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Wave propagation in a range-dependent waveguide can be considered as a classical physics problem similar
to the quantum chaos problem situations. This analogy becomes especially strong when one uses the parabolic
equation approximation. By projecting the wave field taken in the quasiclassical approximation onto eigen-
functions of the unperturbed boundary value problem, analytical description has been obtained for normal
mode amplitudes in terms of geometrical optics relations. This approach provides a convenient way to study
how chaotic behavior of ray trajectories reveals itself in a range dependence of mode amplitudes, and, hence,
in the solution of the wave equation. An analog to nonlinear ray-medium resonance for normal modes has been
investigated in details and the impact of this phenomenon on modal structure is discussed. It is argued that
overlapping of different mode-medium resonances causes a complicated range dependence of mode amplitude
in almost the same manner as the overlapping of ray-medium resonances leads to ray chaos.
[S1063-651%99)05902-4

PACS numbeps): 05.45.Mt, 03.65.Sq

INTRODUCTION mode amplitudes. From the viewpoint of quantum mechan-
ics, we are investigating how the chaotic motion of a classi-
Now it is well known that ray trajectories in the range- cal system is connected to fluctuations of amplitudes of
dependent waveguide media generally exhibit chaotic moeigenfunctions in the corresponding quantum system.
tion [1-3]. This phenomenon analogous to chaotic dynamics The main idea of our analysis is the following. We project
of nonintegrable Hamiltonian systems in classical mechanicthe ray theory solution of the parabolic equation onto normal
is of considerable interest in terms of the theory of wavemodes of the unperturbed boundary value probléaisen in
propagation. In particular, in underwater acoustics this interthe WKB approximationand evaluate the corresponding in-
est has grown in recent years in connection with the probtegrals using the stationary phase technique. As a result we
lems of ocean-acoustic tomograpf;5]. The point is that have found an approximate analytical expression for mode
the chaotic behavior of trajectories limits our ability to make amplitudes where the latter are expressed in terms of rays.
deterministic predictions using ray theory and, thereforeThis result not only simplifies the mode amplitude evaluation
poses severe restrictions when solving inverse problems. Ibut also gives an additional insight into the relationship be-
recent years such important features of the chaotic ray strué¢ween the ray and mode representations of the wave field in
ture in underwater acoustic waveguides as extreme sensitia range-dependent environment. It presents a generalization
ity to initial and environmental conditions, exponential di- of some results on ray-mode relations in a waveguide with
vergence of neighboring rays, and exponential proliferatiorweak inhomogeneities discussed in R¢i2—15.
of eigenrays, have been establistiéd §]. The connection between rays and modes becomes espe-
As an evident next step, one should study how chaotic ragially clear when the main relations are expressed through
dynamics reveals itself in wave phenomena. It is believedhe angle-action variabldg,3]. According to the ray theory,
that although diffractive effects may smooth the sensitivitythe wave field at the observation point is formed by contri-
to initial and environmental conditions associated with raybutions from the so-called eigenrays, i.e., the rays that pass
chaos, the resulting wave picture will, nevertheless, be veryhrough that point. It turns out that the amplitude of the given
complicated. This situation is calledave chaosn the anal- mode at the given range is formed by contributions from the
ogy to quantum chaasmanifestation of the chaotic motion rays, which we call the eigenrays for the given mode. These
of a dynamical system in the behavior of the correspondingigenrays have the values of the action variables equal to that
guantum system. The similarity between quantum and wavef the WKB mode, which are equal to the mode numbers up
theories and, hence, between the problems of quantum arid a multiplicative constar{tL6—18§.
wave chaos, reduces to equivaleiatleast from the formal The approach considered in this paper that provides a de-
viewpoiny when the wave theory is considered in the limit scription of mode amplitude variations in terms of geometri-
of small-angle propagation. In this case the wave field iscal optics, presents a convenient tool for adapting the results
governed by the parabolic equatiB+11] formally coincid-  obtained when studying chaotic ray behavior for the purpose
ing with the Schrdinger equation. of investigating a complicated range variations of the field
In this paper we address one aspect of the wave chaanodal structure.
problem, namely, complicated range variations of normal Here we restrict our attention to a monochromatic wave
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field in a two-dimensiona(2D) waveguide with a periodic proximation have been performed using there code[27].
range dependence. The mechanism of ray chaos in suchAd the end of this section we argue that although under ray
waveguide is analogous to that of chaotic behavior of a nonchaos conditions the mode amplitudes should typically be-
linear oscillator driven by an external periodic force. Nonlin-come more and more random with range, there are some
ear ray-medium resonance plays a crucial role in the emespecific features of ray chaos that make us think thaome
gence of chao$2,3]. According to the heuristic criterion Mode amplitudes may have nonrandom constituents at very
proposed by Chirikoy19—21] chaos is a result of an overlap 10ng rangesfii) even if the mode amplitude has not such a
of different resonances between ray trajectories and mediufgPnstituent, it may reveal long-lasting correlations.
inhomogenetities.

