
PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
Wave chaos in terms of normal modes
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Wave propagation in a range-dependent waveguide can be considered as a classical physics problem similar
to the quantum chaos problem situations. This analogy becomes especially strong when one uses the parabolic
equation approximation. By projecting the wave field taken in the quasiclassical approximation onto eigen-
functions of the unperturbed boundary value problem, analytical description has been obtained for normal
mode amplitudes in terms of geometrical optics relations. This approach provides a convenient way to study
how chaotic behavior of ray trajectories reveals itself in a range dependence of mode amplitudes, and, hence,
in the solution of the wave equation. An analog to nonlinear ray-medium resonance for normal modes has been
investigated in details and the impact of this phenomenon on modal structure is discussed. It is argued that
overlapping of different mode-medium resonances causes a complicated range dependence of mode amplitude
in almost the same manner as the overlapping of ray-medium resonances leads to ray chaos.
@S1063-651X~99!05902-4#

PACS number~s!: 05.45.Mt, 03.65.Sq
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INTRODUCTION

Now it is well known that ray trajectories in the rang
dependent waveguide media generally exhibit chaotic m
tion @1–3#. This phenomenon analogous to chaotic dynam
of nonintegrable Hamiltonian systems in classical mecha
is of considerable interest in terms of the theory of wa
propagation. In particular, in underwater acoustics this in
est has grown in recent years in connection with the pr
lems of ocean-acoustic tomography@4,5#. The point is that
the chaotic behavior of trajectories limits our ability to ma
deterministic predictions using ray theory and, therefo
poses severe restrictions when solving inverse problems
recent years such important features of the chaotic ray st
ture in underwater acoustic waveguides as extreme sens
ity to initial and environmental conditions, exponential d
vergence of neighboring rays, and exponential proliferat
of eigenrays, have been established@5–8#.

As an evident next step, one should study how chaotic
dynamics reveals itself in wave phenomena. It is believ
that although diffractive effects may smooth the sensitiv
to initial and environmental conditions associated with r
chaos, the resulting wave picture will, nevertheless, be v
complicated. This situation is calledwave chaosin the anal-
ogy to quantum chaos: manifestation of the chaotic motio
of a dynamical system in the behavior of the correspond
quantum system. The similarity between quantum and w
theories and, hence, between the problems of quantum
wave chaos, reduces to equivalence~at least from the forma
viewpoint! when the wave theory is considered in the lim
of small-angle propagation. In this case the wave field
governed by the parabolic equation@9–11# formally coincid-
ing with the Schro¨dinger equation.

In this paper we address one aspect of the wave ch
problem, namely, complicated range variations of norm
PRE 591063-651X/99/59~2!/1656~13!/$15.00
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mode amplitudes. From the viewpoint of quantum mech
ics, we are investigating how the chaotic motion of a clas
cal system is connected to fluctuations of amplitudes
eigenfunctions in the corresponding quantum system.

The main idea of our analysis is the following. We proje
the ray theory solution of the parabolic equation onto norm
modes of the unperturbed boundary value problems~taken in
the WKB approximation! and evaluate the corresponding i
tegrals using the stationary phase technique. As a resul
have found an approximate analytical expression for m
amplitudes where the latter are expressed in terms of r
This result not only simplifies the mode amplitude evaluat
but also gives an additional insight into the relationship b
tween the ray and mode representations of the wave fiel
a range-dependent environment. It presents a generaliza
of some results on ray-mode relations in a waveguide w
weak inhomogeneities discussed in Refs.@12–15#.

The connection between rays and modes becomes e
cially clear when the main relations are expressed thro
the angle-action variables@2,3#. According to the ray theory
the wave field at the observation point is formed by con
butions from the so-called eigenrays, i.e., the rays that p
through that point. It turns out that the amplitude of the giv
mode at the given range is formed by contributions from
rays, which we call the eigenrays for the given mode. Th
eigenrays have the values of the action variables equal to
of the WKB mode, which are equal to the mode numbers
to a multiplicative constant@16–18#.

The approach considered in this paper that provides a
scription of mode amplitude variations in terms of geome
cal optics, presents a convenient tool for adapting the res
obtained when studying chaotic ray behavior for the purp
of investigating a complicated range variations of the fie
modal structure.

Here we restrict our attention to a monochromatic wa
1656 ©1999 The American Physical Society
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PRE 59 1657WAVE CHAOS IN TERMS OF NORMAL MODES
field in a two-dimensional~2D! waveguide with a periodic
range dependence. The mechanism of ray chaos in su
waveguide is analogous to that of chaotic behavior of a n
linear oscillator driven by an external periodic force. Nonli
ear ray-medium resonance plays a crucial role in the em
gence of chaos@2,3#. According to the heuristic criterion
proposed by Chirikov@19–21# chaos is a result of an overla
of different resonances between ray trajectories and med
inhomogeneities.

Since we express mode amplitudes through paramete
ray trajectories, the ray-medium resonance can be easily
terpreted from the viewpoint of normal modes. It has be
shown that a bunch of rays captured into an isolated re
nance corresponds to a group of modes with amplitu
much stronger affected by inhomogeneities than those
other modes. We call this phenomenon the mode-med
resonance. It can be easily described on the basis of w
known relations for captured rays. Overlapping of differe
mode-medium resonances should yield the exponen
growth ~with range! of eigenrays contributing to a particula
mode leading to a complicated range-dependence of
mode amplitude and to vanishing of mutual correlations
tween modes.

We do not broach here an important issue of breakdo
of the semiclassical approximation, thus restricting our c
sideration to relatively short ranges. This topic will be co
sidered elsewhere. Nevertheless, an ‘‘available’’ interval
distances can be large enough for many practical app
tions. For example, as it has been shown numerically in R
@22#, the ray-based description of long-range sound transm
sion through ocean internal waves may capture impor
characteristics of the sound field surprisingly well even wh
ray trajectories exhibit chaotic behavior.

