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Universal finite-size scaling functions for critical systems with tilted boundary conditions
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We calculate finite-size scaling functiotBSSF’s of Binder parameteg and magnetization distribution
function p(m) for the Ising model orlL; XL, square lattices with periodic boundary conditions in the hori-
zontall ; direction and tilted boundary conditions in the vertitaldirection such that theth site in the first
row is connected with the mot{ cL,,L,)th site in theL, row of the lattice, where £i=<L,. For fixed sets
of (a,c) with a=L;/L,, the FSSF’s ofg and p(m) are universal and in such casafc?a’+1) is an
invariant. For percolation on lattices with fixed the FSSF of the existence probabiligiso called spanning
probability) is not affected byc. [S1063-651X99)13802-9

PACS numbdrs): 05.50+q, 02.70.Lq, 75.10:b

Finite-size scaling has been an active research subject in 1 (m*)
recent decadegl-15. The quantities that have been ana- g= 5(3— m2): 1)

lyzed by finite-size scaling include magnetizatiom

[2,11,19, Binder parameteg [6], existence probabilitye, _ _

[8—10 (also called crossing probability, see, e[d§]), per-  Typical results forg as a function of T-T)LY" and
colation probabilityP [8—10], distribution of magnetization P(m)L~#" as a function ofnL#"" are presented in Figs(a
p(m) [11], probability for the appearance of percolating @nd 2b) which show thag andp(m) have very good finite-
clustersW,, [12—14, and others. It has been found that the SiZ€ Scaling behavior. Moreover, FSSF'sgand p(m) de-
finite-size scaling function§FSSF’$ depend sensitively on Pend stlr/gngly on the tit parameter. Here, L
aspect ratio and boundary conditions of the sysfer9,13 ~ — (L1k2)™5 v»=1 ands=1/8[19].

. - - In Figs. 3a) and 3b), we show the data fog and p(m)
and by using appropriate aspect rati@6] and nonuniversal .
metric factorq2], one may obtain universal finite-size scal- for (a,c) of (5,0., (4,0, (5,04, and(1,0 together showing

. . , . that the pair(5,0.1) and(4,0) and the pair(5,0.4 and (1,0
ng fur)ctlons(UFSSFs) for percolatpn m_odel$_10,13,14. share UFSSF’s. These pairs are just examples. There are
and Ising model$11,15 in some spatial dimensions. Using

Monte Carlo methods, in this paper we calculate FSSF's fopany such combinations that share UFSSF's.

g and p(m) for the Ising model orL; XL, square(sq lat-
tices with periodic boundary conditioripbc’s) in the hori-
zontalL, direction and tilted boundary conditioritbc’s) in
the verticalL , direction such that th&h site in the first row
is connected with the mod{cL,,L)th site in theL, row
of the lattice, where £i<L, [17]; see Fig. 1 for an ex-
ample. We find that the FSSF’s gfand p(m) are universal

for fixed sets of aspect rati@a=L, /L, and tilt parametec, ‘
and in such cases/(c?a®+ 1) is shown to be invariant. For

percolation on lattices with fixed, the FSSF of the existence / / / / / / / / /

probability is not affected by. /S S S SS))
We use the metropolis Monte Carlo simulation method / / / / / / / /

[18] to simulate the Ising model oh; XL, sq lattices with / / / / / / / / /

different values ofL,, L,, and tilt parametec. For each
system, we calculatg the magnetization distribu_tion function f5 1 L,xL, square lattices with tilt parameter HereL,
p(m) at T and the Binder parametgmear the critical tem-  _g anqi ,=4; c=0 andc=1/4 for top and bottom lattices, re-
peratureT., where spectively. Note that in the top lattice thn site, Isi<L,, of the
first row is identical to théth site in the last row and in the bottom
lattice theith site of the first row is identical to the mad(
*Electronic address: okabe@phys.metro-u.ac.jp +cLy,L4)th site in the last row. In both lattices, the leftmost site
TElectronic address: huck@phys.sinica.edu.tw and the rightmost site on the same horizontal line are identical.
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FIG. 2. (a) g as a function of T—T,)L for several lattices with FIG. 3. (8 g as a function of T-T,L for (a,c)
a=4 andc=0, 1/4, and 1/2(b) p(m)L~ Y8 as a function omLY®  =(5,0.1), (4,0), (5,0.4), andL,0). (b) p(m)L 8 as a function
for several lattices witta=4 andc=0, 1/4, and 1/2. of mLY® for (a,c)=(5,0.1), (4,0), (5,0.4), andL,0).
To understand the finite-size scaling behavior shown in k| =<(K2+ k§)1/2, (4)
Fig. 3, it is convenient to consider UFSSF’s in the momen-
tum space. Lef(x,y) denote a quantity, e.g., the local mag- for any (k,, ky) in Fig. 4(a).
netization, which depends on lattice coordinatesmdy. The Next consider a quantityX, which exhibits a critical
pbc in the horizontal direction and tbc with tilt parametén  anomaly. Since the finite-size scaling behavior is dominated
the vertical direction imply that by low-momentum excitations, we can regatat the criti-

cal point as depending only on the primitive vect&rsand
k,. Then under the scale transformation: bk, we can put
the finite-size scalingnsatzfor X in the following form:

f(X+L1,y):f(X,y), f(X+CL11y+L2):f(X1y)! (2)

where x=0,...L;—1, andy=0,. —1. By Fourier
expansion, we have X (K ,kp) =b*X(bky,bky), (5)
fix,y)=> > ekekyf(k, k). (3y  with an appropriate scaling exponentlt is natural to sup-
ke kK Y pose that the scaling function depends on the absolute values

