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Approximating chaotic time series through unstable periodic orbits

T. L. Carroll
Code 6343, Naval Research Laboratory, Washington, D.C. 20375
(Received 1 June 1998

There are many noise reduction methods for chaotic signals, but most only work over a limited signal to
noise range. If chaotic signals are to be used for communications, noise reduction techniques which can handle
larger amounts of noiséor deterministic noiseare needed. Here | describe a method of approximating a
chaotic signal by constructing possible sequences based on unstable periodic orbits. The approximation is good
enough to distinguish between chaotic attractors, even when large amounts of noise are added to the chaotic
signal.[S1063-651X99)00202-0

PACS numbegs): 05.45-a

I. INTRODUCTION Il. BASIC METHOD

There has been much work published on removing noise 'I_'he basic proce_dur_e ! use 1s as follow(s) Extract low
from chaotic signal§1—7]. Much of this work was based on period unstable periodic orbits from the chaotic system. Any

embedding the chaotic sianal in a phase space in order t%f the known methods for extracting unstable periodic orbits
9 g P P will work for this [21,25,27. | usually use the method of

eliminate noise. In general, phase-space-based noise reduc%se returns applied to a chaotic time sefi2s]. If an un-

tion techniques are only good if one can embed the ChaOtIgtable period orbit is so unstable that it does not show up in

signal in phasg space, so that the. noise_-corrupted pqint in ﬂlﬁe time series, then it will not contribute to making a good
phase space is not too far from its noise-free location. The pproximation ,to the signal. Figure 1, for example, shows

noise reduction techniques considered were usually limite e S )
. . - The first five unstable periodic orbits for the Lorenz system of
to noise on the order of 10% of the amplitude of the chaotlcEq (1)

signal, although some techniques could handle noise as large (2) Piece together individual unstable periodic orbits to

as the chaotic signal. create longer periodic orbit sequences. First, one must decide

At the same time, chaos is being considered as a Commll!fow to match up unstable periodic orbits, i.e., how could one

n.|cat|ons S|gna{8 18. In many situations, cqmmumcaﬂons orbit lead into the next. The most general way to do this
signals are subject to large amounts of additive noise. Theré , . X

o would be first to choose a point on orl#itto be the final
are spread-spectrum communications systems that can func-

. . . point on that orbit. The final point on orb&, call it x4, is a
‘t‘lon.wh,fan the Noise I 1000 t|mes' as large as the .S[g'@ new initial condition. Using a knowledge of the dynamics, it
Noise” may include random noise, other chaotic signals

. h X tinath interf should be possible to predict the future trajectory from point
used as carriers by other transmitters, and multipath inter elz,. Next, assume some small errorsg. This small error

ence, which includes delayed versions of the same chaotic;, |ead to a range of possible values for the point that

signal. If chaotic signals are to be used for communicationsgygmes one time step afteg. The initial point on orbi, the
then noise reduction techniques are necessary that wokystaple periodic orbit that follows orbd should be within
when the signal to noise ratio is much less than 1 or the noisgis range. | use this prediction method below with the logis-
is deterministic. tic map, although in practice a simpler method may be used
Previous noise reduction techniques have focused on rewith flows. | describe the simpler method in Sec. lIl.
covering an exact copy of the original chaotic signal. For Some(or many of these periodic orbit sequences may not
some applications, it might be useful just to approximate theactually show up in a time series signal. One may compare
original chaotic signal, as long as the approximation recov{as shown beloythe periodic orbit sequences with many
ered some useful property of the chaotic signal, such aime series signals to see which sequences are actually
which attractor the chaotic system was in. In this paper, | us@resent as good approximations to the time series. Periodic
unstable periodic orbits to approximate a chaotic signal. Al-orbit sequences that are never useful as approximations to
though there are an infinite number of unstable periodic orthe time series may be eliminated from consideration.
bits in a chaotic attractor, many properties of the chaotic (3) Take all periodic orbit sequences of a given length.
attractor may be recovered from only the lowest period orbitsCompare all of these sequences with an equal length piece of
[20-26. It is possible to construct an approximate skeletorthe chaotic time series. | use a cross-correlation to compare.
of the chaotic attractor by stringing together unstable peri first subtract the mean value from the time series signal and
odic orbits. The skeleton will not be exact because the chafrom each individual periodic orbit sequence, so that all sig-
otic system may be on some orbits only for a short time, bunhals are zero mean. | calculate the cross-correlation between
the skeleton may be good enough for some purposes. Thisach sequence and the pidoe segmentof the time series.
procedure will work better if the chaotic system stays neaiThe cross-correlation is normalized so that the largest pos-
each unstable periodic orbit long enough that it completes aible value is 1, which occurs for identical signals. | take the
full cycle of the orbit, making it easier to identify the orbit. sequence with the largest cross-correlation to be the best ap-
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odic orbit sequences that | construct actually occur in the