Since we express mode amplitudes through parameters of I. ANALOG OF GEOMETRICAL OPTICS
ray trajectories, the ray-medium resonance can be easily in- FOR MODE AMPLITUDES
terpreted from the viewpoint of normal modes. It has been
shown that a bunch of rays captured into an isolated reso- ) . o
nance corresponds to a group of modes with amplitudes We consider a scalar monochromatic wave field in a 2D
much stronger affected by inhomogeneities than those ofedium with the phase velocityC (in acoustics, for ex-
other modes. We call this phenomenon the mode-mediur@MPple, it is the sound spegdeing the function of coordi-
resonance. It can be easily described on the basis of wellatesx andz but independent of time The field complex
known relations for captured rays. Overlapping of different@mplitudeu satisfies the Helmholtz equation, which can be
mode-medium resonances should yield the exponemiaglmpllfled unde_r the assumption that thg main direction of
growth (with range of eigenrays contributing to a particular Wave propagation coincides with theaxis and the wave
mode leading to a complicated range-dependence of th@razing angles with respect to thl§ direction are small. As
mode amplitude and to vanishing of mutual correlations bediscussed in Refs(10,11,16, in this case the Helmholtz

A. Semiclassical approximation

tween modes. equation can be approximated by the parabolic equation for
We do not broach here an important issue of breakdowr

of the semiclassical approximation, thus restricting our con- ) 5

sideration to relatively short ranges. This topic will be con- Sk M P e Co “1lu=0 (1)

sidered elsewhere. Nevertheless, an “available” interval of IX 972 C2(x,2) '

distances can be large enough for many practical applica-

tions. For example, as it has been shown numerically in RefwhereC, is a reference phase spekd; 27f/Cy is the wave
[22], the ray-based description of long-range sound transmisaumber in the reference medium wi@=C,, f is a carrier
sion through ocean internal waves may capture importarfrequency. The time factee 27"t is omitted throughout.
characteristics of the sound field surprisingly well even when  Using the notation

ray trajectories exhibit chaotic behavior.

This paper is organized as follows. In Sec. Il we derive 1 CS
the formulas expressing the mode amplitude variations 511 =U(2)+eV(x,2) (2
through parameters of eigenrays contributing to this mode. Ci(x.2)
This is done for two types of sources, i.e., for two types of . .
starting fields at the initial cross section of the waveguidewe rewrite Eq.(1) in the form
We consider a starting field localized at a given point of the 2

) . : ! . au 1 94U

cross sectior(point sourcg and another starting field with ik—=—=—+k’[U(2)+&V(x,2)]u, 3
the amplitude being a slow function of transverse coordinate X 2 472

and the phase corresponding to a quasiplane wdistrib-

uted sourck It is shown that an arbitrary starting field can be Which coincides with the Schdinger equation. Here the
synthesized as a superposition of a numbthis number Vvariable plays the role of time arid™* plays the role of the
maybe very largeof the sources of the second type. In Sec.Planck constant.

ll, we present the well-known basic analytical relations for ~ The “potential” defined in Eq(2) is split into two parts:
description of the nonlinear ray-medium resonance in théhe range-independent oné(z), and the range-dependent
scope of the perturbation theory, and discuss how they ca@ne,eV(x,z). Later, in order to simplify the analytical treat-
be used for analysis of the modal field structure. It is showrment of complicated ray trajectory behavior, we shall con-
that in the framework of our approach the same relations cagider ¢ as a small parameter. However, in this section, this
be used to study the mode-medium resonance, i.e., the bassumption isiot used. Here we are studying the semiclas-
havior of amplitudes of those modes which are in resonanceical solution of Eq.(3) which requires the wavelength,
with the perturbation, and, hence, are most strongly affectedw/k, to be small compared to the characteristic spatial
by inhomogeneities. It has been found that if a single resoscales of the total potenti&l (z) +eV(x,2) [2,11].

nant mode is excited, it is split into a bundle &fn modes The Hamiltonian corresponding to E(R),

and a simple estimation faxm is offered. In this section we
also discuss how the overlapping of resonances gives rise to
irregular range variations of the modal structure. To illustrate
these ideas we present some results of numerical calculations
of the modal structure in a simple model waveguide. Thds a function of coordinate, momentump, and timelike
calculations of the wave field in the parabolic equation ap~ariablex. Solutions to the Hamilton equations,

02
H==+U(2)+eV(x.2), 4
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define the ray trajectories that we denote as We rewrite it using the relation
2=2(X,po.20),  P=P(X,Po,Z0), (6) #*s _ [oz\*
9292y \dpo

wherez, andp, are initial values of the coordinate and the
momentum ak= 0, respectivelysee Appendix that follows from Eq.(8). This yields
The ray eikonal, which is an analog to the mechanical

action, is given by the relatiofil7,24 A / k 12
~ N 27|92/ dpg| (12

S= f (pdz—Hdx), (7 Note that all the rays escape from the same pajntieter-
mined by the source position and each ray is “labeled” by
where the integral runs over the ray trajectory. Considerindts initial momentunp,. So the eigenrays are determined by
the eikonal as a function of the rangeand the initial and the relation
final coordinatesz, andz, respectively, of the ray trajectory,

we have[24] z=2(X,Po,20), (13
which formally coincides with the first equality in E() but

M: , M: —Po. (8) is considered here as an equatiorpgn On the other hand,

Iz 4 the same equation can be treated as a definitiopyads a

function of x and z. Substituting the functiompy= po(X,2)
Here$S(x,z,2p) is the action corresponding to a ray trajectory into Eq.(12) (after evaluating the derivatiyeletermines the
starting atx=0 from the pointzy and arriving in the poing ray amplitude as a function ofandz
at the rangex; po andp, which are also considered as func-  b. Quasi-plane-wave sourc&he initial wave field is de-
tions ofx, z andz,, represent the initial and final momenta termined by the function
for this trajectory.

