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Scaling in the time-dependent failure of a fiber bundle with local load sharing
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We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon
approaching the complete failure of the bundle, the breaking rate of fibers diverges accord{mg0r
—t) "¢, whereT; is the lifetime of the bundle ang~1.0 is a universal scaling exponent. The average lifetime
of the bundle(T;) scales with the system size HS °, wheres depends on the distribution of individual fiber
as well as the breakdown rulg51063-651X99)13902-3

PACS numbg(s): 64.60.Fr, 62.20.Mk, 64.60.Ak, 05.45a

[. INTRODUCTION where the load-dependem{ o) is introduced as a hazard
rate, which is usually referred to as theeakdown ruld4] in
The failure of disordered materials under load is a com+the literature.
plicated phenomenon, the modeling of which is a subject of A fiber, say fiberi, is assumed to have an endurance
great interest because it forms the basis of numerous applinreshold(or say, critical damaged?, which is drawn from

cations from space technology to paper maKib The fail-  a cumulative distribution
ure process also represents an important class of pattern for-
mation and scaling problenig]. The fiber-bundle model, as P(di<d)=1-exd —¥(d)], (2

a simple and interesting theoretical model in this field, has ] ) . .
been studied extensively. The early studies on the statiwhereW(x) is the shape functionPrevious theoretical and
fiber-bundle model can be traced back to the work byexperlmental worK4,9] favors a shape function of the form
Daniels[3], while the time-dependent method to the model B

was proposed by Colema#]. In a recent papd5], Gomez P (x)=x" )

et al. developed a probabilistic method for solving the time- As for the breakdown rule/(c), two special forms are

dependent model. In the static model, each fiber in th?/videly used in the literature: the power-law form
bundle is assumed to have a strength threshold, a load above '

that will break it instantly, and a load below that does no o \P

harm. In the time-dependent model, each fiber is assumed to vp(o)= Vo(_) 4
have a lifetime under a given load history, and it breaks 70

because of fatigue. The load-sharing rules, which describgng the exponential form

how the load of a broken element is transferred to survival

elements, are essential to the definition of the model. In what no

is called equal load sharing model, the total load of the Ve((f)=¢oexl{a—), 5
bundle is equally shared by all surviving fibers, while in the 0

local load sharindLLS) model the load of a broken fiber is \wherey,,0,p, ¢o, and 7 are all positive constants.
transferred to its nearest neighbors. A hierarchically orga- ynder a load each fiber will break when the damage ac-
nized fiber bundle was also proposed, and has received mugiymuylated exceeds its endurance threshold, and all fibers will
attention, especially in the geophysical literat{8¢7]. Vari-  preak eventually, leading to the complete failure of the
ous aspects of the fiber-bundle model have been investigategyngie. Let us denote the total load on the bundidy In
such as the strength distribution for a static mdd@e8] and  general,s is a function of time. For example, it can be a

the lifetime distribution for a dynamic orfé,9]. In this pa-  |inearly increasing function or a periodic function of time
per, we will study an LLS time-dependent model, and inves{4]. |n this paper, we will consider the simple case thas
tigate the scaling behaviors in its failure process. a constant. In the following numerical calculations, if not

Let us consider a fiber bundie consistinghofibers. We  qhenwise specified, the load is set tode o. It should be
assume that when a fiber is subjected to a load hisigty,  ngteq that although the total load on the bundle is constant,

some damage will accumulate, which is described by the loads on the individual fibeks;(t) are not.
t
d(t)= fo vfo(7)]d 7, () IIl. THE LLS MODEL

We consider a fiber-bundle model with the LLS rube.
fibers are arranged evenly on a circle, and each of them has
*Electronic address: zhangsd@bnu.edu.cn two adjacent neighbors. The total load on the buridte,
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FIG. 1. Breaking rate(t), defined in the text, scales with the time to failure @s—£t) ~¢, whereé~1.0 is quite a universal valuéa)
Using the power-law breakdown ru(é), with p=10, and the shape functidB), with 3= 2. (b) Using the exponential breakdown ru®,
with =1.0 and shape-function paramefe+ 4. In both(a) and(b), the system sizes aié= 100 and the dashed lines show the curves for
yoex~ 1 for reference.

