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Intermittency in spin-wave instabilities
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The dynamics of the magnetization of yttrium iron garnet spheres was studied by ferromagnetic resonance
both within the subsidiary absorption regime and the coincidence regime of the first-order Suhl instability. The
absorption signal shows auto-oscillations with a rich variety of nonlinear behavior. Along with other routes to
chaos we observed intermittency and identified each of the Pomeau-Manneville types I-Ill. Within the chaotic
regime crisis-induced intermittency, on-off intermittency, and noise-induced intermittent behavior were ob-
served[S1063-651X%99)00602-9

PACS numbdss): 05.45~a, 75.40.Gb, 76.50.g

[. INTRODUCTION phenomena such as multistability and multiple time scales.
Intermittency phenomena are affected by these different
During the last two decades nonlinear dynamic phenomexcitation conditions as well. In this paper we present experi-
ena have been observed experimentally in a variety of sygnental observations and analyses on all Pomeau-Manneville
tems ranging from mechanical devices and computerlikéntermittency types(Sec. Ill), crisis-induced intermittency,
electronic circuits to human heart and brain dynamics. Magand on-off intermittencySec. IV). We present examples of
netic systems have extensively been investigated, e.g., jow to relate the intermittency mechanisms to the underlying
high-power ferromagnetic resonan@@vR) [1-3] for more ~ Parametric process or dlrgctly to the specific type of nonlin-
than ten years. Most of the well-known nonlinear dynamic€ar couplings between spin-wave modsse the Appendix
phenomena, as well as new ones, have been observed in
these systems. Up to now, however, intermittency in FMR  1I. HIGH-POWER FERROMAGNETIC RESONANCE
experiments has been reported rather scarcely in the litera- AT THE FIRST-ORDER SUHL INSTABILITY
ture [4,5]. To fill this gap we present a detailed study of
various intermittent phenomena in high-power FMR experi-
ments.
We have studied the nonlinear spin dynamics of yttriu
iron garnet(YIG) spheres at the first-order Suhl instability

Suhl’s first-order spin-wave instabilify’] is based on the
parametric excitation of spin waves through transverse
rnpumping on the uniform magnetization. His theory starts
from the idea of weakly coupled eigenmodes with nonlinear

under two physically different conditions: In the coincidenceCOUplings becoming efficient only at higher amplitudes. Con-

regime the parametric excitation of spin waves is affected b)?'de”“gdo,my nonlinear terms of IOV\;e‘:’L orderising frg_m
resonant pumping on the FMR mode, while, under subsig=0-¢alled three-magnon processes ¢ corresponding

iary absorption conditions, the pumping frequency is We”Hamlltonlar) a coupled set of amplitude equations for the

above the FMR mode, i.e., the pumping is nonresonant anH‘?'fO”“ modea, and for the spin wave modes is ob-

requires much higher microwave power to reach the thresht-"“ned’

old for spin-wave excitation. These different types of excita-

tion lead to physically well-distinguishable behavior above éo(t):_[i(wo_wp)+ro]a0_2 Pk —ivh,

the instability thresholdSec. I). While under subsidiary ab- Kk’

sorption the system is only weakly chaotic, with fractal di- (1)

mensions in the order of 2 to 3, in the coincidence regime : _ @p *

one often encounters chaotic behavior with attractor di?nen- A== 2Tk aﬁ% Pik808r

sions between 5 and 10 or even high@l In the latter case,

a special type of coupling between spin-wave modes leads Wwherew, andw, are the corresponding eigenfrequenclés,

many internal degrees of freedom being involved in the dy-andI'y are the phenomenological damping parametexs,

namics, and the high dimensionality is manifested in typicalandh are the microwave pumping frequency and amplitude,
v is the gyromagnetic factor, ang,, finally, denote the
nonlinear coupling coefficients, which are of dipolar origin

iwk

*Electronic address: benner@hrzpub.tu-darmstadt.de and essentially determined by the specific type of interacting
"Electronic address: wolfram@mpipks-dresden.mpg.de eigenmodessee, e.g., Refl8]). The parametric process is
*Electronic address: antanas@ant.pfi.lt characterized by the decay of the pumped uniform mode into
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two spin waves or magnetostatic modes of half the pumping multi-
frequencyw, = w,/2 and opposite wave vectotk, —k) ac- 16 W
cording to the conservation of energy and quasimomentum.
This instability can either be observed off resonafice.,
with the pumping frequency far away from the usual ferro-
magnetic resonancey, # o) as asubsidiary absorptionor
directly on the FMR line {,= w) within the coincidence
regime Note that in ferromagnetic sphereg=yH is pro-
portional to the magnetic field, while, depends in a more
complicated way orH as well as on the magnetization and
on the amount and orientation of wave vedtor

Hopf bifurcation

microwave power (dB)

