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Periodic, quasiperiodic, and chaotic localized solutions of a driven, damped nonlinear lattice
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We study the solution behavior of a damped and parametrically driven nonlinear chain modeled by a discrete
nonlinear Schidinger equation. Special attention is paid to the impact of the damping and driving terms on the
existence and stability of localized solutions. Dependent upon the strength of the driving force, we find rich
lattice dynamics such as stationary solitonlike solutions and periodic and quasiperiodic breathers, respectively.
The latter are characterized by regular motion on tori in phase space. For a critical driving amplitude the torus
is destroyed in the course of time, leaving temporarily a chaotic breather on the lattice. We call this order-chaos
transition a dynamical quasiperiodic route to chaos. Eventually the chaotic breather collapses to a stable
localized multisite state. Finally, it is demonstrated that above a certain amplitude of the parametric driving
force no localized states exi$51063-651X99)04202-9

PACS numbg(s): 05.45.Xt, 41.20.Jb, 63.20.Pw, 63.20.Ry

I. THE DAMPED, DRIVEN, NONLINEAR, DISCRETE the real parameteVv regulating the strength of the coupling
SCHRODINGER EQUATION between the lattice oscillators. In the conservative, undriven

The influence of dissipation on the excitation of coherentiMit 0f 6=0 andh=0 Eq. (1) reduces to the standard
structures, especially solitons, in various physical model sysPNLS system, which finds application in numerous physical
tems was studied in a series of papers over the past twie!dS[9]. However, the standard DNLS equation is noninte-
decaded1-5]. Because of its important role in describing grabl'e [10,11] and therefore does not exhibit exac_t soliton
soliton dynamics in nonlinear medf@], special attention Solutions. Nevertheless, as shown[iP], the excitation of
was paid to the nonlinear Schinger (NLS) equation modi- sta_\ble I_ocallze_d states provided by stationary solitonlike So-
fied by the inclusion of damping and driving terrfig,2]. lutions is possmle._Furthermor_e, the stan_dard DNL_S equation
Barashenkowet al. [2,8] studied the parametrically driven, represents a Ham|lton|an_latt|ce fpr which t.he exustenqe of
damped NLS  equation W +d2W/ox2+2|W|2¥ breather solutions, that is, spatially localized and time-
=hW* exp(Qt)—i8¥, whereW (x,t) is a complex field am- oscillating solutions, is well estgbllshe{d?a,_m]. Macr'(ay'
plitude. They found that stable localized solutions in the2nd Aubry have proved that for time-reversible Hamiltonian
form of solitons are excitable only if the strength of the driv- Networks of weakly coupled oscillators the trivial localized
ing field h exceeds the damping constahthat is,h>&. In solutlpns of the no—coqpllng I|_m|t. are continued for small
particular, in the absence of the driving field the dampedfPUPling strengths as time-periodic and exponentially local-
NLS equation does not support soliton solutions for ahy ized _s;ates prowdgd certain ar_1harmon|C|ty and_nonresonance
~0. conditions are fulfilled 13]. Using the continuation method

However, the application of the continuum NLS equationVithout time-reversal symmetry, Sepuichere and MacKay
is justified only if the spatial extension of the nonlinear have extended the result to more general oscillator networks,
waves is much larger than typical inherent length scales olpclu.dlng.also d|SS|pat|ve sysFenﬁﬂsS]. The concept of the
the system(e.g., the distance between adjacent fibers in arpqntmyapon of localized sqlutlons starting from the anticou-
rays of coupled optical waveguide®therwise, the discrete pling limit has F’eefﬁ ((ja_xplglted hby Jok]lanhsson an(;i 'zu%r)’:lt%
structure of the system has to be taken into account and mféO”Stf“Ct guasiperiodic reat_ ers of the standar .
must consider the discretized system rather than the co quation oscillating with two Incommensurate frequencies
tinuum equation. Furthermore, whenever a numerical stud 6l. In Ref_. [1.7] th_e quaS|per|od|c breathers Of. the
of the nonlinear wave equation is demanded the issue of itgblow'tz'l'ad'k .d|scret!zat|on[18,1q of the'NLS equation
discretization has to be addressed. One possible discretiz gvefbeen .derlvlgd with thel hezlg of tgeén\_/ersel sc;;terlng
tion of the parametrically driven, damped NLS equation st @nsformation. Konotopetal. [20] and Cai etal. [21]

given by proved integrability of the dynamics of the Ablowitz-Ladik
system in a time-varying, spatially uniform electric field
(D) along the chain direction, which is of the foru,=&(t)n.
+2|W L (1)|2W (1) However, less work has been done with respect to the mutual
Jt impact of dissipation and driving forces on breather solutions
[22].

