
PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
Subsystem decreasing for exponential synchronization of chaotic systems

Takashi Matsumoto and Masanobu Nishi
Department of Electrical, Electronics and Computer Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan

~Received 27 March 1998!

Conditions are derived under which a general class of nonlinear dynamical systems admits chaotic synchro-
nization. The result is applied to the Lorenz system, Ro¨ssler’s second equation, a generalized Hopfield net-
work, and a drivenR-L-diode circuit. Several experimental as well as numerical results are also given to
confirm the theory.@S1063-651X~99!13602-X#

PACS number~s!: 05.45.2a, 07.50.Ek
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I. INTRODUCTION

The chaotic synchronization of Pecora and Carroll@1–4#
has several interesting features, including potential appl
tions. The scheme consists of two basic ideas—the appro
ate decomposition of a nonlinear dynamical system into s
systems and the stability concept of the subsystems
generalized to chaotic systems. Chaotic synchronizatio
possible if each subsystem has negative conditio
Lyapunov exponents. Theoretical results for conditio
Lyapunov exponents are generally difficult to establish si
Lyapunov exponents, by definition, involve existence ar
ments of various limits and the splitting of tangent spaces~of
a vector field!, as well as other properties.

This paper attempts to derivea priori conditions for a
general class of nonlinear dynamical systems under wh
chaotic synchronization is achieved without checking
conditional Lyapunov exponents. The main concept invol
subsystem decreasing. In the Pecora-Carroll scheme, a d
namical system is decomposed into two appropriate s
systems. The vector field of a subsystem may possess si
properties when the substate vector of the other substate
tor is fixed, even though the whole~undecomposed! vector
field is not simple. The primary result of this paper asse
that synchronization can be achieved if each of the dec
posed subsystems satisfies a decreasing property~see Sec. II
for a precise definition!. The argument shows that if the su
system decreasing is satisfied, then there is a properly
forming Lyapunov function instead of Lyapunov exponen
for the subsystems.

The result is applied to several nontrivial examples:
Lorenz system, Ro¨ssler’s second equation, a generaliz
Hopfield network, and a drivenR-L-diode circuit.

One difficulty associated with general Lyapunov functi
approaches@5# lies in the lack of a general synthesis meth
for Lyapunov functions. Our subsystem decreasing prop
ties naturally lead to properly performing Lyapunov fun
tions.

II. GENERAL RESULT

Consider a nonlinear dynamical system

dx

dt
5F„x,y;u~ t !…,

dy

dt
5G„x,y;u~ t !…, ~1!
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wherexPRn, yPR, andu(t)PRr . Associated with this sys-
tem, consider

dxs

dt
5F„xs ,y;u~ t !…, ~2a!

dys

dt
5G„xs ,ys ;u~ t !…. ~2b!

This formulation allows nonautonomous systems wh
u(t) typically represents the driving force of the system. A
though the two systems consist of the same functionsF and
G, one of the argumentsy in Eq. ~2a! is not ys , and this
difference also affects the second equation~2b!. Note that the
‘‘slave’’ equations are nonautonomous even whenu(t) is
empty, because it is driven byy5y(t). For further clarifica-
tion, we will define our use of synchronization in this pap

Definition (exponential synchronization):
~1! The first slave system~2a! exponentially synchronizes

with its master system@Eq. ~1!# if

ix~ t !2xs~ t !i<e2g1tk, 0,k1 ,g1 ,

where k1 may depend on„x(0),y(0),ys(0)…, while g1
should not depend on initial conditions.

