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Subsystem decreasing for exponential synchronization of chaotic systems
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Conditions are derived under which a general class of nonlinear dynamical systems admits chaotic synchro-
nization. The result is applied to the Lorenz systemsd$Rer's second equation, a generalized Hopfield net-
work, and a drivenR-L-diode circuit. Several experimental as well as numerical results are also given to
confirm the theory[S1063-651X99)13602-X]

PACS numbd(ps): 05.45—a, 07.50.Ek

[. INTRODUCTION wherexe R", ye R, andu(t) e R". Associated with this sys-
tem, consider
The chaotic synchronization of Pecora and Cairbi4]

has several interesting features, including potential applica- s
tions. The scheme consists of two basic ideas—the appropri- ar -~ F&s.ysu(v), (28
ate decomposition of a nonlinear dynamical system into sub-
systems and the stability concept of the subsystems as dy,
generalized to chaotic systems. Chaotic synchronization is —S=G(xs,ys;u(t)). (2b)
possible if each subsystem has negative conditional dt
Lyapunov exponents. Theoretical results for conditional _ .
Lyapunov exponents are generally difficult to establish since This .formulatlon allows nor)qutonomous systems where
Lyapunov exponents, by definition, involve existence argu_u(t) typically represents the driving force of the system. Al-

ments of various limits and the splitting of tangent spacés though the two systems anSiSt of tth‘ same functlélam_d
a vector field, as well as other properties. G, one of the argumentg in Eq. (23 is not ys, and this

This paper attempts to deriv priori conditions for a difference also affects the second equatfi@in). Note that the

general class of nonlinear dynamical systems under whichS/2ve” eguations areé nonautonomous even wheft) is
chaotic synchronization is achieved without checking thefMP, because itis driven by=y(t). For further clarifica-
conditional Lyapunov exponents. The main concept involvedion, We will define our use of synchronization in this paper.
subsystem decreasinin the Pecora-Carroll scheme, a dy-  Definition (exponential synchronization) _
namical system is decomposed into two appropriate sub-_(l)_ The first slave syster(iza).exponennally synchronizes
systems. The vector field of a subsystem may possess simpdth its master systerfEq. (1)] if
properties when the substate vector of the other substate vec-
tor is fixed, even though the wholendecomposedvector
field is not simple. The primary result of this paper asserts .
that synchronization can be achieved if each of the decomyhere k; may depen(_j .qn(x(O),y(O),ys(O)), while y,
posed subsystems satisfies a decreasing profméySec. Il Should not depend on initial conditions.
for a precise definition The argument shows that if the sub- __(2) The slave syster(2a) together with Eq(2b) exponen-
system decreasing is satisfied, then there is a properly pefially synchronizes with Eqstl) if in addition to the expo-
forming Lyapunov function instead of Lyapunov exponents"€ntial synchronization of Eq2a),
for the subsystems. ot

The result is applied to several nontrivial examples: the Iy(®—ys(tl=e 2k,
Lorenz system, Rssler's second equation, a generalized
Hopfield network, and a driveR-L-diode circuit. holds.

Remarks

One difficulty associated with general Lyapunov function
y g yap (i) He and Vaidyd5] define the synchronization of two

approachefs] lies in the lack of a general synthesis method X X

for Lyapunov functions. Our subsystem decreasing properdynamical systems by demanding thaft) —x(t) ast—c

ties naturally lead to properly performing Lyapunov func- and demonstrates that this is equivalent to the asymptotic
stability of Eq.(2a). There is no requirement forg(t). As

Ix(t) =xs(t)|[<e” "'k, 0<ky,v1,

0<k2,')/2,

tions.
previously stated, Eq(2a is nonautonomous even when
u(t) is absent. The asymptotic stability of nonautonomous
Il. GENERAL RESULT systems is strikingly different from that of autonomous sys-
) . . tems and is difficult to check. To demonstrate this, consider
Consider a nonlinear dynamical system the variational equation associated with E2g),
dx dy 22 xaty(03u(t) ®
= . — = - - = 2o Xs(1), ;yu(l))z,
dt F(leau(t))l dt G(va!u(t))i (1) dt aXS S y

1063-651X/99/562)/1711(8)/$15.00 PRE 59 1711 ©1999 The American Physical Society



1712 T. MATSUMOTO AND M. NISHI PRE 59

and let {\(t)}l., be eigenvalues of dF/dxs)(Xs(t), network can admit exponential synchronization. Section
y(t);u(t)). It is simply untrue that 11D discusses a driveiR-L-diode circuit and gives a theo-

retical justification for exponential synchronization together

Re\;(t)<0, i=1,..n, (4) with an experimental verification; this system is now one of

very few real physical systems where chaotic exponential

for all t implies asymptotic stability. An example is given in synchronization is experimentally observed and theoretically
Appendix A where Eq(4) does not imply asymptotic stabil- yerified.
ity.

