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Quantum gas in an external field: Exact grand canonical expressions and numerical treatment
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An exact Feynman-type presentation of the grand canonical partition function and averages as series over
cycles for a system of noninteracting identical particles with a spin in an arbitrary external field is derived, and
a numerical procedure for obtaining(3) and other dependencies at constidns developed. It is shown that
the same series can be obtained also from the conventional form of the grand pde(it@l a sum over
single-particle energy statedNumerical calculations at constaNtare carried out for quantum gas of bosons
and fermions in three-dimensional harmonic field and in thecReTeller potentiallS1063-651X99)03301-3

PACS numbd(s): 05.30.Fk, 05.30.Jp, 02.76c

I. INTRODUCTION i.e., for a system of noninteracting identical partiqlessons
and fermiong with a spin in anarbitrary external potential
Development of new computer simulation schemes alfield (including[3] and[4] as specific casgs
ways implies an appropriate means of their test. The most The structure of the paper is as follows. Section II con-
desirable in this aspect is to compare simulation data witfiains transformation of the canonical partition function, tran-
analytical expressions which eventually exist or can be desition to the grand canonical ensemble, creation of the grand
rived in certain particular cases. potential (2, and averages. The obtained relations are then
In [1] we proposed a variant of path integral Monte Carlowritten down for sp_ecific cases aFdimensional isotropic
(MC) method combining the previously existed “bead” and harmonic field and Reehl-Teller potentia[5,6]. It is shown
Fourier approximations, which are the extrefaed nonop- as well that the canonical partition function for a cyclezof
timal) cases of our approach. For a single particle in an exhoniteracting particles at temperattires equal to that for a
ternal field we tested our method reproducing the groundsingle particle aff, » times less. We demonstrate also how
state energy and distribution function of an electron in thethe series over cycles fé can be derived from the conven-
hydrogen atom and canonical averages of the harmonic osional series over single particle energy states. The calcula-
cillator. tion scheme is described and numerical results for tempera-
The proposed method was extendedlihalso to systems ture dependencies of chemical potential, energy, heat
of interacting identical particle§fermions and bosopsand  capacity, and other averages at constidnfor systems of
appropriate MC procedures were created. To test them progoninteracting bosons and fermions both in harmonic and
erly we arrived at an urgency to find cases described analytPaschl-Teller fields are presented in Sec. Ill. Section IV con-
cally. Exact expressions were obtained indeed for the canontains concluding remarks.
cal partition function and averages in the case of

noninteracting quantum particles with a spin in Il. SYSTEM OF IDENTICAL NONINTERACTING
d-dimensional harmonic field1] (for d=1 ands=0 they PARTICLES WITH A SPIN IN AN EXTERNAL FIELD
reproduce preceding results [#]). With their aid tests of _

MC data were performed ifl] for systems with the number A. Canonical ensemble

of particlesN=2,3. Unfortunately, canonical ensemble ex- We consider a system of identical particles with a spin.
pressions become more and more cumbersoméN ds-  Canonical partition function of such a system can be pre-
creases. sented as a symmetricéntisymmetricgl sum over allN!
Meanwhile it is known that the grand canonical approachpermutationsP in the density matrix of the canonical parti-
yields sometimes quite simple expressions since in this castn function for a system oN distinguishable particles
the restriction on the constant number of particles is being(®)(g:P) [3]:
removed. This was one of the motivating points of the
present work. The most important for us in this aspect is the 1 ]
Feynman expression for the grand potenflain the form of Z58(p)= NI {EP:} riz®p;P), @)
a series over powers of activity for a system of free spinless
bosons in a box3]. Coefficients of this series include ex- where é&=+1 for bosons and fermions correspondingly,
actly determined canonical partition functions for cyclic per-[ P]—parity of the permutatior®, 8=T —inverse tem-
mutations (cycleg of increasing number of quantum par- perature. If the Hamiltonian of the system does not depend
ticles, hence the whole expression is often called “a seriesn spin,Z(®)(B;P) is being split into a product of the spin
over cycles.” Recently a similar series for a system of non-and the coordinate parts:
interacting spinless quantum particles in a harmonic field
was derived if4]. Z®(B:P)=Z0(P)ZP)(B:P). 2
In the present work a Feynman-type series over cycles for
the grand potential) is constructed in a more general case, The coordinate part can be written in the form
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zP)(B;P)= f p(x,Px; B)dx, )