The semiclassical approximatigor the geometrical op- u(0,z)=a(z)e*s?, (14
tics approximation as it is called in wave thepty the so-
lution of Eq. (3) is given by the relatioh2,17] wherea(z) ands(z) are two functions slowly varying with

z their characteristic scales are much greater than the wave-
. A ) length, 2m/k. At the same time we assume that, due to large
u(x,2)= 2, A’(x,z)e/Sxai(m2n’ (9 K, the phase of Eq14) is a rapidly oscillating function. This
g type of source excites a quasi-plane-wave.

o The detailed description of the semiclassical solution to
where each term represents a contribution to the total Wavgq_ (3) with the initial conditions(14) is given in Ref.[26].

field from an eigenray, that is, a ray which passes through the, y,iq case different rays start from different poiats The
point (X’Z).' The sum goes over all the eigenrays ContrIbLItIng'[rajectory leaving the poirty has the initial moment
at a particular receiver position. In the above formula the

superscriptv numbers the eigenray8,” andS” are the am- . . 9s(2)
plitude and the eikonal of theth eigenray, respectively, and Po=p(zZy9), p(2)=
u” is the Maslov index, or the integral number of times that
the 1th ray passes through causti@ caustics the ray am-

plitude A" goes to infinity and the semiclassical approxima-

9z (15

So in this exampléas opposed to the previous greach ray
is labeled by its initial coordinate,. The eigenrays are de-

tion fails). . .
The explicit expression for the ray amplitude depends onflned by the equatiofanalogous to Eq13)]
the source exciting the wave field, or, in other words, on the 7=274(%,20) (16)

initial conditions of Eq.(3) atx=0. We consider two impor-
tant examples of such initial conditions. Since we are goingyhere
to analyze the contribution from an individual eigenray, we

shall omit the superscript in the remaining part of this 24(X,20) = 2(X, 2o 5(20))-
subsection.
a. Point sourceln this case Solving Eq.(16) for z, one finds the starting points of the
rays crossing the given observation pairdt the given dis-
u(0,2)=6(z—2zp), (10 tancex. The initial momenta of these eigenrays are then

found from Eq.(15).
and the desired solution represents the Green’s function of The functionu(x,z) is again represented by the si),
Eq. (3). The semiclassical approximation to this function isbut this time the expression for the amplitude of an indi-
known (see, for example, Ref25)): vidual ray takes on the form
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a(z) Ho=p?%/2+U(2). (22)
A= e'kS(Zo), (17)
V|9zsl 9z Along the ray trajectory the conservation law
wherez, is the initial coordinate of the given eigenray. The Ho(p,z)=E (23
values ofz, and, hence, oA, in accordance with the above ] )
remark, can be considered as functionsandz. holds true with the constar being an analog to the me-

Equations(12) and (17) allow one to find the eigenray chanical energy. Equatiof23) y_ields the explicit expression
amplitudes as functions of and z, which can then be sub- for the momentunp as a function of andz

stituted into Eq.(9). The eigenray phases as functionsxof R~y
andz can be expressed through the funct®{,z,z;) whose P(E.2)==V2[E-U(2)]. (24)

definition has been discussed in the commentary to@q.  a the trajectories are periodic curves. The coordinates of
In the case of the point sour¢&0) the functionS(x,z,zg) their upper and lower turning pointg,,, andz,,,, respec-

with z, being the coordinate of the source, gives the desireglav) are functions of the “energv’E and determined b
eigenray phase. In the case of the distributed sotirde the 1,4 Z?quation 9y y

argumentz, should be expressed througtand z using Eg.
(16). U(z)=E.

B. Mode representation of the wave field For simplicity we shallla'ssume that. the potentliat[z)_ ig _
L _ smooth, has the only minimum, and its walls tend to infinity
Considering the range-dependent component of potentiabg,_, + o
e, £V(x,2), as a perturbatioriit has already been men-  ap important characteristics of ray trajectories that are
tioned that in this section we do not assume this perturbauou,idmy used in both classical mechanics and ray theory, is

to be small we expand the wave field(x,2) into a sum of  he so-called action variablerelated toE by [24]
eigenfunctions of the unperturbed Sturm-Liouville eigen-

value problen{11,17] 1 1 (Zmax
Izﬂ \(ﬁdzp(E,z)z;j dzy2[E-U(2)], (25
dqum Zmin
-= +k2U(2) on=K?*Emmem- 18
2 42 (2)ém m®m (18 where the integration goes over the period of the ray trajec-

tory. Equation(25) defines the functioE(l). Now the turn-
In wave theory, the eigenfunctions,(z) are usually called ing point coordinateg,;, and z,.x can also be regarded as
the normal modes. They are orthogonal and we normalizéunctions ofl.

them in such a way that In the scope of the WKB approximation, the eigenvalues
of the action variablé, are determined by the quantization
* rule
jﬁ dzem(2) ¢n(2) = Omn- (19
Klp=m+3. (26)

The modes form a complete set, which means that we can
represent an arbitrary function as a sum of normal modes.E
Thus, we write the wave field as

hen the eigenvalues of the energy are given by the relation
m=E(lm).

The mth eigenfunctiong,(z) between its turning points
can be represented as folloykl,16]:

u(x,z)= Cm(X z). 20
(X,2)= 2, Cn(X)¢m(2) (20 (D=t (D = (2) -
Our main goal in this section is to derive comparativelywhere
simple semiclassical expressions for the mode amplitiyde . Sz
In so doing we use the semiclassical approximation(tqz) @m(2)=Qp(2)e™ kS2Im =7, (28
given in Eqg.(9) and project it onto normal modes. According
to Egs.(19) and(20) our task is reduced to the evaluation of _ fz \/—_
~ [ 1
Cm JldeL(XvZ)QDm(Z)- (21 Qun(2)= B0 ){/Z[E _U(Z)]’
m m
Since we consider the semiclassical approximation to (30)
u(x,z), it is natural to use the same approximation for D(1)=2 Zmax dz
¢m(2). The corresponding formulas fas,,(z) are usually zmn V2[E(1)—U(2)]

referred to as the WKB approximations to the eigenfunctions

[11,16,17. These formulas are expressed through parameterghe functionsSy(z,1) andD(l) represent important charac-

of ray trajectories in the unperturbed waveguide mediunteristics of the quasiclassical solution to E8) in the range-
with the Hamiltonian independent environment. The first one determines the con-
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tribution to the action from the first term in E¢7) taken can be considered as a function ofand z. Thus, for the
along the part of the ray trajectory connecting the lower turngiven x, in both cases, the left-hand side of H§4) is a
ing point to the coordinatg and the second one is the period function ofz and the equation should be solved for this vari-

of the ray trajectory along the axis. able. Each solution will determine a ray that we shall call the
Equations(26)—(30) give the WKB approximation to the eigenray for themth mode.
mth eigenfunction in the unperturbed waveguide=Q0). The second derivative @b at the stationary phase point is

