N2„V1~q!uV2~2q,T!…

1N2„V1~2q!uV2~q,T!…&,

G3~q!5^UT ,N3„V1~q!uV1~2q!uVT…&. ~33!

Note that for w50, Eq. ~29a! reduces to the well-known
Landau equation for the roll amplitudeA, describing a super
critical bifurcation sincegq.0. We have not scaled outtq
and gq as usual, in order to clearly separate the linear a
nonlinear effects controlling the value ofA.
-

d

B. Rolls with a normal wave vector

The amplitude equations~29! must be invariant under the
global symmetryS ~16!, which transformsq into S(q) andw
into 2w. Therefore the coefficientsb2(q) andg(q) vanish
for rolls with a normal wave vectorq5qx̂ such thatq
5S(q). After elimination ofuAu2 in Eq. ~29a! and insertion
into ~29b!, one has to solve

@sT2gww21G~q!uA~q;e;w!u2#w50 ~34!

for the stationary solutions. Clearly the branchw50 corre-
sponds to the standard normal-roll solutions,

uAu5Ae2e0~q!

tqgq
, w50. ~35!

The effect of the coefficientG(q) in Eq. ~29b!, which turns
out to be always positive, is to enhance a fluctuation ow
about the normal-roll solution~35!. Indeed, two roots of the
cubic equation inw ~34!, which were complex at smalle,
become real whene gets larger than

eAR~q!5e0~q!1eAR8 ~q!, where eAR8 ~q!5utqsTu
gq

G~q!
.

~36!

At this point a bifurcation from normal (qi x̂,w50) to ab-

normal rolls (qi x̂,wÞ0) occurs, which corresponds t
breaking the symmetryS ~16! without tilting the rolls ~see
@15# for an identification of this instability in EC!. We will
now study the coefficients determining the threshold of t
bifurcation and the ensuing saturation of the twist amplitu
w; if not otherwise stated, we will consider rolls atq5qc .

1. Threshold of the abnormal-roll bifurcation

The abnormal-roll thresholdeAR(q) ~36! is controlled lin-
early by the growth ratesT of the twist mode intq

21 units,
nonlinearly by the saturation factorgq in the A equation
~29a!, and by the coupling coefficientG(q) in thew equation
~29b!.

In EC, the linear effects tend to favor the abnormal rolls
high v, where utsTu becomes very small@Fig. 1~a!#. This
indicates that the rotation of the director in the horizon
plane becomes relatively easier at highv, as compared with
the excitation of the splay-bendnz mode associated with th
roll modes@cf. Eq. ~24! for tsT5esT /s(q;e), and the dis-
cussion in Sec. III A#.

The first important nonlinear effect is the saturation of t
amplitude expressed by the coefficientgq . This has been
first studied systematically for ATC@29#. In EC, the most
important saturating~positive! contributions are~P1! the
contributions of N3f„V1(q)uV1(q)uV1(2q)… due to
1
2 saQEac]xnz

3 , which indicate that the charge focusing b
comes less efficient with increasingnz @compare with the
linear term2saQEac]xnz of Eq. ~A1!, quoted in Sec. III A,
and note the opposite sign#; and ~P2! the contributions of
N3nz

„V1(q)uV1(q)uV1(2q)… due toa2(]xvz)nz
2 , which indi-

cate that the shear exerted on the director by the vert
flows diminishes when the director rotates upwards@compare
with the linear term2a2]xvz in Eq. ~A3!#. Both ~P1! and
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FIG. 2. In EC, for rolls with wave vectorq5qc(v) x̂: ~a! nonlinear interaction coefficientG(q) ~thick line! between the roll and twist
modes@cf. Eqs.~29b!, ~33!#. The contributionsG2(q) ~thin line! andG3(q) ~dotted line! of the quadratic and cubic nonlinearities in theny

equation are shown.~b! Reduced abnormal-roll thresholdeAR8 (q) obtained from the extended WNL expression~36! ~thick line! or from the
numerical computations@15# ~thin line!. The normal-roll thresholde0(q), only slightly positive for frequencies smaller than the Lifshi
frequencyvL50.8tCD

21 , is shown with the dotted curve.
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~P2! are generated by the quadratic corrections tonx due to
the distortion of the director field above onset of convecti
i.e., by inserting in the equationsnx512 1

2 (ny
21nz

2) from
the director-normalization conditionn251. We therefore call
~P1! and~P2! ‘‘geometrical corrections’’ to the quoted linea
terms, wherenx51 is taken. The dependence onqc(v) ~cor-
responding to horizontal gradients! of the contributions~P1!,
together with the fact thatuf̃/ñzu in the linear mode~19!
decreases strongly withv, lead to a strong increase of th
contributions~P1! to gq whenv increases. The dependen
on qc(v) of the contributions~P2! renders them also muc
larger whenv increases. The most important antisaturat
~negative! contributions are ~N1! the contributions of
N3nz

„V1(q)uV1(q)uV1(2q)… due toa2(]zvx)nz
2 , which indi-

cate that when the director tilts upwards, it becomes sens
to the horizontal flows which tilt the director further as d
the vertical flows at linear order;~N2! the contributions of
N3nz

„V1(q)uV1(q)uV1(2q)… due to2 1
2 ea(Eapp)

2nz
3 , which

signify that the stabilizing dielectric torque@see Eq.~A4!# is
reduced with increasingnz ; and ~N3! the contributions of
N3 f„V1(q)uV1(q)uV1(2q)… due to the source term (a11a2

1a3)]x@(]xvz)nz
2# in the evolution equation forvz . This

indicates a decrease of the effective viscosity for the vert
flows in the rolls, since with increasingnz the highest
Miesowicz viscosity geometryc is gradually left for these
flows. The negative contributions~N1!, ~N2!, ~N3! increase
less strongly withv than the saturating ones~P1!, ~P2!. Con-
sequentlygq increases withv @Fig. 1~b!#. Note that all the
effects controlling the value ofgq in EC exist also in ATC
@29#, provided that the charge focusing in~P1! is replaced by
the heat focusing~see Sec. 4.2 of@29#! or that the electric
field in ~N2! is replaced by a planar magnetic field~this was
predicted to lead to a subcritical bifurcation in ATC in@23#!.

The nonlinear coefficient directly responsible for the
furcation ~36! towards abnormal rolls isG(q)5G2(q)
1G3(q) ~33!. In Appendix C we give an analytic approx
mation of G(q) within the one-mode approximation. Th
contribution G3(q) of the cubic nonlinearities indicates
renormalization of the damping of the twist mode by a co
pling to the roll modes. It is dominated by the contributio
of a2(]zvx)nzny in N3ny

„V1(q)uV1(2q)uVT…. The corre-
sponding mechanism can be interpreted according to
principle that the director tends to rotate away from t
,

g

ve

al

-

e

velocity gradients and therefore out of the (x,z) plane due
to the a2 term in Eq. ~2!. There exists also a second
ary mechanism of elastic origin, due to the term 2(k33
2k22)(]xnz)

2ny , which corresponds to a release of bend
twist. Since the bend energy is proportional toqc

2(v), this
mechanism is only efficient in EC for the narrow rolls~of
largeqc) at high frequencyv ~Appendix C!. The contribu-
tion G2(q) ~33! of the quadratic nonlinearities indicates a
indirect renormalization of the damping ofw, which occurs
through the ~possible! excitation of the quadratic mod
V2(q,T). In EC, G2(q) becomes large only at highv @Fig.
2~a!#; in ATC, G2(q) is always one order of magnitud
smaller thanG3(q). The corresponding mechanisms a
studied in Appendix C.

In EC, the increase ofG(q) with v @Fig. 2~a!#, favorable
to the abnormal rolls@see Eq.~36!#, is roughly compensated
by the increase ofgq with v @Fig. 1~b!#. Thus the decrease o
the linear growth rateutsTu @Fig. 1~a!# appears to be the
main cause for the decrease of the abnormal-roll thresh
eAR8 (q) ~36! with increasingv @Fig. 2~b!#. The values of
eAR8 (q) ~36! match those of the fully nonlinear calculation
@15# at high frequency. At low frequency, discrepanci
show up which are due to nonlinear effects of higher or
not included in Eq.~29!. Their influence grows in the limit
v→0, since there the bifurcation to abnormal rolls occurs
increasingly highere and A. In ATC, we find eAR(q)
50.11, a value larger thaneZZ ~Sec. V!. This agrees with the
experiments, where the normal rolls at smalle are first de-
stabilized by zig-zag modulations@14#.

2. Saturation of the abnormal-roll bifurcation

The saturation of the director rotation (wÞ0) in abnormal
rolls appears to beindirect: it is not controlled by the clas-
sical saturating term2gww3 in the w equation~29b!, but
rather by the coupling term2b3(q)w2A in the A equation
~29a!. Indeed, the abnormal-roll solutions of Eq.~29! read,
for e.eAR(q),

uAu5aqA 1

11bq
eAR~q!1

bq

11bq
e2e0~q!,

w56A 1

11bq

e2eAR~q!

tqb3~q!
, ~37!
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with aq51/Atqgq,bq5gqgw /@b3(q)G(q)#. This latter coef-
ficient is always small, for instance, in ECbq50.077 at
vCD50.5 and bq50.0015 atvCD54, while in ATC, bq
50.034. Thus, to lowest order inbq , the amplitudeA stays
constant fore.eAR , and the saturation ofw is clearly due to
the b3 effect. Forq nearqc ,b3(q) is always positive, indi-
cating a negative feedbackw→A in Eq. ~29b!. In EC and
ATC, two leading contributions ofN3„VT ,VT ,V1(q)… domi-
nate all the other ones inb3(q). One leading contribution is
due to 1

2 saQEapp]x(ny
2nz) from N3f„VT ,VT ,V1(q)… in EC

and 1
2 kaR]x(ny

2nz) from N3u„VT ,VT ,V1(q)… in ATC. These
terms are geometrical corrections@analogous in principle to
the term ~P1! of Sec. IV B 1# to the focusing-mechanism
terms in Eqs.~A1! and~A2! for the scalar field. These term
indicate that a director rotation away from the roll wave ve
tor (ny large! diminishes the charge and heat focusing. T
second dominant contribution tob3(q) ~31! is, both in EC
and ATC, due to the term 2ua2uny

2(]xvz) from
N3nz

„VT ,VT ,V1(q)…. It is a correction to the linear torqu

ua2u]xvz in the nz equation~A3!, which indicates that when
the director rotates, the shear inducing of thenz modulation
also becomes less efficient. In EC,b3(q) drastically in-
creases with the frequency:b350.036 atv.0, while b3
52.99 atvCD54. This is mainly due to the fact that the ro
modes at high frequency become more sensitive to thef and
nz effects mentioned above. Typical amplitudesnz(e) and
w(e) of the nz and ny distortions given in abnormal-rol
solutions by

nz52nz~e!S1~z!sinq•r1h.o.t.

