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Velocity distribution for strings in phase-ordering kinetics

Gene F. Mazenko
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, lllinois 60637
(Received 25 August 1998

The continuity equations expressing conservation of string defect charge can be used to find an explicit
expression for the string velocity field in terms of the order parameter in the case @{rgnsymmetric
time-dependent Ginzburg-Landau model. This expression for the velocity is used to find the string velocity
probability distribution in the case of phase-ordering kinetics for a nonconserved order parameter. For long
timest after the quench, velocities scaletas’. There is a large velocity tail in the distribution corresponding
to annihilation of defects which goes ¥s (24+2=" for both point and string defects mhspatial dimensions.
[S1063-651%99)13002-2
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[. INTRODUCTION we find the encouraging result that Bray obtains the same tail
exponent 21+2—n as obtained here. A difference is that he
In recent work[1] we discussed how one could use con-finds these results for ai<d. Our results are restricted to
servation of topological charge to study the statistics of vethe set described above.
locities of point defects in phase-ordering systems. We were The result obtained here fdP[V] seems very simple.
able to identify the appropriate point-defect velocity field in Does it correspond to experimental observation or the results
terms of the order-parameter field in the context of aof numerical simulations? Thus far there have been no direct
d-dimensionalO(n) symmetric time-dependent Ginzburg- tests. It would seem worthwhile to check the range of valid-
Landau(TDGL) model. Using this expression for the veloc- ity of the defect velocity probability distribution given by
ity field, for point particles §=d), the probability distribu- Eg. (1).
tion for defect velocities was determined in the case of the
late-state phase ordering using the lowest-order approxima- Il. PROBLEM SETUP
tion in the perturbation expansion method developed in Ref.
[2]. This analysis is extended here to the case of string de- We study am-component nonconserved order-parameter
fects wheren=d— 1. The velocity probability distribution is field ¢,(R,t) in d-spatial dimensions which satisfies the
worked out explicitly fom=d—1=1 and 2 and for the wall TDGL equation
casen=d—2=1. These results and the results for @i d
can all be written in the form SF[¢]

q q atdla(th): -T 5wa(R5t) + ﬂa(R,t)- (2)
di2 F(—)F(—Jrl
P[V]= i 2 2 where F is an effective free-energy functional adtdis a
s n (d—n) constant kinetic coefficient. We assurfeis of the O(n)
I 2 I 2 +1 symmetric square-gradient form
v 4" c
X % (1+V?[p?)~ @202, (1) sz d’R E(V&)2+V(J)}, ©)

where the velocities scale with a factor-L(t) !, where  wherec>0 andV(¢) is chosen to be a degenerate double-
L(t)~tY2 is the characteristic scaling length which growswell or wine-bottle potential. This model is to be supple-
with time t after the quench. The result f{&® V] indicates mented by random, uncorrelated, initial conditions. We as-
that the probability of finding a defect with a large velocity sume that there is a rapid temperature quench from a high
decreases with time. There is a high-velocity til(?4+2~" temperature to zero temperature where the ngisen Eq.
which corresponds to the annihilation of defects and defecf2) can be set to zero. In the scalar case=(1) such systems
loops. order through the growth of domains separated by sharp
Bray [3] has used scaling arguments to obtain estimatesvalls. As time evolves these domains coarsen and order
for the exponents governing the large velocity tails in thisgrows to progressively longer length scales. In the case of
problem. From his Eqg20) and(21) for the case of a non- systems with continuous symmetry% 1) the disordering
conserved order parameter<2 in his notation, one is led elementg4,5] will depend onn and spatial dimensionality.
to the result, in our notationP[V]~1NVP*9~1 wherep  Thus, for example, fon=d one has point defectwortices
=2+d+1—n. The termd—1 added top in the exponent or monopoles while for n=d—1 one has vortex lines or
comes about because Bray uses the normalizatiostringlike objects. Fon>d there are no stable singular to-
J5dVPga[V]=1, while we use herdd®vP[V]=1. Thus pological objects.
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The main physics in phase-ordering systd®s8| is the It was shown in Ref{1] that the vortex charge densityfor
interplay between two characteristic lengths, a characteristipoint defects, defined by E¢6), satisfies a continuity equa-
domain sizel (t), which grows with time, and a defect di- tion of the form
mension¢ (interfacial width, vortex core size, etc.How- ]
ever, at long enough times the single lengitt) dominates, p= —Vﬂl[pvﬂl], 9
L(t)> ¢, the morphological structure looks self-similar un-
der the rescaling of space and time, and the order-parameteshere the defect velocity fieldﬂ1 is given by
correlation function satisfies the scaling equation