~2! The slave system~2a! together with Eq.~2b! exponen-
tially synchronizes with Eqs.~1! if in addition to the expo-
nential synchronization of Eq.~2a!,

iy~ t !2ys~ t !i<e2g2tk2 , 0,k2 ,g2 ,

holds.
Remarks:
~i! He and Vaidya@5# define the synchronization of two

dynamical systems by demanding thatxs(t)→x(t) as t→`
and demonstrates that this is equivalent to the asympt
stability of Eq. ~2a!. There is no requirement forys(t). As
previously stated, Eq.~2a! is nonautonomous even whe
u(t) is absent. The asymptotic stability of nonautonomo
systems is strikingly different from that of autonomous sy
tems and is difficult to check. To demonstrate this, consi
the variational equation associated with Eq.~2a!,

dz

dt
5

]F

]xs
„xs~ t !,y~ t !;u~ t !…z, ~3!
1711 ©1999 The American Physical Society
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1712 PRE 59T. MATSUMOTO AND M. NISHI
and let $l i(t)% i 51
n be eigenvalues of (]F/]xs)„xs(t),

y(t);u(t)…. It is simply untrue that

Rel i~ t !,0, i 51,...,n, ~4!

for all t implies asymptotic stability. An example is given
Appendix A where Eq.~4! does not imply asymptotic stabil
ity.

~ii ! Note also that conditional Lyapunov exponents p
sume continuous invariant splitting of the tangent space
time-dependent vector fields, which is extremely if not im
possibly difficult to check. Furthermore, Lyapunov exp
nents are, by definition, associated with long-term aver
properties, and so care must be taken in studying cha
synchronization.

~iii ! These observations naturally lead us to seek simpa
priori conditions for synchronization that are valid for a re
sonably large class of nonlinear dynamical systems. The
lowing result gives a simplea priori test for exponential
synchronization. We will demonstrate later that a reasona
large class of systems satisfies the conditions to be gi
Our result comes from the fact thatF„xs ;y;u(t)… with re-
spect toxs , when „y,u(t)… is fixed, can behave in a muc
simpler manner than (F„xs ,y;u(t)…,G„xs ,ys ;u(t)…) with re-
spect to (xs ,ys) jointly. Similarly, G„xs ,ys ;u(t)… can have
simple properties with respect toys when„xs ,u(t)… is fixed.

A demonstration of the following fact is given in Appen
dix B.

Proposition 2.1.Assume that the dynamical systems@Eqs.
~1! and~2!# admit unique uniformly bounded solutions. Fir
slave system~2a! exponentially synchronizes with mast
system@Eq. ~1!# if ~A! F is decreasingwith respect to x; i.e.,
there is ana.0 such that

~x2x8!T@F~x,y;u!2F~x8,y;u!#<2aix2x8i2, ~5!

whereT denotes the vector transpose.
Slave system~2a! together with Eq.~2b! exponentially

synchronizes with Eqs.~1! if ~B! G is decreasingwith re-
spect to yand Lipschitzwith respect to x; i.e., there areb
.0 andL.0 with

~y2y8!@G~x,y;u!2G~x,y8;u!#<2b~y2y8!2, ~6!

uG~x,y;u!2G~x8,y;u!u<Lix2x8i . ~7!

Remarks.Strictly speaking, the decreasing should be u
formly decreasing. Similarly, Lipschitz should be uniform
Lipschitz; however, we prefer simplicity to complexity.

III. APPLICATIONS

A reasonably large class of nonlinear circuits and syste
satisfies conditions~A! and~B! given in the previous section
This section confirms the validity of the general results
exponential synchronization by applying them to spec
nontrivial examples.

Section III A demonstrates that the exponential synch
nization of the Lorenz system can be checked by proposi
2.1. Section III B examines Ro¨ssler’s second equation an
shows that the first slave system admits exponential sync
nization. Section III C verifies that a generalized Hopfie
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network can admit exponential synchronization. Sect
III D discusses a drivenR-L-diode circuit and gives a theo
retical justification for exponential synchronization togeth
with an experimental verification; this system is now one
very few real physical systems where chaotic exponen
synchronization is experimentally observed and theoretic
verified.

A. Lorenz system

If the first coordinateu of the Lorenz system,

u̇5s~v2u!, ~8!

v̇5ru2v2uw, ~9!

ẇ52bw1uv, ~10!

drives the (vs ,ws) subsystem,

v̇s5ru2vs2uws , ~11!