This paper is organized as follows. In Sec. II we der
the formulas expressing the mode amplitude variati
through parameters of eigenrays contributing to this mo
This is done for two types of sources, i.e., for two types
starting fields at the initial cross section of the wavegui
We consider a starting field localized at a given point of
cross section~point source!, and another starting field with
the amplitude being a slow function of transverse coordin
and the phase corresponding to a quasiplane wave~distrib-
uted source!. It is shown that an arbitrary starting field can b
synthesized as a superposition of a number~this number
maybe very large! of the sources of the second type. In Se
III, we present the well-known basic analytical relations f
description of the nonlinear ray-medium resonance in
scope of the perturbation theory, and discuss how they
be used for analysis of the modal field structure. It is sho
that in the framework of our approach the same relations
be used to study the mode-medium resonance, i.e., the
havior of amplitudes of those modes which are in resona
with the perturbation, and, hence, are most strongly affec
by inhomogeneities. It has been found that if a single re
nant mode is excited, it is split into a bundle ofDm modes
and a simple estimation forDm is offered. In this section we
also discuss how the overlapping of resonances gives ris
irregular range variations of the modal structure. To illustr
these ideas we present some results of numerical calcula
of the modal structure in a simple model waveguide. T
calculations of the wave field in the parabolic equation
a
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proximation have been performed using theUMPE code@27#.
At the end of this section we argue that although under
chaos conditions the mode amplitudes should typically
come more and more random with range, there are so
specific features of ray chaos that make us think that~i! some
mode amplitudes may have nonrandom constituents at
long ranges;~ii ! even if the mode amplitude has not such
constituent, it may reveal long-lasting correlations.

I. ANALOG OF GEOMETRICAL OPTICS
FOR MODE AMPLITUDES

A. Semiclassical approximation

We consider a scalar monochromatic wave field in a
medium with the phase velocity,C ~in acoustics, for ex-
ample, it is the sound speed!, being the function of coordi-
natesx and z but independent of timet. The field complex
amplitudeu satisfies the Helmholtz equation, which can
simplified under the assumption that the main direction
wave propagation coincides with thex axis and the wave
grazing angles with respect to this direction are small.
discussed in Refs.@10,11,16#, in this case the Helmholtz
equation can be approximated by the parabolic equation
u,

2ik
]u

]x
1

]2u

]z2
1k2S C0

2

C2~x,z!
21D u50, ~1!

whereC0 is a reference phase speed,k52p f /C0 is the wave
number in the reference medium withC5C0 , f is a carrier
frequency. The time factore2 i2p f t is omitted throughout.

Using the notation

1

2 S 12
C0

2

C2~x,z!
D 5U~z!1«V~x,z! ~2!

we rewrite Eq.~1! in the form

ik
]u

]x
52

1

2

]2u

]z2
1k2@U~z!1«V~x,z!#u, ~3!

which coincides with the Schro¨dinger equation. Here thex
variable plays the role of time andk21 plays the role of the
Planck constant.

The ‘‘potential’’ defined in Eq.~2! is split into two parts:
the range-independent one,U(z), and the range-dependen
one,«V(x,z). Later, in order to simplify the analytical trea
ment of complicated ray trajectory behavior, we shall co
sider « as a small parameter. However, in this section, t
assumption isnot used. Here we are studying the semicla
sical solution of Eq.~3! which requires the wavelength
2p/k, to be small compared to the characteristic spa
scales of the total potentialU(z)1«V(x,z) @2,11#.

The Hamiltonian corresponding to Eq.~3!,

H5
p2

2
1U~z!1«V~x,z!, ~4!

is a function of coordinatez, momentump, and timelike
variablex. Solutions to the Hamilton equations,
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ż5
]H

]p
, ṗ52

]H

]z
, ~5!

define the ray trajectories that we denote as

z5z~x,p0 ,z0!, p5p~x,p0 ,z0!, ~6!

wherez0 and p0 are initial values of the coordinate and th
momentum atx50, respectively~see Appendix!.

The ray eikonal, which is an analog to the mechani
action, is given by the relation@17,24#

S5E ~pdz2Hdx!, ~7!

where the integral runs over the ray trajectory. Consider
the eikonal as a function of the rangex and the initial and
final coordinates,z0 andz, respectively, of the ray trajectory
we have@24#

]S~x,z,z0!

]z
5p,

]S~x,z,z0!

]z0
52p0 . ~8!

HereS(x,z,z0) is the action corresponding to a ray trajecto
starting atx50 from the pointz0 and arriving in the pointz
at the rangex; p0 andp, which are also considered as fun
tions of x, z, andz0 , represent the initial and final momen
for this trajectory.

The semiclassical approximation~or the geometrical op-
tics approximation as it is called in wave theory! to the so-
lution of Eq. ~3! is given by the relation@2,17#

u~x,z!5(
n

An~x,z!eikSn~x,z!2 i ~p/2!mn
, ~9!

where each term represents a contribution to the total w
field from an eigenray, that is, a ray which passes through
point ~x,z!. The sum goes over all the eigenrays contribut
at a particular receiver position. In the above formula
superscriptn numbers the eigenrays,An andSn are the am-
plitude and the eikonal of thenth eigenray, respectively, an
mn is the Maslov index, or the integral number of times th
the nth ray passes through caustics~at caustics the ray am
plitude An goes to infinity and the semiclassical approxim
tion fails!.

The explicit expression for the ray amplitude depends
the source exciting the wave field, or, in other words, on
initial conditions of Eq.~3! at x50. We consider two impor-
tant examples of such initial conditions. Since we are go
to analyze the contribution from an individual eigenray, w
shall omit the superscriptn in the remaining part of this
subsection.

a. Point source.In this case

u~0,z!5d~z2z0!, ~10!

and the desired solution represents the Green’s functio
Eq. ~3!. The semiclassical approximation to this function
known ~see, for example, Ref.@25#!:
l

g

ve
e

g
e

t

-

n
e

g

of

A5A k

2p i
AU ]2S

]z]z0
U . ~11!

We rewrite it using the relation

]2S

]z]z0
52S ]z

]p0
D 21

that follows from Eq.~8!. This yields

A5A k

2p i u]z/]p0u
. ~12!