1
CyRO=(dR1) - §(0) = yF (%), @ DU =T (o)t St uavy vy

wherex=R/L(t) and ¢, is the magnitude ofj in the or- X, Vb,V (10)
dered state. The structure factor, the Fourier transform of

CuRY), satisfiesf3¢(q,t):Ldz//ST:(Q), whereQ=qL is a whereD is defined by Eq.7). T_hus_ one hgs an explicit
scaled wave number. For pure systems with short-range ireXpression for the defect velocity field which can be ex-
teractions and a nonconserved order parameter the growiessed strictly in terms of the order parameter and its spatial
law is given by the Lifshitz-Cahn-Allen resullt~t" for all ~ derivatives. Remember that the TDGL equation of motion
n. The two-dimensionalXY model [9-13] and the one- can be used to expregs, in terms ofy and it spatial de-
dimensional scalar modéll4,15 appear to be interesting rivatives.

exceptions. For larg® andn<d, due to defects, the struc- The expression given by E¢LO0) for the velocity is very
ture factor obeys the generalized Porod’'s 1&86-20,  useful because it avoids the problem of having to specify the
F(Q)~Q~ ("9 This reflects increasingly weaker singulari- positions of the defects explicitly. The positions are implic-
ties in F(x) for small x as a function ofn. In the opposite itly determined by the zeros of the order-parameter field. The
limit, it appears that the large behavior can, with proper practical usefulness of Eq10) can be seen by asking the
definition ofx, be put in the fomp(x)%vaef(m)xz' where  following question: In the scaling regime of a phase-ordering
v is a subdominant indgi2]. The quantities discussed above System with point defects, what is the probability of finding a
are evaluated at equal times after the quench. In the two-tim@efect with a velocityv? This probability distribution func-
case one again has a scaling 182123 and the on-site tion is defined by

correlation function has the form -
(MPLVI=(ns(V—v(¥))), (11

7 7 ~ -\
(#(R.7+1)- g(R.1)~L(7) ®) WwhereV is a reference velocity andlis the unsigned defect
density defined by E(8). The calculatedP[ V] is given by
Eqg. (1) with n=d.

Going further along these lind26] we considered the
two-vortex velocity probability distributionP[V,,V,,R],
which gives one the probability of finding the velocity of one
defect in the fixed presence of another defect a known dis-

Since a great deal is known about order-parameter corrdance away with a known velocity. Clearlp[V,,V5,R]
lations in phase-ordering systems, attention has turned té&ontains a tremendous amount of information about the dy-
ward the study24,25 of the statistics and dynamics of the namics of point defects. The physical results from the calcu-
annihilating defects themselves. The basic idea is that thition of this quantity, carried out in detail far=d=2 in
positions of defects are located by the zeros of the orderRef.[26], are relatively simple to state. The probability dis-

parameter fields, therefore the charged or signed density fortribution is a function only of the scaled velocitiag

for 7>t, where\ is a nontrivial exponent which has been
determined numerically and theoreticdlB] for a number of
systems.

Ill. DEFECT DYNAMICS FOR POINT PARTICLES

point defects is given by =V, /v fori=1 or 2, and the scaled separation R/L(t).
R The characteristic velocity is the same quantity that ap-
p(R,1)=3((R,1))D(R,1), (6)  pears inP[V]. For a given scaled separation the most

) ] . probable configuration corresponds, as expected, to a state
whereD, associated with the change of variables from theyith zero total velocity and a nonzero relative velocity only

set of vortex positions to the fielg, is defined by along the axis connecting the vortice¥;=—V,=vx.
1 Moreover, there is a definite most probable nonzero value for
D= €y €y Vo, VbV, i, v =vmax for a given value ok. The most striking feature of
e L nton these results is that for smatlthe most probable velocity

(1) goes asma=K/R, whereR is the unscaled separation be-
i i i i . tween the vortices an@=2.19 in dimensionless units de-
where €, ., .., 1S the n-dimensional fully antisymmetric  fineq in Ref.[26]. The result givingo g, inversely propor-
tensor and summation over repeated indices is implied hergonal to R is consistent with overdamped dynamics where
and below. The unsigned defect densityR,t), is given by  the relative velocity of the two vortices is proportional to the
. force which in turn is the derivative of a potential which is
n(R,1)=8(H(R,1))|D(R,1)|. (8) logarithmic in the separation distance. Since there is low
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probability [24,27] of finding like-signed vortices at short The key observation is that the right-hand side of B
distances, our results giving the velocity as a function ofhas a factor which can be written in the form
separation distance should be interpreted in terms of annihi-
lating vortex-antivortex pairs and is in agreement with the
general scaling ideas proposed by Bfay.