A. Nonresonant pumping

In view of the extremely small thresholds typical for YIG, 1 1st-order Suh
high-power FMR experiments can, in principle, be per- threshold
formed with a conventional ESR spectrometer. We have 0 T T T T
studied the subsidiary absorption at about 9.3 GHz. Instead 1600 1800 2000 2200
of a standard reflection-type cavity we used a bimodal
transmission-type cavity of quality factor 3000, which allows
a nearly complete separation of the strong microwave input FIG. 1. Dynamics in the subsidiary absorption regime (
power from the weak time-dependent output signal. This=9.26 GH2 with respect to magnetic field and input microwave
way the signal-to-noise ratio was improved by almost 20 dBpower P;,. The lowest line indicates the Suhl threshold, and the
The squared amplitude of the driving fighdat sample posi- lines above separate regimes of different time behaviors, e.g., pe-
tion is proportional to the input powd?;,, which was sup- riod d_oublings(PZ,_PA}, quasiperiodicity(QP)_, or chaos. Intermit-
plied by a microwave generator, and the transmitted signaﬂancy is observed in several parameter regimes, e.g., type | at_1_650
P, is proportional to the squared amplitum|2 of the uni- Qe and _12-15 _dB, type Il at 1900 Oe and 11-15 dB, and crisis-
form mode. By means of a digital oscilloscope and an inteinduced intermittency at 1900 Oe and 16 dB.
grating voltmeter, we recorded both the time dependence of ) . ) )

P,(t) and its time averag®, on variation of input power CuUrénce o_f magnetic domains. For_hlgher fielg falls be- _
P, and magnetic fieltH. The data presented below were low the spin-wave band and, keeping the resonance condi-

obtained at room temperature on a highly polished sphere 51‘0'? “’Plz“’o' a changeover to the second-order instability

pure YIG, 0.71 mm in diameter, and the magnetic field wadakes place. . . ,

applied either i 100) or (111) orientations. Owing to the resonant pumping condition, the fixed
I~ ; . bt_)umping frequency of a microwave cavity would also fix the

sorption structure at lower field, which is well separatedmagnet'c field, i.e., would restrict the role bfas an inde-

from the FMR main resonance and shows a drastic broaderrt’—endent control parameter. However, profiting by the reso-

ing with increasing microwave power, accompanied by autohance amplification of the FMR mode, experiments in the

oscillations and sequences of bifurcations. We have systerr‘?—Oim;]id'ér‘]nc_e reg;q?e rer:]quirﬁ Imuch Iﬁss microivgve\z/vp?wer o
atically analyzed6] the dynamic behavior of the subsidiary rgaﬁ t ? mf(tlaG lity € Iresso(n;plca y some 10uWW orh
absorption signal at fixed pumping frequency, as presented ilﬂ'g -quality samples So, for our experiments in the

Fig. 1. The lower line shows the dependence of the Suh‘l:OinCidence regime we preferred a broadbdhe4 GH2

threshold onH (the so-calledbutterfly curve. (Here and in transmlssu_)n-_type setup described else;wl[eﬂe which al-

the corresponding figures below,, was normalized to the IO‘.NS a varlatlon Ofewy S|multaneou.sly W'.trH' .Instead of a
minimum threshold. The broad bumps at 1.6 and 1.9 kOe m|cro'vvave.cav.|ty, we used t.W.O mlcrocons W'.th perpendicu-
have been explained by the interaction with elastic or magl—ar orientation in order to minimize mutugl dlsturpances by
netostatic modek9]. The next line indicates a Hopf bifurca- cr_o_sstalk. The signal tr_ansm|tted to the p|<_:kup (.:0'.| was am-
tion, and corresponds to the onset of auto-oscillations. Furpl'f'ed_' detected by a diode, and recorded in a similar way as
ther bifurcation lines above separate regimes of differenfjesCrIbGd above. . o o .

time behavior, e.g., period doublings, quasiperiodicity, inter- For resonant pumping within the coincidence regime the
mittency, or chaos. The steep increase of the threshold at ZTQSt'Order Suhl threshold shows up as a sharp and asymmet-

kOe indicates that the bottom of the spin-wave band bellC break at the top of the FMR. With increasing input power

comes larger thaw/2, and the parametric excitation of spin Lhe t?(reak beﬁ_ome_s broader de ma}%( tt)ebflt_)llowetlzl:_by further
waves is no longer efficient. reaks, resulting in a complex multistabilifgee Fig. 2.

This multistability is connected with a variety of auto-
oscillations. Details have been presented in the literature and
have been explained in terms of a multimode model includ-

Resonant pumping of both the uniform FMR mode and ang the specific properties of discrete magnetostatic modes in
spin-wave pair o= wo=2wy) is restricted to a limited fre- the parametric proce$8,10,11. According to this model the
guency range. In the case of YIG spheres, this coincidenceudden jumps from one level to another are induced by the
regime ranges from 1.8 to 3.4 GH&®80-1280 Oe for nonlinear coupling or decoupling of certain spin-wave
HI1(100)). For lower field the FMR vanishes due to the oc- modes.

magnetic field (Oe)

B. Resonant pumping
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rather interpret the observed behavior to represent an inde-

5004 pendent route.
) »10 SINT ; Intermittency was observgd in several parts of parameter
5 4507 space, in subsidiary absorption as well as in the coincidence
g P2 Pl »15 regime. A detailed study of the intermittent routes to chaos,
o= % P2 and various types of the intermittent behavior inside the cha-