wherex=(ry, ... ry) is thedN-dimensional vectord, di-
mensionality, p(x,x’; 8) =(x|e PH|x’), the density matrix

for a system of spinless distinguishable particles in the coor-

dinate presentatiorﬂ, Hamiltonian of the system.
The spin part in Eq(2) has the form

N
zg'(P)=2, |1 a(oy.Poy, (4)

where (o ,07) is the Kronecker symbol. Sum in E(4) is

over all 23+ 1 values of the spin projection for each particle,
and s is the value of its spin. Note that for the identical

permutatiorP it yields: Z{))(Pg) = (2s+1)" [e.g., for elec-
trons s=1/2 andZ{))(Py)=2"]. Consider that firsty par-

ticles in theP permutatron are involved in a cycle. Then it is
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The remaining part to:D)(,B;P) splits into similar factors
(partition functions of cycles and the wholez{P)(B;P) is
now presented as a product:

N
zPg;Py=11 z,(B)°P. (10)
v=1

Finally as far as eaclr cycle in theP permutation is a
result of v— 1 pair transposition§3,8], the parity[P] in Eq.
(1) is determined afP]=% ,(v»—1)C,(P). Now, substitut-
ing [P] in this form together with Eq¥2), (6), and(10) into
(1) we arrive at the following expression:

1 N N
Z(S’A)(ﬂ) — m E gEV:].(V 1)CV(P)(25+ 1)EV:10V(P)

© {P}

N
<11 z,(8)%®
v=1

possible to make an independent summation over variables

o, included into this cycle:
01,05)8(03,03)...6(0,-1,0,)0(0,,01)

©)

i.e., each cycle, regardless of its length, yields an equal co

tribution into Eq.(4) and the spin part is expressed[@$

=TI (2s+1)CP)=(25+1)-1CP) ()
v=1

whereC ,(P) is the number of cycles involving particles in
the P permutation. In the canonical ensemli@e(P) must
satisfy the fixed number of particles’ condition for edeh

N

Zl vC,(P)=N.

=

()

The coordinate parZﬁD)(ﬂ;P) can be also presented in
the form of a product over cycles analogous to &j.for a
system ofnoninteractingparticles in an arbitrary external

freld Indeed, as far as in this cast= EN lHl(r) where
H,(i) is a single-particle Hamiltonian of theh particle,

N
p(x,x';ﬂ>=<xle‘ﬁ“lx'>=iljlplm,ﬂ’:ﬁ). ®)

Here p(r;,r;: 8)=(r;le #M10|f}, a single-particle den-

sity matrix for theith particle. Consider again that the co-

ordinates of firsty particles in theP-permutation form a
cycle. Then the following independent factor Z5°)(3; P)
emerges:

Zv(ﬂ):f p1(r1.T2:B8)p1(r2,15:8) ...

Xpl(Fy,Fl:B)i]:[l dr; (9)

2 H [~ D(2s+1)Z,(B)]1°P.

{P}vl

(11)

According to the group theory the permutation group

r§plrts into classes, each of the latter having its specific cyclic

structurefa set of indice<C,(P)]. Hence the sum over per-
mutations, in Eq(1) or in Eq.(11), can be reduced to the
sum over classeee[3,7]). For Eq.(11) it yields

1 N
Z8NB) =7 & MACH]T (e s+ 1z, 8"

(12
Summing over classes is presented in @¢) as a sum over
all sets{C,}, provided the condition7) is fulfilled. The

number of elements in each clagg{C,}), is determined as
[3,7]

N!