ẇs52bws1uvs , ~12!

and the resultingvs drives the second subsystem,

u̇s5s~vs2us!, ~13!

then y5u, x5(v,w), xs5(vs ,ws), andys5us in terms of
Eqs.~1! and~2! in Sec. II. Sinceu in Eqs.~11! and~12! are
not us , the right sides of Eqs.~11! and~12! arejointly linear
with respect to (vs ,ws), i.e., F(xs ,y) in Eqs.~2! of Sec. II
or, what amounts to the same,F(x,y) in Eqs. ~1! is linear
with respect tox, and

~x2x8!T@F~x,y!2F~x8,y!#

52~v2v8!22u~v2v8!~w2w8!

1u~v2v8!~w2w8!2b~w2w8!2

52@~v2v8!21b~w2w8!2#<2aix2x8i2,

where

a5min~1,b!,

which is positive ifb.0; soF is decreasing in the sense o
Eq. ~5!. Since Eq.~13! is linear with respect tous with co-
efficient 2s, the decreasingness ofG @Eq. ~6!# is trivially
satisfied, provided thats.0.

B. Rössler’s second equation

Of the four prototype equations for chaos@6# Rössler’s
second equation

u̇5u2uv2w,

v̇5u22av, ~14!

ẇ5b~u2w!

exhibits ‘‘inverted spiral-plus saddle-type’’ chaos as sho
in Fig. 1 where a50.1, b50.08, and c50.125. Let
xª(v,w) andyªu so that
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v̇s52avs1u2,
~15!

ẇs52bws1bcu.

For u fixed, each of the two equations in Eqs.~2! is linear
with negative coefficient and hence condition~A! is satisfied.
This guarantees thex-xs synchronization as shown by Fig. 2
The y-ys synchronization, on the other hand, is not guar
teed since

u̇s52us~vs21!2ws ~16!

and sincevs becomes less than 1 from time to time.

C. Generalized Hopfield network

The well-known Hopfield network@7# is described by
~Fig. 3!

C
dv i

dt
52

1

R
v i1(

j Þ i

N

Ti j s~v j !1I i , i 51,...,N, ~17!

whereC is the capacitance,R is the resistance,$Ti j % repre-
sents couplings,s is the ~nonlinear! voltage characteristic
andI i represents the current source injected into thei th sub-

FIG. 1. Chaotic attractor from Ro¨ssler’s second equation.

FIG. 2. Synchronization is achieved for (v,vs) and (w,ws).
-

circuit. In its original form, the following are assumed fo
Hopfield networks: ~i! Ti j 5Tji , ~ii ! s is continuous and
sigmoidal ~i.e., it is strictly monotonically increasing an
uniformly bounded!, and~iii ! I i is constant.

We relax conditions~i! and~iii ! so that$Ti j % can be asym-
metric and I i5I i(t) can be time dependent. Consider t
following decomposition of Eq.~17!:

C
dxi

dt
52

1

R
xi1 (

j Þ i

N21

Ti j s~xj !1TiNs~y!1I i~ t !, ~18!

i 51,...,N21,

C
dy

dt
52

1

R
y1 (

j 51

N21

TN js~xj !1I N~ t !, ~19!

whereyªxN .
Let xª(x1 ,...,xN21) and let S(x)ª„s(x1),...,

sN21(xN21)…. If 2(1/R)x1S(x) is decreasing, then expo
nential synchronization is possible, because Eq.~19! is linear
with respect toy and s(xj ) are Lipschitz. IfN52, thenx
5x1 , y5x2 , and2(1/R)x1S(x)52(1/R)x; so no condi-
tion is required. Specifically, consider

dx

dt
52

1

R
x1bs~y!1I sinvt,

~20!
dy

dt
52

1

R
y2bs~x!1I sinvt,

dxs

dt
52

1

R
xs1bs~y!1I sinvt, ~21!

dys

dt
52

1

R
ys2bs~xs!1I sinvt. ~22!

Figure 4 shows a chaotic attractor of the~x,y! dynamics
~master system! with

FIG. 3. Hopfield network. An arrow indicates an independe
current source.
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R530.7, b50.615 16, I 50.507 92, v50.131 82.