522A~e!S1~z!sinq•r1h.o.t.,

ny5w~e!S1~z!1h.o.t., ~38!

according to Eqs.~25!, ~19!, and~22!, are shown for EC at an
intermediate frequency in Fig. 3. Note thatw determines to
lowest order the in-plane director at the midplane of the la
since there@39#

FIG. 3. Director amplitudesnz(e) ~thin line! andny(e)5w(e)

~solid line! for EC in roll solutions atq5qcx̂,vCD53 @see Eq.
~38!#. The normal roll~NR! branchnz(e);Ae,w(e)50 becomes
unstable ate5eAR with respect to the twist mode. In the subseque
abnormal rolls~AR!, nz(e) remains roughly constant, whereasw(e)
increases asAe2eAR @see Eq.~37!#. The open and closed circle
show the numerical results@15# for nz(e) andw(e), respectively.
-
e

r

n5 x̂A12ny
22nz

21 ŷny1 ẑnz5n01 ẑnz1h.o.t.,

with n05 x̂1 ŷw. ~39!

Note also that the order-parameter scheme up to cubic o
breaks down ifnz or w becomes larger than 1. The amp
tudesnz(e)52A(e) andw(e) ~37! match the numerical pre
dictions of@15# only for e not too large, such ase&0.2 in the
example of Fig. 3. At highere, the values ofw(e) ~37! get
systematically much larger than those given by the fully no
linear Galerkin computations. Indeed, the saturation ofw in
Eq. ~29! is very weak; i.e., in the full equations, higher-ord
effects not included in the order-parameter approach co
into play at these highe, high w values. The deviations
become more important at lowv in EC, whereb3 is very
small and thusw(e) ~37! reaches 1 for rather smalle, e.g.,
for e.0.15 atv.0.

There exist special cases whereb3(q) can become nega
tive, i.e., the abnormal-roll bifurcation does not saturate
the framework of Eqs.~29! @40#. This occurs in EC at low
frequency forq larger thanqc , e.g.,q.1.20qc at vCD51, or
in ATC for q.1.45qc . The important negative term in
b3(q), which counteracts the effect of the positive term
discussed here above, is a contribution
N3nz

„VT ,VT ,V1(q)… due to 1
2 (2k2223k33)ny

2]x
2nz . It signi-

fies a reinforcement of elastic origin of thenz distortion in
rolls when the director rotates towards6 ŷ. Such ‘‘narrow
abnormal rolls’’ are nevertheless obtained in the Galer
computations, where apparently higher-order terms not
cluded in Eq.~29! become important.

C. Oblique rolls

In the case ofzigs of wave vectorq5qx̂1pŷ with q,p
.0, the coefficientsg(q) andb2(q) in Eq. ~29! are nonzero.
The symmetry rule~16! now only imposes thatg(q) and
b2(q) change sign when passing from the zigq to the zag
S(q)5qx̂2pŷ. The corresponding stationary solutions
Eq. ~29! can still be calculated by elimination ofA and so-
lution of a cubic equation inw, but the expressions becom
quite lengthy. The result is the existence of a ‘‘generaliz
abnormal-roll threshold’’eAR(q), which reduces to Eq.~36!
for p50, and which increases with increasingupu. For e
,eAR(q) only one root is real, i.e., only one solution bran
exists; whereas fore.eAR(q) all the three roots are real, i.e
two additional solution branches appear. Since the new s
tions, which one might call ‘‘anomalous’’ oblique rolls@41#,
are typically unstable against long-wavelength perturbati
~except under certain conditions at rather largee, see, e.g.,
@15#!, we will discuss here only the structure of the firs
most stable solutions. They are well approximated at smae
by the standard WNL solutions, where the cubic effects inw
are neglected, i.e.,b3 ,gw ,G50 in Eq. ~29!. One finds, with
cq5b2(q)g(q)/(gqusTu),

uAu5aq Ae2e0~q!

11cq
, w52

g~q!

usTu
uAu2. ~40!

In zigs (p.0), due to the ‘‘torque’’2g(q)uAu2 in thew Eq.
~29b!, where g(q) is always positive, the director rotate

t
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FIG. 4. In ATC ~for 5CB!,
comparison between results of th
standard WNL theory and the ex
tended WNL theory@i.e., G,b3

Þ0 in Eq. ~29!# for the amplitude
of nz ~left! and of the twist mode
~right! in an oblique-roll solution
of Eq. ~29!. The linear threshold
e0(q)50.013 is marked with the
crosses. Note the increasing d
viations from the WNL resultsA
}Ae2e0(q),w}@e2e0(q)#.
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(w,0) towards the direction of the axis of the rolls o
equivalently, away from the wave vector (pw,0). This ef-
fect has been in fact pointed out in@26,29# for ATC. The
quadratic nonlinearities of theny equation which control the
value of g(q) ~26! are the advection term2g1vz]zny , the
a2 termsa2(]xvx

f )ny andua2u(]zvy
f )nz @the superscriptf de-

noting the velocity components generated by the potentif,
see Eq.~9!#, and the elastic term~only important in EC!
2(k111k3322k22)(]xnz)(]ynz). Since thea2 contributions
are in general dominant, this torque exerted by the rolls
the director can also be understood from the principle t
the director tends to avoid the velocity gradients. The sa
ration of the roll amplitude in Eq.~40! is clearly enhanced by
theb2 effect@cf. cq}b2(q)]. Indeed, sinceb2(q) is positive
for all zigs atq.qc in the normal-roll regime~usual case in
ATC, casev.vL in EC!, the1b2(q)wA term in Eq.~29a!
indicates that the rotation of the director towards2 ŷ in zigs
(w,0) induces a negative feedback onA ~as does also the
b3 term, but at a higher order!. We find thatb2(q) ~26! is
dominated by two contributions ofN2„VT ,V1(q)…. The first
one comes from the term2saQEapp]y(nynz) in the electric
potential equation in EC and from the term2kaR]y(nynz)
in the heat equation in ATC. The second dominant contri
tion arises both in EC and ATC from the termua2uny(]yvz)
in the nz equation. These terms are corrections to the lin
focusing term@see Eqs.~A1! and ~A2!# and to the viscous
torque in thenz equation~A3!. They also signify that a di-
rector rotation away from the direction of the wave vec
(pny,0) reduces the efficiency of the focusing mechanis
of convection (A diminishes!.

The simple expressions Eq.~40! of the standard WNL
oblique-roll solutions are of course modified by the inclusi
of the effects ofb3 ,gw , andG in Eq. ~29!. The corrections
read at smalle

duAu52aq
3g~q!@b2~q!G~q!1b3~q!g~q!#

2~11cq!5/2usTu2gq

@e2e0~q!#3/2,

dw5
g~q!

usTu2

b3~q!g2~q!/gqusTu2G~q!

11cq
uAu4. ~41!

Because of theG andb3 effects,duAu,0: the roll amplitude
is always strongly reduced due to the in-plane director ro
tion, as shown in Fig. 4 for ATC. The full solutions of Eq
~29! have been calculated for a representative experime
oblique-roll wave vectorq51.07qc( x̂ cos 8°1ŷ sin 8°) @14#.
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The amplitudes plotted in Fig. 4 are still defined according
Eq. ~38!; in fact in oblique rolls there is also a period
contribution of the roll mode~19! to ny , but this contribution
}A(e)ñy is dominated by the contribution}w(e) even at
very smalle values, e.g., fore*0.04 in the example of Fig
4. The strong deviation from the standard WNL la
nz(e),A(e)}Ae2e0(q) ~40!, has been observed experime
tally @20# ~see Fig. 9a there!, and constitutes an experiment
confirmation of our analysis for ATC. The correction to th
WNL solution ~40! for w,dw ~41!, is usually negative~as in
Fig. 4! sincegqusTuG(q).b3(q)g2(q). Provided the reduc-
tion of A due to theb3 term is not too strong, the angleuwu
increases because of theG effect. It is only whenb3 gets
very large, for instance, for the oblique rolls atqc in EC at
very low frequency, that thew corrections can become pos
tive: the reduction ofA is then so strong that the angle of th
in-plane rotation is diminished. Note that the range ofe
where the standard WNL solutions~40! remain a good ap-
proximation typically extends with increasingp. The con-
tinuous transformation from a quasilinear laww(e)}2@e
2e0(q)# at large p @cf. Eq. ~40!# to the square root law
w(e)}2Ae2eAR at p50 @cf. Eq.~37!# is visible in Fig. 2 of
@15#. Thus the zig solutionsp.0,w,0 are continuously at-
tached to the abnormal-roll solutions withw,0 in Eq. ~37!.
It appears therefore justified to introduce as a generali
definition of ‘‘zigs’’ the criterionw,0, with which both the
oblique rolls withp.0,w,0 and the abnormal rolls withp
50,w,0 are considered to belong to the same class of
lutions.