] P1 otic regime are the subjects of the following sections.
03 5 10
P, (dB) IIl. POMEAU-MANNEVILLE INTERMITTENCY

Pomeau-Manneville intermittency occurs in conjunction
_ B . — with a bifurcation where a formerly stable periodic motion
=2.37 GHz,H=840 Oe). The averaged transmitted powgris (i.e., a limit cycle becomes unstabld 6]. In a suitable Poin-

plotted vs the input poweP;, (normalized to the Suhl threshold , tion this i ivalent t table fixed point b
Different dc levels correspond to different types of dynamics. peri-CAr€section this 1s equivaient 1o a stablé Tixed point becom-

odic behavior is indicated by its periodiciy?1,P2, and chaotic Ing unstable via a chlmenS|0n—1 bifurcation. The flxed
behavior by the attractor dimensigaccuracy+1). Chaos-chaos point O,f a one—d!menS|onaI map cqn become U”Stab'? via a
intermittency is observed at the upper chaotic IWsIT). local bifurcation in three basically different ways: the eigen-
value crossing the unit circle at 1, two complex conjugate
C. Observed routes to chaos eigenvalues crossing the unit circle simultaneously, and the
eigenvalue crossing the unit circle atl. The three types of
As a general result, we found that a global correspon- oo :
dence 1o one of the well-known scenarios of FeigenbaumPomeau-ManneV|IIe intermittency correspond to these three

. different bifurcations.
Ruelle, Takens, and Newhouse, or Pomeau and Mannevillé Al these types of “classical” intermittency have been

e o e ghserved na arge vty of expermerta stisions. A
y P . as we know, however, high-power FMR in YIG spheres rep-
of a real system are more complicated and based on a larg

[ .
number of internal degrees of freedom than those of thgesents the only physical system where all three types of

simple models from which these standard routes have be intermittency can be observed with a single experimental

e ; . .
derived. The physical meaning of the degrees of freedom iéétuD' While the phenomenological analysis of our data

e . . yields convincing evidence for each intermittency type, the
g;osl;a\\/tg?/altfge;ttﬁfe;peCIflc eigenmodes or a collective mOtlor]::ghysical understanding of their mechanisms in terms of spin-

Quasiperiodicity with up to three fundamental fre uencies. 2V e dynamics is less obviog7] and highly nontrivial. In
was obsc—?rved bot% in subFs)idiar absorpiich Fig. 1) a?]d i order to obtain an idea of the physical background, we tried
the coincidence regime. In tr):e Iatte? celmseg.for instanceto relate these specific bifurcations to the underlying para-
closely above the threshold the FMR signal starts to auto':netrlc spin-wave excitation described by E). As an ex-

. ; ; : . ample, in the Appendix we present the physical conditions
oscillate with typical frequencies ranging from 100 to 400for the occurrence of a subcritical Hopf bifurcation, which is
kHz. A few dB above, a second fundamental frequenc

Y .
occurs—corresponding to a second Hopf bifurcation—CharaCte“StIC of the second one of these types.

together with several mixing frequencies and harmonics, _
which indicate that the attractos & 2 torus. Very seldom, we A. Intermittency of type |

also found a third fundamental frequency occurring within - Type-| intermittency is related to a tangent bifurcation
an extended parameter range. More often, instead of a thifghere stable and unstable fixed points merge. Slightly above
Hopf bifurcation and a collapse of the resulting 3 torus tothe pifurcation the Poincammap contains a narrow channel
chaos[13] we observed the spin system switch over to anear the merging point. Then the system evolves through this
coexisting stable attractor. channel, and the dynamics is almost periodic with ampli-

The changeover to chaos was generally accompanied bytgdes showing a monotonous s-shaped increase with minimal
jump of Py, but did not arise frm a 2 or 3torus. Hence it  slope at the center of the channel. Figure 3 shows two ex-
could not be related to a Ruelle-Takens-Newhouse scenariperimental time series representing different manifestations
Instead we suppose that the chaotic behavior results from @f this type of behavior.
sudden increase of the number of coupled modes, which is The simplest map exhibiting type-I intermittency is given
related to some global symmetry-breaking bifurcati& by
and does not follow one of the standard routes.

Period-doubling routes, as reported previously from both Xny1= €+ Xn+Xﬁ, 2
transverse and parallel pumping experimdrit4,15, were
observed up to period 8, but occurred rather seldom. Verwhere e>0 is the distance in parameter space from the bi-
scarcely we even observed a sequenceeriod triplings  furcation point. In order to reconstruct a corresponding map
(not to be confused with a period-3 windpwp to period 9. from a time-continuous system, which is in general much
More often, however, only a single period doubling wasmore complex, one has to find or construct an appropriate
found, which remained stable for a rather extended paramsystem variable which allows the reduction to a map. We
eter range and then changed directly over to chaos. Thoudiave reconstructed such a map from both experimental time
the Feigenbaum route is known to be very sensitive to noiseeries of Fig. 3 in a different way. The upper series repre-
which might have suppressed further period doublings, weents a manifestation of type | which is observed more fre-