Below these expressions are used when expanding the qugiven by
siclassical solution to Ed23).
PP gp 1dU 1 dH,
C. Ray field projection onto normal modes 02 9z E 9z B 97

: (35

Now we have the approximate analytical expressions for . . . .
both the total wave fieldi(x,z) and the eigenfunctiong(z) W't_h p being the momentum of_the eigenray arriving at the
and can find the mode amplitudes by evaluating the inte- point (x,2. In the above relatiop is considered as a function
grals (21) of x and z The same is true of the functioM,

Taking into account Eq(27) we transform Eq(21) to =H0(p(>§,z).,z.). Thg contrib.utioln to the mode amplitude
from an individual eigenray is given by

Cm(X)=Cm(X) +Cpn(x), (31
TV A | 2m AdkPsitia
where Cm(X)= KD(Im)[aHo /2] '
a0 = [ dzux2)en(2). (32 a=(y=o=2p)mld, 36)

with @ being the value ofb at the stationary phase point
Replacingu(x,z) and ¢..(z) with their semiclassical ap- andy being the sign of the derivativé#®/Jz? at this point.
proximations given in Eqq9) and(28), respectively, yields The total value of the mode amplitude is obtained by simply
summing up the contributions of each of the eigenrays.
1 ReplacingA in Eq. (36) with the expressions given in Egs.

Cr(X)= Wef'(”/z)“ ~lomla (12) and (17) we obtain two versions of the above formula
(Im) for the point and distributed sources. As we already know, in
AV . the case of the point source each ray is defined by its initial
X D f dz;=———e S rS@lm) momentp,. Any characteristic of the rajincluding its cur-
n V2[En—U(2)] rent coordinatez, current momentunp, and, hence, current

(33) value ofH(z,p)] can be considered as a functionmf and
X. Bearing this in mind, we easily find that for the point
with o denoting+1 or —1 (or simply + or —, when it is  source
used as a superscript
Let us consider one of these integrals and evaluate it using " 1
the stationary phase techniquel,16. Up to the factok, the Cm(X) = >

eikfbgt+iav (37)
phase of the integrand is equal to Y \/'D(Im)MHO/apOlpo:PS

D =S(x,2,29) + 0So(Z, | ), where the sum goes over all the eigenrays contributing to the
mth mode, andyg denotes the initial momentum of theh
where we have again omitted the superscriphccording to  eigenray.
Egs. (8) and(29) the first derivative ofd with respect taz Similarly, for the distributed sourcél4) any characteris-
can be represented in the form tic of a ray can be regarded as a function of the initial coor-
dinatez, andx. Substituting Eq(17) into Eq. (36) yields

- _2 \/ 2
Cm(X)_ v kD(Im)|U7HO/aZO|z =z’
B . . - . . O 0
At the stationary phase point the first derivative vanishes,
yielding % a(zs)eiks(zg)+ik(b;t+ia” (39)

P

—5 ~P(x2.20)+ 0 \2[En—U(2)].

P(X,2.29)=~0oV2[En—U(2)]. (34 with z2 being the initial coordinate of theth eigenray.
Equationg37) and(38) provide the analytical description
of mode amplitudes in a range-dependent environment
through the parameters of ray trajectories, i.e., through solu-

tions to the Hamilton equation¥).

This is a very important relation: it singles out the rays
contributing to themth mode at the range According to the
commentary to Eq(8), p(x,z,zy) represents the final mo-
mentum of the ray connecting the point£§), to (x,2 or, in
other words, the final momentum of an eigenray arriving at
the point(x,2. For the point source the value a§ is the
same for all eigenrays. For the distributed source, as it has The above result can be reformulated in terms of the so-
been discussed in the previous subsection, the valug of called action-angle variables, which are often used to sim-

D. Action-angle variables
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plify the analysis of a quasiperiodic motion in classical me-
chanics[24] and a quasiperiodic ray trajectory behavior in
waveguide medi@2].

We begin with the
(p,2 variables to the action-angle variablds€) is given by
the pair of equationg24]

_9G(z,0) _9G(z,0)
P= o T 39
with the generating function
G(z,|)=szz\/Z[E(I)—U(z)]. (40

The functionE(l) is determined by Eq25). It should be
emphasized thgh and z are periodic functions of the angle
variableé, i.e.,

p(l,6)=p(l,0+2m),

z(1,)=z(1,0+27). (41

WAVE CHAOS IN TERMS OF NORMAL MODES
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ing the initial momenta of the eigenrays for thegh mode.
Taking into account Eq43) we rewrite the expressiof87)
as

range-independent waveguide
(¢=0). In this case, the canonical transformation from our

1
m_; J2mi[a11apg)

. st, .
|kd)n+|an_

(47

c

Po=Pon

For the distributed source, as it is stated in Edp), the
initial momentum pg, is a function of the initial coordinate,
Zy, and an analog to Eq16) is obtained by substituting
I (x,p(2g),2p) for I in Eq. (46). In this case the expression for
the mode amplitud€38) can be rewritten as

o a(zon)

cl = -
" ; NCEIE -

The last two equations as well as E¢37) and (38) re-
duce the mode amplitude evaluation to a procedure quite
analogous to that generally used when evaluating the field
amplitude at the given point. It includes solving the Hamil-

elks(zon) +ik®p Hiay

(48)

The Hamilton equations in terms of the new variables reducéon (ray) equations, finding the eigenrays, calculating ray

to
=0, 6=w(l), (42)
where
w(l)_T_m (43

is the spatial frequency of the trajectory oscillations alongfu

the x axis.