30 - . . . h .
o @ %7 () attractor, so it should be possible to limit the increase in the
N 0 209 number of sequences that need to be considered. It may be
§ 109 g 10 7 L that work on classifying chaotic attractors using grammars
g ° 5 ° — [30] or templates[31] may help limit the number of se-
& 10 0 & 10 guences under consideration.
> 20 > 20
-30 -30 Il. LORENZ SYSTEM
T T T L »
20 0 2 20 0 20 | start with the Lorenz system as an example. The Lorenz
X (arb. units) X (arb. units) equations | use here are
30 (b) 30 (e) dx
- 20 - — - _
2 9 20 . a - 1&y_ X)!
T 10 B 104
3 T 3 9
§ 0 § o — Ozt a5.9%— (1)
> .20 — > .20 dt - . y1
-30 -30
I ™ — L dz
-20 0 . 20 -20 0 20 ——=Xy—4z.
X (arb. units) x (arb. units) dt
807 (0) The equations were integrated with a fourth order Runge-
= 27 Kutta integration routine with a time step of 0.028.
e 10 | found the periodic orbits for the Lorenz system up to
; 0 — period 4 using a Newton-Raphson algorith&2]. Figure 1
& -10 7 shows arx-y projection for each of these orbits. As can be
> 20 seen, there are only a few basic types of motion for the
30 Lorenz system. We see motion about one center, motion
— — about both centers, or combinations. Motion around one cen-
-20 0 20 ter or around two centers occurs at incommensurate frequen-
X

cies, so these orbits are not true period 1, 2, 3, and 4 orbits,
FIG. 1. Unstable periodic orbits for the Lorenz system of Eq.but | will label them as such for convenience. The length of
(1). (8 is period 1,(b) is period 2,(c) is period 3, andd) and (e) the period 2 orbit is close to twice the length of the period 1
are period 4. orbit, the length of the period 3 orbit is close to three times
the length of the period 1 orbit, and so on.
proximation to the piece of the chaotic time series. | then As an example of the lack of cross-correlation between
repeat this procedure for the next segment of the chaotic timdifferent periodic orbits, | constructed sequences consisting
series. It is necessary to match the phase of the periodic orhitnly of the x component of the period 2 and 3 orbits. |
sequence to the phase of the time series segment, but thisgbifted the phase of one of the sequences to find the maxi-
easily done by using fast Fourier transform techniques tanum of the cross-correlation function between the two se-
compute the cross-correlatipgs]. quences. When the two sequences were four cycles long, the
Cross-correlation is commonly used in standard spreadmaximum of the cross-correlation was 0.49. When the two
spectrum systemgl9,29. To be rigorous, cross-correlation sequences were eight cycles long, the maximum of the cross-
techniques are used with a set of orthogonal time series, swrrelation was 0.24.
that the cross correlation between the time series is zero. In The unstable periodic orbits for the Lorenz system may be
the examples presented in this paper, the signals are not asembined into periodic orbit sequences. In order to combine
tually orthogonal. The cross-correlation between two signalshe orbits into sequences using the prediction method de-
is not zero for these short sequences. Nevertheless, the crossribed above, it is necessary to kngyy, andz points at the
correlation between two identical periodic orbit sequence®nd of each unstable periodic orbit. Because the Lorenz sys-
will be one. Because a chaotic system has a one or moriem is a flow, however, there is a simpler approximate
positive Lyapunov exponents, the cross-correlation betweemethod to combine unstable periodic orbits into sequences.
nonidentical sequences will be less than 1, so it is possible t8 flow system changes continuously from one time step to
distinguish between periodic orbit sequences using crosghe next, so one may attempt to combine orbits by making
correlation. The accuracy of the cross-correlation calculatiothe sequence roughly continuous from the end of one un-
will increase as the sequence length increases and decreagtable periodic orbit to the beginning of the next. One may
as the noise level increases. choose a particular arbitrary value of the signal to match
There is a trade-off in extracting a signal from noise: theorbit A and orbitB (in a periodic system, this would be the
longer the sequences, the more of them there are to be corsame as matching the phases of the two orbiitsr example,
pared. The number of sequences should increase roughly eane may use the point where the orbit crosses zero going in
ponentially with their length. | show below that not all peri- the positive direction as the matching point. If the orbit does
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FIG. 2. Sample of a periodic orbit sequence for the Lorenz ‘€ 10 M \