In some special casesb2(q) can become negative in zig
for p.0, i.e., the in-plane director rotation reinforces the r
amplitude to lowest order@cq becomes negative in Eq.~40!#.
This occurs first in the oblique-roll regime in EC forv
,vL . Then, atq5qc ,b2(q) is slightly negative for 0,p
&pc and becomes positive forp*pc . The important nega-
tive term inb2(q), which counteracts the positive terms di
cussed above, is a contribution ofN2nz

„V1(q),VT… due to
2(k332k22)]x(]ynz)ny . It implies an elastic reinforcemen
of thenz distortion in zigs when the director rotates towar
2 ŷ. This term leads also, at fixedp, to a decrease ofb2(q)
with increasingq. Thus in EC and ATC in the normal-rol
range,b2(q) can become negative at fixedp for q larger than
qc ~e.g., at p50.05qc , for q.1.19qc in ATC, for q
.1.04qc in EC atvCD51).

D. Interpretation: director –wave-vector frustration

The amplitude equations~29! display, in the most com-
mon normal-roll regime~when qc5qcx̂, andq5qx̂1pŷ is
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not too far fromqc), the competition between two opposi
tendencies. On the one hand, the roll dynamics Eq.~29a! is
controlled in this regime by the fact thatb2(q)p
.0, b3(q).0, these coefficients being dominated by no
linear corrections to the linear focusing mechanism terms~in
the loose sense, i.e., including all the terms contributing
the instability loop quoted in Sec. III A, in particular, th
viscous torque in thenz equation!. Theseb2 and b3 terms
change the linear growth rate of the roll modes~20! into an
effective ~‘‘nonlinear’’ ! growth rate

seff~q;e!5
e2e0~q!

tq
1b2~q!w2b3~q!w2.

This effective growth rate is maximal forw5wopt(q)
5b2(q)/@2b3(q)#. Sincewopt(q) is typically between 0 and
p/q, this means that~M1! the focusing mechanisms are mo
efficient when the roll wave vector is roughly parallel to t
director. On the other hand, the dynamics of the twist mo
Eq. ~29b! is controlled in this regime by the fact tha
g(q)p.0,G(q).0. These coefficients are dominated by t
a2 contributions signifying the tendency of the director
rotate due to the viscous torques away from the velo
gradients and therefore away from the wave vector of
rolls. Theg andG terms thus indicate that~M2! the director
is pushed by the rolls away from their wave vector. T
competition between~M1! and ~M2! results in a ‘‘director–
wave vector frustration.’’ A first manifestation of this frus
tration is the bifurcation from the normal to the abnorm
rolls, in which the rolls almost ‘‘destroy’’ themselves: i
abnormal rolls the director rotation is clearly due to~M2!,
and the subsequent saturation of the roll amplitu
(uAu;const fore.eAR) due to~M1!. We will see in the rest
of the paper that this frustration has other important con
quences.

V. LONG-WAVELENGTH ZIG-ZAG INSTABILITY
OF ROLLS WITH A NORMAL WAVE VECTOR

In EC for frequencies larger than the Lifshitz frequen
vL , or in ATC for usual nematics, one finds near onset n
mal rolls atq5qc5qcx̂. According to Sec. IV, these norma
rolls can undergo a secondary bifurcation to abnormal r
at rather smalle5eAR . However, another possible secon
ary bifurcation is the long-wavelength zig-zag instabilit
where undulations along the roll axis are amplified. This
stability is a generic feature of planar nematic convect
@27#, which thus competes with the abnormal-roll instabil
~cf. Fig. 3 of @15#!. On the basis of a WNL analysis in EC,
first mechanism has been identified for the zig-zag insta
ity, which relies on the coupling with the so-called mea
flow modes@25#. These are passive modes that are excited
roll undulations, but since their adiabatic elimination c
lead to nonanalyticities, a separate equation@analogous in
principle to Eq.~B11!# has to be kept for them. Nevertheles
strong discrepancies have remained between the resul
the standard WNL analysis as exposed in@25,23# and the
Galerkin computations or the experiments. Typically, t
standard WNL thresholds for the long-wavelength instab
ties are much too large as was noted in@27# for EC and in
@14# for ATC. In this section we want to show that the
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discrepancies can be resolved by taking into account a
tional cubic nonlinearities@Eq. ~46!#, which couple the twist
mode and two roll modes. These terms are considered t
of higher order in the standard WNL approach. We will al
analyze in detail the microscopic mechanisms controlling
zig-zag instability and the subsequent restabilization of
abnormal rolls in EC.

A. Roll-twist-mean-flow amplitude equations

To describe long-wavelength instabilities, the scheme
troduced in Sec. IV A has to be generalized in order to c
culate modulated-roll solutions. The scheme must also
combined with the method explained in@25# to extract the
~possibly! singular mean flow. One starts with a superpo
tion of roll modes~19!

Vrolls5E
V~qc!

dq A~q!V1~q!1c.c..A~r !V1~qc!1c.c.,

~42!

whereV(qc) is a domain centered aroundqc , and the slowly
varying envelope

A~r !5E
V~qc!

dq A~q!ei ~q2qc!•r ~43!

has been introduced.
The long-wavelength partVLW of the solution is then de-

fined to lowest order by

D] tVLW2LVLW5I 2

5E
V~0!

dsE
V~qc!

dq A~q!

3A~2q1s!N2„V1~q!uV1~2q1s!….

~44!

The velocity field in Eq.~44! can be treated with the tech
nique introduced in@25#. One solves for a modified righ
hand side where only the source term in theg field is
retained and projected onto the Hagen-Poisseulle p
file P1(z)5 1

2 (p2/42z2) according to I 2g→^I 2g&5(6/
p2)^P1(z),I 2g(s;z)&; this gives the mean-flow contribution
We also isolate the twist amplitudew as the amplitude of
S1(z) in the ny field of VLW @cf. Eq. ~22!# and get after
adiabatic elimination of the other fields

VLW5E
V~0!

ds@w~s!VTeis•r1G~s!VMFeis•r1VLW
rest~s!#

5w~r !VT1G~r !VMF1E
V~0!

dsVLW
rest~s!, ~45!

with VMF5„0,0,0,0,P1(z)….
Finally, there are passive, short-wavelength contributio

to the solution. The harmonics about62qc are standard.
Additionally, we take into account the terms generated
N2„V1(q)uVTeis•r

…, with wave vectors around6qc . The re-
sulting quadratic modesV2T(q,s) are calculated with the
projector technique of Appendix B. They contribute to t
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solution with an amplitudeAw. Thehigher-order termsthat
we include in our analysis are the terms of orderA2w gen-
erated by these quadratic modes and directly by the coup
of the twist mode with the roll modes: we add to the rig
hand sideI 2 of Eq. ~44! a contribution

I 35E
V~0!

dsE
V~qc!

dqE
V~2qc!

dq8w~s!A~q!A~q8!

3@~N2„V2T~q,s!uV1~q8!…1N2„V2T~q8,s!uV1~q!…

1N3„V1~q!uV1~q8!uVTeis•r
…#. ~46!

This addition is consistent with the scheme of Sec. IV
since a particular contribution of Eq.~46! in the ny equation
leads for (s,q,q8)5(0,qc ,2qc) to the term1G(qc)uAu2w
responsible of the abnormal-roll bifurcation. The importa
point is that Eq.~46! also induces corrections to the mea
flow equations which turn out to resolve the difficultie
quoted in our Introduction. For instance, in ATC the stand
WNL analysis predicts a skewed-varicose instability of t
critical normal rolls ateSV50.15, in contradiction to the ex
perimental findings which show rather a zig-zag instability
much smallere(eZZ.0.05 according to Fig. 4 of@14#!. The
inclusion of the terms~46! in the perturbation analysis o
normal rolls drastically changes the form of the growth r
as a function of the modulation angle~Fig. 5! and leads to a
zig-zag instability ateZZ50.062 comparable to the exper
ments. Since the zig-zag modulations are also for EC
most dangerous destabilizing modes of rolls with a norm
wave vector, we now disregard the general skewed-varic
case. Using the method exposed, for instance, in@25#, we
apply an inverse Fourier transform to the evolution equati

FIG. 5. Growth rates of long-wavelength perturbation mod
dV5a1V1(qc1s)1a2V1(qc2s) of the normal rolls atq5qc in
ATC as a function of the modulation angle arg(s). The prediction
of a zig-zag instability ate5eZZ50.062 from the extended WNL
analysis~thick line! agrees with full numerical results and the e
periments. The standard WNL analysis~thin line! predicts errone-
ously a skewed-varicose instability at arg(s).50°,e5eSV50.15.
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for A(q),w(s), and G(s) obtained in Fourier space. Thi
yields from expansions of the coefficients in powers of t
wave vectors corresponding derivative terms. One arrive
the following system of equations for the roll envelopeA, the
twist amplitudew, and the mean-flow amplitudeG:

t] tA5@e~12e3]y
2!1r 2]y

2#A2uAu2A2a7uAu2]y
2A

2a8A2]y
2A* 2a9~]yA!2A* 2a10u]yAu2A2 is1A]yG

2 ib1A]yw2 ib2w]yA2bw2A, ~47a!

] tw5~sT1K1]y
2!w1 ig8 ~A* ]yA2A]yA* !

2gw w31Gw uAu2w, ~47b!

05nb]y
2G1 iq4]y

2~A* ]yA2A]yA* !1GG]y
2~ uAu2w!,

~47c!

where we have recalled on the left hand side some of
time-derivative terms@42#. Note that theA equation has been
multiplied by the characteristic timet, and that the roll
modes have been rescaled for convenience by a factoraqc

51/Atgqc
~this amounts to rescaling the amplitudes by

factor 1/aqc
). Some coefficients in Eq.~47! are linked to the

coefficients appearing in Eq.~29! for nonmodulated rolls:

b25t
]b2~qc1pŷ!