Note that all the rays escape from the same pointz0 deter-
mined by the source position and each ray is ‘‘labeled’’
its initial momentump0 . So the eigenrays are determined
the relation

z5z~x,p0 ,z0!, ~13!

which formally coincides with the first equality in Eq.~6! but
is considered here as an equation inp0 . On the other hand
the same equation can be treated as a definition ofp0 as a
function of x and z. Substituting the functionp05p0(x,z)
into Eq. ~12! ~after evaluating the derivative! determines the
ray amplitude as a function ofx andz.

b. Quasi-plane-wave source.The initial wave field is de-
termined by the function

u~0,z!5a~z!eiks~z!, ~14!

wherea(z) ands(z) are two functions slowly varying with
z: their characteristic scales are much greater than the w
length, 2p/k. At the same time we assume that, due to la
k, the phase of Eq.~14! is a rapidly oscillating function. This
type of source excites a quasi-plane-wave.

The detailed description of the semiclassical solution
Eq. ~3! with the initial conditions~14! is given in Ref.@26#.
In this case different rays start from different pointsz0 . The
trajectory leaving the pointz0 has the initial moment

p05 p̄~z0!, p̄~z!5
]s~z!

]z
. ~15!

So in this example~as opposed to the previous one! each ray
is labeled by its initial coordinatez0 . The eigenrays are de
fined by the equation@analogous to Eq.~13!#

z5zs~x,z0!, ~16!

where

zs~x,z0!5z„x,z0 ,p̄~z0!….

Solving Eq.~16! for z0 one finds the starting points of th
rays crossing the given observation pointz at the given dis-
tance x. The initial momenta of these eigenrays are th
found from Eq.~15!.

The functionu(x,z) is again represented by the sum~9!,
but this time the expression for the amplitude of an in
vidual ray takes on the form
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A5
a~z0!

Au]zs /]z0u
eiks~z0!, ~17!

wherez0 is the initial coordinate of the given eigenray. Th
values ofz0 and, hence, ofA, in accordance with the abov
remark, can be considered as functions ofx andz.

Equations~12! and ~17! allow one to find the eigenray
amplitudes as functions ofx and z, which can then be sub
stituted into Eq.~9!. The eigenray phases as functions ox
andz can be expressed through the functionS(x,z,z0) whose
definition has been discussed in the commentary to Eq.~8!.
In the case of the point source~10! the functionS(x,z,z0)
with z0 being the coordinate of the source, gives the des
eigenray phase. In the case of the distributed source~14!, the
argumentz0 should be expressed throughx andz using Eq.
~16!.

B. Mode representation of the wave field

Considering the range-dependent component of poten
i.e., «V(x,z), as a perturbation~it has already been men
tioned that in this section we do not assume this perturba
to be small! we expand the wave fieldu(x,z) into a sum of
eigenfunctions of the unperturbed Sturm-Liouville eige
value problem@11,17#

2
1

2

d2wm

dz2
1k2U~z!wm5k2Emwm . ~18!

In wave theory, the eigenfunctionswm(z) are usually called
the normal modes. They are orthogonal and we norma
them in such a way that

E
2`

`

dzwm~z!wn~z!5dmn . ~19!

The modes form a complete set, which means that we
represent an arbitrary function as a sum of normal mod
Thus, we write the wave field as

u~x,z!5(
m

cm~x!wm~z!. ~20!

Our main goal in this section is to derive comparative
simple semiclassical expressions for the mode amplitudecm .
In so doing we use the semiclassical approximation tou(x,z)
given in Eq.~9! and project it onto normal modes. Accordin
to Eqs.~19! and~20! our task is reduced to the evaluation
the integrals

cm5E
2`

`

dzu~x,z!wm~z!. ~21!

Since we consider the semiclassical approximation
u(x,z), it is natural to use the same approximation f
wm(z). The corresponding formulas forwm(z) are usually
referred to as the WKB approximations to the eigenfunctio
@11,16,17#. These formulas are expressed through parame
of ray trajectories in the unperturbed waveguide medi
with the Hamiltonian
d

al,

n

-

e

an
s.

o
r

s
rs

H05p2/21U~z!. ~22!

Along the ray trajectory the conservation law

H0~p,z!5E ~23!

holds true with the constantE being an analog to the me
chanical energy. Equation~23! yields the explicit expression
for the momentump as a function ofE andz:

p~E,z!56A2@E2U~z!#. ~24!

All the trajectories are periodic curves. The coordinates
their upper and lower turning points~zmax andzmin , respec-
tively! are functions of the ‘‘energy’’E and determined by
the equation

U~z!5E.

For simplicity we shall assume that the potentialU(z) is
smooth, has the only minimum, and its walls tend to infin
asz→6`.

An important characteristics of ray trajectories that a
widely used in both classical mechanics and ray theory
the so-called action variableI related toE by @24#

I 5
1

2p R dzp~E,z!5
1

p E
zmin

zmax
dzA2@E2U~z!#, ~25!

where the integration goes over the period of the ray tra
tory. Equation~25! defines the functionE(I ). Now the turn-
ing point coordinateszmin and zmax can also be regarded a
functions ofI.

In the scope of the WKB approximation, the eigenvalu
of the action variableI m are determined by the quantizatio
rule

kIm5m1 1
2 . ~26!

Then the eigenvalues of the energy are given by the rela
Em5E(I m).

The mth eigenfunctionwm(z) between its turning points
can be represented as follows@11,16#:

wm~z!5wm
1~z!1wm

2~z!, ~27!

where

wm
6~z!5Qm~z!e6 i „kS0~z,I m!2p/4…, ~28!

S0~z,I !5E
zmin

z

dzA2@E~ I !2U~z!#, ~29!

Qm~z!5
1

AD~ I m!A4 2@Em2U~z!#
,

~30!

D~ I !52E
zmin

zmax dz

A2@E~ I !2U~z!#
.

The functionsS0(z,I ) andD(I ) represent important charac
teristics of the quasiclassical solution to Eq.~3! in the range-
independent environment. The first one determines the c
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tribution to the action from the first term in Eq.~7! taken
along the part of the ray trajectory connecting the lower tu
ing point to the coordinatez, and the second one is the perio
of the ray trajectory along thex axis.

Equations~26!–~30! give the WKB approximation to the
mth eigenfunction in the unperturbed waveguide («50).
Below these expressions are used when expanding the
siclassical solution to Eq.~3!.