Note that the functios grows with range. At each period
of oscillations its value increases by24].

In the range-dependent waveguide#0) we define the
action-angle variables usirige sameelationg given in Egs.
(39) and(40)] as in the unperturbed waveguide. The Hamil-
ton equations in the new variables take the f¢&h

Bzw(|)+8

o (44

| =—& %,
Since Eq.(24) remains valid in the range-dependent en-

vironment, Eq(34) which defines the eigenrays contributing

to themth mode, takes the very simple form in terms of the

action-angle variables

(45)

.

Let us discuss this condition. First of all, note, that we can?

consider the action variable satisfying E¢%) as a function
of range, and initial values of the momentusg and the
coordinatez,, i.e.,

I =1(X,pg,Zp). (46)
For the point source given in E¢L0) the value ofz, is the

same for all the rays and after substituting E&6) into Eq.
(45) we get the equation ip, analogous to Eq(13), defin-

eikonals and some derivatives with respect to initial values
of ray parameters.

E. Arbitrary starting field

Although the expressions we have derived so far yield the
mode amplitudes for the two particular types of starting
fields, Eq.(48) can be applied to treating an arbitrary initial
conditionu(0,z). This topic is addressed in this subsection.
Decomposing an arbitrary starting field as a sum of eigen-
nctions

u(o,z>=§ cm(0)em(2),

we shall study its further evolution with range using linearity
of initial equation(3) and evaluating the contribution to the
total wave field from each term of the above sum on the
basis of Eq.(48).

According to Eqs(27) and (28), the starting fieldu(0,2)
= ¢ (2) represents a superposition of two terms defined in
Eqg. (14). Each term can be associated with a congruence of
rays taking off from the part of the initial cross sectign
=0 lying between the mode turning points. The initial mo-
menta of these rays are defined in Eth), wheres(z) must
be replaced witty(z,1,,) — /4 for one of the congruences
and with — Sy(z,1,,) + 7/4 for another. So there will be two
rays leaving each point with the initial momenta equal in
bsolute value and opposite in sign.

Initial values of the action variableare equal td ,, for all

the rays belonging tboth congruences, while the initial val-
ues of the angle variabl@écover the whole interval from 0 to
21r.

So, representing the wave field correspondingi(6,z)

=¢m(2) as

; Kmn(X)@n(2),
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we see that each mode amplitudg, at the given ranggis  with wg=w(ly), and ¢, being the phase of the resonant
determined by the right-hand side of E¢48) with a(z) re-  termV, 4(1) atl=1,. The canonical transformation is deter-
placed by Q. (z) and ks(z) replaced by *=[kS;(z,m) mined by
—r/4]. In this case the summation goes over all the ray
trajectories with initial and final values of the action variable G, Gy _
| equal tol,, andl,,, respectively. This result has been ob- al ooy
tained earlier in Ref[18] (see also Ref.23)).

Now it is clear that the total wave field for an arbitrary whereH; is a new Hamiltonian. This yields

initial function u(0,2) is given by Al=1—1 (51
=I—1ly,

Al H-n="3
Al HimH=T

U(x,2)=2, cm(0)Kmnu(X)@n(2), and

m,n

. . =60- + ¢pll. 52
and themth mode amplitude at the rangeis equal to v wox+ do 52
In what follows, for simplicity we assume,=0.
Crnl(X) =2 Ca(0)K (). Expressing the new Hamiltonian in terms of the new ca-
n nonical variables we simplify it by(i) retaining only the

resonant constituents &f [i.e., only the two complex con-

An additional summation over the mode number that ha?u : ; : C
. Jugate Fourier harmonics with and q satisfying Eq.(50)]
been absent for the above considered two types of source 2ken atl =14, and(ii) approximatinge(lo+Al) by w(lo)

the price one has to pay for generality. +o'Al, wherew' =dw(l,)/dl. This yields

Il. MODE-MEDIUM RESONANCE Hy(AL g, X)=Ho(lg) — wol o+ S0 A2+ eV cog 1 ).

A. Perturbation theory for ray trajectories (53

Having the comparatively simple expressions relating thevith Vo=V, 4(lo)|. The applicability conditions of the ap-
mode amplitudes to rays, we can now discuss how the conproximations made when deriving E¢3) is discussed in
plicated ray trajectory dynamics reveals itself in the modeRefs.[2,3]. Here we only note, that the main of them is given
amplitude variations. In so doing, we restrict our attention toby the equation
a waveguide with a weak periodic range dependence. It

means thaV(x,z) = V(x+ 27/Qg,z) ande in Eq.(4) is con- _(de(o)] T 1

sidered as a small parameter. In terms of angle-action vari- dl |w(ly) &’

ables (,6) the periodic perturbation can be represented in

the form of the Fourier series which is usually referred to as the condition of moderate

nonlinearity.
Ve EE Vi o(1el17-9900 4 ¢ (49) The Hamilton equations obtained on the basis of (5§),
21 ’ B . .