S R P A e PR

€y, VanlsZ' Sy (20

V. CONTINUITY EQUATIONS whereQs s, ...,  is determined by multiplying Eq20) by

Let us investigate the existence of a local statement of  and summing over all the's. We easily obtain,
topological charge in the general casensfd. The first step rememE)ering Eq15), n! Q Put-
is to introduce the appropriate density for topological charge,. A -n
In the case of point particles the conserved density is thd
charge density given by E@6). The next obvious extension J
[28] is to string defects where=d—1 and the defect line

=n!D
“*Sd—n $1Sp7 S

ng this result back into Eq.19) gives

d

S182" " Sq— n”“lV”‘l(’lj"

density is given by

ps,= () Ds, (12)
where
1
D51: nt Esimgpgun€rry - anﬂlw"lvﬂzl/l”z' ' 'Vl’vn"b”n
(13

and thes and u range from 1 tad and ther range from 1 to

n and there is summation over repeated indices. The gener-

alization of Eqgs.(9) and(12) to all n=d is given by

Pslsz-~-sd7n:5(‘2)2)5152---5[,7”, (14)
where
1
Dslsz' “Sqn n' €sy8y Sy pugpg i Evpry oy
X V,ull//vlv,uzlrlfvz' t V/,Lnl//lln' (15)
It is then straightforward to show thmslsz. Syen itself sat-
isfies a continuity equation given by
Dslsz- “Sqn V/-‘l'JSlSz' "Sd—ni1 (16
with the current defined by
JslsZ' “Sq_phy €SSy Sq_puimy '#ngﬂzﬂs' "M 17
and
1 .
Inapa:osen™ mﬁVl”Z' Vg Vg e
(18)

To obtain the continuity equation fais s .. .5
second identity. Consider the quantity

, we need a
d—n

‘Jslsz' : 'Sd—nf’“lvf"'llpv

T €518y sg_npasp e mnSppny - 'anﬂllfll”

=€ € \%
S1527 7 Sd—nM1k2 M V1V2  Vn f"lw”

XVt Vo (19)

1

(n—1)! l//vlevlvz- v €y vnDslsZ- Sg_n

-n

1 .
= m%ﬁyl,y(n— INDgs,. . s,

:‘-ﬂVDslsz---sd_n- (21)

Taking the time derivative ops s,...s, = gives, using Egs.
(10) and(21),

_ 98

Psisy - s4_n o, ¢vDslsz- . -sd_n+ o( ‘p)Dslsz- “Sg—n

I5(1h)
N (?—zpy S152+ 'Sd—n""lvl’“llp”

+8(P)V

ﬂlelsz' *Sd-n#1
and finally we obtain the desired continuity equation

bslsz- Sgen VMl( o( ‘Z)Jslsz- . -sdanl)- (22)
For the simplest case of point defects<{d), Eq. (22) can
be put into the conventional form given by E&) with

J,. =— vulD (23

g}

and the velocity given by Eq10).

Let us turn next to the case of strings where the line
density is a vectop,,, and the current is a two-component
tensor,JS.Wl'z fslﬂlﬂz...ﬂn.gﬂzﬂs.:.ﬂn. Clearly Is,uy is :.;mti-
symmetric in its subscripts. Since we expect the instanta-
neous velocity to be orthogonal to the local orientation of the
string, we can define the velocity via

Jaﬁ:UaDB_UBDa- (24)

Dotting the vectorD into this expression gives the result

vazﬁ‘]aﬂpﬂl (25)

where we have taken advantage of the fact thahd D are
orthogonal: D-v ="D,(1/D?)J,5Dz=0. The velocity field
for strings can be written in the form
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1 V. BRIEF DISCUSSION OF WALLS

Us — ﬁpfﬂeswwz' gy (26 Let us briefly discuss how things develop as one attempts

to go further and increasg—n to 2 and the case of walls.
for generaln. We must in this case deal with the quantities

Let us check this result and its sign for the simplest case

of n=1, d=2. The vectorD in this case takes the simple Dy s,= Hfslszﬂwz-~-MnGVﬂz--anﬂl'f”hvuz%z' Vot
form D,,= 6M1M2Vuz¢' g=4¢, and (36)
1 : V. and
Vg =——¢€, ..V, Ve , h=— . (27)
Sy (V lﬁ)z Hakp © M2 Symq (V ¢)2 \]Slsle: 65152”“1”2. ) ‘Mngﬂ2M3‘ oy (37)