kept constant in this study, is shared by survival fibers. Asmooth because of fluctuation, but the general trend of the
survival fiberi carries the loadr;=K;o, where the concen- breaking rate (t) agrees well with Eq(7).
tration factorK;=1+(l;+r;)/2. Herel;(r;) is the number of In what follows, we try to understand the scaling behavior
broken fibers on the leftright) of fiber i. It is clear that (7) through analytical treatment. In the discussion, we take
3;Ki=N, so the total load is conserved. With such a loadthe limit N—«. Let us call the connective broken fibers
sharing rule, the load of a broken fiber is transferred to théounded by unbroken oneseack Thesizeof a crack is the
surviving neighbors on both sides. Note that this rule is dif-number of broken fibers. Because of the local load-sharing
ferent from the one-side ca$&0], in which the load of a rule, the fibers bounding a larger crack experience a heavier
broken fiber is transferred only to its neighbor on one side.load than those bounding smaller ones. Therefore, when a
This LLS fiber-bundle model was developed by Harlow major crack is formed in the bundle, breaking will mostly
and Phoenix8] to model the failure of a unidirectional com- occur along it. In other words, the fibers adjacent to the ma-
posite material under tensile loads. The model has drawn thier crack are the ones that will most probably break in the
attention of many authors. In recent years, the static LLSiext step. This can be seen from the evolution of the gjze
fiber-bundle model was studied in terms of the burst-sizeof the biggest crack. Figure 2 showes, versus the total
distribution[11-13, and the failure probability of the bundle number of broken fibers in the bundle. At the early stage of
under a given load14,15. In this study, we will focus on the failure process;,, remains constant for some timay,
the scaling behaviors of the dynamic LLS fiber-bundlewhich indicates that small cracks nucleate at different loca-

model. tions. As more and more fibers break, some small cracks will
coalesce or grow to form a major crack, and then the major
IIl. SCALING OF BREAKING RATE WITH TIME _crack grows, W_hlch is _reflected in this flgurg by a linear
TO FAILURE increase ot,, with N¢ with slope 18). During its growth,

the major crack may also coalesce with some small cracks
Let N¢(t) be the number of broken fibers in the bundle atand become even larger, indicated in the figure by local
time t, with N¢(0)=0 andN¢(T;)=N, whereT; is the life-  slopes steeper than 1 at some poiets.,C).
time of the whole bundle. The breaking rate of the bundle is Suppose the size of the major cractNg(t) —k, wherek
defined as is the number of failed fibers that do not belong to the major
crack. The loads on the fibers adjacent to the major crack are

(t) N () (6) 100 40
r(t)y= .
ot @ ®)
8 30

We have performed extensive Monte Carlo simulations of 60 »
the breaking process of the time-dependent fiber-bundle,z 4 of B
model with LLS, and found that in a wide range of parameter 10
value, the breaking ratgt), upon approaching the complete ®
failure, scales with the time to failure as 0 °Fa

(e (Te=1) 7%, @) PoRoeERmo 0 e 0w

and the scaling exponegt=1.0 is a quite universal value. FIG. 2. Example of the evolution of the biggest crack in the

Examples of the behavior of the breaking rate are shown ifailure process of the fiber bundle. The exponential breakdown rule
Fig. 1. In this log-log plot, dashed lines with slopel are s used withy=1. The other parameters axe=100, 8=4. (b) is a
also shown for reference. The numerical results are not veryart of (a) enlarged.
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[1+(N;—k)/2]o, so damage will accumulate in these fibers  10% 10'
with th_e rate v([1+ (N;—K)/2]o). The bre.aking rate of 8=1, n=10 $=2, p=40
these fibers can be assumed to be proportionaty, and 100 00}
one has s o=
v v 107 ¢
d N¢(t) -k © g7 b
r(t)y= =A(t)v| |1+ o, (8) 102 ¢
dt 2 @ ®)
10°® 3 ‘ . ‘
whereA(t) is a factor that depends on the accumulated dam- 10 10* 10° 10*  10° o 1 1 0t 1t
ages in the fibers and their endurance thresholds. An exac. N N

calculation ofA(t) is extremely difficult and might be im-

possible. We assume that the variancéf is unimportant according to a power law. The circles are results from numerical

and takeA as a constant for simplicity. The validity of this g jations with at least 100 samples, the solid line is for the
assumption is verified by the agreement with numerical reqqyer-law fit y=ax ® to the numerical data(@ B=1,7=10

sults. Note that sometimes a fiber adjacent to the major crack—g 14x10-¢, and 6=0.60. (b) B=2, p=40,a=0.87, and &
happens to be also adjacent to a small crack, resulting iag 50
more load on it, the influence on the breaking rate, however,

is negligible approaching the complete failure. data were also tried, but none is better than the power law. It
For the exponential form of breakdown ru®), we have  should be noted that in the static LLS model the average
d Ny(1) Ne—K\ o strength of the bundle follows a logarithmic dependence on
f =A¢Oexp{ 7 f )_ (9)  the system siz§10,16.
dt 2 The exponents for the power law, however, is not of a
universal value. It depends on the breakdown rule as well as
the distribution of damage endurance for individual fiber. We
rt)=a YT—t)" %, (10) pe_rformed extensive numerical simulations to explore the re-
lation between the expone@dtand the parameters,p and
where a= no/(20y); T is the value of time that gives #. Some results are listed in Table |. There seems no simple
N;(T;)—co. general expression relatingito 8,p, and ». For some lim-
For the power-law form of breakdown rulé$), iting cases, however, we can get a simple relation. From
Table I, one can see that whenor 7 is large, the value of
the exponent is very close to 18. This result can be un-
derstood by the lifetime distribution of the fiber bundle.
Whenp or 7 is large, the fiber bundle breaks in the follow-
and ing way: when the weakest fiber breaks, it will form the
crack that leads to the failure of the whole bundle. So the
oo (Ty—t) 1~ [Mp-1] lifetime of the bundle will depend on the weakest fiber, and
' is thus determined by it. From Eqél), (2), and (3), the
(12 lifetime of an individual fiber under a constant load is
distributed as

