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Universal finite-size scaling functions for critical systems with tilted boundary conditions
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We calculate finite-size scaling functions~FSSF’s! of Binder parameterg and magnetization distribution
function p(m) for the Ising model onL13L2 square lattices with periodic boundary conditions in the hori-
zontalL1 direction and tilted boundary conditions in the verticalL2 direction such that thei th site in the first
row is connected with the mod(i 1cL1 ,L1)th site in theL2 row of the lattice, where 1< i<L1 . For fixed sets
of (a,c) with a5L1 /L2 , the FSSF’s ofg and p(m) are universal and in such casesa/(c2a211) is an
invariant. For percolation on lattices with fixeda, the FSSF of the existence probability~also called spanning
probability! is not affected byc. @S1063-651X~99!13802-9#

PACS number~s!: 05.50.1q, 02.70.Lq, 75.10.2b
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Finite-size scaling has been an active research subje
recent decades@1–15#. The quantities that have been an
lyzed by finite-size scaling include magnetizationm
@2,11,15#, Binder parameterg @6#, existence probabilityEp

@8–10# ~also called crossing probability, see, e.g.,@16#!, per-
colation probabilityP @8–10#, distribution of magnetization
p(m) @11#, probability for the appearance ofn percolating
clustersWn @12–14#, and others. It has been found that t
finite-size scaling functions~FSSF’s! depend sensitively on
aspect ratio and boundary conditions of the system@7–9,12#
and by using appropriate aspect ratios@16# and nonuniversa
metric factors@2#, one may obtain universal finite-size sca
ing functions~UFSSF’s! for percolation models@10,13,14#
and Ising models@11,15# in some spatial dimensions. Usin
Monte Carlo methods, in this paper we calculate FSSF’s
g and p(m) for the Ising model onL13L2 square~sq! lat-
tices with periodic boundary conditions~pbc’s! in the hori-
zontalL1 direction and tilted boundary conditions~tbc’s! in
the verticalL2 direction such that thei th site in the first row
is connected with the mod(i 1cL1 ,L1)th site in theL2 row
of the lattice, where 1< i<L1 @17#; see Fig. 1 for an ex-
ample. We find that the FSSF’s ofg andp(m) are universal
for fixed sets of aspect ratioa5L1 /L2 and tilt parameterc,
and in such casesa/(c2a211) is shown to be invariant. Fo
percolation on lattices with fixeda, the FSSF of the existenc
probability is not affected byc.

We use the metropolis Monte Carlo simulation meth
@18# to simulate the Ising model onL13L2 sq lattices with
different values ofL1 , L2 , and tilt parameterc. For each
system, we calculate the magnetization distribution funct
p(m) at Tc and the Binder parameterg near the critical tem-
peratureTc , where
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Typical results for g as a function of (T2Tc)L
1/n and

p(m)L2b/n as a function ofmLb/n are presented in Figs. 2~a!
and 2~b! which show thatg andp(m) have very good finite-
size scaling behavior. Moreover, FSSF’s ofg andp(m) de-
pend strongly on the tilt parameterc. Here, L
5(L1L2)1/2; n51 andb51/8 @19#.

In Figs. 3~a! and 3~b!, we show the data forg andp(m)
for (a,c) of ~5,0.1!, ~4,0!, ~5,0.4!, and~1,0! together showing
that the pair~5,0.1! and ~4,0! and the pair~5,0.4! and ~1,0!
share UFSSF’s. These pairs are just examples. There
many such combinations that share UFSSF’s.

FIG. 1. L13L2 square lattices with tilt parameterc. Here L1

58 andL254; c50 andc51/4 for top and bottom lattices, re
spectively. Note that in the top lattice thei th site, 1< i<L1 , of the
first row is identical to thei th site in the last row and in the bottom
lattice the i th site of the first row is identical to the mod(i
1cL1 ,L1)th site in the last row. In both lattices, the leftmost s
and the rightmost site on the same horizontal line are identical
1585 ©1999 The American Physical Society
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To understand the finite-size scaling behavior shown
Fig. 3, it is convenient to consider UFSSF’s in the mome
tum space. Letf (x,y) denote a quantity, e.g., the local ma
netization, which depends on lattice coordinatesx andy. The
pbc in the horizontal direction and tbc with tilt parameterc in
the vertical direction imply that

f ~x1L1 ,y!5 f ~x,y!, f ~x1cL1 ,y1L2!5 f ~x,y!, ~2!

where x50, . . . ,L121, and y50, . . . ,L221. By Fourier
expansion, we have

f ~x,y!5(
kx

(
ky

eikxxeikyy f̂ ~kx ,ky!. ~3!

Equations ~2! and ~3! imply that kx52pp/L1 and ky
52p(q2cp)/L2 , where p50, . . . ,L121, and q
50, . . . ,L221. The possible coordinates ofkx and ky are
plotted in Fig. 4~a!, which shows that the lattice constant
thekx direction isa times smaller than the lattice constant
theky direction, and the distance between the second poin
the bottom line and thekx axis isc times the lattice constan
in the ky direction, thus the values ofa and c may be read
from the figure. The two primitive vectors in the momentu
space are thenk15(2p/L1 ,2c2p/L2) andk25(0,2p/L2)
and here we considera>1, 0.5>c>0 with

FIG. 2. ~a! g as a function of (T2Tc)L for several lattices with
a54 andc50, 1/4, and 1/2.~b! p(m)L21/8 as a function ofmL1/8

for several lattices witha54 andc50, 1/4, and 1/2.
n
-

in

uk1u<~kx
21ky

2!1/2, ~4!

for any (kx ,ky) in Fig. 4~a!.
Next consider a quantityX, which exhibits a critical

anomaly. Since the finite-size scaling behavior is domina
by low-momentum excitations, we can regardX at the criti-
cal point as depending only on the primitive vectorsk1 and
k2 . Then under the scale transformationk→bk, we can put
the finite-size scalingansatzfor X in the following form:

X~k1 ,k2!5bxX~bk1 ,bk2!, ~5!

with an appropriate scaling exponentx. It is natural to sup-
pose that the scaling function depends on the absolute va
of vectorsk1 andk2 , and the angle between the two vecto
v. Then we have

X~k1 ,k2!5bxX2~buk1u,buk2u,v!. ~6!