Consider a circular loop of string of radil(t) where the If we recall the definitions of the velocity field for point
order parameter near the interface formed by the loop iglefects given by Eq23), and for string defects given by Eq.

given in polar coordinates in the form (24), then it is natural to write for walls

H( F) =A[r—=R(1)], (28 J5152#1: - Dslszv By D/"lslv Sy Dszﬂlv S (38)
whereA is an overall constant amplitude. We then need theThis expression builds in the antisymmetryXfs , .
derivativesV, y=Ar, and ¢=—R(t)A to obtain the ve- If one restricts the discussion to the physically most rel-
locity evant case oh=1, d=3, then one can use the resilf ,

= eslszﬂsvual/’ to show that the velocity field is given by
1. . .o
Vs, = ER(t)rslAzzR(t)rsl (29 1

U, =—

K1 Epslsz eslSZMSV/"lw’ (39

as expected. Typically we will substitute fd& using the .
equation of motion and use the defect locatihéunction to ~ where D2=(V#)2. Further straightforward manipulation

set leads to the final result
y=Teviy @0 0= 40
M = 27"
(V)
and
The key result here is that is orthogonal toDg,  :
(Vo) vy - Y 9 %
Vg, = — cVay. .
b (Vy)* D —LV V,..=0 (41
Uy l‘lrss_(v* w)z M1¢6#1’53’M3 :“3"0_ :
Using the same ansatz given by Eg8) and remembering
that the expression for the velocity is n;ulnphed bydunc- 1t remains to be seen if EG38) serves as a useful definition
tion settingr =R(t) leads to the resul “=A/r=A/R(t),  of the velocity field for walls withn>1. Notice that the
and we obtain the Lifshitz-Cahn-Allej6—8] result, results for a scalar order parametar<(1) can all be written
1 in the form of Eq.(40) for d=1, 2, and 3.
vsl=—rcR—Fsl, (32
(t) VI. EVALUATION OF P[V] FOR STRINGS
which tells us that the circular domain is shrinking and Our interest here is in determining the defect velocity
R(t)~tY2 probability distribution,P[V], for strings. Again we use the
Forn=2 andd=3 we have explicitly the results reported auxiliary field method29—-33 which has been successful in
in Ref.[28]: determining the scaling function for the order-parameter cor-

relation function in a perturbation theory expansion. We
evaluateP here to lowest order in this expansion where the

D= EEVlyz(V¢V1XV¢V2)’ (33 auxiliary field can be treated as a Gaussian field. The first
step in this theory is to express the order parameter in terms
g=¢€,, 0, Vi, (34)  of an auxiliary fieldm. For our purposes here the important
verr T result is that near a charge one vortex core the order param-
and eter is linear in the auxiliary fielg/(m)=Am+0O(m?3). It is

then easy to show that one can replécky m in the expres-

oo éﬁx g (35  Sion forv given by Eq.(26) and in the expression for the

D? string-charge density () =p,(m). We then want to de-
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termine the string-velocity probability distribution Appendix B. Then we use the integral representation for the

- . - - - - s function and find that we can evaluate the integral dver
({p)PIVI=(lp(g)] 6V —v( ¢))>=<|P(m)|5(V—V(m)g‘>1-2) in terms of standard displaced Gaussian integrals with the
results

One can determinB[ V] by first evaluating the more general d n 1
probability distribution _ f B e
) Q o noPIVI= so>n’2 [[ 11 d&iIDce)] PR
G(¢£,b)=(8(m)8(&,—V,m,)8(b—V?m)) (43
since xexr{ 922 (£)%[3(8), (50
noP[V]= f d" bH H de2|B(£) 60V —0(B,£)G(¢,6),  Where
p=1r=1
(44) di% - -
J(§)=f—e'k'v~] €3] (5)
where (2m)° “
R I'c 1 and
U”(b’g)zﬁ(n——l)!el“lsll‘z'””n ddb
Jk(g):f _ lze—lk v(b §)e l/2S4)b
XDSJ_( f) Evlvz- . ~vnbv1§;22' o g:?] (45) (27754)n
with :f dib ek M2 b, o~ (1/25y)b?
(27784)n/2
Dsl(g) I 51“1/"2 s V1V2 51]15”2 : 'fvn (46)