FIG. 2. Multistability in the coincidence regime v(
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FIG. 3. Examples of time series showing type-I intermittency.
Top: v=2.414 GHz,H=840 Oe, andP;,=0.66 dBm. Laminar
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FIG. 5. Influence of noise on the distribution of laminar lengths
for type-l intermittency after Ref.18]. The dashed line gives the
theoretical result in absence of noise, and the solid line results from
a simulation with additional noise. The latter distribution is expo-
nential for large/, and the mean lengtfy’) is shifted to a smaller

intervals are characterized by increasing oscillation amplitudes an4e/Uue-

interrupted by short chaotic bursts. Bottom=2.496 GHz, H
=840 Oe, and®;,=7.04 dBm. The laminar intervals correspond to

Assuming the reinjection to the channel region to be ho-

“channels” of small-amplitude oscillations separated by large-mogeneous and uncorrelated, it is possible to calculate the

amplitude chaotic intervals of long duration.

statistical distribution of the laminar lengths, i.e., the lengths
of the time intervals during which the system behaves in a

quently in experimental systems. An appropriate return maeriodic manner. The theoretical distribution exhibiting

is constructed by simply taking the local maximaxgs The

square-root singularities at zero and at a maximum length

lower time series exhibiting decreasing and reincreasing amé max iS given by the dgshed curve in. Fig. 5. Moreover, the
plitudes reflects the periodic channels in a more involvednean value of the laminar lengtkig”) is expected to scale

way. Here we took the increment of the oscillation ampli-with the deviation from the critical poirg like (/)~€

-1/2

tudes rather than directly the maxima. Figure 4 shows the The most characteristic feature of this distribution is the
return map reconstructed from the lower data set of Fig. Jtrict cutoff at/ .. To compare this result with experimen-
together with the corresponding parabola which was obtal data, however, one has to take into account that the dy-
tained from a least square fit.

1.0
wnt
0.5 f"
~ £
t 00 .
X - 4
s 24
0.5 o am%
- 1
1.3
-1.0 — —
-1.0 0.5 0.0 05

1.0

namics of real systems is always affected by noise. Type-I
intermittency has turned out to be very sensitive to the pres-
ence of noise, which becomes most evident when looking at
the distribution of laminar lengths. The full curve in Fig. 5
demonstrates how this distribution is affected by noise. The
strict cutoff at/ ., is smeared out, and a long exponential
tail evolves reflecting the fact that now arbitrarily long resi-
dence times become possible.

We have developed a computer program which allows
one to separate laminar and chaotic intervals of the time
series in an intelligent way. The program includes the appli-
cation of several operations on the whole data set, e.g., dif-
ferent types of local averaging, numerical differentiation,
subtraction of subsequent extrema, etc., which allow one to
transform the data set in a way that the two different states
(here laminar and chaojican be separated by fixing some
boundary line. By determining the lengths of the time inter-
vals between two subsequent crossings of this line, one ob-
tains statistics for the laminar state and for the chaotic state,
respectively. The distribution of the laminar lengths obtained

FIG. 4. First-return map extracted from the time series of Fig. 3from experimental data sets like that of Fig. 3 is shown in

(bottom. The dashed line is a fit to the quadratic n{&g. (2)],
generic for type- intermittencyx,, , ;= 0.092+ 1.045,+ 0.273¢.

Fig. 6. The similarity with the simulated noisy distribution of
Fig. 5 is obvious.
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FIG. 8. Fourier spectrum of the time series shown in Fig. 7. Two
FIG. 6. Experimental distribution of laminar lengths of the time fundamental frequencies occur ft=385 kHz andf,=100 kHz.
series shown in Fig. 3. The data set consisted oix1® data  All strongest spectral components, indicated by vertical bars, were
points. The solid line is a fit to the exponential tail of the distribu- identified to present mixing frequenciesf,+nf,, m,n integer,
tion. |m|=<3 and|n|<10. The frequency splitting =4f,— ;=15 kHz
occurring everywhere in the spectrum reflects the amplitude modu-

B. Intermittency of type || lation of the time series.

Type Il is related to a subcritical Hopf bifurcation, i.e., is shown in Fig. 9.
when the formerly stable fixed point in the Poincagztion In this case the influence of noise seems to be much less
becomes unstable via collision with an unstable limit cycle.important than for type |. The magnetic-field dependence of
As a result, the system spirals out of the vicinity of the fixedthe mean laminar length in Fig. 10 is in very good agreement

point. To describe this type of dynamics at least a two-with the theoretical power la/)~ e~ * with e=|H—H|.
dimensional map is needed, and a first-return map of a single

coordinate does not give reliable information, in contrast to
the previous case. Close to the bifurcation point two different
periodicities appear in the system dynamics: one represent- Type-lIl intermittency occurs in conjunction with an in-
ing the period of the system piercing the Poincalane, and verse period-doubling bifurcation, i.e., when the stable fixed
the other reflecting the spiral motion, which can in first ap-point becomes unstable via the collision with an unstable
proximation be considered as the period of the former unperiod—2 orbit. If the fixed point occurs at zero, the system
stable limit cycle. will evolve out of the region around it by alternating between
In the experimental time serigBig. 7), the first one cor- positive and negative values with growing amplitude. The
responds to the carrier frequency and the second one shoWjgst-return map close to the fixed point is given by
up indirectly via the slow beat which appears most pro-
nounced in the long periodic phases. These two frequencies,
together with a variety of harmonics and mixing frequencies ) ) _ i
are clearly manifested in the spectrum presented in Fig. 8.,|n the continuous time domain one observes the strictly pe-
The experimental distribution of the laminar lengths to-fiodic motion becoming unstable toward oscillation with al-

gether with the best fit to the theoretical distribution functiontérnating sign and growing amplitude. An example of an
[12] experimental time series and the reconstructed return map

are shown in Figs. 11 and 12, respectively.