system of Eq(1). The sequence consists of a period 1 orbit fol-
lowed by a period 2 orbit and then another period 1 orbit.

-10 4
not cross zero, one may use the point where the orbit most 20 |
closely approaches zero. Figure 2 shows an example of a
sequence consisting of a period 1, period 2, and period 1 ]
orbit, all from thex variable of the Lorenz system. The ar- o0] | ©
bitrary matching condition does lead to some glitches, as can
be seen in Fig. 2, but the resulting sequence is good enough
for an approximation.

All possible periodic orbit sequences up to a certain
length are constructed. The dynamics of the particular dy-

Xs (arb. units)
o

|
WA

X¢ (arb. units)
o
- ]

|

namical system may limit which periodic orbit sequences are 10

possible. In the Lorenz system, for example, thariable is 20

symmetric about zero. For any periodic orbit, both the orbit . . .

and its inverse may be used to construct a periodic orbit 0 5 10 15 20
sequence. The period 1 orbit, however, does not cross the t(s)

origin, as can be seen in Fig. 1. One could not have a se-

quence consisting of the period 1 orbit followed by its in- FIG. 3. (a) is thex signal from Eq.(1); (b) is x¢, an approxi-

verse, because the Lorenz system cannot cross zero while ifation to thex signal constructed from sequences of unstable peri-

a period 1 orbit. It might be possible, on the other hand, tcpdl_c Ol’bl'tS; an_d(c) is the same apprOX|_mat|0n when a Qaussmn

have a period 1 orbit, a period 2 orbit, and then the inverse of/ité noise twice as large as thesignal is added to the signal.

the period 1 orbit. While the approximation ific) does_ not quk that good, itis usua_lly
Some orbits have several zero crossing points, so there apg the same side of zero as the time serie@inso some topologi-

several possible phases in which the orbit may enter into 8a| properties are still captured.

periodic sequence. The period 3 orbit, for example, has two

possible phases. Periodic orbit sequences of a given lengtignal to noise ratio was near 0.5, but the approximation was

are constructed by combining all unstable periodic orbits andtill good.

their inverses in all possible phases, eliminating combina- In an attempt to reduce the computational burden, | took

tions obviously not allowed by the dynamics. For the Lorenz1000 period 4 segments from a Lorentime series from Eq.

system, there were 49 possible sequences of length 4, such@g, and fit each one with one of the 49 possible period 4

period +period 3, period Zperiod lt+period 1, a single sequences. Some of the period 4 sequences were not used, so

period 4, etc. The 49 possible period 4 sequences were thersjiminated these sequences. | then built period 8 sequences

combined to produce 2401 sequences of length 8. by combining the remaining period 4 sequences. As a result,
| then calculated the cross correlation between each perj-was left with 961 period 8 sequences, a reduction by a

odic orbit sequence and an equal length segment from a L@actor of almost 3 in the total number of sequences that |

renz x time series, subtracting the mean, normalizing, antheeded to consider. One might also consider eliminating se-

checking for the proper phase as above. | took the sequenggences that are not used very often. The quality of the ap-

that yielded the largest product to be the best approximatiofroximation might suffer, but the computation time could be
to that segment of the Lorenztime series. reduced.