(ii) Note also that conditional Lyapunov exponents pre-
sume continuous invariant splitting of the tangent spaces of ) )
time-dependent vector fields, which is extremely if not im-  If the first coordinateu of the Lorenz system,
possibly difficult to check. Furthermore, Lyapunov expo- -
nents are, by definition, associated with long-term average u=o(v-u), 8)
properties, and so care must be taken in studying chaotic
synchronization.

(iii) These observations naturally lead us to seek siraple W= — bW+ Uv (10)
priori conditions for synchronization that are valid for a rea- ’
sonably large class of nonlinear dynamical systems. The foldrives the (,w,) subsystem,
lowing result gives a simpla priori test for exponential

A. Lorenz system

V=pU—0v—UW, 9

synchronization. We will demonstrate later that a reasonably Us=pU—vg— UWg, (11
large class of systems satisfies the conditions to be given. _
Our result comes from the fact th&t(xs;y;u(t)) with re- Ws= —bWws+Uvs, (12

spect toxs, when(y,u(t)) is fixed, can behave in a much
simpler manner thanH(xs,Y;u(t)),G(Xs,Ys;u(t))) with re-
spect to K.,Ys) jointly. Similarly, G(xs,ys;u(t)) can have U= (04— Ug) (13)
simple properties with respect @ when (xg,u(t)) is fixed. * s

A demonstration of the following fact is given in Appen- theny=u, x=(v,w), Xs=(vs,Ws), andys=Uug in terms of
dix B. Egs.(1) and(2) in Sec. Il. Sinceu in Egs.(11) and(12) are

Proposition 2.1 Assume that the dynamical systefE}s.  not v, the right sides of Eqg11) and(12) arejointly linear
(1) and(2)] admit unigue uniformly bounded solutions. First with respect to §s,Ws), i.e., F(xs,y) in Egs.(2) of Sec. Il
slave system(2a exponentially synchronizes with master or, what amounts to the sami(x,y) in Egs. (1) is linear
systemEq. (1)] if (A) F is decreasingvith respect to xi.e.,  with respect ta, and
there is anae>0 such that

(X_X,)T[F(X:Y)_F(X’1Y)]

=—(v—v')?—u(v—v')(W—w')

and the resulting ¢ drives the second subsystem,

(x=x")TF(xy;u)—F(x",y;w)]<—alx=x'[%, (5

whereT denotes the vector transpose.

- —w') — —w’)\2
Slave system(2a) together with Eq.(2b) exponentially Fu(v v )(w=w)=bw-w’)

synchronizes with Eqe(l) if (B) G is decreasingvith re- =—[(v—v")?+b(w—w")Z]<—a|x—x'|]?,
spect to yand Lipschitzwith respect to xi.e., there are3
>0 andL>0 with where
(y=yY)IGXY;u) —G(x,y ;u)l=-B(y-y')? (6) a=min(1,0),
IG(x,y;u)— G(x',y;u)|<L|Ix—x|. @ which is positive ifb>0; soF is decreasing in the sense of

Eq. (5). Since Eq.(13) is linear with respect tag with co-
RemarksStrictly speaking, the decreasing should be uni-€fficient —o, the decreasingness & [Eq. (6)] is trivially
formly decreasing. Similarly, Lipschitz should be uniformly Satisfied, provided thai>0.
Lipschitz; however, we prefer simplicity to complexity.
B. Rossler’s second equation
ll. APPLICATIONS Of the four prototype equations for chaf] Rossler’s

. - second equation
A reasonably large class of nonlinear circuits and systems

satisfies conditionéA) and(B) given in the previous section. U=u—uv—w,
This section confirms the validity of the general results for
exponential synchronization by applying them to specific v=u?—av, (14)
nontrivial examples.
Section Il A demonstrates that the exponential synchro- w=Db(u—w)

nization of the Lorenz system can be checked by proposition

2.1. Section IlIB examines Rsler's second equation and exhibits “inverted spiral-plus saddle-type” chaos as shown
shows that the first slave system admits exponential synchrén Fig. 1 where a=0.1, b=0.08, and c=0.125. Let
nization. Section 1l C verifies that a generalized Hopfieldx:=(v,w) andy:=u so that
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FIG. 1. Chaotic attractor from Rsler's second equation.