C. Intermittency of type lll

Xni1=—(1+ €)x,—ux3. (4)

e.2e45|
N(l)~ , 3
(1 (@ 1)2 ) 300
- -~
T 0 =
o <
0 T T T T 1 T T T T 200 llll
t (us) T 100
o . _— { (us)
FIG. 7. Example of a time series showing type-Il intermittency.
v=9.257 GHz,H=1590 Oe, and®;,=15 dB. The laminar inter- FIG. 9. Experimental distribution of the laminar lengths.

vals are quasiperiodic, the low-frequency amplitude modulation has-9.255 GHzH=1592 Oe, andP;,,=15.5 dB. The solid line is a fit
been stressed by the dashed envelopes. to the theoretical distribution for type-Il intermittency, E).
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FIG. 10. Inverse mean laminar lengtd) ! vs magnetic field i e
H. The solid line represents a least square fit to a linear dependence 0 i
and yieldsH,=1601.5 Oe. 0 ] 2
Xn

The laminar intervals of the original signal show the typi-
cal spreading up of successive maxima. In order to extract FIG. 12. First-return map extracted from the time series of Fig.
this part of the signal, we have recorded the sliding averagél (bottom. The dashed line is a fit to the second iterate of @y.
over exactly one periotFig. 11, bottom. Thus the dominat- generic for type-Ill intermittencyx, . ,=1.056,+0.293 . In or-
ing period-1 component is suppressed, while the period-2er to exclude the reinjecting part of the map, our fit was restricted
component is retained and can be further analyzed by propé® X,<1.2.

algorithms. Note that successive maximgaof the averaged . . .
signal occur at double period. Using these maxima for con!l Fig- 13, instead oN, we have compared the integrated
structing a first-return map, as done in Fig. 12, is, in fact’@stnbuuon wh|qh is Igs; sensitive to noise, but more sensi-
equivalent to a second-return map of the original time signaltiVe t0 systematic deviations.

This means, e.g., that an alternating sign characteristic of the

negative eigenvalue of the respective bifurcation is absent IV. CHAOS-CHAOS INTERMITTENCY

from this map. The map shows the expected nonlinear in- In our experiment, the majority of intermittency phenom-
crease, fitted by a cubic parabola, together with a horseshoe- '

shaped chaotic repeller responsible for reinjection. The exca s not of Pomeau-Manneville type. More often, one en-

perimental distribution of the laminar lengths fits well the counters inter_mitte_nt _transitions petwe_en different types (?f
theoretical resulf12]: chaotic behavior within the chaotic regime. We have identi-

fied different types of this behavior.

3/2,2¢l
e
N()~ _lﬁ'(eze _ 1)3 2- ) A. Crisis-induced intermittency
This type of chaos-chaos intermittency was described by
Grebogi, Oftt, and Yorkdg19,2Q0 and related to the occur-
rence of a crisis, which means the local collision of one or
= two chaotic attractors with an unstable periodic orbit. Either
oo
1250
0 400 800 1200 1600 2000
1000
t (us)
= 750
pd
= W 500
< 0
250
0 400 800 1200 1600 2000 0
0 250 500 750 1000 1250
t (us)

£ (us)

FIG. 11. Example of a time series showing type-lll intermit-
tency.v=2.385 GHz,H=800 Oe, and®;,=8.49 dBm. Top: origi- FIG. 13. Integrated experimental distribution of the laminar
nal signal; the laminar intervals exhibit the typical spreading up oflengths. The solid line is a fit to the theoretical distribution for
successive maxima. Bottom: same signal averaged over one periaype-Ill intermittency.
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FIG. 14. Time series representing a homoclinic crisisvat v 1 \\_\E{ A
=9.258 GHz,H=1877 Oe, andP;,=16.5 dB(cf. Fig. ). s R
ByoW
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. . 100 - vl .
the merging of two formerly separate stable chaotic attractors 00 ] E{\\_ x{
or the abrupt widening of an attractor leads to intermittent 1 \‘?\ A
jumps between the two attractor regions. Typical experimen- ] W A
tal time series are shown in Figs. 14 and 15. ] ¢ \:\\ Y
The three extended plots of chaotic bursts show strong ® 80ee.
similarities in their initial phase, which directly reflects the 1 10
local character of the underlying bifurcation: the trajectory H-H
always escapes from the former chaotic attractor at the same