VW) + W, (1) = 2W(1)] The scope of the present study is to demonstrate that the

driven, damped DNLS lattice exhibits rich dynamical local-
=hw*(t)expiQt)—isv, (). (1) ization effects. Various types of localized lattice states arise,
namely, periodic and quasiperiodic breathers, respectively,
The real parameter$=0 andh=0 determine the strength of and a form of localized spatiotemporal chaos, which we call
the damping and driving force, respectively. We introduceda chaotic breather. The formation of the chaotic breather re-
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sults from a dynamical bifurcation for which quasiperiodic Decomposing into real and imaginary part, we obtain
motion persists as a regular transient evolution at the end of
which it becomes destabilized and the associated torus is®Xn—2(Xa+Y3)Xn—V(Xn 1+ Xp_1—2X,) = — 8y, —hx,

destroyed. The chaotic breather sustains temporarily on the )

lattice and collapses finally to a stable localized multisite )

pattern. Y= 2(X3+Y2)Yn— V(Ynt1FYn-1—2Yn) = 8, T hy,.
In Sec. Il we investigate the stationary system with em- (6)

phasis on the existence of localized solitonlike states. Th
stationary system can be formulated in terms of a four
dimensional volume-preserving map. We identify paramete
constellations for which the origin represents a hyperbolic
equilibrium. The attributed homoclinic orbit is exploited to 1 1
cpnstruct a_;ohtonhke stat.e on the de}mped, drllvenl Iatyce. Xn+1=v[5’xn—2(xﬁ+ Yﬁ)xn+ hxy+ 8yn]—Up,
Linear stability of the stationary localized solution is dis-
cussed with the help of Floquet analysis. Section Il deals 1 y

with the dynamical features of the damped, driven DNLS ~ M:{ Yn+1=y[@Yn=2(Xa+Yn)Yn—hya— X,]—vn,
lattice. First, we discuss the case of vanishing lattice cou-

%ettlngun Xn—1 andv,=Yy,_1, We express this difference
pystem as a four-dimensional mRf— R* determined by

plings V=0 for which a set of uncoupled driven, damped Un+1=Xn,
oscillators is obtained. The dynamics of a single oscillator is [ Vn+1=Yn,
then investigated. In particular we search for parameter val- 7

ues for which, in addition to the stable zero point, a second

(nonzerg attractor exists on the Poincameap of the oscilla-

tor providing a periodic solution. In order to construct a lo- wherew=w+ 2V and we drop the tilde afterward. The map
calized lattice state only one oscillator is excited initially in M is volume preserving because the Jacobian ma&ii,
the periodic regime and the remaining ones are held at thehich is given by

zero fixed pointithe single oscillator lattice excitatiprThis

yields a trivial localized lattice solution, that is, a one-site

breather. When the oscillators become coupléd-Q) this Dy Do -1 O

simple localized state experiences a continuation as a static D, Dy 0 -1

breather up to some driver amplitudes. Interestingly, when DM= , €]
the amplitude of the driving force is further enlarged the 0

static breathers changes into quasiperiodic breathers as the 0 1 0 0

result of a Hopf bifurcation, which is well illustrated on a
two-dimensional return map assigned to a local oscillator. At

a critical coupling strength we observe that the quasiperiodigvith
breather becomes dynamically unstable, developing spa-
tiotemporal chaos, which, remarkably, stays localized at a
few lattice sites. Eventually, after the chaotic interlude is
over a stable localized multisite state is reached. Finally, we
demonstrate that above a certain amplitude of the driving the )
breather becomes dynamically unstable and is extinguished [w 6yn— —2x; n—hl, (10
by collapsing to vanishing lattice amplitudes.