De=—avgtu?,

(15
ws=—bwg+bcu.

For u fixed, each of the two equations in Ed®) is linear
with negative coefficient and hence conditi@ is satisfied.

This guarantees the X synchronization as shown by Fig. 2.
The y-y4 synchronization, on the other hand, is not guaran-

teed since
Us=—Uus(vg— (16)

and sincev g becomes less than 1 from time to time.

1)—wyq

C. Generalized Hopfield network

The well-known Hopfield networK7] is described by
(Fig. 3
N

do, 1
0 Svi+ > Tio(w)+1i, i=1..N, (17
J#FI

dt R
whereC is the capacitanceR is the resistance,T;;} repre-

sents couplingsg is the (nonlineaj voltage characteristic,
andl; represents the current source injected intoithesub-

T T T T T T T T M T T T

1.4- i 0.04 -
1.2 4 0.02+ 4
1 1 & .
0.8 1 -0.02t -
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(a‘) V-Yq (b) W-Wg

FIG. 2. Synchronization is achieved far,ps) and v, wy).
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FIG. 3. Hopfield network. An arrow indicates an independent
current source.

circuit. In its original form, the following are assumed for
Hopfield networks: (i) T;;=T;;, (ii) o is continuous and
sigmoidal (i.e., it is strictly monotonically increasing and
uniformly bounded, and(iii) I; is constant.

We relax conditiongi) and(iii) so tha{T;;} can be asym-
metric andl;=1;(t) can be time dependent. Consider the
following decomposition of Eq(17):

N-1

dx;
j#I

dt R

i=1,..N—-1,
dy 1 N—-1
CE"ﬁyﬂ; Thjo (X)) +In(D), (19
wherey:=xy.
Let x:=(xy,...Xy-1) and let 3(x):=(o(xy),...,

on—1(Xn—1)). If —(1/R)x+2(x) is decreasing, then expo-
nential synchronization is possible, because (&§) is linear
with respect toy and o(x;) are Lipschitz. IfN=2, thenx
=Xy, Y=X, and— (1/R)x+ 2 (x) = — (1/R)x; so no condi-
tion is required. Specifically, consider

dx 1 I si
a__ﬁerlga(y)Jr sinwt,

(20)
dy_ 1 s
- rY Bo(x)+1sinwt,
dxg 1 .
g0 RXHBo(Y) +Isinot, (21
dys 1 -
qp=— gYs—Bo(x)+sinet. (22

Figure 4 shows a chaotic attractor of tiwey) dynamics
(master systejnwith
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FIG. 6. An R-L-diode circuit driven by a sinusoidal voltage
source.

[8]. Synchronization of this system using occasional propor-
tional feedback is reported if82]. The naturalness of the
system is evidenced by the fact that very similar dynamics

FIG. 4. Chaotic attractor from a generalized Hopfield network. (€quationsarise from different systen{$3,34. _
Corresponding to this master system, we consider the

R=30.7, B=0.61516, 1=0.50792, »=0.13182. slave system driven biyof the master system:
_ I_:igures Ba) and_ E(b} show (x,xs) and {y,ys) plots, which dg,
indicate synchronization. W:|_g(f(qs)), (25)
D. Driven R-L-diode circuit
1. Theory L%z—RiS—f(qs)+e(t). (26)

Consider the driverR-L-diode circuit given by Fig. 6.
The diode is accurately characterized by a parallel connec-
tion of three nonlinear elements{i) nonlinear resistor(ii) The following fact is shown in Appendix C by using
nonlinear diffusion capacitdCy, and(iii) nonlinear junction proposition 2.1.
qapacitoer [8]. Whi'le the first two compone'nts.a're rela- Proposition 3.1.The slave system described by E625)
tively easy to describe, the last compon@tis difficult,  anq(26) exponentially synchronizes with its master system

particularly in the positively biased region. We represent thq23), (24) if —f and —g are decreasindis Lipschitz, and
combined characteristics &f; andC; by f without attempt- e(t) is continuous and satisfiés(t)|<B.

ing to give analytical expressions. The dynamics of the cir-

cuit is then described by 2. Experiment

dg When R=10[Q], L=50[mH], D:6CC13, E,
a—|—g(f(q)), (23 =4.0[V], andf=10[kHz], chaotic synchronization is ob-
served(Figs. 7 and 8 where the master system is chaotic.
di _ Synchronization is not achieved when the slave diode is re-
L g;= ~Ri=f(a)+e(), (24 placed by a different model while everything else remains
the samgFig. 9).