Figure 3 shows the results of fitting sequences to a Lorenz
time series from thex variable. Figure @) is the original
Lorenz time series before the mean has been subtracted. Fig-
ure 3b) is an approximation using sequences of leng(th8
mean value has been added back in for the figureure | used data from an electronic circuit to see if this ap-
3(c) is an approximation when a Gaussian white noise signgbroximation technique could work with real data. The circuit
with a rms value of 20 has been added to the original Lorenavas similar to a circuit described in Rdf33]. The circuit
signal. The rms of the Lorenz signal is 12.7, so the rmawas described by the equations

IV. CIRCUIT DATA
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dx 1@
az—a[l.47x—,8y+z—w—g1(w)], 2 M
dy s:’—l h' H Al‘l | hvi\ '
Gt =~ 10a[x+0.2/], =, w T v W
2 4
dz .
a=—4.5a[y+0.22], {0 ' ' ' “ﬂ
2_
dw S |
——=—10a[ —2.4%+0.5v+g,(W)], 3 :) i ‘ |
2

| [W
dt )
—u WS-—pu ] \J
(W)= W —pu<wW<u j . .
L wep, 2_(c)
2 14
myw—2(m;—m,) w<-—2

T
. i, 1l
go(w)=4{ mw —2<w<2 £ ] muriri |
mow+2(m;—m,) w>2, . ﬂ
with a=10% B=1.88, ©=0.635,m;=—0.5, andm,=0.5, L . . . .
Figure 3a) shows a time series of the signal from the 0 2 4 6 8 10
circuit, digitized at 100,000 points/sec. t (ms)

| digitized all four signals from the circuit, and used the . . o . .
method of close approaches to find periodic orbits up to pe- FIG. 4. (@) is a signalw from the 44 circuit described in Eq.
riod 4. As with the Lorenz system, | then constructed all(?): (b) is an approximatiow; to thew signal, constructed from
possible sequences up to length 8 usingwieignal. For this sequences of unstable_ peno@c orplts; &_o)dls the same approxi-
system, there were 768 such sequences. There are fewer S2ton when a Gaussian white noise twice as large awtsignal
quences than for the Lorenz system because the circuit mu§t 24ded to thav signal. Note the poor approximation between
encounter a period 4 orbit for the signal to cross zero. In =8 and 10 ms, when the circuit is not near an unstable periodic
the Lorenz system, thesignal could cross zero on a period orbit.

2 orbit.

Figure 4a) shows thew time series from the circuit. Fig- Runge-Kutta integration routine with a time step of 0.02.
ure 4b) shows the approximation to the circuittime series. Periodic orbits were found for the resulting attractor by using
There are places where the approximation is good and placéde method of close approach. Equati¢@swere then inte-
where it is not as good. Between 8 and 10 ms, it appears thg[a_ted with a time step of 0.08 to pr_oduce a time series of the
the circuit spirals in to an unstable fixed point and then* Signal. The average value of thesignal (0.028 was sub-
shoots out. This motion does not stay near any single lovifacted from thex signal to producex,, which had zero
period unstable orbit, so it is not well approximated. mean. Sequences of length 8 periods based on unstable pe-