1
Dx=v[w—6xﬁ—2y§+h], (9)

1
Diz—v[4xnyni o], (11
Il. STATIONARY LOCALIZED SOLUTIONS

We study stationary solutions of the systém that are  fulfills the condition deDAM=1.

obtained from the ansatz Being interested in the excitation of localized states on the
' . damped, driven lattice, we recall that such localized station-
V. (t)= ¢ e't=(x,+iy,) e, (2 ary solutions correspond to map orbits lying on the stable

. _ _ and unstable manifolds of hyperbolic equilibria. In particular
with ¢, e C (realx,,y,) and a rotation frequenay. Substi- g bright solitonlike solution is given by the homoclinic orbit

tuting Eq.(2) into Eq. (1), we obtain associated with an unstable hyperbolic equilibrium point at
the map origin.
_ 24 _ _
0 =2 pn|*Pn—=V(bni1t+ dn1—2¢n) Apparently, the originX,y,u,v)=(0,0,0,0) represents an
=i 8¢py— Nt exli (Q—2w)t], (3)  equilibrium point of the map\. To investigate its spectral

stability we need the characteristic polynomial @et(
from which we infer that stationary solutions are possible—Al)=0 associated with the tangent map at the origin,
when the driving and rotation frequencies fulfill the condi- which reads
tion

Q—-2w=2kmw, k=0,+1,%+2 .... (4) A=A+ N)+BA2+1=0, (12
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Wlth 1.8 T T T T T T T T

2w w?’—h? &2 14
A:v, B:2+—VZ——V—2‘. (13)

Since the characteristic polynomial is reflexive it follows that _ !
complex eigenvalues occur generally in quadruplets 08
(MATINE AT 0f |N]=1 then they occur in complex

conjugate pairs, while real eigenvalues come in pajs ! 06

[23,24). The eigenvalues are computed as 0.4 4
1 0.2 i
7\=§(pi\/|4—p2|), (14 .
1.8
with
1 ]
pZE(Ai\/A2—4B+8). (15

The origin (0,0,0,0 represents an unstable hyperbolic point
if there exist two pairs of real eigenvalues(1/\;) and
(N2,1M\,) with [\|#1, which is the case if one of the fol-
lowing three constraints in parameter space is fulfilled:

>

A2
A>4, B>6, 2<A_1)<B<Z+2’ (16

2

A
A<_4, B>6, _2(A+1)<B<_+2, (17) 1 ) I 1 [ 1
4 0 001 002 003 004 005 006 0.07 008 0.09

B<_2, B<_2(A+ 1), B<2(A_1). (18) 0.08 T T T T T T T
In order to depict the homoclinic tangle of the invariant 0.07 - ]
manifolds of the hyperbolic point we approximate the stable 0.06 L () R
and unstable manifolds, respectively, in the vicinity of the '
hyperbolic point by the linear subspadssraight lines in the 0.05 .

direction of the eigenvectors to the eigenvalues with modu-

lus unequal oneof the tangent map. After iteration of a few > 004
thousand points on them several times we obtain the ho-
moclinic tangle. In Fig. 1 we plot the projections of the four-
dimensional stable and unstable manifold of the hyperbolic 0.02 - 1
equilibrium on thex-u plane, they-v plane, and thex-y

plane. One infers that there exist transversal intersections of %%
the stable and unstable manifolds at isolated points forming a 0 . ! . . | . .
homoclinic orbit{#1°™. It has been shown that homoclinic o 02 04 06 08 1 12 14 16
connections can be exploited to construct standing soliton-

like solutions of lattice chaingl2]. To this end we use the FIG. 1. Two-dimensional projections of the four-dimensional
fact that homoclinic points approach the origin asymptoti_homoclinic tangle of the hyperbolic poif®,0,0,0. The parameters
cally along the stabléunstablg manifold forn—oc (—c),  ar€é=0.001,h=0.01,0=1.5, andvV=0.1.(a) Thex-u plane.(b)
respectively. Therefore, the homoclinic orfigl°™ is at-  1hey-v plane.(c) Thex-y plane.

tributed to a localized state pinned by the lattice. Figure 2

0.03 |- ]

shows such a stationary solitonlike excitatig(t)|? i 6V, +2[2| P Q)26W,+(P2)26W*]
=|$"°M?2 of the damped, driven lattice. In this manner the
damping term and the driving force conspire to support a +V[6V, 1+ 6V, 1—26V,]
coherent structure in the form of a bright solitonlike solution.
To investigate the linear stability of a time-periodic local- =—i86V,+hsV} expiQt). (19

ized state? ()(t) = ¢p°Mexp(wt) on the basis of the Floquet

theory [25] we make the ansat® ,(t)=Ww(t)+ s¥ (1) Decomposing into real and imaginary parts and using that
including a small perturbatiod¥ ,(t). The linear tangent o¥,=a,+ib,, \IIE,O)(t)z¢ne*‘wt:(xn+iyn)e*i“’t, and()
equation for6W ,(t) reads —2w=2k, we obtain eventually
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small damping, i.eh andé are assumed to be small. For the
forthcoming analysis it is useful to perform a phase transfor-
mation