]p
U

p50

, b5tb3~qc!,

g85aqc

2 1

2

]g~qc1pŷ!

]p p50 , Gw5aqc

2 G~qc!. ~48!

A typical set of coefficients is given for EC in Table III. Not
that to lowest order in the amplitudes~47! reduces to the
anisotropic Ginzburg-Landau equation forA if w andG are
adiabatically eliminated or to the roll-mean-flow syste
~35!, ~36! of @25# if w is adiabatically eliminated. In Secs
V B and V C we will study the stability of the normal-rol
solutionsA5Ae,w50 of Eqs.~47!, and in Sec. V D we will
study the stability of the abnormal-roll solutionsA
5A(eAR1be)/(11b), w5A(e2eAR)/@b(11b)# of Eqs.
~47!, whereeAR52sT /Gw andb5gw /(bGw).

B. Stability of normal rolls: Standard zig-zag mechanisms

The results of the standard WNL analysis concerning
zig-zag instability of normal rolls are recovered if the cub
terms implying the twist amplitudew are dropped in Eq.
~47!, i.e., if one assumesGw5GG50(b andgw do not inter-
vene at this stage!. In contrast to@25# the twist amplitudew
has not been adiabatically eliminated. Thus the contribut
of the twist dynamics appears now explicitly@43# in our
formula for the zig-zag threshold,

s

.8
TABLE III. Coefficients of the roll-twist-mean-flow amplitude equations~47!, in EC for N5 atvCD51.5.

e3 r 2 a7 a8 a9 a10 s1 b1 b2 b sT K1 g8 gw Gw nb q4 GG

0.17 0.10 20.20 0.027 0.28 0.33 2.0 0.19 0.23 0.2620.042 0.088 0.16 0.0052 0.37 16.4 4.54 36
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TABLE IV. Coefficients determining the standard zig-zag threshold~49! for the critical normal rolls in
ATC ~first line!, and in EC at two different frequencies~second and third line!. Note that the largest
contributions tod2 ~49! are always the twist contribution 2b1g8/sT and the mean-flow contribution
2s1q4 /nb .

r 2 e3 a72a8 2b1g8/sT 2s1q4 /nb d2

ATC 0.22 0.29 21.05 23.29 1.16 21.13
EC atvCD51 0.033 0.26 20.22 20.83 1.22 10.43
EC atvCD52 0.158 0.085 20.25 22.09 1.07 21.19
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eZZ
s 5

r 2

d2
, with d25e31a72a81

2b1g8

sT
1

2s1q4

nb
.

~49!

The numeratorr 2 is the square of the coherence length in t
y direction, which vanishes at the Lifshitz point in EC:r 2

→01 whenv→vL
1 ; the denominatord2 has to be positive

for a destabilization to occur. Sinceb1 and g8 are always
positive ~and sT,0), the twist contribution 2b1g8/sT is
negative, i.e., stabilizing. The coefficientsb1 andg8 appear
to be dominated by the same nonlinearities asb2 andg ~Sec.
IV C!: the fact that the rolls get stiffer by an excitation of th
twist is also a direct consequence of the ‘‘frustration’’~Sec.
IV D !. This becomes clear by inspection of thenz and ny
fields generated by a zig-zag perturbation of the normal ro
Using the fact that the amplitudes for the modulation wa
vectors6pŷ in a long-wavelength instability are almost o
posite, one finds to lowest order in the perturbation am
tudea:

nz

ñz

.@22A sin~qcx!1a cos~qcx!sin~py!#S1~z!

.22A sinFqcx2
a

2A
sin~py!GS1~z!, ~50a!

w.aA
g8

usTu
p cos~py!. ~50b!

The zig-zag perturbation creates locally some obliquenes
the rolls, i.e., a modulatedqy component of the local wave
vector, qy52(a/2A)p cos(py). According to ~M2! ~Sec.
IV D !, the in-plane director in the regions of obliquene
is pushed away from the local wave vector: this crea
the splay-twist modulation~50b! ~Fig. 7! @44#. According to
~M1!, the feed-back of this twist modulation on the roll pe
turbation is negative. The only destabilizing terms ind2 ~49!
are the one ofe3 ~at least at not too large frequencyv in EC!
and more importantly themean-flow contribution2s1q4 /nb ,
wheres1 and q4 are always positive@45#. The zig-zag per-
turbation~50a! creates the mean flow

vx5~]yG!P1~z!.aA
q4

nb
p2 sin~py!P1~z! ~51!

sketched in Fig. 7. In EC and ATC, important contributio
to q4 are given by the viscous terms in thevx equation
a5@]y(Dxxny)1]z(Dxxnz)#, whereDxx5]xvx

f 5]x
2]zf . They

signify anisotropic viscous mechanisms of creation of
s.
e

i-

of

s
s

e

mean flow, quite different from the standard advecti
mechanisms~due to the termv•“vx in the vx equation! rel-
evant for isotropic fluids whereq4,0. In EC, additionally
the term 2e'R(]xf)(]y

2f) from the x component of the
Coulomb force gives large contributions toq4 . It corre-
sponds to an electric mechanism of generation of the m
flow. The coefficients1 in Eq. ~47a! is dominated by the
contributions of2g1vx]xnz in the nz equation for EC and
for ATC. Thus the mean flow~51!, by advection of the di-
rector field in the rolls, reinforces the zig-zag perturbati
~Fig. 7!. In ATC, this primary zig-zag mechanism cann
compensate the stabilizing twist contribution, as shown
the first line of Table IV:d2,0 in Eq. ~49!, i.e., no zig-zag
instability is predicted by the standard WNL analysis. T
twist contribution is overcompensated by the mean-flow o
only at low frequencies in EC, for instance atvCD51 ~sec-
ond line of Table IV!. At higher v, b1 and 22b1g8/sT
increase strongly, andd2 also becomes negative~see, e.g.,
the third line of Table IV!. The increase of the twist contri
butions results from the contribution tob1 due to term
eaR]y(nynz) in thez component of the Coulomb force. Thi
term introduces an electric mechanism of stabilization of
zig-zag perturbation by the twist~note that it would become
destabilizing for nematics withea.0) which is only impor-

FIG. 6. Stability diagram for rolls atq5qcx̂ in EC calculated
from Eqs.~47!, as a function of the dimensionless frequencyvCD

5tCDv. The unstable regions are in gray. ForvL,v,vAR , the
normal rolls are first destabilized ateZZ ~52a! towards oblique rolls
by a zig-zag instability. Forv.vAR , the first instability is ateAR

towards stable abnormal rolls. Abnormal rolls exist in gene
aboveeAR and restabilize forv,vAR aboveeARstab. Note that the
standard WNL zig-zag thresholdeZZ

s ~49! @GG5Gw50 in Eq.
~47c!#, which diverges atv.1.23, is totally misleading. The result
of the Galerkin computations@15# for the lineseZZ ~diamonds! and
eARstab ~squares! are included.
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tant at highv whereR gets large. Thus the standard zig-z
thresholdeZZ

s diverges atvCD51.23 ~Fig. 6! in distinct con-
tradiction to the experiments as well as to the Galerkin c
culations which have shown the existence of a zig-zag in
bility up to vAR.2.5 @15,16#.

C. Stability of normal rolls: Secondary zig-zag mechanism

By inclusion of the higher-order termsGw andGG in Eq.
~47!, the zig-zag thresholdeZZ

s ~49! is modified to

eZZ5
r 2

d3
, with

d35
1

2S d21
Gw

usTu
r 2

1AS d22
Gw

usTu
r 2D 2

18
g8dG

usTu
r 2D , ~52a!

dG5
s1

nb
GG2

b1

usTu
Gw . ~52b!

If only Gw is kept, thendG is negative and the argument o
the square root is usually negative~except in EC forv very
close tovL), i.e., the divergence of the zig-zag thresho
persists@it is even more dramatic than with Eq.~49!, e.g., it
occurs now atvCD50.9 in EC#. Indeed, the termGw uAu2w
in Eq. ~47b! reduces the damping ofw: it thus produces the
normal→ abnormal roll instability, but it also enhances th
stabilizing influence of the twist dynamics on the zig-z
instability. On the contrary, keeping only the contribution
GG in Eq. ~52! yields a positivedG sinceGG turns out to be
always positive. Thend3 reduces to

d3.
1

2S d21Ad2
218

g8dG

usTu
r 2D , ~53!

which stays positive finite even whend2→2`, i.e., even
when the WNL zig-zag threshold~49! diverges totally. The
exact zig-zag threshold~52a! is shown in Fig. 6 for EC@46#.
The first correction to the standard WNL thresholdeZZ

s can
be calculated analytically: forv→vL and r 2→01,eZZ

s

→01, one finds

eZZ5eZZ
s 2

2g8

usTud2
dG~eZZ

s !21O~eZZ
s !3,

where, for EC, the prefactor of (eZZ
s )2 is 240. Thus, whereas

the slope of the zig-zag threshold at the Lifshitz point is n
changed as compared with the standard WNL analysis,
domain of validity of the standard WNL analysis appears
be very limited. The zig-zag thresholdeZZ ~52a! increases
with frequency essentially because of a strong increase or 2
andb1 with v. EventuallyeZZ meets the abnormal-roll line
eAR5usTu/Gw at a crossover frequencyvAR where d3
5r 2 /eAR5r 2Gw /usTu; according to Eq.~52a!, dG vanishes
at the crossover point,dG.0 for v,vAR ,dG,0 for v
.vAR . The competition between the zig-zag and t
abnormal-roll instabilities appears therefore to be contro
l-
a-

t
he
o

d

by a balance between theGG effects mainly responsible fo
the zig-zag instability~it occurs first if dG.0) and theGw

effects mainly responsible for the abnormal-roll instability~it
occurs first ifdG,0). More quantitatively, for EC, our ex
tended WNL computations reproduce the results of
Galerkin computations~compare Fig. 6 to Fig. 3 of@15#!
very well at smalle, whereas fore*0.07 our values ofeZZ
become slightly too small; thus we find the crossover poin
vAR52.9 instead ofvAR52.4 from the Galerkin computa
tions. This agreement is satisfactory, and our analysis has
advantage of allowing for analytic modeling. For instanc
by adjustingr 2 and b1 , using otherwise the coefficients o
Table III, one can perfectly reproduce the results of the f
numerical calculation. Such an adjustment could possibly
used also for modeling experimental results~see also Sec
V D!.