M({CV}) ~N
11 c.tv®)

As a result we obtain the expression for the canonical
partition function(11) in the form

N aC,,

zenpy=> 11 =5 a=

{Cy)} v=1

¢ Y(2s+1)Z,(B)

14

(14)

B. Grand canonical ensemble

Now we start with the general expression for the grand
canonical partition function:

EONB.w = 2 NZN(B). (15)
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Here A =eP* is the activity, u the chemical potential, and
Z$™(B) the canonical partition function for a system Wf
identical particles.

Substituting expressiofil4) into Eq. (15) and following
Feynman 3], we arrive at a set of transformations:

S 7 [va, o
=N Bw= 2 T =]
{C1,Cp, ...=0} v=1 v
TS w V]C
=11 > H eM™). (16)
v=1C,=0

It is taken into account that summation owfEg. (15)] in
the infinite limit removes the restrictiofY) imposed on the
number of cyclesC, and hence the sum over ea€) is
performed independently from zero to infinity.

For the grand potentidl we get

~IN[Z A (B, )]

* glv=1)
P S L €2,

BASP(B )=

7

The obtained series over powers of activify?) is valid
for a system of noninteracting identical particles inaabi-
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Zl(V,B):J p1(r1.T2;8)p1
X(F2,r3:8) . pa(r,.11;8)
<[] dr;. (22)
=1

This expression exactly reproduceés for Z,(8). Note that
for specific case$18) and (19) the validity of Eq.(20) is
observed directly.

As a consequence of E¢20) it follows that the grand
potentialQ) at B for our system is expressed only through a
single-particle canonical partition function at a set of increas-
ing inverse temperaturesB (decreasingl). If the energy
spectrum of a particle in the given field is known th&y{B)
can be calculated at any temperature and h&dcean be
determined. Note that forB—o Z;(B) approaches its
ground state termg ™ #Eo (1 if Eq=0).

Finally, it is instructive to demonstrate another way of
obtaining the seriel7) for Q. We start withZSA (3, 1)
for the system of noninteracting identical particles in a stan-
dard form[9]:

RANES | B=ralV:¥n @

k

trary external field. Coefficients of the series contain canoni-

cal partition functions for cycles of particlesZ,(8) (1
sp<w),
Note that for

m |32
Zy(ﬂ):hsz(m> (18

E(IZS’A)(:BJL) =[(1- f)\e*BEﬁ)*E](Zerl).

Here £ is the grand canonical partition function for the

kth single-particle statek{ d-dimensional vector with inte-
ger componenjs E; is its energy, ang3,u,\,&,s are the
same as determined earlig.g., in Eqs(14)—(17)]. For Q
we get

with ¢=1,s=0 we get the Feynman expression for the free

spinless boson gas in a box of volurwe 3]. For isotropic
d-dimensional oscillator field

—d

 hoBry
Z,(B)= ( 2 sth) (19

(see e.g.[1,4])), and Eq.(17) determines the) potential in
this case.

For noninteracting particles we can point to the following

important fact:

Z,(B)=Z1(vB). (20)

It means that the canonical partition function for a cycle of
particles at the inverse temperatygeis equal to that of a
single particle a3 timesv. Indeed, starting with the parti-
tion function for a single particle atg:

2,8~ [ dFapa(Fiisiv) (21

whernepl(re,ré’;yﬂ)=<F|e‘”ﬁﬁllf’>, and using the identity
e "AHi=(e PH1)” we get

BA(B.p)=—INE(B,p)=£(25+1) 2 In(1-Xy),
k
(24)
Xig=&Ene PEk,

Using series decomposition for the In function,

©

X
In(1—xp)=—

v=1 V

i

we transform the right-hand side of E@4):

< |7V>|<E

BOUB, )= —E(25+1) X, 21
kK v=

§V+l v

2 e~ vBEK

& lZl( VB)

=—(2s+1) Z
v=1

=—(2s+1) Z (25)