C. Ray field projection onto normal modes

Now we have the approximate analytical expressions
both the total wave fieldu(x,z) and the eigenfunctionsw(z)
and can find the mode amplitudescm by evaluating the inte-
grals ~21!.

Taking into account Eq.~27! we transform Eq.~21! to

cm~x!5cm
1~x!1cm

2~x!, ~31!

where

cm
6~x!5E dzu~x,z!wm

6~z!. ~32!

Replacingu(x,z) and wm
6(z) with their semiclassical ap

proximations given in Eqs.~9! and~28!, respectively, yields

cm
s ~x!5

1

AD~ I m!
e2 i ~p/2!mn2 isp/4

3(
n
E dz

An

A4 2@Em2U~z!#
eik„Sn1sS0~z,I m!…

~33!

with s denoting11 or 21 ~or simply 1 or 2, when it is
used as a superscript!.

Let us consider one of these integrals and evaluate it u
the stationary phase technique@11,16#. Up to the factork, the
phase of the integrand is equal to

F5S~x,z,z0!1sS0~z,I m!,

where we have again omitted the superscriptn. According to
Eqs. ~8! and ~29! the first derivative ofF with respect toz
can be represented in the form

]F

]z
5p~x,z,z0!1sA2@Em2U~z!#.

At the stationary phase point the first derivative vanish
yielding

p~x,z,z0!52sA2@Em2U~z!#. ~34!

This is a very important relation: it singles out the ra
contributing to themth mode at the rangex. According to the
commentary to Eq.~8!, p(x,z,z0) represents the final mo
mentum of the ray connecting the point (0,z0) to ~x,z! or, in
other words, the final momentum of an eigenray arriving
the point ~x,z!. For the point source the value ofz0 is the
same for all eigenrays. For the distributed source, as it
been discussed in the previous subsection, the value oz0
-

ua-

r

ng

s,

t

as

can be considered as a function ofx and z. Thus, for the
given x, in both cases, the left-hand side of Eq.~34! is a
function ofz and the equation should be solved for this va
able. Each solution will determine a ray that we shall call t
eigenray for themth mode.

The second derivative ofF at the stationary phase point
given by

]2F

]z2
5

]p

]z
1

1

p

]U

]z
5

1

p

]H0

]z
, ~35!

with p being the momentum of the eigenray arriving at t
point ~x,z!. In the above relationp is considered as a functio
of x and z. The same is true of the functionH0
5H0„p(x,z),z…. The contribution to the mode amplitud
from an individual eigenray is given by

cm
s ~x!5A 2p

kD~ I m!u]H0 /]zu
AeikFst1 ia,

a5~g2s22m!p/4, ~36!

with Fst being the value ofF at the stationary phase poin
andg being the sign of the derivative]2F/]z2 at this point.
The total value of the mode amplitude is obtained by sim
summing up the contributions of each of the eigenrays.

ReplacingA in Eq. ~36! with the expressions given in Eqs
~12! and ~17! we obtain two versions of the above formu
for the point and distributed sources. As we already know
the case of the point source each ray is defined by its in
momentp0 . Any characteristic of the ray@including its cur-
rent coordinatez, current momentump, and, hence, curren
value ofH0(z,p)] can be considered as a function ofp0 and
x. Bearing this in mind, we easily find that for the poi
source

cm
s ~x!5(

n

1

AiD ~ I m!u]H0 /]p0up05p
0
n
eikFst

n
1 ian

, ~37!

where the sum goes over all the eigenrays contributing to
mth mode, andp0

n denotes the initial momentum of thenth
eigenray.

Similarly, for the distributed source~14! any characteris-
tic of a ray can be regarded as a function of the initial co
dinatez0 andx. Substituting Eq.~17! into Eq. ~36! yields

cm
s ~x!5(

n
A 2p

kD~ I m!u]H0 /]z0uz05z
0
n

3a~z0
n!eiks~z0

n
!1 ikFst

n
1 ian

~38!

with z0
n being the initial coordinate of thenth eigenray.

Equations~37! and~38! provide the analytical description
of mode amplitudes in a range-dependent environm
through the parameters of ray trajectories, i.e., through s
tions to the Hamilton equations~5!.

D. Action-angle variables

The above result can be reformulated in terms of the
called action-angle variables, which are often used to s
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PRE 59 1661WAVE CHAOS IN TERMS OF NORMAL MODES
plify the analysis of a quasiperiodic motion in classical m
chanics@24# and a quasiperiodic ray trajectory behavior
waveguide media@2#.

We begin with the range-independent wavegu
(«50). In this case, the canonical transformation from o
~p,z! variables to the action-angle variables (I ,u) is given by
the pair of equations@24#

p5
]G~z,I !

]z
, u5

]G~z,I !

]I
~39!

with the generating function

G~z,I !5Ez

dzA2@E~ I !2U~z!#. ~40!

The functionE(I ) is determined by Eq.~25!. It should be
emphasized thatp andz are periodic functions of the angl
variableu, i.e.,

p~ I ,u!5p~ I ,u12p!, z~ I ,u!5z~ I ,u12p!. ~41!

The Hamilton equations in terms of the new variables red
to

İ 50, u̇5v~ I !, ~42!

where

v~ I !5
dH0~ I !

dI
5

2p

D~ I !
~43!

is the spatial frequency of the trajectory oscillations alo
the x axis.

Note that the functionG grows with range. At each perio
of oscillations its value increases byI @24#.

In the range-dependent waveguide («Þ0) we define the
action-angle variables usingthe samerelations@given in Eqs.
~39! and~40!# as in the unperturbed waveguide. The Ham
ton equations in the new variables take the form@2#

İ 52«
]V

]u
, u̇5v~ I !1«

]V

]I
. ~44!

Since Eq.~24! remains valid in the range-dependent e
vironment, Eq.~34! which defines the eigenrays contributin
to themth mode, takes the very simple form in terms of t
action-angle variables

I 5I m . ~45!

Let us discuss this condition. First of all, note, that we c
consider the action variable satisfying Eqs.~44! as a function
of range, and initial values of the momentump0 and the
coordinatez0 , i.e.,

I 5I ~x,p0 ,z0!. ~46!