The new zig-zag mechanism expressed by theGG effect
can be understood by inspecting the corrections to the
turbation fields. WithoutGw , one finds that the roll~50a! and
twist perturbations~50b! are unchanged, whereas the ho
zontal velocity~51! is modified according to

vx.aA
1

nb
S q41

g8

usTu
GG A2D p2 sin~py!P1~z!. ~54!

Thus the reinforcement of the zig-zag instability due to t
GG term is a three-step procedure~Fig. 7!. First, the roll
curvature induces the splay-twist modulation~50b!. Second,
this splay-twist modulation reinforces the mean flow alrea
induced by the roll curvature~term }q4 in vx). Third, this
mean flow~as known already from the standard mechanis!
reinforces the roll curvature. We find that in EC and
ATC the dominant nonlinearities inGG are contribu-
tions from the viscous terms in thevx equation 1

2 @(a5

2a2)(]zvx
f )nz(]yny)1(a51a2)(]xvz)nz(]yny)#, which

signifies a kind of ‘‘velocity focusing’’ associated with th
long-wavelength splay term]yny ~Fig. 7!. It would be inter-
esting to confirm this mechanism experimentally by opti

FIG. 7. Sketch of the mechanisms driving the zig-zag instabi
of normal rolls. The thick lines represent slightly undulated ro
i.e., with a modulated local wave vectorq @see Eq.~50a!#. The
ensuing roll curvature produces a mean flowv ~dashed arrows!
which in turn advects the rolls and reinforces the undulations. I
secondary mechanism, the undulations generate a splay-
modulation of the in-plane directorn0 ~small arrows inside the
rolls!, which in turn strongly reinforces, via a kind of ‘‘flow focus
ing,’’ the mean-flow.
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observations of the in-plane director: this should reveal
the onset of the zig-zag instability, the splay-twist modu
tion shown in Fig. 7.

D. Restabilization of abnormal rolls at higher e

In the parameter region where the normal rolls are fi
destabilized by the zig-zag instability~casev,vAR in EC,
usual case in ATC!, abnormal-roll solutions nevertheless e
ist for e.eAR.eZZ . For symmetry reasons it seems cle
that a sufficiently large rotation of the in-plane director w
render these abnormal rolls stiff against long-wavelen
zig-zag perturbations where the resonant interaction betw
the two modulation modes at6pŷ is important. A stability
analysis of Eq.~47! does reveal the existence of a third s
bility boundaryeARstab.eAR.eZZ where the zig-zag modu
lations of the abnormal-roll solutions are damped out. T
y°2y symmetry in Eq.~47! is broken by theb2 and b
terms in theA equation~47a!, the termsgw andGw in the w
equation~47b!, and the termGG in the mean-flow equation
~47c!. The coefficientsb2 andgw seem to play no importan
role since their suppression only changes slightly~by less
than 2%) the value ofeARstab. Assuming thereforeb25gw

50 in Eq. ~47!, one obtains the following approximate fo
mula:

eARstab

eAR
21.dG

g8

d4
, with

d45
Gw

2 F Gw

usTu
r 22d212g8

dG

Gw

1AS Gw

usTu
r 22d212g8

dG

Gw
D 2

24e3g8
dG

Gw
G . ~55!

This shows clearly that the lineseZZ ,eAR , andeARstab must
meet at the crossover pointdG50 in EC. An expansion of
Eqs. ~52a! and ~55! in the vicinity of this point (v
→vAR

2 in EC) yields a relation between their slopes:

S eARstab

eAR
21D;22S eZZ

eAR
21D;

g8

Gw~r 2 /eAR2d2!
dG.

~56!

This constraint on the slopes of the lineseARstab(v) and
eZZ(v) at the crossover point could be easily tested exp
mentally @47#. Here we predict eAR.0.076
20.030dv,eARstab/eAR21.20.19dv or equivalently
eARstab.0.07620.044dv for dv5v2vAR5O(1), with
frequencies in units oftCD

21 . The lineeARstab(v) calculated
without approximations is shown in Fig. 6 for EC an
matches roughly the numerical results@15# for not too small
v. However,eARstab(v) increases too steeply with decrea
ing v in contrast with the full numerical results~see the
squares in Fig. 6 and Fig. 3 of@15#!. Indeed at low frequen-
cies, very high amplitudes are attained fore*0.15 ~Sec.
IV B 2! and the WNL perturbation approach is no long
justified.

Note that only a few parameters determine the position
the bifurcation lineseZZ ~52a!, eAR andeARstab ~55!: the lin-
ear coefficientsr 2 ,e3 , andsT and the nonlinear coefficient
t
-

t

r

h
en

-

e

i-

r

f

d2 ,Gw , anddG85g8dG/Gw . The linear coefficients should
be relatively easy to determine in experiments. Measu
ments ofeAR for v.vAR , together with an extrapolation in
the domainv,vAR „observe thateAR8 (v) is very smooth
@Fig. 2~b!#…, would then yield the values ofGw . The remain-
ing coefficientsd2 and dG8 could then be determined b
fitting the expressions~52a! and~55! of eZZ andeARstabto the
measured values of the zig-zag and abnormal-roll resta
zation thresholds.

VI. NONLINEAR BIMODAL SOLUTIONS

Abnormal or oblique rolls of wave vectorq are stable
against long-wavelength perturbations in an intermediate
range; e.g., in EC the abnormal rolls fore*eARstab. Experi-
ments~see, e.g.,@20,19#!, as well as numerical simulation
@27# or WNL analyses~see, e.g.,@26#!, have shown that they
are rather destabilized in this regime by a short-wavelen
mode of wave vectork leading to a bimodal structure. Am
plitude equations modeling such instabilities can be deri
with calculations similar to those of Sec. IV A, where we a
a secondary roll mode to the basic ansatz for the exten
WNL solutions~25!, now

V5VA1V'5@AV1~q!1BV1~k!1c.c.#1wVT1V' .
~57!

One should realize that since we leave the ‘‘very smalle ’’
region, no quantitative results are to be expected in gene
Nevertheless, we will obtain in some regimes~EC at highv)
semiquantitative results, and, more importantly, qualitat
results concerning the origin of the bimodal instability a
the further stability of the bimodal solutions themselv
~which had never been studied theoretically!.

A. Bimodal-twist amplitude equations

With the scheme of Appendix B and calculations pe
formed atR5R0(q) in order to avoidR dependencies of the
nonlinear coefficients in the amplitude equations, we
from Eq. ~57!

] tA5S e2e0~q!

tq
2gquAu21b2~q!w2b3~q!w2D A

2gkquBu2A,

] tw5@sT2gww21G~q!uAu21G~k!uBu2#w

2g~q!uAu22g~k!uBu2,

] tB5S e2e0~k!

tk
2gkuBu21b2~k!w2b3~k!w2DB

2gqkuAu2B. ~58!

The coupling coefficientgqk is

gqk52^U1~k!,N2„V1~2q!uV2~q,k!…

1N2„V1~q!uV2~2q,k!…1N2„V2~q,2q!uV1~k!…

1N3„V1~q!uV1~2q!uV1~k!…&, ~59!
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TABLE V. Coefficients of the bimodal-twist amplitude equations~58!, in ATC for an experimental zig wave vectorq and the corre-
sponding dual wave vectork ~see text!.

tq e0(q) gq b2(q) b3(q) gkq tk e0(k) gk b2(k) b3(k) gqk

267 0.013 0.0054 0.00010 0.0011 0.013 431 0.16 0.002420.0010 0.0017 0.0025

sT gw G(q) G(k) g(q) g(k)

20.00081 0.00010 0.0077 0.0034 0.0014 20.0048
e

ns

b

i-

ta
s

t
h

he

he

on

ve

-
e

his

his
in-
g

by

heir

ue

e

,

im-
n

,

f

e
a

of
als

f

st
that

e
l
at
where the second harmonics are defined as in Eq.~28!, e.g.,

V2~q,k!52LR0~q!
21

•N2„V1~q!uV1~k!…. ~60!

B. Bimodal instability

Consider a primary solution of the zig type characteriz
by a wave vectorq5qx̂1pŷ with p>0, an amplitudeA
5A(q;e), and an in-plane director rotationw5w(q;e),0
~this can include both abnormal-and oblique-roll solutio
see the discussion at the end of Sec. IV C!. The growth rate
of the short-wavelength perturbation of wave vectork de-
duced from Eq.~58! is

sBV~q;k;e!5
] tB

B
5

e2e0~k!

tk
1b2~k! w2b3~k! w2

2gqkuAu2. ~61!

In EC and in ATC,sBV first becomes positive ate5eBV for
a certain wave vectork ~the ‘‘dual’’ of q) of the zag type
(ky,0). This selection can be heuristically understood
noticing that the growth ratesBV(q;k;e) at the dualk is
much larger thansBV(q;k8;e) for ak8 in the zig region, e.g.,
at k85S(k). Since the coefficientse0(k),tk , andb3(k) are
unchanged under the application ofS, and gqk is only
slightly modified @52#, one obtains sBV(q;k;e)
.sBV„q;S(k);e…12b2(k)w: the fact thatb2(k) is large
and negative in the zag region~and w,0) explains the se-
lection. TypicallykÞS(q) so the resulting unsymmetric b
modal is of the ‘‘bimodal varicose’’ type@14#.