1
:ex;{ - E84(1“c)2|<akﬁl\/| WM. (52)

andny={|p(m)|). We have assumed that the quench is to
zero temperature so that the noise can be set to zero and Ww&ims overr andB range from 1 tad, those oven’s from 1

can use Eq(30). The Gaussian average determinfag¢,b)  to n. We then have the apparently Gaussian integral aver
is relatively straightforward to evaluaf84] and is given by

_ di% - . 1 _
) o (1/25,)6? 1 J(§)=J (Zw)de'k'vexx{ - 584(Fc)2kakﬁMaB},
G(é.b) (ZﬂTSO)n/Z (277§4)H/2 (zwgz)nd/Z (53
1 oo Wherel\Wa[F M M is a symmetricd X d matrix. Since we
Xexp - 2s, ;V (&) @D have the propertP, M~ =0, we see that the matrM ,; has
. a zero eigenvalue corresponding to an eigenfunction imthe
whereSo=1/n(m?)~L2, S,=1/dn((Vm)?)~L°, and direction: D,M,z=0. In order to carry out the integral in
— Eq. (53),awe must set up a coordinate system which singles
§4=£((V2rﬁ)2>— (dS,) ~L"2 (48) out the D direction andn orthcggsmal directions. Thus we
n So construct an orthonormal seD(£), for s=1,2,...n,

— — )T O = 5
The quantitiesS,,S,,S, are determined from the theory for which satisty¢,"D,=0 and¢, (S)é dss - I Appendlx C
the order-parameter correlation function and discussed fuwe show that we can writg{Y =3 A, &" and it can be

ther below. shown generally, see Appendix C, that
The problem then reduces to evaluating thend ¢ inte-
grathns |_n the integral given by E®4) using .the res_ult for (det A)(detA)= —— =, (54)
G(¢,b) given by Eq.(47). We proceed by first doing the detN D
integration overb. This is facilitated by first defining the ,
matrix M; via UM:FCMZbV and whereN is then X n matrix NW,=§;§; . We then make the
change of variables in the integral E®3) from K to
1 1
M, = =5 €usuy - uy Ds,(§) € §V2 ED. n
" _ 1 2 Sy Mmp=S €y “Vn n R R
(n=1)! p2(g) *2 L (‘;9) Ky=> t,E2 414D, (55)
vl

Clearly the quantityﬁ2 is important in the development and which clearly has a Jacobian of 1. The integral of interest is
is discussed in Appendix A. The matr | is discussed in then given by
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d

d%t .~ - s
J :f eltaD-Veit, &)V,
-] oo

Sy
xXex _E(FC)Ztvtv’vi’ ' (56)

wherev and v’ range from 1 ton. One can then do thg,
integration to obtain @ function. The rest of the integrations
are over Gaussian fields governed by the ma@x,.

—HIHOM,,

VELOCITY DISTRIBUTION FOR STRINGS IN PHAE . ..

which does not possess any zero eigenval-

ues. Evaluatlng the standard Gaussian integral leads to thgnere the characteristic speed

result

" o 1 1
J =8(D-V) —
(&= 0P ST (detQ) 2

1
exg ————=V,V, -1 vt | 5
p[ s V@ (57)
where then vectorV, is defined by
V,=EVv (59)

Note, if we insert Eq(58) into Eq.(57), we see that we need
only the matrix

Ras=E0'8(Q7Y),, (59
and
] )_5(1“)-\7) 1 1
7T 2ms)™ (derQ)
1
XEX[{—WVQVBRQB . (60)

We show in Appendix D that the matrir, defined by Eq.
(59), can be put into the very simple forR,z=§,&5, and
finally J(¢) is given by
sSD-Vv) 1 .

n < n/2IDI
(I'c)" (2mSy)

J(§)=

1
ex —_—VaV ZV . 61
p[ Zey o Pt 5‘3] oY
Inserting this result into Eq50) gives
1 n
noP[V]= ————=—
oPLV] (27Sy27S,) "2 1_:[ Hl
M (FC)n (27782)“(”2
(62)

where

1579
n d
2 Vv
A(&)—S2 VEl ;1 (£0)2+ S0 ;l ;l Vo Vgéhés.
(63)
If we make the rescalings
&, —>\/§§M, (64)
V=0V, (65)
— Sy
?=(Tc)’= (66)
S,
is introduced, therD— (S,)"2D and we obtain
11 \/E 2\
P[V]= = — I(V
P oy 54(5054 V. e
where the dimensionless integidl) is defined by
d e~ (U2Aq(£)
(V)= dé2D?(&)8(D
V)= }T VH £:D%(£) 8(D()- )(Zw)nd,2
(68)
with
n d
Ao(é)= 2 2 (€0)%+ ;Zlvavﬁfzgg. (69)