whereq is the total charge stored in the two capacitors gnd
is the nonlinear resistor, a well-known exponential function.
The first result of the chaotic behavior of this system was
reported by Linsay9]. The rich variety of bifurcations, in-
cluding the chaotic behavior of thR-L-diode circuit[10—
31], comes from the nonlinearity of the capacitor in the diode

(5]

ST
O

Swof

a
(@) ( FIG. 7. Graph OdeSIave Vs Vg, .. lies on the 45° diagonal:
FIG. 5. Synchronization in the generalized Hopfield network. synchronization. Vertical and horizontal scale: 2V/div.
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FIG. 10. General class of circuits.

v often depends oiy in a monotonic manner and(¢) is
often monotone, as is the case with the drivl-diode
circuit.

A general circuit is an interconnection of these elements
together with resistors and transistors. There is a large class
of circuits that satisfies the required decreasingness condi-
FIG. 8. Master diode voltagéop) and slave diode voltagéot-  tions. An elaborate description of this class of circuits is
tom, polarity inverteit synchronization. Vertical scale: 2V/div, beyond the scope of this paper.
horizontal scale: 2@s/div.

IV. CONCLUDING REMARKS
E. More general class of circuits

. L . o A general criterion is given of chaotic synchronization
There is no dynamics in a resistive circuit; i.e., the dy-\ihout reference to conditional Lyapunov exponents, the
namics of a circuit is induced by capacitors and inductors. Aggier peing difficult to check by definition. The criterion is

typical capacitor, shown in Fig. 18, is described by used to show chaotic synchronization of several nontrivial

dq systems. The required conditions for synchronization are of-
T =l e(q)), ten not difficult to check because the conditions require de-
dt creasing of a function with respect to a subvector instead of
a full vector.
where the resistor can be parasitig;i., andv, are the An interesting scheme associated with the chaotic syn-

charge, current, and voltage associated with the capacitochronization is chaotic maskin@5—37 where information
andi is the resistor current. The dependencesafiv, and  signal is embedded into(@haotig drive signal and transmit-

v. on q are often monotone, as is the case with theted to receiver. A simple decoding system at the receiver can
R-L-diode circuit. Similarly, a typical inductor, shown in “restore” the original information. Our experimental results

Fig. 10b), is described by with an R-L-diode circuit show that the “decoded” infor-
mation has amplitude which is much greater than the original
do which gives rise to a new open problem. The results should
gt =~ li(e), be reported elsewhere.
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APPENDIX A
Consider38]
dz_A )
a (t)z,
3 3 _
-1+ Ecoszt 1- Ecost sint
A(t)= .
(1) 3 . 3 (A1)
—1—§costsmt —1+ Esmzt

FIG. 9. Graph ofVy __vs Vg,  does not lie on the 45° The eigenvalues oA(t) are )\Lz(t)=(—1ii\/7)/4, which
diagonal when the slave diode is replaced by different type: asynhavea negative real part uniformlyith respect td, and yet
chronization. Vertical and horizontal scale: 2V/div. one can show that
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—costz,(0)

_ ati2
Z(t)=e sintz,(0)

v 22(0)=2,(0), (A2)

is a solution for Eq.(Al), which obviously blows up as

Hm_

APPENDIX B

Since x(t) and x4(t) are assumed to be uniformly

bounded,
1 2
Vi(xx9) =5 [x=xJ

is well defined. It follows from the decreasing &f with
respect tax that

d\fjlt(t) = —(X—Xg) '[F(X,y;u(t))—F(x",y;u(t))]
< —a|x—xd|?=—2aV,(t), (B1)
so that
Vi(t)<e 29y, (0). (B2)

This shows exponential synchronization of Ega) to

Egs.(1).
Next let
Voi=|y—vyql. (B3)
Then
dVy(t)
dt =G(X,y;u(t))—G(Xs,Yys;u(t))

=G(X,y;u(t))—G(x,ys;u(t))+ G(x,ys;u(t))
—G(Xs,Ys:u(t)), (B4)

provided thaty —y¢>0. It follows from the decreasing @b
with respect toy [see Eq.(5)] that

G(x,y;u(t))—G(X,ys;u(t))<B(y—ys), Y>Vs.