Figures 5~a! and 5~b! show (x,xs) and (y,ys) plots, which
indicate synchronization.

D. Driven R-L -diode circuit

1. Theory

Consider the drivenR-L-diode circuit given by Fig. 6.
The diode is accurately characterized by a parallel conn
tion of three nonlinear elements:~i! nonlinear resistor,~ii !
nonlinear diffusion capacitorCd , and~iii ! nonlinear junction
capacitorCj @8#. While the first two components are rela
tively easy to describe, the last componentCj is difficult,
particularly in the positively biased region. We represent
combined characteristics ofCd andCj by f without attempt-
ing to give analytical expressions. The dynamics of the
cuit is then described by

dq

dt
5 i 2g„f ~q!…, ~23!

L
di

dt
52Ri2 f ~q!1e~ t !, ~24!

whereq is the total charge stored in the two capacitors ang
is the nonlinear resistor, a well-known exponential functio

The first result of the chaotic behavior of this system w
reported by Linsay@9#. The rich variety of bifurcations, in-
cluding the chaotic behavior of theR-L-diode circuit @10–
31#, comes from the nonlinearity of the capacitor in the dio

FIG. 4. Chaotic attractor from a generalized Hopfield network

FIG. 5. Synchronization in the generalized Hopfield network
c-

e

-

.
s

e

@8#. Synchronization of this system using occasional prop
tional feedback is reported in@32#. The naturalness of the
system is evidenced by the fact that very similar dynam
~equations! arise from different systems@33,34#.

Corresponding to this master system, we consider
slave system driven byi of the master system:

dqs

dt
5 i 2g„f ~qs!…, ~25!

L
dis
dt

52Ris2 f ~qs!1e~ t !. ~26!

The following fact is shown in Appendix C by usin
proposition 2.1.

Proposition 3.1.The slave system described by Eqs.~25!
and ~26! exponentially synchronizes with its master syste
~23!, ~24! if 2 f and 2g are decreasing,f is Lipschitz, and
e(t) is continuous and satisfiesue(t)u<B.

2. Experiment

When R510@V#, L550@mH#, D:6CC13, Em
54.0@V#, and f 510@kHz#, chaotic synchronization is ob
served~Figs. 7 and 8! where the master system is chaot
Synchronization is not achieved when the slave diode is
placed by a different model while everything else rema
the same~Fig. 9!.

FIG. 6. An R-L-diode circuit driven by a sinusoidal voltag
source.

FIG. 7. Graph ofVdSlave
vs VdMaster

lies on the 45° diagonal:
synchronization. Vertical and horizontal scale: 2V/div.
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E. More general class of circuits

There is no dynamics in a resistive circuit; i.e., the d
namics of a circuit is induced by capacitors and inductors
typical capacitor, shown in Fig. 10~a!, is described by

dq

dt
5 i c2 i „vc~q!…,

where the resistor can be parasitic;q, i c , and vc are the
charge, current, and voltage associated with the capac
and i is the resistor current. The dependences ofi on vc and
vc on q are often monotone, as is the case with t
R-L-diode circuit. Similarly, a typical inductor, shown i
Fig. 10~b!, is described by

df

dt
5vL2v„i l~f!…,

wheref, vL , and i L are the flux, voltage, and current ass
ciated with the inductor, andv is the resistor voltage. Again

FIG. 8. Master diode voltage~top! and slave diode voltage~bot-
tom, polarity inverted!: synchronization. Vertical scale: 2V/div
horizontal scale: 20ms/div.

FIG. 9. Graph ofVdSlave
vs VdMaster

does not lie on the 45°
diagonal when the slave diode is replaced by different type: as
chronization. Vertical and horizontal scale: 2V/div.
-
A

r;

e

v often depends oni L in a monotonic manner andi L(f) is
often monotone, as is the case with the drivenR-L-diode
circuit.

A general circuit is an interconnection of these eleme
together with resistors and transistors. There is a large c
of circuits that satisfies the required decreasingness co
tions. An elaborate description of this class of circuits
beyond the scope of this paper.