) ) of vectorsk, andk,, and the angle between the two vectors,
Equations (2) and (3) imply that ky=2#p/L; and kK, . Then we have

=2m(q—cp)/L,, where p=0,...L;—1, and (q

=0,...L,—1. The possible coordinates &f andk, are X(Kq,Kz)=0b"X5(b|Kq|,b|Ks|, ). (6)
plotted in Fig. 4a), which shows that the lattice constant in

thek, direction isa times smaller than the lattice constant in If we chooseb=1/|k,|, then we have

thek, direction, and the distance between the second point in

the bottom line and thk, axis isc times the lattice constant X(k1,k2) =Kz “Xa([ka|/[Ko|, 1,). ()
in the k, direction, thus the values @ andc may be read

from the figure. The two primitive vectors in the momentum Since|k,|=L; 'L, we get

space are thek;=(2w/L,,—c2w/L,) andk,=(0,27/L,) A

and here we consider=1, 0.5>c=0 with X(kq,ko)=L*X(|kq|/|Ks|,®). (8)
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FIG. 4. (a) Possible values ok, andk, in (ky,k,) space.(b)

Transformation fromK, ,k,) space to K ,k;) space.

It should be noted that the scaling functidnis a function
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FIG. 5. W, as a function ok=(p— p.)L*" for bond percolation
on a 320< 64 lattice withc=0, 0.1, and 0.4 and on a 844 lattice
with ¢c=0. ThelL;XL, lattice with tilt parametec is denoted by
(L1,L,,cLy). The scaling function oW, is denoted byJ,. The
monotonic decreasing functions are fdg; on the left data folJ,
for a 320x64 lattice withc=0, 0.1, and 0.4 collapse into one
curve. The functions that approach 1 for largare forU;. Two
curves ofU, for (320,64,0 and(320,64,32 haveM shapes.

from (ky,ky) to (k ,k;) and can be regarded as the effective

aspect ratio. Since the FSSEdepends only on geometrical
parameters, we conclude that the FSSF’s for systems which
are related to each other by a rotation in momentum space
are identical. It is easy to check that the pairs afc],
which have the UFSSF’s shown in Fig. 3, satisfy E@Gb.
and(9) [20].

The results forg and p(m) presented above suggest that
for fixed a, whenc is increased from 0, the effective aspect
ratio of the system decreases. For example, for systems with
a=>5, whenc is increased from 0 to 0.4 the effective aspect
ratio decreases from 5 to 1. However, such results are not
always true for other quantities. In Fig. 5, we pi,, the
probability of the appearance af percolating clusters
[12,13, as a function ok=(p— p.) L for bond percolation

only of the ratio of the length of the primitive vectors and on 320x 64 square lattices witk being 0, 0.1, and 0.4 and
their relative angle, so that their absolute orientations argn 64x 64 lattice withc=0; »=4/3 for two dimensional

irrelevant.

Now we consider a rotation fromk(,k,) to (kg k) as
shown in Fig. 4b), where the unit of measurement isf_,.
The lineOB is chosen to be thle{, axis. The straight line that
goes throughD and is perpendicular t®B is chosen to be
thek,, axis. The angle betwedDA andOB is denoted by.

Since OB=(asiné)"!, BD=sin¢, DE=cosf—OB,

tang=[a(1—c)] %, it is easy to show that for thek Ky)
system, the aspect ratia’ and the tilt parametec’ are
given by a’'=OB/BD=(asirf6) !, c¢'=DE/OB=1

—asinfcos and we have

a’'l/(c’?a’’+1)=al(c’a’+1),

percolation[5]. A cluster is percolating if every horizontal
line contains at least one site of that clugt]. The scaling
function of W, is denoted byJ,, i.e. U,(X)=W,(p) with
x=(p—pc)LY". It should be noted thaE,==;_,;W, and
Wy=1—-E,. Figure 5 shows that for systems with=5,
whenc increases from 0 to 0.1 and 0l4; ~ U, depend orc
(e.g., asc increasesy; increaseg whereasJ, (hencek,)
does not change. Figure 5 also shows that the lattices with
(a,c) of (5,0.4 and (1,0, which have UFSSF's fog and
p(m) shown in Fig. 3, have quite different results 19y, .

The results of Fig. 5 can be understood as follows. Since
values ofU, represent a global property of the system, the
arguments from Eq(2) to Eq. (6) do not apply toU,, and
systems that are related to each other by a rotation in the
momentum space do not have UFSSF's . As c in-
creases, two or more percolating clusters in the original sys-

i.e., A=al/(c?a’+1) is an invariant under transformation tem merge into one percolating cluster, tHug increases.
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However, increasing does not affect the percolating prop- tems[23]. The related mathematical problems are also of

erty of the systems under the boundary conditions consideredterest to mathematical physicists.
in this paper, and thus does not affégf. )
In this paper, we have discussed UFSSF’s for two- We would like to thank T. Kawakatsu and N. Hatano for
dimensional systems with tilted boundary conditions. Con-valuable discussions and J. G. Dushoff for a critical reading
formal invariance plays a role in two-dimensional systemsof the paper. This work was supported by the National Sci-
[22], but the argument developed here is a general one. Thence Council of the Republic of Chin@raiwan, under
extension to three-dimensional systems is now in progres§srant Nos. NSC 87-2112-M-001-030 and NSC 87-2112-M-
With rapid progress of computing and experimental facili-001-046, and by a Grant-in-Aid for Scientific Research from
ties, the UFSSF's and tilted bc discussed in this paper mathe Ministry of Education, Science, Sports and Culture,

be studied for many other physical quantities or critical sys-Japan.
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