The latter expression coincides with H4.7) if Eqg. (20) is
taken into account.
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C. Thermodynamical quantities in the form of cycle series

Differentiating Eqs.(17) and (25) over u, we obtain the
following expression for the number of particlisls

N:_(@) =(2s+1)>, £7Z (WA (26)
(9/.L 8 v=1

For the energy we use the relatif]

d
E= @(ﬁﬂ),ﬁMN (27)
and finally we get
- dz
E=—(2s+1) >, gv-le¥, (28
v=1 X

wherex= Bv.
In particular, for thed-dimensional isotropic oscillator
field:

N=(2s+1) 3, g”l( 2 sthVB) N, (29

d# i
E= Tw(23+ 1S & lcoth 2 sh

o —d
wv,B/ ﬁwV,B) 7
= 2\ 2

(30

It is useful also to hav@l andE in the form of series over
single-particle states

) _(2s+1)
N=ZK N, Nk—m, (31
E=> N:E; (32)

k

(E; is the energy of thé&th state.
For d-dimensional isotropic oscillata-dimensional sums

the grand canonical ensemble variables.. To get depen-
dencies at constant number of partickésve start with rela-
tions (26) and (31), which are treated now as equations for
obtaining curvesu(T) at constantN. Then for each fixedN

we calculate energf as a function of3 or T=8"1 (it can

be also presented as a functionf. In this way, based on
grand canonical ensemble relations, we can get explicit de-
pendencies of calculated quantities Mrand 8, i.e., we re-
produce canonical averages.

The (u,T) pairs were chosen so as to reproduce the given
value ofN within the fixed accuracy (6 was taken equal to
10" ° for N from 10 to 1000). Truncating seri¢26) and(31)
we compared consecutive terms of each series with the same
6. The first term whose modulus did not exce®dias taken
as the last term in the truncated series. For each temperature
the chemical potential was determined with the aid of the
half-division method. It is evident that series over cycles
(17), (26), and (29) converge better at high temperatures,
while series(24),(31)—(33) over single particle states do so
at low T. So in the range ofs>0 for fermions we used the
series(31) (in this region series over cycles absolutely di-
verge. In the regionu<0, both serieg31) and (26) were
used for fermions as well as for bosons.

The practice of calculations with the aid of series over
cycles(26) showed that the number of terms taken into ac-
count for attaining the required accuracy increased indeed
with the decrease of due to the nature of this series. So it
was used mainly at high temperatures.

Coefficients in Eq(26) include canonical partition func-
tions of a single particle in a one-dimensional fi¢td the
power ofd). If this partition function is determined analyti-
cally (as in the case of the harmonic figlthe serie26) for
©<0 can be calculated quite fast both for bosons and fermi-
ons. However in most cases, e.g., for theséd-Teller po-
tential, the canonical partition functiaf, (8) has to be cal-
culated numerically based on the known energy spectrum.
Convergence o, () falls with the increase of and, as far
as this sum must be calculated with accuracy higher than that
of Eq. (26), the total computational rate in this case falls
noticeably, especially af increases.

The series over single particle stat84) is more difficult

(31) and(32) can be reduced to one-dimensional sums withfor calculations since in the general case it d-@dimensional

f(d)(2s+1)

A g 33

whereE,=# w[k+(d/2)], andf,(d)=CP;}_, is the degen-
eracy factor.

one. The number of terms to be taken into account at fixed
accuracy is much greater than that for the series over cycles
and it grows further with the increase ®f Practically, cal-
culations at temperature higher than a certain limiting value,
dependent on parameters of the system, appear to be impos-
sible. Meanwhile for low temperatures E(1) provides

It is convenient to count the chemical potential from theduite fast calculations with the required accuracy both for
ground-state level while in the above relations it is counted?0sons and fermions. Calculations on a Pentium PC took,
from the bottom of the potential well. In the oscillator case itusually, several minutes for eath

yields the following substitutions in Eq&29), (30), and(33):
d _ hoPv s
m— Eﬁwﬂ,u, SlnhTH1—9 whv, (34

[lI. NUMERICAL CALCULATIONS

A. General approach
Relations(17), (26), (28)—(30), (24), and (31)—(33), ex-

As a rule there exists a rather large temperature interval in
which efficiency ranges of both series overlap, i.e., both of
them can be practically used for calculations. In the range of
this overlapu(T) dependencies for fixel, obtained from
Egs.(26) and(31), always coincided within the required ac-
curacy.