For the point source given in Eq.~10! the value ofz0 is the
same for all the rays and after substituting Eq.~46! into Eq.
~45! we get the equation inp0 analogous to Eq.~13!, defin-
-

e
r

e

g

-

-

n

ing the initial momenta of the eigenrays for themth mode.
Taking into account Eq.~43! we rewrite the expression~37!
as

cm
s 5(

n

1

A2p i u]I /]p0up05p0n

eikFn
st

1 ian. ~47!

For the distributed source, as it is stated in Eq.~15!, the
initial momentum,p0 , is a function of the initial coordinate
z0 , and an analog to Eq.~16! is obtained by substituting
I „x,p̄(z0),z0… for I in Eq. ~46!. In this case the expression fo
the mode amplitude~38! can be rewritten as

cm
s 5(

n

a~z0n!

Aku]I /]z0uz05z0n

eiks~z0n!1 ikFn
st

1 ian. ~48!

The last two equations as well as Eqs.~37! and ~38! re-
duce the mode amplitude evaluation to a procedure q
analogous to that generally used when evaluating the fi
amplitude at the given point. It includes solving the Ham
ton ~ray! equations, finding the eigenrays, calculating r
eikonals and some derivatives with respect to initial valu
of ray parameters.

E. Arbitrary starting field

Although the expressions we have derived so far yield
mode amplitudes for the two particular types of starti
fields, Eq.~48! can be applied to treating an arbitrary initi
conditionu(0,z). This topic is addressed in this subsectio

Decomposing an arbitrary starting field as a sum of eig
functions

u~0,z!5(
m

cm~0!wm~z!,

we shall study its further evolution with range using linear
of initial equation~3! and evaluating the contribution to th
total wave field from each term of the above sum on
basis of Eq.~48!.

According to Eqs.~27! and ~28!, the starting fieldu(0,z)
5wm(z) represents a superposition of two terms defined
Eq. ~14!. Each term can be associated with a congruence
rays taking off from the part of the initial cross sectionx
50 lying between the mode turning points. The initial m
menta of these rays are defined in Eq.~15!, wheres(z) must
be replaced withS0(z,I m)2p/4 for one of the congruence
and with2S0(z,I m)1p/4 for another. So there will be two
rays leaving each point with the initial momenta equal
absolute value and opposite in sign.

Initial values of the action variableI are equal toI m for all
the rays belonging tobothcongruences, while the initial val
ues of the angle variableu cover the whole interval from 0 to
2p.

So, representing the wave field corresponding tou(0,z)
5wm(z) as

(
n

Kmn~x!wn~z!,
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we see that each mode amplitudeKmn at the given rangex is
determined by the right-hand side of Eq.~48! with a(z) re-
placed by Qm(z) and ks(z) replaced by 6@kS0(z,m)
2p/4#. In this case the summation goes over all the
trajectories with initial and final values of the action variab
I equal toI m and I n , respectively. This result has been o
tained earlier in Ref.@18# ~see also Ref.@23#!.

Now it is clear that the total wave field for an arbitra
initial function u(0,z) is given by

u~x,z!5(
m,n

cm~0!Kmn~x!wn~z!,

and themth mode amplitude at the rangex is equal to

cm~x!5(
n

cn~0!Knm~x!.

An additional summation over the mode number that
been absent for the above considered two types of sour
the price one has to pay for generality.

II. MODE-MEDIUM RESONANCE

A. Perturbation theory for ray trajectories

Having the comparatively simple expressions relating
mode amplitudes to rays, we can now discuss how the c
plicated ray trajectory dynamics reveals itself in the mo
amplitude variations. In so doing, we restrict our attention
a waveguide with a weak periodic range dependence
means thatV(x,z)5V(x12p/V0 ,z) and« in Eq. ~4! is con-
sidered as a small parameter. In terms of angle-action v
ables (I ,u) the periodic perturbation can be represented
the form of the Fourier series

V5
1

2 (
l ,q

Vl ,q~ I !ei ~ lu2qV0x!1c.c., ~49!

where the symbol c.c. denotes complex conjugation. T
smallness of the perturbations allows us to use a simple
lytical description of the nonlinear resonance between
ray trajectories and the Fourier harmonics of medium in
mogeneities@2,3#.

It is known that analysis of the nonlinear resonance
crucial for the understanding of the mechanism of ray s
chasticity in a periodically varying waveguides. In this se
tion we show how this phenomenon affects the mode am
tudes, leading to their complicated range dependence.

In terms of angle-action variables, ray trajectories
governed by the Hamilton equations~44! with the functionV
given in Eq.~49!. A group of ray trajectories are captured
a resonance if their action variables are close toI 0 satisfying
the condition

lv~ I 0!5qV0 , ~50!

with l andq being two integers. For an analytical treatme
of the rays trapped into the resonance, it is convenien
introduce the new canonical variablesDI and c using the
generating function

G1~ I ,c,x!52c~ I 2I 0!2I ~v0x2xf0 / l !,
y

s
is

e
-

e
o
It

ri-
n

e
a-
e
-

s
-
-
li-

e

t
to

with v05v(I 0), and f0 being the phase of the resona
termVl ,q(I ) at I 5I 0 . The canonical transformation is dete
mined by

]G1

]I
52u,

]G1

]c
52DI , H12H5

]G1

]x
,

whereH1 is a new Hamiltonian. This yields

DI 5I 2I 0 , ~51!

and

c5u2v0x1f0 / l . ~52!

In what follows, for simplicity we assumef050.
Expressing the new Hamiltonian in terms of the new c

nonical variables we simplify it by~i! retaining only the
resonant constituents ofV @i.e., only the two complex con-
jugate Fourier harmonics withl and q satisfying Eq.~50!#
taken atI 5I 0 , and~ii ! approximatingv(I 01DI ) by v(I 0)
1v8DI , wherev85dv(I 0)/dI. This yields

H1~DI ,c,x!5H0~ I 0!2v0I 01 1
2 v8DI 21«V0 cos~ lc!.

~53!

with V05uVl ,q(I 0)u. The applicability conditions of the ap
proximations made when deriving Eq.~53! is discussed in
Refs.@2,3#. Here we only note, that the main of them is give
by the equation

«!Udv~ I 0!

dI U I

v~ I 0!
!