In EC for the abnormal rolls atq5qc , we find values of
eBV that are too small at lowv. The reason is thatuw(q;e)u
gets too large when compared with the Galerkin compu
tions ~Sec. IV B 2!. However, the position of the dual i
qualitatively correct. For instance, atvCD51 we find uku
51.18qc ,argk5267° @48#, to be compared withuku
51.01qc ,argk5261 ° from the Galerkin computations. A
higherv, since the abnormal-roll solutions are closer to t
numerical Galerkin solutions~Sec. IV B 2 and Fig. 3!, both
eBV and k agree reasonably well with the ones from t
Galerkin computations. For instance, atvCD52.4, we find
eBV50.186,uku50.98qc ,argk5233 ° @49#, to be compared
with eBV50.183,uku50.95qc ,argk5226 ° from the Galer-
kin computations. We mention that the bifurcation to t
bimodal varicose has also been evidenced recently in EC
the nematic I52 at high electric conductivity@50#.

In ATC, for the primary zig modeq51.07qc( x̂ cos 8°
1ŷ sin 8°), we findeBV50.176,uku50.86uqu,argk5232°, in
qualitative agreement with the experimental observati
d

,

y

-

e

of

s

@14#. The corresponding coefficients~Table V! will be used
in Sec. VI C for numerical simulations of the system~58!.

For all these bimodal instabilities, the leading positi
contribution to sBV(q;k;eBV) ~61! is always b2(k)w,
whereas the~typically negative! contribution ofb3(k)w2 is
smaller in magnitude@51#. This proves that the director ro
tation (w,0) in the primary rolls is the main cause for th
excitation of a mode with wave vector in the zag region. T
holds for primary abnormal (p50) or oblique rolls (p.0)
and generalizes the mechanism identified in@26# for ATC,
which appears to be also valid for EC. Finally, note that t
mechanism can also be understood from the frustration
troduced in Sec. IV D: the director rotation in zigs bein
driven by~M2! and the subsequent excitation of a zag roll
~M1!.

C. Bimodal-twist solutions—Hopf bifurcation

The main advantage of the model system~58! is that ap-
proximate bimodal solutions can be calculated, and that t
stability can now be studied. LetA,BÞ0, then Eq.~58!
yields a cubic equation forw after the elimination ofuAu2
and uBu2. For primary abnormal rolls, there exists a uniq
stable solution foreBV,e,eHopf ~see below foreHopf), and
the bimodal bifurcation is supercritical. For primary obliqu
rolls, we find a stable solution in a slightly largere domain,
eBV2deBV,e,eHopf : the bimodal bifurcation is, in fact
slightly subcritical. With the parameters of Table V,deBV
50.002!1: the corresponding hysteresis appears to be
possible to observe experimentally. However, the jumps iB
andw at e5eBV are not small and might be observable~see
the left side of Fig. 8!. Note that after the bimodal transition
w increases steeply owing to the term2g(k)uBu2 in the w
equation, whereg(k),0 sincek is zag. The stability of the
bimodal branch against perturbations inA,B, andw can be
studied by linearization of Eq.~58!. One always finds a Hop
bifurcation at sufficiently largee.eHopf . With the coeffi-
cients of Table V,eHopf50.22, and the development of th
Hopf bifurcation is shown, on the right side of Fig. 8, by
time-forward simulation of Eq.~58! after a jump frome
50.22 to 0.228. The two amplitudes oscillate roughly out
phase, as observed experimentally in the oscillating bimod
~see, e.g.,@19# or Fig. 12 of @20#!. The calculated period o
thesebimodal-twist oscillationsis T548tq544t, which is
not too far from the periods measured experimentally,T
.15t @20#. The existence of these oscillations is robu
against changes in the parameters of Table V, provided
their sign is left unchanged.

In order to analyze the origin of these oscillations, w
now focus on the simpler case of a symmetric bimodak
5S(q). Such symmetric bimodals are often observed
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FIG. 8. Solutions of the coupled amplitude equations~58! modeling the interactions between two roll modes of wave vectorq ~zig! and
k ~zag! and the homogeneous twist mode. The coefficients of Table V have been used, and the roll amplitudesA ~thin line!, B ~dotted line!
have been multiplied by 2 in order to display the leading amplitudes of thenz field in Eq. ~57!, nz52@2A sinq•r12B sink•r #S1(z)

1h.o.t. The amplitudew ~thick line! determines to lowest order the angle between the average in-plane director andx̂. Left panel: stationary
solutions obtained in the ‘‘lowe ’’ regime. For e0(q),e,eBV , one has monomode solutions (AÞ0,B50). At e5eBV , a subcritical
bifurcation towards a bimodal (A,BÞ0) occurs; only the stable bimodal solutions are then shown. Right panel: behavior just abo
threshold of the Hopf bifurcationeHopf . After a jump frome50.22,eHopf to e50.228.eHopf , regular out of phase oscillations ofA andB
develop, which are mediated by an oscillation of the in-plane director.
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rather high values of the control parameter in EC and in A
after an evolution withR of the wave vectors of the bimoda
varicose@53#. In this symmetric case, assuming that Eq.~58!
is still valid to describe the dynamics of the system, an a
lytic calculation of the Hopf threshold becomes tractab
Since the phases ofA andB are not coupled by the system
~58!, we can consider these amplitudes to be real with
loss of generality. After some simple rescalings, Eq.~58!
takes the simpler form

] tA5~e2A21b2w2b3w2!A2gB2A,

] tw5@sT2gww21G~A21B2!#w1g~B22A2!,

] tB5~e2B22b2w2b3w2!B2gA2B, ~62!

where g5gqS(q)5gS(q)q ,b25b2(q)52b2„S(q)….0,g
5g(q)52g„S(q)….0. Forg.21, this system admits sta
tionary bimodal solutions given byA5B5Ae/(11g)
5Ae8,w50. If we perturb these solutions according to

A5Ae81a, B5Ae81b, w501w,

it turns out that the modesa1b andb2a are decoupled, and
that the former is always damped. The perturbation sys
then reduces to

] t~b2a!522e8~12g!~b2a!22b2Ae8w,

] tw52gAe8~b2a!1~sT12Ge8!w. ~63!

If we suppose that a fluctuation in the roll amplitudes fav
the zag modeB, then the director will avoid the stronge
gradients along the zag wave vector by rotating towards
zig: w then becomes positive due to theg term in the second
equation. But this rotation will then favorA, at the expense
of B, due to theb2 term in the first equation:b2a will now
decrease. If theGe8 term in Eq.~63! is sufficiently large to
-
.

t

m

s

e

overcompensate the damping of the modesb2a andw, i.e.,
if the trace of the matrix~63! is positive:

2e8~G1g21!1sT.0⇔G.12g,

e8.eHopf8 5
1

2

usTu
G1g21

, ~64!

b2a will even change sign and thus make the director rot
in the opposite direction~now towards the zag!. Thus a Hopf
bifurcation will occur, under the additional conditions th
the discriminant of the system~63! is negative ate8
5eHopf8 :

D5
4usTu

~G1g21!2
@ usTu~g21!222b2g~G1g21!#,0,

~65!

and that a stationary instability does not occur before:

usTu~g21!22b2g,0. ~66!

These conditions are typically fulfilled sinceusTu is small
whereas the productb2g is large in oblique rolls. This, to-
gether with the fact that the instability condition~64! is easy
to realize with the largeG expected for nematic convection
proves that the bimodal-twist oscillations are generic, as
pected from the experiments. The leading mechani
clearly linked to the fact thatb2(q) and g(q) change sign
when passing from the zig to the zag, is sketched in Fig. 9
can be interpreted in terms of the director–wave-vector fr
tration introduced in Sec. IV D. Indeed, if a fluctuation f
vors one roll amplitude in the bimodal, according to~M2! the
director will be pushed away from the wave vector of th
roll mode. Thus the director will approach the wave vector
the other roll mode, which will be reinforced according
~M1!, and so on~Fig. 9!.
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In fact, secondary indirect mechanisms for the feedba
w↔A implied in this instability loop are provided by th
interactionsw↔B andB↔A. For instance, an increase ofw
leads to an increase ofA ~second step of Fig. 9! due to the
term in b2(q).0 in Eq. ~58!, but also because it first pro
duces a decrease ofB @due to the terms inb2(k),0,b3(k)
.0] which then drives an increase ofA ~due to the term in
gkq.0). In a similar way, an increase ofA drives a decrease
of w ~third step of Fig. 9! directly due to theg(q) term
@g(q).0#, or indirectly, via a decrease ofB, due to thegqk
and g(k) terms @gqk.0 andg(k),0]. An important con-
sequence of these indirect mechanisms is that the oscilla
also develop in a bimodal constructed on primary abnor
rolls for which b2(q)5g(q)50. Indeed, simulations of Eq
~58! with a set of coefficients calculated in EC of N5
vCD52.4 for the bimodal constructed on the abnormal ro
at q5qc show the same sequence as in Fig. 8, now w
eBV50.186 andeHopf50.24. Of course, these oscillation
disappear ifgqk or gkq are set negative.