B. Oscillator field
To estimate the range of interest in theT plane it is

plicitly determine thermodynamic averages as functions otonvenient to determine “reference points” at edsghi.e.,
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the chemical potential at zero temperature and temperature ftllowing substitution by integrals. The last term of E§1)

zero chemical potential for fermions. should be presented as a sum in which its first itées Q)
At T=0 relations(31) and(32) for the case of the oscil- keeps the valug.# 0.
lator are reduced to As a result(on calculating integralf9]), we arrive at the
K expression
N1 E¢ k+1)(k+2 35
2571 2 & (krD(k+2), (35 —T3EF 903 +T2§7T—2
ssr1 | 21 (3B 2 6
e 1 § (k+ 1) (k+1)(k+2) (36) o1 1
F1 2& 2 '
2s+1 2 & 2 G Ty (42

whereK , corresponds to the Fermi energy=E =K, (in ) _
units of4w). If the energy is counted also from the ground For greatN the bose condensation starts at high temperatures

state thenj in the first parentheses of E¢86) should be ~and for estimation of the condensation poiry, only the
omitted. It is easy to show that summation in E(g5) and  first term in Eq.(42), containingT®, should be saved and

(36) yields ultimately
N 1 1/3
(25+1) 1.202) ' (43

In the rangel < T, with the decrease df the last term yields
1 the major contribution into Eq(42) being the number of
771~ gRe(Ket D(Kg+2)(Ky+3). (38  particles in the ground state.
In the limit of high temperaturesffi 0<1,u<0) the de-
pendencyu(B) is determined from the seri¢29) by saving
only its first term,

1 Te
2s+1 6

(Ky+t 1) (Ky+2)(Ky+3), (37)

For high values oN, K, is close to[ 6N/(2s+1)]". For
the specific energy we get

N ebu
2s+1 (Bhw)? ’

N
2s+1

E
N

u=TIn

= §K¢. (39) (Bﬁw)3)- (44)

Note that for nonrelativistic quantum fermi gas in a box theComparing Eq.(44) with the expression for the chemical
specific energy al =0 is equal tofE,, while for the ul-  potential of the Boltzmann gas in a box of volurde
trarelativistic case it is equal t§>E¢ [9]. The coincidence of
our result(39) with the latter can be caused by similar energy N
dependence for the density of stat@s both cases it is a M=T|n(vA3), (45)
square of energy

Now we write down the expressiof31) for fermions at

- 2712
=0 taking into the account Eq34): whereA = (27 B%°/m)~“is the thermal wavelength, one can

express Eq(44) in a similar form, introducing effective vol-

N 1 K2 K 1 umeVes:
2s+1 2 ; e3k+1+3; eﬁk+1+2; ef+1] N wT\3?
(40) ,u=TIn(V—efA3), Ver=(2s+1) W) . (46
These sums can be calculated analytically if we reduce )
them initially to appropriate integra[®]. Finally, we get C. Paschl-Teller potential and limiting cases
1 This potential is determined 45,6]
2s+1 2l (=T 3)E) Vo k(k—1) AA-1) h2a?