1

«
,

which is usually referred to as the condition of modera
nonlinearity.

The Hamilton equations obtained on the basis of Eq.~53!,

D İ 5«V0 sin~ lc!, ċ5v8~ I 0!DI , ~54!

formally coincide with those for the nonlinear pendulum
classical mechanics and the last two terms in the right-h
side of Eq.~53! are analogous to kinetic and potential ene
gies with the variablesDI and c being analogues to the
momentum and coordinate, respectively. It is clear that
values ofDI corresponding to the finite motion belong to th
interval 2DI max,DI,DImax, where

DI max52A«V0 /uv8u. ~55!

From the viewpoint of rays, the above equation defines
width of the resonance in terms of action. Each trapped
oscillates with some spatial frequency. The width of t
resonance in terms of spatial frequency can be approxima
estimated as

Dv5uv8uDI max/25A«V0uv8u. ~56!

The motion of rays with the action variableDI exceeding
DI max is infinite and such rays are not captured into the re
nance. The ray withDI 5DI max is a separatrix in the (DI ,c)
phase plane which forms a border between the two type
rays, trapped and not trapped@2,3#.
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The solutions of Eqs.~54! can be easily expressed
terms of the Jacobian elliptic functions@28# taking into ac-
count that a quantity

E5
ċ2

2v8
1«V0 coslc

remains constant along the ray trajectory. Here we ass
v8 to be positive. For a negativev8 the following formulas
can be easily modified. The ray trajectory is captured into
resonance ifE,«V0 and is not captured ifE.«V0 . For a ray
captured into the resonance we get

lc52 arcsin@rsn~kx1j,r!#1p, ~57!

DI 5
2rk

lv8
cn~kx1j,r!, ~58!

wheresn(z,r) and cn(z,r) are the Jacobian elliptic func
tions with a modulus

r5AE1«V0

2«V0
,

and

k5 lAv8«V0.

The above relations combined with Eqs.~51! and ~52! give
explicit expressions for the action and angle variable, tha
for I andu. They depend on two constantsE andj defined by
initial conditions.

The expression for the eikonal given in Eq.~7! in terms of
(DI ,c) variables looks like

S5G1G11E ~DIdc2H1dx!.

Using the solution~57! and the approximate expression f
the HamiltonianH1 given in Eq.~53!, we rewrite it in the
form

S5G2H0~ I 0!x2u~ I 2I 0!1~E12«V0!x

24«V0E
0

x

r2sn2~kx1j,r!dx.

The explicit expressions forI andu are determined by Eqs
~51!, ~52!, ~57!, and~58!. Note that the value ofG increases
with range. According to a remark made when introduc
the action-angle variables, the value ofG increases byI each
time when the value ofu increases by 2p.

The trajectory not captured into the resonance is de
mined by

lc52am~k1x1j1 ,r1!1p ~59!

and

DI 5
2k1

lv8
A12r1

2sn2~k1x1j1 ,r1!, ~60!
e

e

is

g

r-

wheream(z,r1) andcn(z,r1) are the Jacobian elliptic func
tions with a modulusr151/r, and

k15 lAv8~E1«V0!/2.

This solution also depends on two constantsE and j1 . An
approximate expression for the eikonal in this case is gi
by

S5G2H0~ I 0!x2u~ I 2I 0!1~E12«V0!x

24«V0E
0

x

sn2~k1x1j1 ,r1!dx.

The above relations provide an approximate descript
of ray trajectories in the case of an isolated resonance. In
next subsection we discuss how they can be used for ana
of the modal structure.

B. From ray-medium resonance to mode-medium resonance

Let us consider the case when only themth mode is ex-
cited atx50. As has been discussed in Sec. I E this start
field can be represented as a superposition of two qu
plane-waves and then treated on the basis of Eq.~48!. In
terms of geometrical optics atx50, we have two congru-
ences of rays with starting values of action variables equa
I m .

A situation which we callmode-medium resonanceoccurs
when the value ofI m satisfies Eq.~50!. In this case the above
rays are trapped into the resonance and if the latter is
lated, Eqs.~44! simplify to Eqs.~54! with I 05I m . Combin-
ing these equations with the results on ray-mode relati
obtained in Sec. II provides an easy way to make some c
clusions and estimations concerning the dependence
modal structure on range.

For example, it is clear that due to the resonance,
ranges of order of 1/Dv there will appear a bundle of ray
with the action variablesDI in the interval uDI u,DI max.
This means@see Eqs.~26! and ~55!# that starting with such
ranges, themth mode is split into a group of 2Dm modes
with

Dm5DI maxk52A«V0 /v8k. ~61!

In the case of overlapping resonances it is natural to expe
further broadening of a group of modes.

To illustrate these points, we restrict our attention to
simple waveguide with a potential

U~z!5 HLz,
`,

z>0
z,0 ~62!

that is perturbed by a small additive term with

«V~x,z!5«Lz sinVx1«1Lz sinV1x. ~63!

It can be easily shown that this potential can be treated
means of the relations from Sec. II for a smooth functi
U(z). Only two minor revisions are necessary:~1! the con-
stant 1

2 in the right hand side of Eq.~26! must be changed to
3
4; ~2! the constant phase shift2p/4 in Eq. ~28! and all sub-
sequent formulas must be replaced by2p/2.
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Using the explicit expressions for the main characteris
of unperturbed ray trajectories

E~ I !5S I

aD 2/3

, a5
2&

3pL
,

S0~z,I !5p@ I 2~ I 2a2/3zL!3#,

D~ I !53pa2/3I 1/3

we readily obtain the relations connecting~p,z! variables to
action-angle variables (I ,u):

z5
E~ I !

L F12S 2n112
u

p D 2G , uP@2pn,2p~n11!#;

p5A2E~ I !S 2n112
u

p D , uP@2pn,2p~n11!#,

wheren50,1, . . . .
The perturbation in terms of the action-angle variables

«150 takes the form

V5
«

2i S I

aD 2/3

(
q52`

`

bq~ei ~qu1Vx!2ei ~qu2Vx!!, ~64!

with

bq5H 2/3, q50

22p22q22, qÞ0.