FIG. 3. Average lifetime of the bundle scales with system Bize
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p—1 (pl1=p)
r(t)= C TC(Tf_t)

with C=Avy(o/og)?, and N¢(T;)—w. Therefore, (=1
+1/(p—1). Sincep is quite large, typically between 10 and
80[9], it is not surprising that~ 1.0 in the numerical simu-
lations.

P(ti<t)=1—e 1" (14)

For a bundle oN fibers, if the bundle’s lifetime is deter-
mined by the lifetime of its weakest element, the lifetime
distribution for such a bundle is, by the weakest-link rule and

In deducing the scaling of the breaking rate, we havewhenN is large,
taken the thermodynamic limit by settimdgy(T;) =c. In nu-
merical simulations, however, we cannot realize infinite sys- P(Ti<t)= 1— e Nv(ol? (15)
tem size. Given the local load-sharing rule, the lifetimeof
a fiber bundle depends on the endurance of each fiber. Due jghq this is the Webull distribution, with which the average
fluctuation, T is different from bundle to bundle. Since the |ifetime of the bundle is
fluctuations are related to the system size, the average life-
time (T) of the bundle should in principle depend 6f TABLE I. The exponents, defined in Eq(13), depends on the
which is known as a size effect. We found that in general thgeakdown rule as well as the endurance distribution of the fibers.
average lifetimgT;) scales with the system size as

IV. LIFETIME OF THE BUNDLE

p=10 p=20 p=40 x=1 =10 95=20

(TryeN~2, (13

B=1 0.49 0.83 0.97 0.17 0.60 0.97

where(- - -) means the ensemble average. Some of the nug=2 0.33 0.47 0.50 0.10 0.42 0.52
merical results are shown in Fig. 3, in which the power-lawg=4 0.23 0.26 0.27 0.053 0.23 0.26
fit to the data is quite good. Some other forms of fit to the
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modulusm. For the caseg=2 andp=40 (Fig. 4b), we get
quite a straight line, and the best linear fit to the distribution
curve gives the Webull modulus~2.03, very close tg3
=2. Notice that for this casé~0.50=1/8. For the cases
=1 andp=10 (Fig. 43, however, the distribution curve is
not a straight line, indicating that the lifetime is not very well
8=2. p=40 Webull distributed. For this casé~0.49, which is quite
different from 18=1.0.
- . 7 6 5 4 3 =2 In the early studies on the lifetime distribution, Phoenix
i@ 1) (v 1) and Tierney[9] were able to obtain an approximation to the
lifetime distribution of the fiber bundle, which was also of
FIG. 4. Lifetime distribution of the LLS fiber bundle. The re- \wepull form. Their results were based on the idea that when-
sults in this figure are from simulations of AGamples.(@) B ever a crack of critical size, calledkd crack in their paper,

=1,p=10,N=1000. The curve is not a straight lin) 5=2.p  gmerges in the system, the bundle will fail instantly.
=40, andN=2800. The curve is quite a straight line, indicating a

Webull distributionP(t) = 1—exp(—at™. The best linear fit to the
numerical data ir(b) gives the slopen~2.03.
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V. CONCLUSIONS

In conclusion, we have studied some scaling behaviors of
the time-dependent fiber-bundle model with LLS rule. In
quite a wide range of parameter values, the breaking rate
scales with the time to failure asT(—t) 1. The average

<Tf>=f:th(Tf<t)=fowtd(l—e*N[V<">tlﬁ). (16)

Changing the variable of integratidt?= 7, one gets lifetime of the bundle scales with system sizeNas’, with &
dependent on the breakdown rule and the endurance distri-
(T)= Nfllﬂfw,rd(l_ef[v(o)‘r]ﬁ)' (17) bution of the individual fiber. In the limiting cases in which
0 p or 5 is very large, the lifetime distribution of the bundle

) o o can be well approximated by a Webull form, and the Webull
The integration in the above equation is independeM,&fo  modulus for this distribution is just the shape-function pa-

(Try=N~, and 5=1/B. rameterg, and the scaling expone@t=1/3.
From the numerical results, we notice that 1/8 is not
satisfied by all values gb and 7. The deviation ofs from ACKNOWLEDGMENTS

1/8 may indicate the deviation of the lifetime distribution
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