(47)

i VO:

VX)=71 Sif(ax) | coZ(ax) m

+3T2(1-3)I'(2)¢(2)+2TIn 2]
5 w1 1 with parametersk>1A>1 and the range ofx:0<x
=T° 0.75%1.20% O.75§ T+In 2? . (41 <7/2«a. It has a smooth bottom and approaches asymptoti-
cally vertical walls at limiting values ok. The Schrdinger
problem for this potential has an exact solution with eigen-
values E,=(Vo/2)(k+X+2n)2, n=0,1,... . We con-
sider only the symmetrical case of Ed.7), k=\, with

Here T'() and ¢() are y and ¢ functions, {(3)
=1.202; {(2)=?/6. At greatN (andT) the left-hand side
of Eq. (41) is practically equal to the first term, 0.901F".
For bosons the chemical potential is negative and is (=1
\ _ . K K—
strictly equal to zero only af=0. So, atu close to zero, it V(X)=2V, (48)

can be set equal to zero in the first two suf@$) with their SirP(2ax)
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and energy spectruri,=2Vy(x+n)2. Introducing dimen- 40 ? 3 2 3 2 5
sionless eigenvalues counted from the ground state we car 0.01 ' : T T
write M ™,
T A L
. E,\—E, 1 n 0] )
E,= =—(k+n)?—«k?]=n|1+—|. (4 : y ;
n 4VOK 2K[(K ) K ] 2K ( 9) 5 — i \n\
20 - -1.51 3 %
This form of E,, is helpful in obtaining two limiting cases of 20 iﬂ b

Paschl-Teller potential. Atk=1 it formally yields a box
with hard walls and flat bottom while fok—o it ap-
proaches the harmonic potential.

Indeed, the energy levels for a box of width are

E = (A%2m)(7/L)%k?=¢k?, k=1,2,... . Substitutingk = ©
=n+1,n=0,1,... and introducing again dimensionless en-
ergies counted from the ground state, we get
- E,—E; (n+1)?-1 n
E,=— o (7l D . n=01,... .
2e 2 2 20
(50)
This coincides with Eq.(49) for k=1 as long as ¥,
=2h%a?Im=(2h%Im)(w/2L)?>=¢ if we assume L T
12 3 4

=7/2a.
The analogous procedure for harmonic field eigenvalues
E,=fw(n+1), n=0,1,... yields -40 S A A
- E,—E T
E,=——=n. (51) | | |
ho FIG. 1. u vs T dependencies for boson and fermion gases in a

L . . 3D isotropic harmonic field at constait/(2s+1); curves 1-4
It coincides with Eq.(49) for k—o if we assumefio  corespond toN/(2s+1)=10,1G,1C%,10¢*. The inset presents
=4xV, or w=4(fi/m)ka?. curves 1 and 2 for bosons in larger scale. Curve 5 is the Boltzmann
As long as the produgBu(B) exhibits linear behavior in  gas in the case 4 andT are in%w units.
InT scale at high temperatures both for gas in a harmonic

field and in a boXsee Eqs(44) and(45)] we can use these
asymptotes for checking our numerical results.
In units adopted above we get

The T dependencies of averagésnergy, heat capacity,
population of levelsfor the same values dfl are presented
in Fig. 2. T, units forT are used to equalize scales for curves
3 2 3 within the whole largeN range,T. being determined by Eq.
+—=In—=InT (52 (43). Data for bosons reproduce well canonical averages ob-
2-m 2 tained in[4] with the aid of recurrent relations in the canoni-
cal ensemble. As far as very accurate comparison of both
data requires recalculations according to relations ffdin
we used another approach to check the difference between
-3InT (53 true canonical averages and results obtained within our pro-
cedure: we calculated tiedependency of energy for fermi-
for the three-dimensional harmonic field. ons,s=1/2, in oscillator field by the present method for the
smallest number of particledy=2,3 and compared them
with exact canonical expressions from our previous paper
[1]. The relative difference of these results as a functiol of
Computational results for systems in a three-dimensionalin zZ w units), Fig. 3, testifies that even fd¥=2 maximum
isotropic oscillator field are presented in Figs. 1-3. For thedeviation(at T=0.3) does not exceed 7%. A¥r= 3 it shifts
Poschl-Teller potential results are shown in Figs. 4 and 5. to higherT and now is less than 3%. For limiting tempera-
Figure 1 givesu(T) dependencies for bosons and fermi- tures (T—0,T— ) the deviation vanishes. It is evident that
ons in aT-interval range from zero up to temperatures wherefor N about 10 we can completely neglect the difference
difference between two statistics almost vanishes. Both between results of averaging in both ensembles. It justifies
andT are presented ifiw units. Each pair of curves corre- indeed application of the present approach: numerical calcu-
sponds to a fixed value dfi/(2s+1) from 10 to 16 (for  lation of averages at fixeN with the aid of grand canonical