ph._ase space area where the collision Wi_th _the ur_15tab|e peri- FIG. 16. Scaling behavior of the mean “laminar” length with
odic orbit takes place. The unstable periodic orbit generallyespect to the magnetic field. Data were taken at three different

represents a large amplitude oscillation. Here the first fevyicrowave powers: 15.5 dBq),16.5 dB (©), and 17.0 dB 4).
increasing oscillations of the bursts characterize the contractrhe double-logarithmic plot yields scaling exponents 2.2, 2.5,

ing phase where the trajectory approaches the orbit along thed 2.6, respectively. Bullets denote the mean length of the bursts
stable manifold. The following decreasing oscillations corre-for p,,=16.5 dB, which is nearly field independent.
spond to the expanding phase where the trajectory is repelled

along the unstable manifold, ending up again at the formeéystems the amount of the unstable exponents has to be
chaotic attractor. This indicates that we are dealing with &majler than the amount of the stable exponents. The varia-
homoclinic crisis. The duration of the expanding phase of thgjy, of input power leaves the initial part of the bursts un-
orbit was found to be definitely longer than the contractingchanged and only affects the duration of the bursts.
phase, which is consistent with the fact that in dissipative |t the chaotic mixing within the attractor is sufficiently
fast, i.e., the system “forgets” initial conditions faster than
the average residence time, the distribution of the lengths is
expected to be exponential. Specific properties of the dy-
] namic system show up in the dependence of the mean lami-
0 nar length on the deviation from the critical poiat Here

1 one finds the power law/)~e 7, with the exponenty
being system dependelfl]. The value ofy depends on the
Lyapunov exponents of the system, eigenvalues of the un-
stable periodic orbit participating in the crisis, and on the
type of the crisis. For both homoclinic and heteroclinic crises
) analytical expressions for the exponentre given in Refs.
0 [6,21]. Note that the value o¥ is generally noninteger. Ex-
perimentally obtained power laws are shown in Fig. 16.

We tried to check the consistency of the obtained scaling

exponents with theoretical predictions by estimating the con-
tracting and expanding eigenvalugs and B, for the un-

] stable periodic orbit. In view of the low dimensionality of

] chaos in subsidiary absorption, a two-dimensional Poincare
O-M/W MWW section seems adequate to characterize the stability of this

] orbit. For the present case of a homoclinic crisis we H&Je

1/2

0 ~ 100 A ey (6)
t (us)

FIG. 15. Extended plot of the chaotic bursts. The input micro-where; '=|In|||, i=s, u, denote the characteristic con-
wave powerP;, amounts to(from top to bottom 15.5, 16.5, and traction and expansion rates, respectively. It is tempting to
17.0 dB. correlate these rates with the duration of increasing and de-
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creasing amplitudes of the bursts in Fig. 15. Unfortunately,
the few noisy contracting cycles do not allow a reasonable
estimation ofrs. Looking for an independent estimate zf,

we made the additional and very restrictive assumption that
the total dissipation is not heavily affected by small changes
of P;,. Then the sum of both rates can be considered as a
constant,r; *+ 7, '=const, which may be obtained by fit-
ting Eq. (6) to one of the values of. Then the other scaling
exponents can be checked independently from this constant
and from the respective experimental valuespbnly. It is

clear that we cannot expect quantitative agreement from such
a rough estimation, but the tendency of variatjop= 1.4,

2.5 (fitted), and 2.7] is in accordance with the experimental
values of Fig. 16. A more reliable comparison has to be 0 2 4 6
based on the complete phase space reconstruction of the tra- t (ms)

jectory in the vicinity of the orbit, but this would be beyond
the scope of our paper.

signal

FIG. 17. Time series showing on-off intermittency in the coin-
cidence regime ¥=2.388 GHz, H=802.5 Oe, andP;,=14.5
dBm).

B. On-off intermittency

On-off intermittency [22—24 occurs at a global [6,32]. In our experimental system this additional degree of
symmetry-breaking bifurcation callddowout bifurcationby ~ freedom could be a pair of spin waves at half the pumping
Ott and Sommeref25]. At this bifurcation the formerly frequency. The excitation of such a pair, which is of zero
stable invariant manifold loses its stability, and the syster@mplitude below the bifurcation point, is in complete anal-
dynamics extends to additional dimensions of the phas@gy with the excitation of the first, critical spin-wave pair at
space. If the dynamics on the manifold is irregular due to dhe Suhl threshold. Thus we assume that at low microwave
chaotic attractor or noise, and if there are no other attractorgower, as well as within the highly chaotic regime,
outside the manifold, on-off intermittency occurs above thesymmetry-breaking bifurcations dominate the system dy-
blowout bifurcation point. Statistical properties of the on-off namics. This presumption is confirmed by the fact that the

intermittency can be obtained from the simple map type of nonlinear coupling is the same for the spin-wave
system[29,32 and for the model systems exhibiting on-off
Xp+1=aYnXn, (7)  intermittency[Eq. (7)]. This coupling is bilinear in the am-

] ] . ) . plitude of the additional mode and in tlieonzerg chaotic
wherex, defines the distance from the invariant manifold,  mode which is already excite@For a more detailed discus-
describes the dynamics on the manifold, ant a control  sjon see the Appendix.