IV. CONCLUDING REMARKS

A general criterion is given of chaotic synchronizatio
without reference to conditional Lyapunov exponents,
latter being difficult to check by definition. The criterion
used to show chaotic synchronization of several nontriv
systems. The required conditions for synchronization are
ten not difficult to check because the conditions require
creasing of a function with respect to a subvector instead
a full vector.

An interesting scheme associated with the chaotic s
chronization is chaotic masking@35–37# where information
signal is embedded into a~chaotic! drive signal and transmit-
ted to receiver. A simple decoding system at the receiver
‘‘restore’’ the original information. Our experimental resul
with an R-L-diode circuit show that the ‘‘decoded’’ infor
mation has amplitude which is much greater than the orig
which gives rise to a new open problem. The results sho
be reported elsewhere.
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APPENDIX A

Consider@38#

dz

dt
5A~ t !z,

A~ t !5F 211
3

2
cos2 t 12

3

2
cost sint

212
3

2
cost sint 211

3

2
sin2 t

G . ~A1!

The eigenvalues ofA(t) are l1,2(t)5(216 iA7)/4, which
havea negative real part uniformlywith respect tot, and yet
one can show that

n-

FIG. 10. General class of circuits.
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z~ t !5et/2F2costz1~0!

sintz2~0! G , z1~0!5z2~0!, ~A2!

is a solution for Eq.~A1!, which obviously blows up ast
→`.

APPENDIX B

Since x(t) and xs(t) are assumed to be uniforml
bounded,

V1~x,xs!ª
1

2
ix2xsi2

is well defined. It follows from the decreasing ofF with
respect tox that

dV1~ t !

dt
52~x2xs!

T@F„x,y;u~ t !…2F„x8,y;u~ t !…#

<2aix2xsi2522aV1~ t !, ~B1!

so that

V1~ t !<e22atV1~0!. ~B2!

This shows exponential synchronization of Eq.~2a! to
Eqs.~1!.

Next let

V2ªuy2ysu. ~B3!

Then

dV2~ t !

dt
5G„x,y;u~ t !…2G„xs ,ys ;u~ t !…

5G„x,y;u~ t !…2G„x,ys ;u~ t !…1G„x,ys ;u~ t !…

2G„xs ,ys ;u~ t !…, ~B4!

provided thaty2ys.0. It follows from the decreasing ofG
with respect toy @see Eq.~5!# that

G„x,y;u~ t !…2G„x,ys ;u~ t !…<b~y2ys!, y.ys .
~B5!

ThatG being Lipschitz with respect tox @see Eq.~6!# implies

uG„x,ys ;u~ t !…2G„xs ,ys ;u~ t !…u<Lix2xsi . ~B6!

Equations~B4!–~B6! give

dV2~ t !

dt
<2bV2~ t !1LA2V1~0!e2at, y.ys . ~B7!

An elementary fact in the differential inequality@39# gives

V2~ t !<e2btV2~0!1LA2V1~0!E
0

t

e2b~ t2t!e2atdt

5e2btV2~0!1
LA2V1~0!

b2a
~e2at2e2bt!, ~B8!
provided thaty.ys and bÞa. If, on the other hand,y
,ys , thenV252(y2ys) and

dV2~ t !

dt
52@G„x,y;u~ t !…2G„x,ys ;u~ t !…#

2@G„x,ys ;u~ t !…2G„xs ,ys ;u~ t !…#

<b~y2ys!1LA2V1~ t !

52bV2~ t !1LA2V1~ t !,

which is the same as Eq.~B7!. If a5b in Eq. ~B7!, then

V2~ t !<e2btV2~0!1LA2V1~0!te2bt.

Finally, if aÞb, let gª 1
2 min(a,b), then

i„x~ t !,y~ t !…2„xs~ t !,ys~ t !…i<const3e2gt.

If a5b, then 0,g, 1
2 a will do. This shows exponentia

synchronization of Eqs.~2a! and ~2b!.

APPENDIX C

Step 1@Uniform boundedness of (q,i)#. Note that

F„x,y;u~ t !…5 i 2g„f ~q!…, ~C1!