.‘

nm,,".m',.. mt:‘ O(t)=explio) D(1), (24

yielding the modified oscillator equation
id+2|D2D— wd=hexgiQ)D* —i 6D, (25

n where we usef = —2w. For ease of notation we drop the
tildes again. Writingd=X+iY and decomposing into real

. , ) o )
FIG. 2. Amplitude profile|¥ ,(t)|? of the solitonlike solution and imaginary parts gives

derived from the homoclinic orbit of the stationary map. The pa-

rameters are the same as in Fig. 1. X= Y — 2(X2+ Y2)Y — h[cog Q)Y — sin( Q1) X] — 8X,

_ s _ (26)
a,= —2{2(x5+y;) b+ [2X,Yn SiN(2wt)
VR 24 v2yy_ i —
— (x2—y2)cod 2wt) b, +[ 2%y, COS 2wt) Y=—wX+2(X?+Y23)X—h[cog Qt)X+sin(Qt)Y] b;\2(7)
+ 2_\y2\ei _ + _ _
(= Yn)SIN2@H) Jan} =VIbn 1Dy 1 =2bp] = d3y We are interested in periodic forced responses of the oscil-
+h[a, sin(2wt) —b, cog2wt)] (200 lator that can be expected when the system is close to a
resonance of ordek, i.e., whenQ)=Kkew for integerk. To
and cast the resonant system into the form appropriate for apply-

ing the averaging methd@6] we use the invertible van der

. ) Pol transformation
ba=2{2(x3+y5)an—[ 2%y, sin(2wt)

71 _ . 71
— (2= y2)cog 20t) Jap+ [ 2%,y COF 20t) (“ :A(X _| cogkat) - —sink 01
S v Y/ —sink-10t) —cogk 10t)|’
+(Xn_yn)S|n(2wt)]bn}+V[an+l+an—l_zan] (28)
— éb,—h[a, cog2wt) + b, sin(2wt)]. (21)  under which the syster{26) and (27) becomes

Integrating the tangent equatio(®0) and(21) over one pe- U=k 10— w)v+2(u?+v?v—éu

fiod T=2m/w yields a linear map +h{2 cogk~10t)sin(k10t)[ cog Qt)u—sin(Qt)v]
+[cog(k™10t)—sirf(k 1Qt)][sin(Qt)u

+cog Qt)v]}, (29

an(T)

bo(T) |~ %2

an(O))
bn(0)/”

whereF is the Floquet matrix. Linear stability of the solution

=—(k Q- w)u—2(u?+v?u—24
v (O(t) requires that the matri¥ has no eigenvalues of ( ©)u—2(u"+oHHu-—du

modulus larger than one; otherwise the solution will be lin- —h{2 cogk™1Qt)sin(k 1Qt)[cog Qt)v +sin(Qt)u]
early unstable. We have proved numerically that the Floquet 2(k-1 2 (k-1

eigenvalues stay on the unit circle ensuring linear stability ~ —L[COS (k™ "Qt)—sim(k="Qt) ][cog Qt)u

for the stationary localized solutions derived from the ho- —sin Q] (30)

moclinic map orbit.

with |k~ 10 — w|<1. Sincel andv are small the functions
Ill. PERIODIC, QUASIPERIODIC, AND CHAOTIC andv vary slowly and we can approximate the right-hand
LOCALIZED SOLUTIONS sides of Eqs(29) and(30) by averaging over one perict
=2x/Q. The integration has to be performed individually
for each value ok. Laterk=2 is used, for which we obtain
In this section we investigate the dynamical properties of
a single damped, driven oscillator. For vanishing couplings

A. The single oscillator

o1 2, 2 2
V=0 results a lattice of uncoupled oscillators, each obeying U=(27Q-wp+2(u+vv—dut z—u, (31
the equation
. . 3 h
i®+2|®|2P =hexpi Qt)d* —i 6D, (23) v=—(2 1Q—w)v—2(u2+vz)v—5u+§v. (32