We can construct a form for the integt#&l/) which does not
involve a unit vector in thed function via the following
rearrangements:

8(D-V)=|D|8(D-V)
T? T? -
= ——6(D-V
1P| oD-¥) = (detN)l’z(
dz .
— ’D25 e (1/2)211 VVZV 70
f Gyl oD V) (70)
Inserting this result into the integra] V] gives
~ d"z
|(V):j H VH dg, (2m)"
) L e (12Ay9
XDY(€)8(D(é)- V)W. (71
where
Po(£,2)= (02 +V ettt 2,608 2, (T2)
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VII. CASE n=1 AND d=2 1[5\ 2
S,
It is straightforward to work ouf[V] and n, for the no_i( g) (82)

simplest case of defect lines in two dimensions. The key

simplifying aspect in this example is that the matg re- Trf:e EGCOT_W![ meﬂg?dt fortdete_rnlihnimg,l Wlhif[?h Se_theS_ 515 a t
- LR 22 check on intermediate steps in the calculation, is to integrate

duces to a vectog, and Ds, (&) =€y, &u, With D*=¢7 noP[V] over allV and use the fact th&[V] must be nor-

We have from Eq(67) that malized. The exercise is straightforward and leads to the

112 same result fomy. We then have the final result for the

noP[V]= o T \/?( SOS% ), (73 probability distribution

o P[V]= 22 - (83

w2 Vv v [1+(V/v)?]?

1(V)= f d2 f T O(D(&) V) e 12A(e),
(2m) (2 ) and it is easy to see that this agrees with @¢for n=1 and
(749 g=2.
and VIIl. CASE n=2 AND d=3
Ao(£,2)=E2+V Vit £+ 2285 (795) We turn to the physically important case of strings in

. ] o ] ] three spatial dimensions. In working out this case, the key
Then, since the integral is isotropic, we can pi¢ko be in  ghservation is that

thex direction and usé3(§) ~Y7/=V§y in the & function to do

the integral ove, and obtain Dal€) = 2 €0y uy€0y s € (84
_ . is a quadratic form ir¢. This suggests that we use the inte-
(V)= f fxf 7 dom (RGN +24 V), gral representation of thé function,
(27V) (27)
(76) L e dk -, =
8(D(&)-V)= f S POy, (85)
The remaining integrals are elementary and we obtain the ™
results to write the integral of interest, Eq71), in the form
N 1 d2 dk .
V)= —=—=>3 (77) IV_J A E)e (12£,Q,"
(7TV) (1+V2)2 ( ) A1 e l (277_)3 271_ (f) M
(86)
and
The matrix appearing in the Gaussian is given by
1 , ~ ~
n PV \/: VV,=5 ,5VV,+5,,V,VV ’
PV <2 ) e ( Se)  (7V) (14722 Q= O o
(78) + 5/“/.’21/21/’_ikaea,,u.,,u,’e-v,y’ y (87)

We can then obtain the string density in two ways. We  \here we have introduced,=kV, and have used the result
can compute it directly from

—3£0(—iK € ) 2 =IK-D(E). (88)

no=(|D()] &( l//)>:f VE[l d&DOIG(E), (79 \we see that in principle we can carry out théntegration
since it involves a product of polynomials times a Gaussian

whereG(£) is the integral oveb of Eq. (47) given by weight. Let us define the integral

1 L(K,2)= f e B(g)e” V264 (89
G(g):(ZWSO)”’Z(ngz)“d’ZeXF{ 557 2 2 (£,)° Pl 1(277
80 and
Restricting the analysis to=1 andd=2 gives 5 d2z ( dk .
I(V)—f f—L(k Z) (90
- ~ (U258
No= f °¢ 27 277346 (8D A significant simplification occurs if we realize that gradi-

ents with respect t& pull down factors ofD and we can
These integrations are elementary with the final result write
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L(k,2)=V{Lo(k,2), (91) 1 1 S, $ 3 1
noP[V]= > 3Ve e o /2502
where (2m)2 (Tc)® V'S, S8, V (1+V2) .
32 dg Co
LO(E'Z)ZJ IT 11 E_o=(U2EQ)) & (92) Integrating over alV we easily obtain the density of strings

pn=1r=1 (27T)3 B
, o 15

Thus we are left with a set of Gaussian integrals. no=; g (99

The Gaussian integral can be carried out if we think of

Q,,,.r as a 6<6 symmetric matrix. If we can find the eigen- Putting this result back into Eq98) gives the final result
values\;, i=1,2,...,6, ofthis matrix, then we have