! Ai=eVysin(ly), =o' (IgAl, (54)
where the symbol c.c. denotes complex conjugation. The
smallness of the perturbations allows us to use a simple an&rmally coincide with those for the nonlinear pendulum in
lytical description of the nonlinear resonance between thé&lassical mechanics and the last two terms in the right-hand
ray trajectories and the Fourier harmonics of medium inhoside of Eq.(53) are analogous to kinetic and potential ener-
mogeneitieg2,3]. gies with the variables\l and ¢ being analogues to the

It is known that analysis of the nonlinear resonance ignomentum and coordinate, respectively. It is clear that the
crucial for the understanding of the mechanism of ray stovalues ofAl corresponding to the finite motion belong to the
chasticity in a periodically varying waveguides. In this sec-interval — Al ;,,, <AI<Al,,, where
tion we show how this phenomenon affects the mode ampli-
tudes, leading to their complicated range dependence. Alpa=2\eVo/|o'|. (55)

In terms of angle-action variables, ray trajectories are , i , i
governed by the Hamilton equatiof®) with the functionV From the viewpoint of rays, the above_ equation defines the
given in Eq.(49). A group of ray trajectories are captured in width of the resonance in terms of action. Each trapped ray

a resonance if their action variables are clostyteatisfying ~ 0Scillates with some spatial frequency. The width of the
the condition resonance in terms of spatial frequency can be approximately

estimated as

Aw=|0'|Al 1d2=eVi|w']. (56)
with | andq being two integers. For an analytical treatment
of the rays trapped into the resonance, it is convenient td he motion of rays with the action variablkl exceeding
introduce the new canonical variabldd and ¢ using the  Almaxis infinite and such rays are not captured into the reso-
generating function nance. The ray withh| = Al ., iS @ separatrix in theXl, )
phase plane which forms a border between the two types of

Gl g, x)=—¢(l —lg) — I (wgX—Xpg/l), rays, trapped and not trapp€al,3].

lw(lo)=09€Q0, (50
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The solutions of Eqs(54) can be easily expressed in wheream(z,p,) andcn(z,p;) are the Jacobian elliptic func-
terms of the Jacobian elliptic functioig8] taking into ac-  tions with a modulug,=1/p, and

count that a quantity
kKi=IVo'(E+eVy)/2.

&= 57 teVocosly This solution also depends on two constafitand &;. An
approximate expression for the eikonal in this case is given

remains constant along the ray trajectory. Here we assumey
' to be positive. For a negative’ the following formulas
can be easily modified. The ray trajectory is captured into the

2

S:G_Ho(lo)x_ 0(' _|0)+(g+ 28V0)X

resonance i€<eVgy and is not captured §>¢V,. For a ray x
captured into the resonance we get —48Voj0 sMP(kyX+ €1,p1)dX.
| p=2 arcsifpsn(kx+¢&,p)]+, (57)

The above relations provide an approximate description
2 of ray trajectories in the case of an isolated resonance. In the

Al= L'fcn(KXJr £p), (58)  hextsubsection we discuss how they can be used for analysis
lw of the modal structure.

wheresn(z,p) andcn(z,p) are the Jacobian elliptic func-

. . B. From ray-medium resonance to mode-medium resonance
tions with a modulus

Let us consider the case when only timéh mode is ex-
E+eVy cited atx=0. As has been discussed in Sec. | E this starting
P=N2ev,

field can be represented as a superposition of two quasi-
plane-waves and then treated on the basis of (E§). In

and terms of geometrical optics at=0, we have two congru-
ences of rays with starting values of action variables equal to
k=lJw'eV,. Im

A situation which we calmode-medium resonanoecurs
The above relations combined with EqS1) and(52) give ~ when the value of,, satisfies Eq(50). In this case the above
explicit expressions for the action and angle variable, that i§ays are trapped into the resonance and if the latter is iso-
for | and¢. They depend on two constariandé defined by lated, Eqs(44) simplify to Eqgs.(54) with 1,=1,,. Combin-

initial conditions. ing these equations with the results on ray-mode relations
The expression for the eikonal given in Ed@) in terms of ~ obtained in Sec. Il provides an easy way to make some con-
(A1, ) variables looks like clusions and estimations concerning the dependence of

modal structure on range.
For example, it is clear that due to the resonance, at
S=G+Gl+f (Aldy—H,dx). ranges of order of Nw there will appear a bundle of rays
with the action variables\l in the interval|Al| <Al .
Using the solution57) and the approximate expression for This meangsee Eqs(26) and (55)] that starting with such
the HamiltonianH; given in Eq.(53), we rewrite it in the ranges, thenth mode is split into a group of Zm modes
form with

S=G—Hy(l o)X= 0(1 =l o)+ (E+2eVy)X Am=Al o k=2VeV, 0 k. (61)

In the case of overlapping resonances it is natural to expect a
further broadening of a group of modes.
To illustrate these points, we restrict our attention to a

The explicit expressions fdrand 6 are determined by Egs. Simple waveguide with a potential
(51, (52), (57), and(58). Note that the value of increases

X
— 48V0J PSP (kXx+&,p)dx.
0

with range. According to a remark made when introducing U(z)= Lz, z=0 62)
the action-angle variables, the value®increases by each *, z<0
time when the value ob increases by 2. . . ,
The trajectory not captured into the resonance is detefiNat is perturbed by a small additive term with
mined by eV(Xx,2)=elLzsinQx+eg,LzsinQ4x. (63
ly=2am(xx+&.p0) + 70 (59 |t can be easily shown that this potential can be treated by
and means of the relations from Sec. Il for a smooth function

U(z). Only two minor revisions are necessaf$) the con-
5 stant3 in the right hand side of Eq26) must be changed to
A= M2 V1-p2SrR( kX + &1,p1), (60) 1 (2) the constant phase shiftw/4 in Eq.(28) and all sub-
! sequent formulas must be replaced -by/2.
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Using the explicit expressions for the main characteristics € £
of unperturbed ray trajectories model 1 0.02 0
|\ 253 23 model 2 0.02 0.02
E(l)= 3 a= 3L model 3 0.05 0.05.
In what follows it is assumed that only the 60th mode is
So(z,)==[1—(I —a?3%z1)%], excited atx=0, that isu(0,z) = ¢g(2). The evolution of the
wave field with range up to 1000 km has been numerically
D(1)=3ma?31" calculated using thempe code[27] for solving Eg.(3). To

find mode amplitudes we have projected the solution onto
we readily obtain the relations connectif2 variables to  eigenfunctions of the unperturbed boundary value problem

action-angle variabled (6): (18). For this particular waveguide the eigenfunctions are
, expressed through the Airy function & [28]:
E(l) 0
Z—T 1- 2ﬂ+1—;) }, Oe[2mn,2m(n+1)]; ' (2k2)1/3
em(2) =gmAl _W(Em_l-z) ;

p=V2E(l)

0
2n+1——>, fe[2mn2m(n+1)], ) o
™ whereg,, is the normalization constant.