If we chooseb51/uk2u, then we have

X~k1 ,k2!5uk2u2xX2~ uk1u/uk2u,1,v!. ~7!

Sinceuk2u}L2
21}L21, we get

X~k1 ,k2!5LxX̂~ uk1u/uk2u,v!. ~8!

FIG. 3. ~a! g as a function of (T2Tc)L for (a,c)
5(5,0.1), (4,0), (5,0.4), and~1,0!. ~b! p(m)L21/8 as a function
of mL1/8 for (a,c)5(5,0.1), (4,0), (5,0.4), and~1,0!.
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It should be noted that the scaling functionX̂ is a function
only of the ratio of the length of the primitive vectors an
their relative angle, so that their absolute orientations
irrelevant.

Now we consider a rotation from (kx ,ky) to (kx8 ,ky8) as
shown in Fig. 4~b!, where the unit of measurement is 2p/L2 .
The lineOB is chosen to be theky8 axis. The straight line tha
goes throughO and is perpendicular toOB is chosen to be
thekx8 axis. The angle betweenOA andOB is denoted byu.

Since OB̄5(a sinu)21, BD̄5sinu, DĒ5cosu2OB̄, and
tanu5@a(12c)#21, it is easy to show that for the (kx8 ,ky8)
system, the aspect ratioa8 and the tilt parameterc8 are
given by a85OB̄/BD̄5(a sin2 u)21, c85DĒ/ OB̄51
2asinu cosu and we have

a8/~c82a8211!5a/~c2a211!, ~9!

i.e., A5a/(c2a211) is an invariant under transformatio

FIG. 4. ~a! Possible values ofkx and ky in (kx ,ky) space.~b!
Transformation from (kx ,ky) space to (kx8 ,ky8) space.
re

from (kx ,ky) to (kx8 ,ky8) and can be regarded as the effecti

aspect ratio. Since the FSSFX̂ depends only on geometrica
parameters, we conclude that the FSSF’s for systems w
are related to each other by a rotation in momentum sp
are identical. It is easy to check that the pairs of (a,c),
which have the UFSSF’s shown in Fig. 3, satisfy Eqs.~4!
and ~9! @20#.

The results forg and p(m) presented above suggest th
for fixed a, whenc is increased from 0, the effective aspe
ratio of the system decreases. For example, for systems
a55, whenc is increased from 0 to 0.4 the effective aspe
ratio decreases from 5 to 1. However, such results are
always true for other quantities. In Fig. 5, we plotWn , the
probability of the appearance ofn percolating clusters
@12,13#, as a function ofx5(p2pc)L

1/n for bond percolation
on 320364 square lattices withc being 0, 0.1, and 0.4 and
on 64364 lattice with c50; n54/3 for two dimensional
percolation@5#. A cluster is percolating if every horizonta
line contains at least one site of that cluster@21#. The scaling
function of Wn is denoted byUn , i.e. Un(x)5Wn(p) with
x5(p2pc)L

1/n. It should be noted thatEp5(n51
` Wn and

W0512Ep . Figure 5 shows that for systems witha55,
whenc increases from 0 to 0.1 and 0.4,U1;U2 depend onc
~e.g., asc increases,U1 increases!, whereasU0 ~henceEp)
does not change. Figure 5 also shows that the lattices
(a,c) of ~5,0.4! and ~1,0!, which have UFSSF’s forg and
p(m) shown in Fig. 3, have quite different results forUn .

The results of Fig. 5 can be understood as follows. Si
values ofUn represent a global property of the system, t
arguments from Eq.~2! to Eq. ~6! do not apply toUn and
systems that are related to each other by a rotation in
momentum space do not have UFSSF’s forUn . As c in-
creases, two or more percolating clusters in the original s
tem merge into one percolating cluster, thusU1 increases.

FIG. 5. Wn as a function ofx5(p2pc)L
1/n for bond percolation

on a 320364 lattice withc50, 0.1, and 0.4 and on a 64364 lattice
with c50. TheL13L2 lattice with tilt parameterc is denoted by
(L1 ,L2 ,cL1). The scaling function ofWn is denoted byUn . The
monotonic decreasing functions are forU0 ; on the left data forU0

for a 320364 lattice with c50, 0.1, and 0.4 collapse into on
curve. The functions that approach 1 for largex are for U1 . Two
curves ofU2 for ~320,64,0! and ~320,64,32! haveM shapes.
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However, increasingc does not affect the percolating prop
erty of the systems under the boundary conditions consid
in this paper, and thus does not affectEp .

In this paper, we have discussed UFSSF’s for tw
dimensional systems with tilted boundary conditions. Co
formal invariance plays a role in two-dimensional syste
@22#, but the argument developed here is a general one.
extension to three-dimensional systems is now in progr
With rapid progress of computing and experimental fac
ties, the UFSSF’s and tilted bc discussed in this paper m
be studied for many other physical quantities or critical s
-
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tems @23#. The related mathematical problems are also
interest to mathematical physicists.
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