In order to apply perturbational methods such as the averade=xpressing the averaged system in polar coordinates
ing procedure we consider the case of weak driving force ang-r cos¢ andv =r sin¢ gives
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(a)

'r=[—5+ﬁcos2¢]r, (33 !
) R R 15 I"“"m""
é=—(Q+2r2+hsin2¢), (34) ” "Wc'l't“"'%":':':‘:‘:':':’:'::’:':‘:{':':‘l":'::{"
lw,@F 1 e
where we used the notatio3=2"10—w and h=h/5. M.I'I'I"‘l".‘"'c'l't'ﬁ""."“""'"'..'"”\\\\
The transformation(28) relates the original function¥X,Y 05 =
with u,v andr, ¢, respectively, via goo1000
ok
x(t)=cogk 1Qt)u(t)—sin(k 1Qt)v(t) o0
B 260 500
=r(t)cogk 1Qt+ &(1)], "
y(t)=—[sin(k " 1Qt)u(t)+cogk 1Qt)v(t)] “r ,‘\ ©
= —r(t)sik~10t+ B(1)], 155 /\\ "‘“‘;‘\‘\\\

il

’ |

¥
i fild
! ‘

T
i i

|
|

showing that equilibria of the averaged system correspond to/¥»(®F 1}
almost sinusoidal solutions of the original equations.

Nontrivial fixed pointst, ¢ are located at

0.5

240 0

’ (35) 255 R 500

(36) Steady localized amplitude profile. The parametersé&®.01, o
=1,0=2,V=0.1, andh=0.35. (b) Breathing localized amplitude
profile. The parameters are the same asain except for the in-

We obtain the stability properties of the fixed points by con-creased driving force amplitude=0.38.

sidering the eigenvalues of the linearized averaged system, .
which are given by driving. Therefore, we take parameters such that an un-

coupled oscillator operates in the regime of bistability for

_ _AR2 2— 1A R2_ 2 -12 which besides the stable zero solution a second nonzero
A== o= {—ah" 5575 40VhT =5 ) (37 stable oscillatory mode existsee Sec. Il A. In order to

The analytical expressiof87) is used for identifying param- generate localized lattice states we excite only the central
eter constellations for which the averaged system has stabRScillator atn=250 initially while the rest of the lattice os-
fixed points (R&.<0), the locations of which are then deter- cillators are held at restocal stable zero solutignConcern-

mined by Eqgs(35) and (36). These stable equilibria of the ing the initial conditions of the excited central oscillator, we

averaged system provide then stable oscillatory modes of tH§mark that they do not necessarily have to coincide with the
xact position of the attractdthe sink on the Poincarenap

original equations of the single oscillator. The results of the® _ X oo o
investigation of the single oscillatdregarded as uncoupled of a single uncoupled osc[llator. Ra_ther t_he initial condmon;
from the lattice forv=0) are the basis for the forthcoming Can P€ taken at any location contained in the corresponding
studies of the DNLS lattice of weakly coupled, damped, anobas'” of attraction. In fact, a}fter a tra.nS|ent the dynamics
driven oscillators. In particular the situation for which only reaches a stegdy_ state. Th'.s relaxatlon_ onto an attractor
one lattice oscillator performs stable oscillatory motionsMaKes the excitation of localized states in a dam(suti

whereas all the others are unexcited and the interoscillatdffiven lattice system easier than in Hamiltonian lattices. In
coupling strengttV is small complies with single-site exci- the latter case a numerical scheme based on the continuation

tation of the anti-integrable limit25]. from the no-coupling limit is gsed, requiring comparatively
more effort for the computation of breathdi28] than for
damped lattices, where it suffices to use initial conditions
lying in the domain of the basis of attraction. We integrated
numerically the lattice system consisting of 500 oscillators
In this section we describe the dynamics of the variousmposing periodic boundary conditions. Figuré)3depicts
types of localized states appearing for the damped, drivethe excitation pattern for a coupling strength \¢#0.1,
DNLS lattice. In our approach we start from the anticouplingwhere we omitted a transient &f=500. One clearly recog-
limit arising for vanishing coupling¥=0 and use one-site nizes a coherent stable spatial structure in the form of a sta-
excitations for which all but one oscillator is at rest. Thistionary state exponentially localized around the site
provides trivial spatially localized solutions. For small cou- =250. A comparison of the localized steady amplitude pat-
plings we expect that this trivial localized single-site statetern of Fig. 3 with the one of the corresponding solitonlike
persists as an exponentially localized lattice excitation. Irstate gained from the homoclinic orbit of the stationary map
[27] a similar approach has been used to excite breathers inanalysis(see Sec. )ireveals their coincidence. Hence, after a
chain of nonlinear oscillators subject to periodic parametridransient period the initial single site excitation of the lattice