G„x,y;u~ t !…52
1

L
f ~q!2

R

L
i 1

1

L
e~ t ! ~C2!

with x5q, y5 i , andu(t)5e(t). Define

E~q,i !ªE
q~0!

q

f ~u!du1
1

2
Li 2, ~C3!

which is the energy stored in the capacitor and the induc
Since2 f is assumed to be decreasing,f is increasing:

~q2q8!@ f ~q!2 f ~q8!#>a~q2q8!2,

so that

lim
i~q,i !i→`

E~q,i !5`.

Since2g is also decreasing, one sees that

AªH ~q,i !u f ~q!g„f ~q!…<
B2

4R
, u i u<

B

RJ
is bounded or empty. We will show that

dE~q,i !

dt
,0, ~q,i !PR22A. ~C4!

Note that

dE~q,i !

dt
5 f ~q!

dq

dt
1Li

di

dt

5 f ~q!@2g„f ~q!…1 i #2Ri22 i f ~q!1 ie~ t !

52@ f ~q!g„f ~q!…1Ri2#1 ie~ t !. ~C5!
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The first term represents the power dissipated by the resis
part of the circuit; the second term represents the power
plied by the voltage source. Since

min
u i u

~Ru i u22Bu i u!52
B2

4R
,

one sees that, for an arbitraryi,

dE~q,i !

dt
<2 f ~q!g„f ~q!…1

B2

4R
. ~C6!

Therefore, forq satisfying

f ~q!g„f ~q!….
B2

4R
,

the right side of Eq.~C6! is negative, and hence Eq.~C4!
follows, so that„q(t),i (t)… is uniformly bounded.

Step 2@uniform boundedness of(qs ,i s)#. Given a uni-
formly boundedi of Eqs.~1!, one must show that (qs ,i s) is
also uniformly bounded. LetEs(qs ,i s) be the energy defined
in a manner similar to Eq.~C3!:

Es~qs ,i s!ªE
qs~0!

qs
f ~u!du1

1

2
Li s

2. ~C7!

Then

dEs~qs ,i s!

dt
5 f ~qs!@2g„f ~qs!…1 i ~ t !#

2Ris
22 i sf ~qs!1 i se~ t !

52 f ~qs!@g„f ~qs!…1 i s2 i ~ t !#2Ris
21 i se~ t !

ª2P~qs ,i s!. ~C8!

Since the first subsystem of Eqs.~2! is driven byi, the term
i s2 i in Eq. ~C8! does not cancel, as it does in Eq.~C5!.
Note, however, that
ve
p-

P~qs ,i s!< f ~qs!g„f ~qs!…1 i sf ~qs!1I u f ~qs!u1Ris
21Bu i su,

whereI is a bound onu i (t)u. This implies that

lim
iqs ,i si→`

P~qs ,i s!5`

and hence

Asª$~qs ,i s!uP~qs ,i s!>0%

is bounded or empty. Therefore,

dEs~qs ,i s!

dt
,0, ~qs ,i s!PR22As ,

which, together with

lim
i~qs ,i s!→`i

Es~qs ,i s!5`,

yields a uniform boundedness of (qs ,i s).
Step 3 (exponential synchronization).In order to apply

proposition 2.1, note that@compare Eqs.~1! and ~2! with
Eqs.~23!–~26!#

F„x,y;u~ t !…5 i 2g„f ~q!…,

G„x,y;u~ t !…52
1

L
f ~q!2

R

L
i 1

1

L
e~ t !,

with x5q, y5 i , andu(t)5e(t).
For i 5y fixed, F„x,y;u(t)…5 i 2g„f (q)… is decreasing

with respect tox5q, since2g and2 f are both decreasing
For x5q fixed, however,

G„x,y;u~ t !…52
1

L
f ~q!2

R

L
i 1

1

L
e~ t !

is decreasing with respect toi, because it is linear with a
negative coefficient.G„f ,y;u(t)… is Lipschitz with respect to
x becausef is Lipschitz. Therefore, Eqs.~25! and~26! expo-
nentially synchronize with~23! and ~24!.
ys.
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