3 1 1
. 1 PIV]l=—=x ——=5=;, (100
Lo(k,2)= ——. (93) AT o3V (1+V?)%?
\/ igl Ai which agrees with Eq(1) for n=2 andd=3.
In Appendix E we discuss the relevant eigenvalue problem. IX. WALLS IN THREE DIMENSIONS

The result of the analysis there is that the six-dimensional . . .
problem factorizes into a product of two three-dimensional Let us conclude with the example of walls in threg dimen-
problems. These three-dimensional eigenvalue problems réions i=1d=3). We have from Sec. V thab?=(Vy)?
duce to cubic equations and the product of the three assocind the velocity of the wall is given by

ated eigenvalues can be read off from the associated charac-

teristic equation with the final result V.

v,=——=—IcV?y. (10D
1 Vp?
Lo(k,2)=
olk.2) \/ > N Following the same path as for the point and string defects
(1+29(1+274VI+ K + (k- V) we find that the velocity probability distribution is given by

1

7 . — 4 noP[VI= | dbdeld]oV+Tedbie(E D), (102
(14+2%)(1+V?) +k?>+ (k- V)?

We must then appIWﬁ' to LO(IZ,Z) and setk=kV. After a whereG(¢,b) is given by Eq.(47) with n=1 andd=3 and

great deal of algebra one finds a complicated result [foi

which still requires integration ovérandz. It turns out that noP[V]ZJ dbd®&| € S(V+Tcéb/ ¢2)
it is wise to first do thek integration. All of the contributions o o
are proportional to integrals of the form 1 e (USb® o- (U2
- X(ZWSO)]'IZ (2W§)1/2 (27T§2)d/2' (103)
dk (kV)?P Kp 4
o 2 2L2\p13 o 2 (99 . - , , ,
T (1+2z°+Vk)P 2wV (1+29) Again inserting the integral representation for #héunction
and doing theb integration, we obtain
where p takes the values 0, 1, and 2 withy=3/8,
k1=mI16, ko=3m/8(16). The final integrals over can all 1 ) 1.
be expressed in terms of the integrals noP[V]= —_f d3¢|élexg — —=€2]3(é),
V27Sy(27S,)? 2S5,
d?z 1 1 (104
Slvszzjﬁ 1421 V2)512 (11 72)522° (96)
(1+z ;e (1+2%) where
which, for integers; ands,, can be worked out analytically. 3 1
After an enormous amount of additional algebra we obtain J(g):f e Vexg — =5,(T'c)2(k- )% 2.
the very simple result (2m)3 2
(109
<. 3
I[V]= 6 (1+V2)52° 97 The integral in Eq(105 can be carried out if we introduce

the orthogonal set of coordinates b®, b® and we
This leads back to the result chooseé=bMx b, Then we obtain
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|g| XI. CONCLUSIONS AND QUESTIONS
\/ﬁ The results of this work are simply summarized by Eq.
mS4(I'c) (1). There remain several open questions. The most impor-
tant question is whether E¢l) for P[V] corresponds to the
(106  results found in the real world. It is highly desirable to mea-
sureP[V] for the rather broad range of systems covered by

J(&)=8(V-bV)s(V-b?)

1
xex;{ - ———(V-§?|.
2S,(I'c)?

Eq. (1.
If we make the same change of variables given by E&#. How is this result for the defect velocity probability dis-
and(65), we find the result tribution changed at higher order in perturbation theory? So
far, P[V] has only been calculated for the lowest order in the
1 S, - perturbation theory developed in RE2]. Scaling arguments
nOP[V]:ﬁ (277)5/2\/i [V] (107) [3] would indicate that the large velocity tails will not be

modified at higher orders in perturbation theory. This ques-
and tion will be addressed soon.
The results forP[V] given by Eq.(1) have only been
_ 322 505 B = s o (i proven for a subset of the rangesd. What about forn
ItV]= f d3EE28(V- b)) 8(V-bP)e” WAEHEVT, =d—2=27? This question is somewhat academic since it is
(108 outside the range of physically accessible spatial dimensions.