1 (5) FIG. 3. Excitation pattern of the damped, driven latti¢a).

B. Stationary localized solutions and bifurcation
to quasiperiodic breathers
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1.7 ~ ' ' In the case of the stationary localized state shown in Fig.
o ] 3(a) for which the amplitude$W¥ ,5 NT)|? remain constant

L o (likewise, the amplitudes of all the other oscillators apart

y ~ ;,..-"' from n=250) the return map shows only one fixed point. In

1.4} S @ the case of the breathing localized pattern of Fitp) 3he

o ] |Woso((N+1)T)|2— | W5 NT)|? plot yields a closed circu-

- e lar orbit around the fixed point. Since the trajectory densely

#° 1 covers the circular loop, quasiperiodic motion is indicated. In

11+ % /,,:' 1 fact, the corresponding power spectrum of the time evolution

Waso[(N+1)T]12
“
\,

of the central amplitude shows the presence of two incom-

mensurate frequencies confirming the quasiperiodicity of the

0 T o 1a 12 73 14 15 16 17 dynamics(not shown for this case but see also further be-
Moo NT)I? IOW)

We conclude that at a driving amplitudte= 0.38 a Hopf
bifurcation takes place. As a result, the trajectory of the re-
turn map of each lattice oscillator changes from a fixed point
to motion on a limit cycle. The dynamical amplitude profile
of the lattice oscillators performs then a transition from a
stationary localized state tocuasiperiodic breather

Qualitatively equal pictures can be obtained for the local
- : ] return maps of all the other oscillators. However, we can
- : ] deduce from the local properties of a single two-dimensional
- ) 1 return map the global properties of the lattice of coupled
- 1 oscillators with the use of phase correlation functions. We
L 1 pass to polar coordinatek,,=r, exp(6,) and define a phase

08 09 1.0 11 1.2 1.3 1.4 15 1.6 1.7 1.8 correlation function at a fixed instant of time as
1 50(NT)I?

i : ® ]

Woso[(N+1)T]12

o 0o =N W N D
T T
.

N-m
FIG. 4. First return map¥ o5 (N+1)T]|2— | ¥ 5N T)|? with C(M)=(0my16m) = L > 0,04im, lsm=<N-1,

period T=27/Q. (a) The parameters are the same as in Fi@),3 N—m 3=y

yielding the fixed point at1.34, 1.34, respectively, as in Fig.(B), (38

giving the filled circular orbit around the fixed poir(b) The pa-

rameters are the same as(a), except for the enlarged amplitude which enables us to distinguish between periodic and quasi-

h=0.393 35, resulting in a set of discrete points associated witlperiodic lattice states. For mutually periodically oscillating

periodic motion. lattice oscillators their phases are correlated and all correla-
tion functionsC(m) remain constant, while for quasiperiodic

merges dynamically into a stationary solitonlike solution. Preathers due to the loss of phase coherences the correlation

. : . tions decay.
The pattern of the latter involves besides the large amphtudépnc ~ . . . .
of the central oscillator also the smaller amplitudes of the For h=0.39335 the breathing of the amplitudes is peri-

next two lattice oscillators on either side of it while the rest:)gs',c’oﬁ(sji': ”:gtlﬁ?rt]er?];y;?iisﬁépotrilzcéié?t;%?]ts :t?etr:eo}:or'
of the vanishingly small lattice amplitudes form the expo- P 9 P 9l P

nential tail of the localized state. In this sense the stationarthe frequency locked lattice oscillations is governed by a

L . ) g)eriodic breather
solitonlike solution acts as a global attractor for the dynamic

for a single-site excitation of the damped, driven DNLS lat-
tice. C. Torus destruction, spatiotemporal chaos, and collapse