parameter. For real systems, nonlinear terms and additive
noise have to be included, but the particular properties of I . . .
both of them are not importarisee, e.g., Ref.26,27)). The ‘
theoretical analysis predicts for the distribution of the “lami- 2+ b
nar” lengths as well as for the dependence of the mean lami-
nar length on the deviation o& from the critical point
power-law scalings with the exponents: and — 1, respec- i
tively [28]. These exponents coincide with the scaling expo- 4
nents for type-Ill intermittency, demonstrating some similar-
ity between these two cases, while the physical background
is essentially different. The difference can also clearly be
seen from experimental time series exhibiting irregular be-
havior in both laminar and burst phases. 6

We reported on-off intermittency in spin-wave instabili-
ties in Ref.[29]. A significant criterion was to look for
chaos-chaos intermittency with proper scaling exponents. A )
typical time series is presented in Fig. 17, and experimental 8L ) \ 4
power-law scalings are shown in Figs. 18 and 19. The re-
cently predicted symmetry between laminar and burst phases
[30,31 has not yet been observed in our experiment, prob- 5 4 6
ably due to problems with the distinction of long burst
phases from noisy experimental data. Inl

An essential feature of on-off intermittency is the addi-
tional degree of freedom which becomes unstable via a glo- FIG. 18. Distribution of the laminar lengths, i.e., the time inter-
bal symmetry-breaking bifurcation. The underlying physicalvals between two bursts, from the time series shown in Fig/1ig.
mechanism is probably that of the transitory excitation of amrmeasured inus. The solid line corresponds to a power-law scaling
additional spin-wave mode through a three-magnon processf —3.

InN
)
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FIG. 19. Dependence of the inverse mean laminar length on
magnetic field. The straight line fitted to the data corresponds to the
scaling exponent-1, and yields the bifurcation poiti ,=802.09
Oe.

C. Noise-induced phenomena

In the chaotic regime of our experiment we have observed
not only crisis-induced and on-off intermittency. In some 0 6000
cases we were unable to identify the bifurcation responsible b I(us)
for the occurrence of intermittency. An example of such a (b) H

time series is shown in Fig. 20. FIG. 21. Integrated distribution of the lamindop) and chaotic

_ We suppose that this behavior can be related to the noisgnottom lengths for the time series shown in Fig. 20. The solid
induced hopping between several attractors in systems exhilines are fits to an exponential distribution expected for noise-

iting multistability [33]. In that situation, the system has two induced intermittency.
or more stable states for the same set of external parameters

(see Fig. 2 By additional noise, the system leaves from time. . .
to time the basin of attraction of the original state and enterd'9 attractors can externally be induced. The analysis of the

that of another attractor. This happens more easily in a sigfutual transition rates could give further insight into the
pology of the system. Current work on this topic is in

ation when the boundaries of the basin are fractal andP
riddled, i.e., closely interwoven. Then, under the influence ofProgresg{34].

noise, the system wanders irregularly between several attrac-

tors. Since in the time domain this behavior shows a strong V. CONCLUSION

similarity to the other types of intermittency, this phenom- We have presented the observation and detailed analysis

enon is callednoise-induced intermittencyAssuming that f intermitt in hiah EMR . : i
the probability to leave the attractor per time unit is constant,0 intermittency in igh-power experiments on yttrium

the lengths of the time intervals the system spends on onkon garnet spheres. A large variety of intermittent behaviors,
attractor obey an exponential distribution. This result is in

including all “classical” Pomeau-Manneville types I, 1l, and
accordance with our experimental findinggg. 2. [l intermittency, crisis-induced intermittency, and on-off in-
Noise-induced intermittency may be used to obtain morde€rmittency, was found. We were able to identify each of

information on the system dynamics. By adding noise to ghese types, qualitatively from direct manifestation of the

multistable system the intermittent jumping between coexistbifurcation properties in time series data, quantitatively from
reconstructed return maps or from the scaling-laws occurring

in the distribution and control-parameter dependence of the
laminar lengths. As a result, it is demonstrated that the spin-
wave experiment renders an excellent possibility to study
intermittency in a real experimental situation. Moreover, we
0 were able to attain important physical understanding from
the analysis of intermittency, e.g., the occurrence of on-off
intermittency in the coincidence regime gives a strong hint
how new degrees of freedom could add to the system dy-
- @ - @ @O O O namics. Finally, new concepts in experimental nonlinear dy-
0 500 1000 namics that are based on the intermittent switching between

t (us) bistable or multistable states can be nicely studied in our

system. A recent example refers to “noise-free” stochastic
FIG. 20. Intermittent time series measured in the coincidencg#esonance[35] which was observed in conjunction with

regime (v=2.389 GHz,H=3840 Oe, and®;,=7 dBm). type-1ll intermittency under subsidiary absorption.