Figure 4c) shows the approximation to the time series riodic orbits up to period 4 were constructed as before, and
when Gaussian white noise with a rms amplitude of 4 hasheir mean values were subtracted. Figure 5 shows the zero
been added to the original signal. The rms amplitude ofithe

signal from the circuit is 1.99, so the signal to noise ratio is 0.15
0.5. The approximation is not as good with the added noise
but the approximate signal is still usually on the same side o 0.10
zero as the original signal. —_
2 005
V. SENDING A SIGNAL 5
« 0.00
If the approximation to the chaotic signal is to be useful, 'g
it must recover some property of the chaotic signal that we ~.9.05
can control. One property that the approximation can pick uf  »& d U
is which attractor the chaotic system is in. As a communica -0.10 -
tions example, | send either a signal from an asymmetric
chaotic attractor or its inverse. Because the attractor is nc -0.15 - L U h

symmetric about zero, | can tell by fitting periodic orbits T T l

whether | am sending the unaltered chaotic signal or its in 0 2 t 4(05) 60 80
verse.
For my test system, | used Eq8) with a=1, 8=2.4, and FIG. 5. Zero mean signai, from the simulation of Eq(2) with

©=0.4. Equations2) were integrated with a fourth order «o=1, B=2.4, andu=0.4.
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ated the communications signal to produce the signal

_:..‘f 05 - @) AXx.(7), whereA is an amplitude multiplier and was the
5 delay time. | added these signals together to produce
8 0 +AXC(T).

5.0_5_ | used delays of; data period(800 points, about 13
o | cycleg and3 cycle (about 60 points In both cases, | could

o
(&4
L

— — recover the information signal for amplitude multipliersA
Al‘l (b) up to 0.8.

| also tested the effect of periodic interference on the
communications signal. The power spectrum of xrggnal
from Eg.(2) has a large peak at about 0.42 Hz, correspond-
ing approximately to the frequency of one cycle. | added a
7 - ' - T - - - sine wave at this frequency to the communications sigpal

-0.5 1

$4 (arb. units)
o

% o5l (e) Again | used periodic orbit sequences of length 8 to recover
5 _‘—'—| —'_‘—| the information signas. | was able to recover the informa-
g © |_\_'_‘_ tion signal when the sine wave rms amplitude was up to
. about? of the rms amplitude of the communications signal.
& Using longer sequences should allow for recovery at lower
) - . - T - - T signal to noise ratios.
0 50 100 150 200 250 300 350
t (s) VIl. MAPS
FIG. 6. (@) is a communications signal used to modulate the It is natural to attempt this sort of approximation in maps.
carrier signal of Fig. 4(b) is the recovered modulation signsl. In a map, a period 2 orbit is really two steps long, not 30

The magnitude oX; is the cross-correlation between the modulatedsteps as in our last example, so computation time should be

communications signal, and its periodic orbit approximatioitc) speeded up. | used the logistic map
is the recovered modulation sigr&l, when a Gaussian white noise

signal twice as large as the communications signahas been Xnt1=4Xn(1—Xp), 3)
added to the communications signal. ) ) ) ) o o

which | iterated with 64 bit precision. | then found periodic
meanx signal, X, . orbits up to period 8 for the map.

To encode a signhak, was multiplied bys= *+ 1. The sign | created longer sequences from orbits up to period 8. |
of s was switched every 800 points, or about 26 cycles, tg/sed all possible phases of each orbit in making my se-
produce a communications S|gr)q:|: SX,. The periodic or- quences. The pred|Ct|0n method described above was used to
bit sequences and their inverses were fit to the time series &gtermine which orbits could follow each other. At the end
before. To recover the Signaj | recorded whether the se- of each orbit, | extrapolated the next point on the orbit using
quence that best fit each segment of the time series was ifed- (3). In constructing sequences, | followed each orbit only
verted or not. Figure (&) shows the value Oﬁ, while F|g with another orbit whose first pOInt was within some toler-
6(b) showss recovered from the periodic orbit approxima- ance of the extrapolated point from the previous orbit. By
tion to the time series. The magnitudessthown in Fig. b) observing the behavior of the map, | set this tolerance at 0.1.
is the value of the cross-correlation between the segment of All sequences of length 8 were combined to create se-
the time series and the periodic orbit sequence that best fit iluences of length 16. | found 18 601 such sequences. In