Bur(B)=In

2s+1

for the box and

Bu(B)=In st 1

D. Obtained data

bosons withs=0 it is the number of particlebl, for fermi-  ensemble relations avoiding cumbersome formulas of the
ons withs=1/2 it isN/2). Condensation for bosons becomestype[1] or recurrent relation§4].
more and more abrupt with the increaseNgfwhich is par- It is worth mentioning here that while energy, FigaR

ticularly well observed in the inset of Fig. 1, and is alsowas calculated according to the suggested scheme, i.e., using
revealed in Fig. 2. series(30) and (32), the heat capacity, Fig.(B), was deter-
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120 1.0
: ©
100
0.8 1
80
= 20'6 7 11— 3
= 60 >
L c 2 -— 4
0.4 4
404
20 H 0.2
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0.0 0.5 1.0 1.5 2.0
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(b)
8
6
zZ
~—~
O
4
1
24 5
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C

FIG. 2. Equilibrium properties v¥ for boson and fermion gases in 3D harmonic field at constd(®@s+ 1): (a) specific energy, curves
1-4 correspond tdl/(2s+1)=10,1¢,10°,10* (boson, 5 and 6 to 18 and 10 (fermiong; (b) specific heat capacity: 1—4, for bosons as
in case(a), 5, fermionsN/2=10%; (c) specific population of the ground state for bosons, 1-4 as in ¢asasd(b); (d) population of levels
for fermions,N/2=10% 1, ground state, 2, 0B5,, 3,E,, 4, 1.IE,,, 5, corresponds to the Boltzmann dependence for the ground-state level.

mined by numericall differentiation of the above data for
the energy. An attempt to get heat capacity by direct differ- 5
entiation of serief30) and (32) yielded inadequate results
especially forT above the condensation point for bosons.

The w(T) dependencies for boson and fermion gases in 0
the three-dimensionaBD) Paschl-Teller potential for a set
of k is shown in Fig. 4. Limiting valuek=1 and k==
correspond to the cubic box and to harmonic field. In Fig. 5 5
we present correspondingu () versus Inl curves[T in
Fig. 4 and 5 is in ¥y« units, see Eq49)]. It is clearly seen

0.08 - 2
-15 <
0.06 | 3
[&]
W -20
.
LLI0.04
I(_)
[0
w 1 25
0.02 5 4
-30 T T T T T T
0 2 4 6 8
0.00 y T d T - T
0 1 2 3 4 T
T

FIG. 4. u vs T dependencies for boson and fermion gases in a
FIG. 3. Relative difference between canonical and grand canoni3D Paschl-Teller field,N/(2s+1)=10. Curves 1-4 are for values
cal energies v§ (% w units) for fermions,s=1/2 in the 3D har-  of «: 1 (cubic boy, 2, 4, and oscillator fieldé—). w andT
monic field. Curves 1 and 2 are fof=2 and 3. are in &y« units, see Eq(49).
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TABLE |I. Comparison of Fermi energy values for increasing
number of particlesN. E{), our calculationsE'?, expression
(55); A, relative difference.