For further dynamical studies we keep the parameters to localized multisite states
Q, V, and ¢ fixed and vary the amplitude of the driving When the driving force amplitude is further increased we
force. The steady solitonlike state persists up to a drivingobserve a dynamical bifurcation, that is, the character of mo-
force strength 0h<0.38. Increasing the amplitude of the tion changes in the course of time. For an appropriate illus-
driving force toh=0.38 causes temporal oscillations of the tration of the rich dynamical features we plot in Fig. 5 the
excitation pattern maintaining its localized structure. Figuretime evolution of the central site amplitude. A first time in-
3(b) shows the breathing localized amplitude pattern. terval is characterized by reguléquasiperiodig motion fol-

Due to the spatial coherence the lattice dynamics can blewed by a chaotic transient, which finally ends up in a
characterized by a local picture of a single oscillator taken tsteady state of constant amplitude. Concerning the dynamics
be the central one at lattice site=250. A reduction of the of the lattice excitation, we depict in Fig. 6 the amplitude
lattice dynamics is achieved by the two-dimensional returrprofiles of the lattice for three time intervals belonging to the
map. To this end the time series of the central site amplitudgualitatively different scenarios of Fig. 5. We note that in an
is observed stroboscopically at the period of the drivinginitial time interval the localized excitation pattern persists as
force. We obtain then a set of discrete déa,s(NT)|?, a quasiperiodic breather on the lattice corresponding to
N=1,2,..., andV¥,5(N+1)T)|? is plotted as a function stable torus motiorfFig. 6(a]. However, att=2000 this
of |W,s(NT)|? in Fig. 4. torus is destroyed and the motion becomes unstable. As a
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25 T T T T T T T T T

[Was0(t))?

0 L I I I I I 1 I 3 (b)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

t 25

FIG. 5. Time evolution of the amplitude of the central oscillator. 2
The parameters are the same as in Fig. 3, except for the increased

2 15
amplitudeh=0.408. 1@ (2]

;
conseqguence, the lattice dynamics exhibits spatiotemporal
chaos. Remarkably, the chaotic dynamics is spatially con-
fined to a few 10) lattice sites, whereas the rest of the 240°
lattice remains unexciteldFig. 6(b)]. Thus we call this local-

ized structure &haotic breatherThe transition from a qua-

siperiodic lattice motion to chaotic dynamics is reflected in

the power spectra attributed to the trajectory of the central (c)
oscillator. Figures (& and 7b) display the power spectra of

| W,5(t)|? for the time intervals 508t<1524 and 2506t 15
<3024, respectively. The former power spectrum shows
peaks at incommensurate frequencies typical of quasiperi- |Vx(t)
odic motion, while for the last one we note the broadband

0.5

2 I
il ¢||'»‘:|:,:,:.:;||ﬁ|||’:||
i

-

i
"‘n"
i

character associated with chaotic time evolution. Finally, at 05

t~5500 the chaotic interlude stops and the dynamics relaxes <250
to a lasting steady staf€ig. 6(c)]. Contrary to the exponen- =

tial localization around a single site in the beginning, the 240

final localized steady amplitude profile of the lattice involves 26
now six sites of almost equal amplitudes. Linear stability of
the final multisite stationary localized state is proved with the FIG. 6. Excitation pattern of the damped, driven lattice for dif-
help of Floquet analysissee Sec. )l Note that the quasip- ferent time intervals showing the dynamical bifurcations from a
eriodic phase and the duration of the chaotic breather arguasiperiodic breather via a chaotic breather to a stable steady mul-
fairly long, meaning that both exist for more than 600 peri-tisite localized statea) The quasiperiodic breatheb) The chaotic
ods of the driving force. breather(c) The steady multisite localized state.

Finally, above a driving amplitude &f=0.409 the lattice ) . o
dynamics runs initially through a regime of localized spa-dimensional map represents a hyperbolic equilibrium. Its as-
tiotemporal chaos. Far=2500 the excitation pattern even- Sociated homoclinic orbit supports a stationary solitonlike
tually decays to a stable state of vanishing amplitudes, i.esolution on the lattice, the linear stability of which is proved

all lattice oscillators approach their local zero attractor, a®y @ Floquet analysis. .
illustrated in Fig. 8 forh=0.4095. The second part of the paper was devoted to the dynami-