VII. CONCLUSION

A minimal description of planar nematic convection h
been obtained which captures the generic bifurcation
quences known experimentally. It is based on a system
WNL analysis where the active mode basis has been
tended: besides the standard roll modes, ‘‘slow modes’’ c
sisting of homogeneous or quasihomogeneous twist mo
of the director have also been included. The evolution eq
tions coupling the corresponding order parameterw with the
roll amplitudesA ~or B) and with the mean-flow amplitudeG
@Eqs. ~29!, ~47!, and ~58!# have allowed a quantitative de
scription of the first bifurcations at smalle ~see, e.g., Fig. 11!
and a qualitative description of the subsequent bifurcation
highere ~see, e.g., Fig. 8!. Due to the semianalytic nature o
the calculations, the dominant nonlinear microscopic mec
nisms could be singled out. This gives indications conce
ing the behavior of nematics with other material paramet
In general, the interactions between the twist and the
amplitudes appear to be ruled by a principle that we h
termed ‘‘director–wave-vector frustration’’: the charge- a
heat-focusing mechanisms both favor the in-plane dire

FIG. 9. Sketch of the mechanism driving the bimodal-twist o
cillations. The thin arrows show the zig~continuous line! and the
zag ~dashed line! wave vectors of the two roll modes in the bimo
dal. The magnitude of the corresponding amplitudesA and B is
symbolized by the size of the Fourier spots attached to these w

vectors. The in-plane directorn0 , such thatn0• ŷ5w, is drawn with
the thick arrow. The four elementary steps during one oscilla
are shown side by side. The torque}a2 exerted by the rolls on the
director is sketched with the vertical arrows, and the positive~nega-
tive! feedback from the director to the roll amplitudes is indicat
with the 1(2).
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almost parallel to the roll wave vectors, whereas the visc
torques always push it away~Sec. IV D!. This explains the
close analogy between electroconvection and thermocon
tion.

A systematic calculation of the order-parameter equati
as presented here might also provide a better understan
of the microscopic mechanisms for other systems wh
slow modes play an important role. Examples are bin
fluid convection with slow concentration modes@54# or nem-
atic electroconvection in the presence of weak-electrolyte
fects, in which slow charge modes allegedly drive the form
tion of the surprising ‘‘worms’’@55#.

We hope that our results will stimulate new experimen
studies of electroconvection and thermoconvection, wh
some features characteristic of the roll-twist-mean-flow int
actions could be evidenced: e.g., the dynamics at the zig
instability ~Fig. 7!, the in-plane director oscillations underly
ing the bimodal oscillations~Fig. 9!, or the change in the
trajectory trace quoted in Appendix C. Since all the ba
structures and instability lines are now well understood, t
work also establishes a starting point for a systematic th
retical study of more complicated nonperiodic patterns. F
instance, the rich dynamics of structures with point defe
or walls @56# needs further investigation. In particular, th
spatiotemporal chaos observed under certain experime
conditions might be better described and understood fr
envelope equations of a type similar to Eqs.~47!. For that
purpose, an extension of these equations to the case
general spatial dependence~both ]y and ]xÞ0) is under
way. It would also be interesting to reanalyze the phase
namics in the oscillating bimodals, which had been pre
ously described on the basis of phenomenological mod
@57#.

We note finally the similarities with homeotropic nemat
electroconvection, where one setsn5 ẑ at the plates and
therefore the rotational symmetry aroundz is initially not
broken. Convection sets in after an electric Fre´edericksz
transition where the in-plane director orientation is select
and the associated Goldstone mode plays a role analogo
our twist mode in planar convection. In fact, the first expe
ments pointing to the existence of abnormal rolls were p
formed in homeotropic electroconvection@58#, and the am-
plitude equations derived for this system in@30# are similar
to our amplitude equations in their simplest form@59#. In the
presence of a planar magnetic field, the homeotropic sys
becomes anisotropic. Galerkin computations@60# and experi-
ments@61# have then shown sequences of bifurcations id
tical to the ones observed in the planar case. It would
interesting to systematically calculate the correspond
order-parameter equations, particularly to elucidate the
of the mean flow in this homeotropic case.
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APPENDIX A: LINEAR EQUATIONS
FOR THE FOCUSING MECHANISMS

The focusing mechanisms and the analogy between
and ATC become clearer by inspection of the correspond
dimensionless linear equations. In EC, the evolution of
scalar field, the electric potentialf, is governed by Eq.~5!,

2~e'¹21ea]x
2!] tf1ea] t~Eac]xnz!

5Q~s'¹21sa]x
2!f2QsaEac~]xnz!, ~A1!

with Eac5cosvt. This equation presents the same kind
focusing terms (}]xnz) as the evolution equation for th
temperature modulationu in ATC which follows from Eq.
~7!,

] tu5~k'¹21ka]x
2!u1Rvz2Rka]xnz . ~A2!

The evolution equation fornz , deduced from Eq.~1!, con-
tains in both cases the same elastic and viscous terms,

g1] tnz5~k33]x
21k22]y

21k11]z
2!nz

1~k112k22!]y]zny2a2]xvz2a3]zvx1hz8 ,

~A3!

with the dimensionless units for EC; the important term h
is the viscous torque}]xvz . In EC additional electric terms
come in,

hz85eaRnz22eaREac]xf, ~A4!

which are only important at high frequencies. Finally, t
evolution equation forvz , deduced from Eq.~3!, is also
rather similar for both systems,

rm] tvz2a2] t]xnz5~nc]x
21na]y

21na]z
2!vz

1
1

2
~a21a5!]x]zvx1 f vol , ~A5!

with the dimensionless units for EC~for ATC one has only
to changerm into 1/Pr), with the bulk force being given by
the Coulomb force~6! in EC,

f vol5eaR]xnz22REac~e'¹21ea]x
2!f, ~A6!

and by the buoyancy force~8! in ATC,

f vol5u. ~A7!

APPENDIX B: EXTENDED WEAKLY NONLINEAR
SCHEME

In this appendix we show how to calculate approxim
WNL solutions of a problem of the form
C
g
e

f

e

e

D] tV5LV1N2~V,V!1N3~V,V,V!, ~B1!

with the order-parameter approach. The main control par
eter R ~not recalled in order to simplify the notations! is
fixed. The linear modes, the solutions of

s~m!DV1~m!5LV1~m!, ~B2!

are indexed by a collection of numbersm; for instance, in
the ‘‘extended layer’’ geometry,m5(q,n) where q is the
horizontal wave vector andn indexes the vertical depen
dence~in z). These linear modes are assumed to form a b
in V space. With the help of a Hermitian scalar product inV
space, (U,V)°^U,V&, we define the adjoint linear operato
D† andL† by ^U,D•V&5^D†

•U,V&, and the adjoint linear
modes as the solutions of

s~m!D†
•U1~m!5L†

•U1~m!. ~B3!

They can be normalized such that

^U1~m!,DV1~m8!&5d~m2m8!. ~B4!

The growth ratess(m) are assumed real. We distinguis
between theactive modesof growth rates(m).2c ~which
defines a domainA in m space! and thepassive modesof
growth rates(m),2c ~which defines a domainP in m
space!. Usually in the solutions of Eq.~B1! there is a clear
separation between the growth rates of the excited ac
modes and the growth rates of the excited passive modes~see
below!, and therefore the exact value ofc is not very impor-
tant. We assume the existence of a primary instability:

max
mPA

s~m!5e.0, ~B5!

with e!c. The orthogonality rule~B4! allows the definition
of a projector onto the active mode space by

PAV5 (
mPA

^U1~m!,DV&V1~m!, ~B6!

and onto the passive mode space by

~12PA!V5 (
m8PP

^U1~m8!,DV&V1~m8!. ~B7!

Thus a natural decomposition of possible approximate s
tions of the evolution equation~B1! is

V5VA1V'

5PAV1~12PA!V

5 (
mPA

A~m!V1~m!1 (
m8PP

B~m8!V1~m8!. ~B8!
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A modeV1(m) or V1(m8) is ‘‘excited’’ if the corresponding
amplitudeA(m) or B(m8) is nonzero; theA(m) constitute,
in fact, the ‘‘active amplitudes’’ or ‘‘order parameters
which will define the solution. In order to show this, w
introduce the coprojectorPA8 defined by

PA8 V5 (
mPA

^U1~m!,V&DV1~m!, ~B9!

such thatPA8 D5DPA and PA8 L5LPA . The application of
(12PA8 ) on Eq.~B1! then gives to lowest order

D] tV'5LV'1~12PA8 !N2~VA ,VA!, ~B10!

which shows that ifVA is assumed to be of orderA, V' is of
order A2. Moreover, the projection of Eq.~B10! onto
U1(m8) gives

] tB~m8!5s~m8!B~m8!1^U1~m8!,N2~VA ,VA!&.

Assuming that] t is of the order of the maximum growth rat
of the active modes~B5!, we get] t!us(m8)u and can there-
fore perform anadiabatic eliminationof B(m8),

B~m8!52
1

s~m8!
^U1~m8!,N2~VA ,VA!&, ~B11!

or equivalently solve Eq.~B10! by

V'52L21~12PA8 !N2~VA ,VA!. ~B12!

The projection of Eq.~B1! onto theU1(m) gives the final
active amplitude equations

] tA~m!5s~m!A~m!1^U1~m!,N2~VA ,VA!1N2~VAuV'!

1N3~VA ,VA ,VA!&, ~B13!
rla

o

ar
where we have introduced the notations~used in the rest of
the paper for the cubic order!

N2~aub!5N2~a,b!1N2~b,a!,

N3~auaub!5N3~a,a,b!1N3~a,b,a!1N3~b,a,a!,

N3~aubuc!5N3~a,b,c!1N3~a,c,b!1N3~b,a,c!

1N3~c,a,b!1N3~b,c,a!1N3~c,b,a!.

~B14!

In practice, often the eigenmodes~or the operatorsL andN2)
at the control parameterR are not used to calculate the no
linear coefficients of the amplitude equations since t
would introduce anR dependence of these coefficients. I
stead, one uses, for instance, in convection the neutral
modesV1(q)ªV1„q;R0(q)… instead ofV1(q;R) or evaluates
L215LR

21 in Eq. ~B12! at R5R0(q); clearly this introduces
only small numerical corrections to the scheme. Note fina
that the scalar product in our layer geometry is defined b

^U~z!eiq•r,V~z!eiq8•r&

5d~q2q8!
2

pEz52p/2

z5p/2

U* ~z! t V~z!dz. ~B15!