N
2s+1 E}) EQ A
10 4.31 3.57 0.21
- 10° 19.6 16.6 0.18
= 10° 85.1 77.0 0.10
10 376.0 357.3 0.05

nonical partition function for a single particle in a box since
it does not tend to 1 fol —0. We comparéh,; [Eq. (18)]
with Z; for this case calculated numerically, Fig. 6. In
adopted units their ratio as a function Dfis

3

71-T
*InT” hy 2 56
LA [ L R A N Z. © ( )
0.0 05 1.0 15 20 25 3.0 1 _ k(1t+kf2)
InT € T

k=0
FIG. 5. Bu(B) dependencies in Ifi scale for boson gas in 3D
Poschl-Teller field, in a range dF including high-temperature lim- It tends (though rather slowlyto 1 at large temperatures
iting behavior, N/(2s+1)=10. Curves 1-6 are for values of While atT—0 it falls to zero. It is interesting that these two
k. 1 (cubic boy, 2, 4, 10, 30, and harmonic fieldk{ ). kinds of behavior are separated by a pronounced peak.
Straight lines for 1 and 6, Boltzmann asymptotes for corresponding

cases. The inset shows the difference of curve 1 and the Boltzman IV. CONCLUDING REMARKS
limit in a larger range of temperatures.is in 4V« units as in
Fig. 4. We have shown that Feynman presentation of the grand

canonical potential) as a series over cycles can be treated in
how these curves approach asymptotes with slopes increaa-more general sense than it was meant initially, i.e., it is
ing with the increase ok, from —1.5 for the cubic box valid for a system of noninteracting identical particles with a
[curve 1, Eq(52)] to — 3 for the harmonic fieldlcurve 6, Eq.  spin of both statistics in an arbitrary external field.
(53)]. It is interesting to note that for the harmonic field the
asymptote is monotonously attained from below while in the 1.4
case of the cubic box it is attained nonmonotonously from
above with crossing of both lines at a finitE. The
asymptotic behavior of the curve 1 is presented in detail in 1.2
the inset, Fig. 5. The maximum deviation of both lines is
approximately 0.19. We made similar calculations for
N/(2s+1)=10?%10° and observed the same behavior with
maximum deviation falling to 0.09 and 0.03, respectively. It
means that the “effect of intersection” would completely

. . . 0.8 1
vanish with further increase d. N
We can compare values of Fermi energies obtained in our =
calculations with the expression for macroscopic quantum 064 ]
fermion gad9]: N
N 2/3 ﬁZ E'_ "
E,= 2 - 4 0.4 4
¢ (6” (2s+ 1)v) 2m’ 54
or in adopted units, 0.2
1/6 N 2/3 1 o8 0 200 400 T 600 800 1000
Efﬁ(% 25+ 1) (59 oo
0 5 10 15 20 25 30

This comparison is presented in Table I. It is seen how the
relative difference tends to zero with the increaseéNof FIG. 6. Ratio ofh; [Eq. (18)] to Z; for a cubic box vsT. In the

Finally it could be also noted that Feynman’s expressionnset it is shown at a much larg@rscale.T is in 2& units[see Eq.
for h, [Eq. (18)], strictly speaking, does not present the ca-(50)].
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A numerical procedure based on grand canonical expres- It should, finally, be pointed out that for most potentials
sions was developed enabling us to obtain very accuratelthe single-particle Schainger problem has no exact solution
the equilibrium data at constahtranging from 10to 1© In  and hence its spectrum is unknown. In this case we have to
principle, there is no problem with increasifgby several apply another procedure to estimate the single-particle ca-
orders. In the case of harmonic field when the canonicahonical partition function that enters into series over cycles.
single-particle partition function exists in a closed form cal-An aproach that could be helpful here is the Monte Carlo
culations run particularly fast. In cases when the singlemethod in the expanded esembld], which enables us to
particle energy spectrum is known but the partition functioncalculate the difference between the unknown partition func-
cannot be presented in a closed form our numerical procdion and that of the reference systéeng., of the oscillatgr
dure is still effective though it becomes noticeably slower.Another question also exists: how to ugepossible facili-
Such is the case for the Bechl-Teller potential considered in ties developed here for systems of quantum noninteracting
this work. particles to the case when interaction is being switched on.
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