cal properties of localized lattice excitations. We demon-
strated that, dependent upon the amplitude of the driving
force, static bifurcations take place so that the character of
We studied the dynamical properties of a damped, parathe localized lattice states changes from static to time-
metrically driven DNLS with focus on the existence and sta-oscillating solutions. These oscillations can be of either pe-
bility of localized solution. In the first part of the paper we riodic or quasiperiodic nature. Furthermore, we detected dy-
established the existence and stability of a static solitonlikenamical bifurcations for which regular quasiperiodic motion
lattice state of the damped and parametrically driven DNLSs destabilized in the course of time and a transient of spa-
lattice. Such a stationary localized state exists if the energtiotemporal chaos appears, forming a localized chaotically
loss due to dissipation is balanced by a proper energy injedsreathing lattice state. After this chaotic interlude follows a
tion through the driving force. In order to construct the lo- relaxation of the lattice oscillators to a stable localized mul-
calized solution we exploited a nonlinear map approach. Weisite amplitude pattern.
identified parameter ranges for which the origin of the four- The temporal destabilization of the quasiperiodic motion

IV. SUMMARY AND CONCLUSIONS
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P(w)

‘ ‘ ] FIG. 8. Amplitude profile of the damped, driven lattice demon-
strating the decay of a chaotic breather to zero lattice amplitudes.
The parameters are the same as in Fig. 3, excepi£d0.4095.

1o-1 D (®) ] share we note that for both of them stationary soliton solu-
i ] tions have been found. Furthermore, when increasing the
M i ] driver amplitude these stationary solitons undergo bifurca-
2} a0 ] tions to periodic and quasiperiodic breatherlike localized ex-
10-2F - AL citations. Finally, above a certain driver amplitude the

. | ‘ ‘ breathing solitons become unstable and spatiotemporal chaos

3t ‘ Py : sets in. For the NLS equation the transition to chaos occurs
3 via the route of a period doubling or a quasiperiodic scenario
10-3 ¢ g [8]. In the case of the DNLS we did not observe such a
’ ] transition to chaos. As mentioned earlier, the order-chaos
o ] 5 3 transition is the outcome of a dynamical destabilization pro-
© cess for which quasiperiodic motion develops into chaos in
the course of time. Thus we call this transitiomynamical
quasiperiodic route Contrary to the strong spatial confine-
ment of the chaos in our present study of the damped, driven
DNLS lattice, the chaos in the case of the NLS equation is
extended all over the spatial dimension of the one-
dimensional structure. Apparently, the localization of chaos
accompanied by the destruction of the corresponding torus ifor the DNLS equation is a pinning effect due to the lattice
phase space reported in this paper has to be compared witliscreteness supporting a low-dimensional attractor for a
previous results on torus destruction. [[B9] a cascade of spatially extended system. As far as the DNLS equation is
torus doubling was identified as the destabilization mechaeoncerned, the chaotic breather serves as the source for the
nism of localized structures in continuous media modeled byreation of a localized multisite state. This temporal transi-
a quintic complex Ginzburg-Landau equation. In directlytion from an initial coherent structurghe single-pulse soli-
driven sine-Gordon and NLS equations the scenarios of pgen) via an interlude of chaos to a final stable coherent struc-
riod doublings and the quasiperiodic route to chaos weréure of spatially extended excitation peak is a different effect.
observed 30—34. All these static bifurcation scenarios stem Finally, above a critical amplitude of the parametric driving
from the variation of a parameter of the underlying equa-force the solitonlike excitation fades away and leaves the
tions. Additionally, in our case a dynamical bifurcation alsolattice oscillators at their stable zero rest positiéznsro at-
occurs for which destabilization appears after a transient peracton. This happens for both the continuum NLS equation
riod of regular evolution at fixed parameters. [8] and its discrete DNLS counterpart.

At this stage it is suitable to compare directly our results
of the investigation of the damped, driven DNLS equation
with those for its continuum counterpart, namely, the
damped, driven NLS equation explored[l8]. To mention This work was supported by the Deutsche Forschungsge-
the properties that the continuum and the lattice equatiomeinschaft via Sonderforschungsbereich 337.

P(w)

FIG. 7. Power spectrum of the amplitud® ,5(t)|? of Fig. 5 for
(a) 500<t=<1524 belonging to the regular quasiperiodic regime
shown in Fig. 5 andb) 2500<t<3024 when the trajectory is cha-
otic.
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