APPENDIX C: ANALYTIC APPROXIMATION
OF THE NONLINEAR ROLL-TWIST COEFFICIENT G

In this appendix we use the lowest-order Galerkin exp
sion to give analytic approximations of the coefficientG(q)
~33! and to elucidate the corresponding mechanisms~at q
5qcx̂). The contributionG3(q) of the cubic nonlinearities
then reads
g1G3~q!55 2.21ua2uqcf̃ ñz11.56a3qc
3 f̃ ñz1

6~k332k22!qc
222k331k22

4
ñz

21
3

4
qcRea@ ñz~f̃1f̃* !24qcuf̃u2# in EC

2.21ua2uqcf̃ ñz11.56a3qc
3 f̃ ñz1

6~k332k22!qc
222k331k22

4~F/g1!
ñz

2 in ATC,
~C1!
e
where the numerical constants arise from Galerkin ove
integrals. Since for EC the electric contribution (}ea) is al-
ways negligible, the same effects control the value ofG3(q)
in EC and in ATC. Typically, the first term proportional t
a2 ~noted hereafterG3visc) is by far the largest, followed by
the elastic contribution (G3elast). For instance, in EC atvCD

50.5, one has$G3visc,G3elast%5$0.84,0.18%G3(q), while at
vCD54,$G3visc,G3elast%5$0.66,0.32%G3(q); in ATC,
$G3visc,G3elast%5$0.91,0.07%G3(q).

There are also contributions of the quadratic nonline
ties toG(q) ~33!, which are only important in EC on which
p

i-

we will now focus. With the use of the quadratic mod
V2(q,T) ~28!, which reads

V2~q,T!5„0,ñy
TS2~z!,0,0,g̃TS2~z!…eiqcx, ~C2!

one finds

g1G2~q!52.30ua2uqc
2 f̃ ñy

T12ua2uqcñzg̃
T20.646a3qc

2 f̃ ñy
T

1~k112k33!qcñzñy
T , ~C3!



e

PRE 59 1767EXTENDED WEAKLY NONLINEAR THEORY OF PLANAR . . .
FIG. 10. In EC for MBBA ~like Fig. 1!: ~a!
growth ratesT of the homogeneous twist mod
in units of the characteristic timet; ~b! saturation
coefficientgqc

of the critical normal rolls.
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where the first two terms dominate. They originate froma2
terms in N2ny

„V1(2q)uV2(q,T)…, namely a2v•“ny

2a2(]xvx)ny for the term}ñy
T , and2a2nz(]zvy) for the

term }g̃T. The first term in Eq.~C3!, }ñy
T , is always posi-

tive. This is due to the fact thatñy
T.0, as can be seen from

the result of the adiabatic elimination Eq.~28!,

ñy
T5@4k221k33qc

2#21~ ñy81ua2uqc
2g̃T!, ~C4a!

g̃T5@qc
2~4na1ncqc

2!#21g̃8, ~C4b!

where

ñy85~0.323ua2u21.15a3!qc
2 f̃ 1

k112k33

2
qcñz , ~C5a!

g̃85~0.735a110.618ua2u10.367a320.206a5

10.367a6!qc
4 f̃ 11.22~a31a6!qc

2 f̃ . ~C5b!

In Eq. ~C5a!, ñy8 is dominated by thea2 contribution origi-
nating from the terma2(]xvx)ny in N2ny

„V1(q)uVT…; in Eq.

~C4a!, ñy
T is also dominated by this contribution fromñy8 .

Thus a2 mechanisms impose the positive value ofG2(q)
~C3!.

The increase ofG2(q) with the frequencyv @Fig. 2~a!# is
in fact due to a change of sign of the second term}g̃T in Eq.
~C3!. Equation ~C5b! gives g̃85(13.2qc

2228.5)qc
2 f̃ which

shows thatg̃T and g̃8 are negative at lowv where qc is
small, and positive at highv whereqc becomes large. This
change of sign is mainly due to thea2 contribution in Eq.
~C5b! originating from the term a2]x(vz]zny) in
N2vy

„V1(q)uVT… @62#. It has some consequences on the an
between the projection of the trajectories in the horizon
plane and the axis of the rolls, which could be observ
experimentally. In ‘‘zig’’ abnormal or oblique rolls (q
le
l
d

5qcx̂1pŷ with p>0; w,0) one expects according to Eq
~25!, ~27! for the component of the velocity parallel to th
axis of the rolls†Eq. ~B.4! of @29#‡,

v i52Auqu@ g̃~q!1wg̃T~q!#S2~z!sin~q•r !1h.o.t.

For smallp,g̃(q).g̃1p, and therefore

v i.2Aqc@ g̃1p1wg̃T~qcx̂!#S2~z!sin~q•r !. ~C6!

Since g̃1.0, one hasg̃1p.0 in zig oblique rolls, whereas
wg̃T(qcx̂),0. Thus, whenp decreases~this happens sponta
neously under certain conditions in EC, see, e.g.,@15#!, one
expects a change of sign of arctan(vi /v'), the angle between
the trajectories and the wave vector of the rolls†v' being the
velocity perpendicular to the axis of the rolls,v'.
22Aqcf̃ (qcx̂)C18(z)sin(q•r ) according to Eq.~B.3! of @29#‡.

APPENDIX D: RESULTS FOR THE
ELECTROCONVECTION OF THE NEMATIC MBBA

The ~commonly used! nematic MBBA is an interesting
example of material without a Lifshitz point. Moreover,
recent experiments the excitation of the twist mode has
been evidenced directly with some special optical meth
@17#. For MBBA, the crossover frequency to the dielectr
regime isvD52.3tCD

21 . We show in Fig. 10 the standar
WNL coefficients and in Fig. 11 the predictions of the e
tended WNL theory concerning the bifurcations of rolls wi
a normal wave vector. Note that the quadratic effects (G2)
determining the value ofG ~33! become dominant at high
frequency. Concerning the long-wavelength instabilities, o
sees that the standard WNL zig-zag lineeZZ

s is always lo-
cated above the abnormal-roll lineeAR : thus no zig-zag in-
stability would be predicted to occur below the abnorm
roll threshold if the new termGG were not included in Eq.
~47c!. Within the extended WNL theory, the crossover b
tween the zig-zag and the abnormal-roll instability occurs
es
n-
FIG. 11. In EC for MBBA: ~a! coupling co-
efficientG(qc) ~33! between the critical rolls and
the twist mode, as in Fig. 2~a! for N5; ~b! stability
diagram, as in Fig. 6 for N5. The closed squar
and diamonds display the results of the full no
linear Galerkin computations@3,28#.
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vAR51.3, with eAR.0.09520.058dv, eARstab/eAR21
.20.41dv or equivalently eARstab.0.09520.097dv for
dv5v2vAR5O(1), with frequencies in units oftCD

21 .
Note the good agreement ofeARstab with the numerical cal-
nd

iq.
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culations; this is due to the fact that the amplitudes
smaller in MBBA than in N5. Note also that the bifurcation
at zero frequency are similar to those for ATC of 5CB at ze
magnetic field.
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stress tensor. We will not consider these terms since we fo
only on themarginal stabilityof rolls.

@43# The twist contribution 2b1g8/sT in Eq. ~49! was absorbed in
the contributionsa72a8 in Eq. ~45! of @25#.

@44# The mechanism~M2! becomes even clearer if the quadra
source terms forw in Eq. ~47b! are reformulated by insertion
of A5uAueiq•r whereq is the local wave vector of the rolls
~the gradient of the phase of the rolls!. One then obtains
ig8(A* ]yA2A]yA* )522g8uAu2qy which shows clearly the
repulsive torque between the oblique component of the
wave vector and the in-plane director.

@45# The difference of signs with@25# is due to the fact that ou
Poisseulle profileP1(z) is now positive for2p/2,z,p/2.

@46# The ratio of the zig-zag threshold with, Eq.~52a!, and without,
Eq. ~53!, the Gw effects decreases with the frequency in E
this ratio tends to 1 whenv→vL

1 , and reaches 0.73 atvCD

53. Thus, whereas theGw effects are not crucial for the zig
zag instability, they control the precise value of the cor
sponding threshold at high frequency.

@47# The relation between the slopes ofeZZ andeAR at the crossover
point was found from a simpler phase-diffusion model by
Zhao and L. Kramer~private communication!; see also@17#.

@48# The coefficients determining the bimodal growth rate~61!
are then e0(k)52.02, tk512.556.4tq , b2(k)520.33,
b3(k)520.11, gqk520.21; at e5eBV(q)50.14, one has
A(q;e)50.27 andw(q;e)520.37.

@49# The coefficients are nowe0(k)50.29, tk52.151.8tq ,
b2(k)520.42, b3(k)50.36, gqk51.36; and e5eBV(q)
50.186A(q;e)50.23, andw(q;e)520.45.

@50# In Ref. @10# the name ‘‘SO2’’ was used for the bimoda
varicose structure. Using parameters taken from@9,10# ~with
changes of less than 10% to fit the wave vector of the obli
rolls at threshold! we reconstruct, e.g., the sequence of Fig.
of @10# with values ofeBV and argk which differ less than 25%
from the experimental ones.
d

us

ll

:

-

.

e

@51# In EC at lowv, the contributions ofb3(k) or gqk in Eq. ~61!
can also become positive for the duals found very far fromqc ,
but these contributions are still dominated by theb2(k) con-
tribution in Eq.~61!.
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the viscous stress tensor, whereṅ reduces to its advection par
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