It is obvious that for a nonzero«1 we should add a simila
sum with« andV replaced by«1 andV1 , respectively.

Let us consider a mode-medium resonance withl 51. Its
half-width in terms of the number of trapped modes, given
Eq. ~61!, for the present environmental model with«150
translates into

Dm5A2«m. ~65!

From the viewpoint of underwater acoustics Eqs.~62! and
~63! present a strongly idealized model of an acoustic wa
guide with a pressure release surface atz50 and a range-
dependent sound speed profile

C~x,z!5
C0

A122Lz~11« sinVx1«1Lz sinV1x!
~66!

in a half-spacez.0. The selected values of the constan
defining the unperturbed potentialU(z) are C051500 m/s,
L54.3531025 1/m. We also assume that the carrier fr
quencyf 5250 Hz.

As far as the perturbation is concerned, we assume
period of the first and second terms in the right-hand side
Eq. ~63! to be equal to the cycle lengths of unperturbed ra
corresponding to the 60th and 110th modes, respectiv
2p/V5D(I 60)513.149 km, and 2p/V15D(I 110)
516.310 km. We consider three models of perturbation w
parameters« and«1 .
s

r

n

-

s

-

he
of
s
ly:

h

« «1

model 1 0.02 0
model 2 0.02 0.02
model 3 0.05 0.05.

In what follows it is assumed that only the 60th mode
excited atx50, that isu(0,z)5w60(z). The evolution of the
wave field with range up to 1000 km has been numerica
calculated using theUMPE code@27# for solving Eq.~3!. To
find mode amplitudes we have projected the solution o
eigenfunctions of the unperturbed boundary value prob
~18!. For this particular waveguide the eigenfunctions a
expressed through the Airy function Ai(z) @28#:

wm~z!5gmAi S 2
~2k2!1/3

L2/3
~Em2Lz!D ,

wheregm is the normalization constant.
In model 1 we have an isolated resonance withl 51 cen-

tered at the 60th mode. The numerical calculation dem
strates that beginning from ranges of 30–50 km this sin
mode is split into a group of modes and at longer ranges
width of the group remains the same. Equation~65! gives an
estimation of a half-width of this groupDm512. Figure 1~a!
shows mode amplitudes at a range of 400 km. The res
agrees with the above estimation. A similar calculation
model 2 has given a mode amplitude distribution presen
in Fig. 1~b!. For the resonance centered at the 110th m
with «150.02, Eq.~65! gives the estimationDm1522. So,
we see that the resonances at the 60th and 110th mode
not overlap, and so, in model 2 the resonance at the 6
mode remains isolated. Figure 1~b! confirms this prediction:
the presence of the second term in the perturbation ca
only a small increase in the width of the excited mode gro

The situation changes drastically for model 3. This tim
Eq. ~65! givesDm519 andDm1535, which means that the
resonances slightly overlap. Figure 1~c! shows that this over-
lapping leads to a great widening of the excited mode gro
A similar effect was demonstrated in Ref.@23,29#, where a
different approach for interpretation of ray-medium res
nance in terms of normal mode was considered.

The overlapping of resonances causes a strong mode
pling, which yields a rather complicated mode amplitu
range dependence. This, in turn, leads to a complicated w
picture called wave chaos.

Our formalism provides a convenient tool for studyin
this phenomenon on the basis of results obtained for ra
The discussion of this topic is a subject of the next subs
tion.

C. From ray chaos to wave chaos

It is well known that nonlinear ray medium resonan
plays an important role in the emergence of ray chaos
there are at least two nonlinear resonances centered at s
frequenciesv andv1dv, a chaotic motion of ray trajecto
ries is possible. It takes place when the Chirikov’s criteri
@19–21#,

Dv

dv
.1, ~67!
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PRE 59 1665WAVE CHAOS IN TERMS OF NORMAL MODES
is met, i.e., when the resonances overlap leading to the
chastic instability of the system. If the overlapping is wea
only the rays with action variables close to that of the se
ratrix exhibit stochastic behavior and they form the so-cal
stochastic layer in the neighborhood of the separatrix. W
the overlapping is stronger~for example, if we consider a
greater value of«! the width of the stochastic layer grow
different stochastic layers begin to overlap and more
more rays become chaotic.

FIG. 1. Mode amplitudes in the 400-km range in model 1~a!,
model 2~b!, and model 3~c!.
to-
,
-

d
n

d

The trajectories of two stochastic rays with close init
conditions diverge exponentially@7# and the number of
eigenrays contributing at a given field point grows expon
tially with range@8#.

From the viewpoint of modes the latter is especially im
portant. It is almost obvious that under chaotic conditions
number of eigenrays contributing to the given mode a
grows exponentially with range, giving rise to a very com
plicated range dependence of mode amplitudes. This s
ment is qualitatively illustrated in Figs. 2–4. Figure 2 dem
onstrates how the behavior of the amplitude of the 6
mode,uc61(x)u, changes from almost periodical in model
~it oscillates with the period of inhomogeneity! to quite ir-
regular in model 3. The same is clearly seen in Fig. 3, wh
Fourier spectra of the 61st mode complex amplitude are
sented. Figure 4 shows autocorrelation functions of three
ferent modes. The absolute value of the autocorrelation fu
tion, defined as

Q~r !5U*0
xmaxcm~x1r !cm~x!* dx

*0
xmaxucm~x!u2dx

U ,
has been calculated using the 1000-km realizations of m
complex amplitudes. In these figures the almost period
range dependence in model 1 reveals itself in long las
correlations of mode amplitudes. In model 2 and especi
in model 3 the correlation becomes much weaker. Note
ferent scales along the vertical axis in Figs. 4~a!, 4~b!, and
4~c!.

It may seem that exponential proliferation of eigenra
contributing to the given mode leads to statistical indep
dence of mode amplitude fluctuations under conditions
ray chaos. But we suppose that the problem of mode am
tude description is considerably more rich and complicat

First of all, it should be pointed out that in the phase spa
of a chaotic Hamiltonian system there always exist so-ca
‘‘stable islands’’ formed by regular periodic trajectorie
Some of such regular rays will, generally, be eigenrays
some modes. Their contributions to modes cannot be con
ered as stochastic. So, we presume that under condition
ray chaos there may be modes with amplitudes compose
two constituents: a chaotic one and a regular one.