(B5)

ThatG being Lipschitz with respect to[see Eq(6)] implies

[G(X,Ys:u(t)— G(Xs,ys;u))|<L[x—x4.  (B6)
Equations(B4)—(B6) give
d\szt(t) <-—BV,(t)+Ly2V,(0)e™ ", y>y.. (B7)

An elementary fact in the differential inequalifg9] gives
t
V,(t)<e PV,(0)+L+2V,(0) f e Alt-nemarq,
0

=e AV,(0)+ %ﬁio)(e’“—e‘“), (B8)

T. MATSUMOTO AND M. NISHI
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provided thaty>y, and B# «. If, on the other handy
<Yys, thenV,=—(y—y,) and

dVy(t)
ai —[G(X,y;u(t))—G(x,ys;u(t))]

~[G(X,ys;u(t)) = G(Xs,ys;u(t))]
<By—ys)+L\2Vi(t)
== BV,(t) +LV2V (1),
which is the same as E@B7). If =g in Eq. (B7), then
V,(t)<e PV,(0)+ L2V (0)te At
Finally, if a# g, let y:=3min(a,B), then
1x(0), y(1)) = (xs(1), y5(1)) < const< e~ .

If a=p, then 0<y<3a will do. This shows exponential
synchronization of Eq92a) and(2b).

APPENDIX C
Step 1[Uniform boundedness of (qg}i)Note that

Fxy;u(t)=i—g(f(q)), (CY
1 R 1
G yut)=—Cfa)- i+ et (C
with x=q, y=i, andu(t) =e(t). Define
. g 1
E(q,.)::fq(o)f(u)dw§L|2, (C3)

which is the energy stored in the capacitor and the inductor.
Since—f is assumed to be decreasiridgs increasing:

(q=a")[f(a)—f(q)]=a(g—q’)?
so that

lim E(q,i)=0°.
[(a.i)l|—e°

Since —g is also decreasing, one sees that

_ B2 B
A= (aDlf(@af(a)=7z. lilsg

is bounded or empty. We will show that

dEé?")<o, (q,i) e R2—A. (C4)
Note that
dE(q,i) , dq  di
at —f(q)a+L|&
=f(q)[—g(f(q))+i]-Ri*=if(q)+ie(t)
=—[f(q)g(f(q))+Ri*]+ie(t). (C5)
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The first term represents the power dissipated by the resistivep (g ,i ) <f(qs)g(f(qs))+isf(qs) +1|f(qs)|+ Ri§+ Blig,
part of the circuit; the second term represents the power sup-

plied by the voltage source. Since
2

min(R[i|*~Bli[) =~ 7=,

il
one sees that, for an arbitrary

dE(q,i) B2
TR —f(q)g(f(q)+ IR

(C6)

Therefore, forg satisfying

BZ
f(q)g(f(q))>ﬁ,

the right side of Eq(C6) is negative, and hence E(C4)
follows, so that(q(t),i(t)) is uniformly bounded.

Step 2[uniform boundedness dfjs,is)]. Given a uni-
formly bounded of Egs.(1), one must show thatg,i;) is
also uniformly bounded. LéE¢(qs,is) be the energy defined
in a manner similar to Eq.C3):

. s 1 5
Es(qus)‘:J f(U)dLH‘—LIS. (C7)
(0) 2

g

Then

dEg(Qs.is)
dt

=f(qs)[—a(f(ge))+i(t)]

- Rig_isf(QS)+iSe(t)
= —f(q9[g(f(gs)) +is—i(t)]—RiZ+ige(t)
i=—P(Qs.,ig). (CY

Since the first subsystem of Ed®) is driven byi, the term
is—i in Eqg. (C8 does not cancel, as it does in EE5).
Note, however, that

wherel is a bound orji(t)|. This implies that

lim  P(gg,ig)=»

”qS'isH_’Oo
and hence
As:z{(qs vis)| P(qs ,iS)BO}

is bounded or empty. Therefore,

dEy(0s,is)

G <0 (Qs.is) € RZ— A,
which, together with

lim
H(qS ,is)—>OOH

Es(ds,is) =22,

yields a uniform boundedness dfi).

Step 3 (exponential synchronizationi order to apply
proposition 2.1, note thgicompare Eqs(1) and (2) with
Egs.(23)-(26)]

Fx,y;u(t))=i—g(f(q)),

1 R 1
G(x,y;u(t))=— Ef(Q)— it [e(t),

with x=q, y=i, andu(t) =e(t).

For i=y fixed, F(x,y;u(t))=i—g(f(q)) is decreasing
with respect toc=q, since—g and —f are both decreasing.
For x=q fixed, however,

1 R 1
G(x,y;u(t))=— Ef(C])— EI + EE(t)

is decreasing with respect ip because it is linear with a
negative coefficientG(f,y;u(t)) is Lipschitz with respect to
x becausd is Lipschitz. Therefore, Eq$25) and(26) expo-
nentially synchronize witt{23) and (24).
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