In model 1 we have an isolated resonance Wil cen-

wheren=0,1,.... _ . tered at the 60th mode. The numerical calculation demon-
The perturbation in terms of the action-angle variables forstrates that beginning from ranges of 30—50 km this single
£,=0 takes the form mode is split into a group of modes and at longer ranges the

width of the group remains the same. Equati66) gives an

. — estimation of a half-width of this groufpm=12. Figure 1a)
q;_w bq(el(qamx)_el(qg ), (64 shows mode amplitudes at a range of 400 km. The results

agrees with the above estimation. A similar calculation for

with model 2 has given a mode amplitude distribution presented
in Fig. 1(b). For the resonance centered at the 110th mode

[2/3’ q=0 with £,=0.02, Eq.(65) gives the estimatiolh m;=22. So,

q

|2/3°c

a

V— &
T2

P we see that the resonances at the 60th and 110th modes do
—27°q % q#0. not overlap, and so, in model 2 the resonance at the 60th
) ) o mode remains isolated. Figuréb] confirms this prediction:
It is obvious that for a nonzere, we should add a similar e presence of the second term in the perturbation causes
sum withe and () replaced bys; andQ,, respectively. only a small increase in the width of the excited mode group.
Let us consider a mode-medium resonance Withi. Its ~ The sjtuation changes drastically for model 3. This time
half-width in terms of the number of trapped modes, given INEq. (65) givesAm=19 andAm, = 35, which means that the
Eq. (61), for the present environmental model with=0  yesonances slightly overlap. Figuréllshows that this over-

translates into lapping leads to a great widening of the excited mode group.
A similar effect was demonstrated in R¢R3,29, where a
Am=+2em. (65  different approach for interpretation of ray-medium reso-
nance in terms of normal mode was considered.
From the viewpoint of underwater acoustics E@®) and The overlapping of resonances causes a strong mode cou-

(63) present a strongly idealized model of an acoustic wavepling, which yields a rather complicated mode amplitude
guide with a pressure release surfaceat) and a range- range dependence. This, in turn, leads to a complicated wave

dependent sound speed profile picture called wave chaos.
Our formalism provides a convenient tool for studying
Co this phenomenon on the basis of results obtained for rays.
C(x,2) (66)  The discussion of this topic is a subject of the next subsec-

V1-2Lz(1+e sinQx+z,LzsinQ;x) tion.
in a half-spacez>0. The selected values of the constants
defining the unperturbed potentibll(z) are Co=1500 m/s,
L=4.35<10"°1/m. We also assume that the carrier fre- It is well known that nonlinear ray medium resonance
guencyf =250 Hz. plays an important role in the emergence of ray chaos. If

As far as the perturbation is concerned, we assume ththere are at least two nonlinear resonances centered at spatial
period of the first and second terms in the right-hand side ofrequenciesw and w+ dw, a chaotic motion of ray trajecto-

Eqg. (63) to be equal to the cycle lengths of unperturbed raysies is possible. It takes place when the Chirikov's criterion
corresponding to the 60th and 110th modes, respectively19-21],

27/Q=D(lgp)=13.149 km, and 2/Q=D(l110

=16.310km. We consider three models of perturbation with Aw

parameters ands; . 3oL (67)

C. From ray chaos to wave chaos
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FIG. 1. Mode amplitudes in the 400-km range in modeghj,
model 2(b), and model 3c).

The trajectories of two stochastic rays with close initial
conditions diverge exponentially7] and the number of
eigenrays contributing at a given field point grows exponen-
tially with range[8].

From the viewpoint of modes the latter is especially im-
portant. It is almost obvious that under chaotic conditions the
number of eigenrays contributing to the given mode also
grows exponentially with range, giving rise to a very com-
plicated range dependence of mode amplitudes. This state-
ment is qualitatively illustrated in Figs. 2—4. Figure 2 dem-
onstrates how the behavior of the amplitude of the 61st
mode, |cg1(X)|, changes from almost periodical in model 1
(it oscillates with the period of inhomogeneitio quite ir-
regular in model 3. The same is clearly seen in Fig. 3, where
Fourier spectra of the 61st mode complex amplitude are pre-
sented. Figure 4 shows autocorrelation functions of three dif-
ferent modes. The absolute value of the autocorrelation func-
tion, defined as

fgma’t:m(XJrr)cm(x)*dx‘
Fremol2dx |

Q(r)=

has been calculated using the 1000-km realizations of mode
complex amplitudes. In these figures the almost periodical
range dependence in model 1 reveals itself in long lasting
correlations of mode amplitudes. In model 2 and especially
in model 3 the correlation becomes much weaker. Note dif-
ferent scales along the vertical axis in Figga)44(b), and
4(c).

It may seem that exponential proliferation of eigenrays
contributing to the given mode leads to statistical indepen-
dence of mode amplitude fluctuations under conditions of
ray chaos. But we suppose that the problem of mode ampli-
tude description is considerably more rich and complicated.

First of all, it should be pointed out that in the phase space
of a chaotic Hamiltonian system there always exist so-called
“stable islands” formed by regular periodic trajectories.
Some of such regular rays will, generally, be eigenrays for
some modes. Their contributions to modes cannot be consid-
ered as stochastic. So, we presume that under conditions of
ray chaos there may be modes with amplitudes composed of
two constituents: a chaotic one and a regular one.