Noise does not destroy the ability to communicate. Figureorder to lessen the computational time, | then checked which
6(c) shows the recovered value efwhen Gaussian white Sequences of length 8 were actually likely to show up in the
noise with an rms amplitude twice the rms amplitude of themap. The map was iterated for 10 000 segments of length 8,
correctedx signal was added to thesignal. Thes signal is  and | recorded which orbit sequence was the best fit. As
still recovered accurately. Using longer sequences should apefore, the mean was subtracted from each periodic orbit
low signal recovery at lower signal to noise ratios, althoughsequence before the cross-correlation calculation. Many pe-

the computational burden will increase. riodic orbit sequences were never the best fit, so they could
be eliminated from consideration. | then combined this re-
VI. OTHER KINDS OF INTERFERENCE duced set of length 8 sequences into sequences of length 16.

There were now only 650 sequences of length 16, a reduc-

Multipath interference can also degrade communicationsion by a factor of 28 in the number of sequences needed.
signals. Multipath interference occurs when the communicaFigure {a) shows a time series from the map of H),
tions signal is reflected from buildings or other objects. Thewhile Fig. Ab) shows an approximation to that time series
reflections arrive at the receiver at a later time because theysing unstable periodic orbifghe mean value has been re-
travel a different path. If the time delay is a half integral stored for the figure
number of periods of the carrier signal, the interference can The logistic map also worked in a simple communications
cancel out most of the received signal. The interfering signascheme. | first subtracted the average value from a time se-
is also difficult to separate from the received signal becausges from the logistic map to produce a time series with zero
it is at the same frequency. mean. | then multiplied the zero mean time series by an

As a test of multipath interference, | delayed and attenuinformation signak= =1 to produce a communications sig-
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—_ VIIl. CONCLUSIONS
@ 1.0 (a)
€ 0.8~ I have described communications systems with two sym-
& 06 bols, £1. It should be possible to create signals with more
= symbols by using more different attractors. Even with large
E 0.4 noise levels, the periodic orbit approximation can distinguish
3¢ 0.2 between different chaotic attractors. The periodic orbit ap-
0.0 : : : proximation technique should be useful even when there are
@ (b) other chaotic signals interfering with the desired signal.
g 0.8 The weakest point of using periodic orbit sequences to
S o064 approximate chaotic signals is the amount of computation
s needed. By using long enough sequences, it is in principle
E -4 possible to extract a chaotic communications signal from
¥ 2 very large amounts of noise, but the number of periodic orbit
0.0 , l , sequences increases exponentially with sequence length. It
0 20 40 60 may be possible to limit the number of sequences by elimi-
n nating periodic orbit sequences that do not naturally occur,

or by using the communication scheme of Hagésl. [13],
where the transmitter is controlled to produce specific se-
quences of unstable periodic orbits.

Improved techniques for searching for the best fit among

. . . ) the periodic orbit sequences could also speed up the calcula-
nal. The sign of flipped every 48 map iterations. The com- {ion "It should be possible to calculate cross-correlations be-

munications signal was then approximated with periodic Orywyeen all periodic orbit sequences. The periodic orbit se-
bit sequences of length 16. The approximation reveale¢uences could then be grouped in a tree structure according
whether the communications Signal was inverted or not. Th@o how C|ose|y they were correlated with each other. Search-
sign of s was successfully recovered when | added to theng for the best fit periodic orbit sequence would then be a
communications signal a Gaussian white noise signal with anatter of searching through the tree, which should be con-
rms amplitude half that of the communications signal. Itsiderably faster than comparing to every orbit. Another pos-
should be possible to recoverfrom higher noise levels by sible improvement is to check the most often used periodic
using longer periodic orbit sequences, although there wilbrbits sequences first, and use the first sequence for which

FIG. 7. (a) is the signalx(n) from the logistic map of Eq(3).
(b) is an approximation to the logistic map signal using periodic
orbit sequences of length 16.

then be more sequences to compare to. the cross-correlation exceeds some threshold.
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