There is another important phenomenon typical of chao
dynamics, which may affect modal structure variations:
called stickiness, i.e., the presence of such parts in a cha
trajectory where the latter exhibits an almost regular beh
ior. Such a part corresponds to the situation when after w
dering in the phase space the trajectory approaches a s
island and ‘‘sticks’’ to its border for some time. It should b
pointed out that the latter can be fairly long@30#. In prin-
ciple, one can presume that the stickiness may cause s
long-lasting correlations of mode amplitudes.

However, the issues of mode amplitude correlations
beyond the scope of the present study. We plan to cons
them in more detail elsewhere.

III. CONCLUSION

In this paper we have considered an approach permit
us to apply directly the results obtained when studying c
otic ray behavior in a range-dependent waveguide to the
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1666 PRE 59A. L. VIROVLYANSKY AND G. M. ZASLAVSKY
vestigation of an irregular modal structure. All our resu
have been obtained in the framework of the quasiclass
approximation. In the context of this approach the mode a
plitude at the given range is presented as a sum of contr
tions from several rays, i.e., the mode amplitude is expres
through solutions of ray equations. Under condition of r
chaos the number of rays contributing to a particular mo
should grow exponentially with range leading to complica
variations of modal structure with range.

FIG. 2. The amplitude of the 61st mode vs range in model 1~a!,
model 2~b!, and model 3~c!.
al
-

u-
ed
y
e
d

So, this approach not only clarifies ray-mode relations i
range-dependent environment but also seems to be a co
nient tool for establishing a bridge between ray chaos
wave chaos.

Considerable attention has been given to discussing
medium nonlinear resonance, which is a very important f
tor in the mechanism of the emergence of ray chaos.
analog to this phenomenon for modes, which we call
mode-medium resonance, has been formulated. It has tu

FIG. 3. The Fourier-spectrum of the 61st mode complex am
tude in model 1~a!, model 2~b!, and model 3~c!.
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PRE 59 1667WAVE CHAOS IN TERMS OF NORMAL MODES
out that the analytical description of the mode-medium re
nance is as simple as that of its ray prototype.

We argue that overlapping of different mode-mediu
resonances leads to an irregular behavior of mode amplitu
in analogy to the well-known fact that the overlapping
ray-medium resonances causes ray chaos.

We have presented the results of numerical calculati
that illustrate the mode-medium resonance and con

FIG. 4. Absolute value of the autocorrelation functions of thr
modes in model 1~a!, model 2~b!, and model 3~c!.
-

es

s
m

qualitatively that, under the condition of overlapping of res
nances, mode amplitude range dependence becomes ir
lar.
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APPENDIX

In this appendix we give a brief derivation of Eq.~5! for
the reader’s convenience.~For more details, see@2,7,31#!. To
make the applicability conditions of these equations clea
we start here not from 2D parabolic equation~3! presenting
an approximation to the initial wave equation, but from t
3D wave equation itself taken in the form

Du2
1

C2~r !

]2u

]t2
50 ~A1!

with field amplitudeu5u(r )5u(x,y,z) and local wave ve-
locity C(r )5C(x,y,z). In Eq. ~A1! we made the first as
sumption thatC does not depend on time. For the underwa
acoustics, that means fairly slow changes in time of
ocean parameters on the wave packet characteristic len
which is typically the case~see the detailed estimation i
@22#!.

In the short wave approximation, when the wavelengthl
is much smaller than the nonuniformity lengthl (l! l ), the
field u can be found in the form

u~r ,t !5A~r !exp@ ikS~r !2 ivt#, ~A2!

wherek and v are some dimensional constants andS(r ) is
eikonal. In the first approximation,A andS satisfy the equa-
tions

~¹S!25n2~r !,

¹~A2¹S!50,

n~r !5C0 /C~r !, C05v/k, ~A3!

wheren(r ) is the refraction index. Let us introduce a gene
alized momentum

p5¹S ~A4!

and rewrite the first equation in Eq.~A3! ~the so-called eiko-
nal equation! in the form

H5H~r ,p!5 1
2 @p22n2~r !#50. ~A5!

Then it follows from Eqs.~A4!, ~A5! @31,32# that

dr

dt
5

]H
]p

,
]p

]t
52

]H
]r

~A6!

with element of a trajectory length
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dl[~dr2!1/25n~r !dt. ~A7!

We have Hamiltonian equations~A6!, which describe ray
dynamics for arbitrary dependencen(r ) and with effective
‘‘time’’ defined by

dt5dl/n~r !5udr u/n~r !. ~A8!

The so-called parabolic approximation is applied
waves that propagate at small angles relative to some d
tion, sayx, i.e., ray deviation fromx is assumed to be smal

p'!pi . ~A9!

In addition to Eq.~A9!, deviations ofn from unity should be
small

n2511dn2~x,y,z!,

dn2~x,y,z!5C0
2/C2~x,y,z!21!1. ~A10!

It follows from Eq. ~A5! under conditions~A9!, ~A10! that

H[2pi5211 1
2 ~p'

2 2dn2!, ~A11!

where we neglect higher-order terms. In the same appr
mation we can consider
k

de
,

c

c

s-

idt

,

,

r
c-

i-

dt5dx. ~A12!

Then, using Eqs.~A11! and~A12! we can rewrite Eqs.~A6!
in the form

dr'

dx
5p'52

]H

]p'

,

dp'

dx
5

1

2

]n2

]r'

52
]H

]r'

. ~A13!

We arrived at the Hamiltonian form of equations withr'

5(y,z), p'5(py ,pz) andx as a ‘‘time.’’
Neglecting the constant in Eq.~A11! and using notations

2dn25U~y,z!1«V~x,y,z! ~A14!

we obtain Eqs.~4! and~5! when there is no dependence ony.
The range dependence of the refraction index is reflecte
the second term of Eq.~A14!. Both termsU and«V can be
of the same order but they should satisfy the conditio
~A10!.
-

-
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