Ptr (t)
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Na=—4T|cy|?(— AwoA wy)/ (2A w)), (A3)

APPENDIX: DERIVATION OF INTERMITTENCY ] . ] .
CHARACTERISTICS FROM THE EQUATION OF MOTION while \; remains negative. In order to have a Hopf bifurca-
tion the real part of the complex conjugate pair=\3 has

A physical unQerstanding .of the_ Qbserved i_ntermittencyt0 change from negative to positive value, while<0. Both
phenomena requires that their specific mechani@ng, the conditions require the inequality ﬂAwkok)BchzPO,

local or global bifurcationscan be related to the underlying with the Hopf bifurcation occurring afc |2/g—Aw2(4F2
k - 0 k

parametric process described by Ef). To give examples, 2 - - 2\ 12 o
we present analytical derivations of such bifurcations for the+A‘.°9)/[(4( AwOAwk). : 28 wg)I'i]. The latter f:ondmon
Pomeau-Manneville type-II intermittency, and for on-off in- implicitly yields a condition for the driving amplitude. The

termittency. Note that in both cases our experimental datzgiStinCtion betwee;n subcritical and supercritica_l bifurc_at_ion
were taken under such conditiofsee the discussion in Ref. Is related to the sign of the real part of the cublc_coefflment
[11]) that the excited modes participating in the nonlinearin the (complex valuel Hopf normal form, z=\;z
mechanism are of plain spin-wave type with relatively large+ RIZ|z. After some straightforward but lengthy algebra we
wave numbers of the order of 2cm™ . This implies that obtain

the nonlinear coupling coefficients are essentially diagonal in - )

K: puc=puc: S » and Eq.(1) simplifies to ReR_ 8|clTi[2(— AwpA wy) — Awg]

(—Ng)Awf[ATE+Awd]?

ag(t)=—[i1Awg+Tolag— >, praz—iyh, X[TE+(—AwpA wy) — Awg]. (A4)
k

(A1)  The sign of the real part is determined by the last factor.
_ Thus the change from the supercritical to subcritical bifurca-
a(t)= —[i1 Ao+ T Jag+ pdods , tion occurs at

T2+ (- AwoAwy) —Awi=0. (A5)
where the abbreviationsA wy=wo—w, and Aw=wy
—w,/2 have been used. We just mention that the compleMoreover one has to realize that the proper type of bifurca-
phase of the coupling coefficient can be absorbed in a redefiion is a condition necessary but not sufficient for the occur-
nition of the magnon amplitudes, , so that thep,, may be rence of intermittency, because of the related reinjection
considered as real quantities. mechanism. This part of the problem can only be analyzed
by numerical simulations in most cases. We refer to previous
simulations on multimode model§37], which, in fact,
1. Pomeau-Manneville type I yielded different kinds of intermittent behaviors including

In order to show that Eq.A1) supports Pomeau- tyPe-lll and on-off intermittency.
Manneville intermittency of type Il, one has to prove the
occurrence of a subcritical Hopf bifurcation. To this end we 2. On-off intermittency
consider an even more simplified form of EA1) where the The essential feature of on-off intermittency is the addi-
uniform mode interacts with onlgne spin-wave mode. For iona| degree of freedom becoming unstable via a global
this simple two-mode model a nontrivial stable f'XEd_po'”tsymmetry-breaking bifurcation. Consider a set of spin waves
has been reported to occur gl = \I'g+Awg/|pw| [36] In interacting with each other through the uniform mode and
the specific case of resonant parametric pumping=0.In forming a chaotic ensemble. In terms of a multimode model
the general nonresonant case, however, the stability of then1), the coupling between the uniform modg (the “cha-
nontrivial steady state,= ag,a,=ay+0 may be affected by otic mode™) and any other spin waw, not being initially in
stronger pumping. Looking for the linear stability of the non- the ensemble is governed by
trivial fixed point, one has to solve in general a characteristic
equation of the fourth degree, since the two-mode model is éq(t)z —[iAwg+Tqlag+ pggaody - (AB)
in general characterized by four degrees of freedom, e.g., the
amplitude and phase of either mode. To keep the problerBy virtue of the chaotic dynamics af,, the modea, may be
analytically tractable, we applied a perturbation method withparametrically excited, giving rise to intermittent oscilla-
respect to the dimensionless parametgesT’y/I", and  tions. As usual in parametric instabilities an analytical ex-
lc?=|pag/T|?. At order zero the eigenvalues read,  pression for the corresponding threshold is difficult to obtain.
=+iAwg,\3=—2I"y, and\,=0. In first order of perturba- If one models the chaotic dynamics af by a Gaussian
tion we obtain white noise{ay(t)ag )=|ao|?4(t), then the threshold for in-
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termittency is obtained aao|?=T,/|pqqel?>. Contrary to

Ret al. PRE 59

control parameter, becomes visible in the global system dy-

simple models of on-off intermittency, the mechanism fornamics above a threshold. The numerical results of F3ei.
the saturation of the spin wave amplitude is here not relatetndicate that on-off intermittency seems to be a quite com-
to nonlinear contributions but may come from a dephasingnon phenomenon in such systems. The only additional con-

mechanism developed in the context of theory.
Altogether, it is possible that a certain spin wagwhich

dition is the absence of other attractors outside the invariant
manifold. In this case the diffusionlike dynamics might en-

has a vanishing amplitude below some critical value of thesure reinjection, and the intermittent behavior can occur.
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