There is another important phenomenon typical of chaotic
dynamics, which may affect modal structure variations: so-
called stickiness, i.e., the presence of such parts in a chaotic
trajectory where the latter exhibits an almost regular behav-
ior. Such a part corresponds to the situation when after wan-
dering in the phase space the trajectory approaches a stable
island and “sticks” to its border for some time. It should be
pointed out that the latter can be fairly 1ofg0]. In prin-
ciple, one can presume that the stickiness may cause some
long-lasting correlations of mode amplitudes.

is met, i.e., when the resonances overlap leading to the sto- However, the issues of mode amplitude correlations are
chastic instability of the system. If the overlapping is weak,beyond the scope of the present study. We plan to consider
only the rays with action variables close to that of the sepathem in more detail elsewhere.

ratrix exhibit stochastic behavior and they form the so-called

stochastic layer in the neighborhood of the separatrix. When IIl. CONCLUSION

the overlapping is strongdfor example, if we consider a
greater value ot) the width of the stochastic layer grows,

In this paper we have considered an approach permitting

different stochastic layers begin to overlap and more andis to apply directly the results obtained when studying cha-

more rays become chaotic.

otic ray behavior in a range-dependent waveguide to the in-
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FIG. 2. The amplitude of the 61st mode vs range in mode),1 FIG. 3. The Fourier-spectrum of the 61st mode complex ampli-
model 2(b), and model 3c). tude in model 1(a), model 2(b), and model 3c).

vestigation of an irregular modal structure. All our results  So, this approach not only clarifies ray-mode relations in a
have been obtained in the framework of the quasiclassicabnge-dependent environment but also seems to be a conve-
approximation. In the context of this approach the mode amnient tool for establishing a bridge between ray chaos and
plitude at the given range is presented as a sum of contribwave chaos.

tions from several rays, i.e., the mode amplitude is expressed Considerable attention has been given to discussing ray-
through solutions of ray equations. Under condition of raymedium nonlinear resonance, which is a very important fac-
chaos the number of rays contributing to a particular modéor in the mechanism of the emergence of ray chaos. An
should grow exponentially with range leading to complicatedanalog to this phenomenon for modes, which we call the
variations of modal structure with range. mode-medium resonance, has been formulated. It has turned
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out that the analytical description of the mode-medium reso-
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qualitatively that, under the condition of overlapping of reso-
nances, mode amplitude range dependence becomes irregu-
lar.
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APPENDIX

In this appendix we give a brief derivation of E¢p) for
the reader’s conveniencdzor more details, sd®,7,31)). To
make the applicability conditions of these equations clearer
we start here not from 2D parabolic equati@) presenting
an approximation to the initial wave equation, but from the
3D wave equation itself taken in the form

A 1 d4
u— RE—
C3(r) ot?

(A1)

with field amplitudeu=u(r)=u(x,y,z) and local wave ve-
locity C(r)=C(x,Y,2). In Eq. (A1) we made the first as-
sumption thatC does not depend on time. For the underwater
acoustics, that means fairly slow changes in time of the
ocean parameters on the wave packet characteristic length,
which is typically the casdsee the detailed estimation in
[22)).

In the short wave approximation, when the wavelength
is much smaller than the nonuniformity lend\ <), the
field u can be found in the form

u(r,t)y=A(r)exdikS(r) —iwt], (A2)

wherek and w are some dimensional constants &(d) is
eikonal. In the first approximatiody and S satisfy the equa-
tions

(VS)2=n(r),
V(A2VS)=0,
n(r)=Cy/C(r),

Co=wlk, (A3)

wheren(r) is the refraction index. Let us introduce a gener-
alized momentum
p=VS (A4)

and rewrite the first equation in EGA3) (the so-called eiko-
nal equatiohin the form

H="H(r,p)=3[p*~n*r)]=0. (A5)
nance is as simple as that of its ray prototype.
We argue that overlapping of different mode-mediumThen it follows from Eqs(A4), (A5) [31,37 that
resonances leads to an irregular behavior of mode amplitudes
in analogy to the well-known fact that the overlapping of dr dH dp JH
ray-medium resonances causes ray chaos. dr ap’ I BT (AB)

We have presented the results of numerical calculations
that illustrate the mode-medium resonance and confirnwith element of a trajectory length
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dl=(dr®)¥2=n(r)dr. (A7) dr=dx. (A12)

We have Hamiltonian equation#\6), which describe ray

dynamics for arbitrary dependencér) and with effective Then, using EqsiALl) and(A12) we can rewrite EGSAG)

“time” defined by in the form
dr=dl/n(r)=|dr|/n(r). (A8) dr, JH
h _ L _ ax  PeT ap,
e so-called parabolic approximation is applied for L
waves that propagate at small angles relative to some direc-
tion, sayx, i.e., ray deviation fronx is assumed to be small, dp, 14n*  oH

== (A13)
dx 2 or ar

PL<py- (A9) * +
In addition to Eq(A9), deviations ofn from unity should be We arrived at the Hamiltonian form of equations with
small =(Y,2), p.=(py,p,) andx as a “time.”

5 ) Neglecting the constant in E¢A11) and using notations
n“=1+én%(x,y,z),

Sn2(x,y,z) = C2/IC2(x,y,z) — 1<1. (A10) —on*=U(y,2)+eV(x,y,2) (A14)

It follows from Eq. (A5) under conditiongA9), (A10) that we obtain Eqs(4) and(5) when there is no dependenceyn
=—p,=—1+3(p?—6n?), (A11)  The range dependence of the refraction index is reflected in
the second term of EqA14). Both termsU and&eV can be
where we neglect higher-order terms. In the same approxief the same order but they should satisfy the conditions
mation we can consider (A10).
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