If we now defineb@=pb®@x & andb®@=Exb®, and as-
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(109 APPENDIX A: D?
The key point then is that Clearly one of the important quantities entering into the
1 discussion of the string velocity probability distribution is
5(Vb§1))5(\~/b(22))= @5(&)5(@) (110 the quantityD defined by Eq(13) and its square:
and the integral reduces to an elementary one-dimensional ﬁZZL vy g”lgVZ...
integral (n!)? Cutaiig iy
V1= o [ de,gte- @ (111 X iy vy, vnfff glz gy A
- ,\../2 z2Sz . 1 72 n

This quantity can be written in a simplified form if we realize

Inserting the result of doing this integral back into Ef07) that

leads immediately to the result thBf V] is again given by
Eq. (1). 3 L, ,
ep,,u.l,uz- . '/”nel”/"i/‘é' . -,U.r']_ I [lulIuZ' Mna MMt Iun]i

X. DETERMINATION OF v (A2)
The determination ofS,, S,, S,, and v requires a Wwherel is a set of products o functions giving all matched

theory for the auxiliary field correlation function pairs between the unprimed and primed sets. There are mi-
nus signs if the matched pairs are an odd number of permu-

1. - tations of the labels in order to return to the order, 1,2 ,n.
Co(12)= ﬁ(m(l) -m(2)). (112 \ve have then
If we follow the development in Ref$2] and[28] we can 1
write in the scaling regime, D= S maps - e ]
. (n!)
Co(12)=Spe ™27, (113 C

V] &V vp V1 V2 4
> > > — — L X €V1V2-~-Vn€l/ v Vngﬂjigﬂzz . gﬂr;g,u'g,u' e gﬂn’
wherer=r,;—r,. We do not nee&,, S,, andS, individu- 172 n

ally. We only need the combination given by E6). We 1
easily find =—€, .0 €0 N, /N, oo N,
n! "1%2 n “172 n 171 "2%2 n"n
— _2d , l'cd 1
v :F(FC) =0 (114 = T €unyrp€uyry v, 0EIN) =de(N). (A3)
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APPENDIX B: MATRIX M|

The matrixM ; defined by Eq(49) can be put into an-
other useful form by inserting the explicit form f@ given
by Eqg. (46) and using the result given by EA2). An in-
termediate step gives

€pnpypy - g Doy
1 V! '
1 V2 Vn
=€ € [ 1€ 11 /f § g
Mgy Rymqpy g Svive oy '
12 nnl 1M1 n 172 “1 “2 o
_ A ’
== po . pn o - ppl
1 V, V, V,
X—€,,r g ELEL £
VaVqyr "V ’ ’ ’
n! 172 PP, e
’
1/ V 14
= — 1&£72 n
=—€, . B1
e ERE2 € (81)

Inserting this into the definition df1 ) gives

Myz—i;e gz ghn
® P2 (n—=1)! ""¥27 " Tncu; Hn
V, V, ’
X ., 1¢g72 n
6V1V2 Vngﬂiglu’é gﬂ/
1 1 v,
TR e S
X NV2 2N,,3,,é~ .- N,,n,,r:. (B2)

This expression is particularly useful if we consider the

guantity
oo L1
EuM,= P2 (n—1)!
XEVV* v €Eplyl. V’NV’V'NVV NV v/
2 n 172 1 2 n"n
_—ﬁme,},,z..y E,,/V detN _5,/1],/.
(B3)

APPENDIX C: ORTHOGONAL COORDINATE SYSTEM

We will construct an orthonormal coordinate system with

the basis vectors

&= 2 Asy (D

These basis vectors are orthogonal osince £2D,=0.
Since we require

g =

we have immediately, on inserting E¢C1) into Eq. (C2),
that 8s¢ = Ag,Asr N, . If we take the determinant we ob-

tain 1= detA detN detA or, using Eq.(A3),

(C2

ss’
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1
detA detA= ——

detN DZ €3

We can obtain a realization of the mat#y, by constructing
the £ directly using the basis set

(S)_ 2 e27TISV/n§ (C4)

which are not orthonormal. However, they can be con-
structed to be orthonormal using the Gram-Schmidt orthogo-
nalization process. Thus eaéfp is a linear combination of
thexﬁf) which is proportional to a linear combination &f .
Thus one can extract an explicit expression for the marix
This explicit expression is not needed here.

APPENDIX D: INVERSE OF MATRIX Q

We need the inverse of the matrix

Q. =&V EY M g

If we use the expression given by E@1) for the basis
vectors, we obtain

(D1)

Quu=AmiA i Ef MMy . (D2)
We then use the identity EB3) twice to obtain
Quu =Au A 8y 00 =ALAL (D3)
This immediately tells us that
~ 1
detQ=detA detA=§. (D4)

We still need to construct the inverse Qf It is easy to see
that this is given by the produ@'=A"'A~1. However,
we only need the elements

Rup=&(Q7Y),, 85"
_Avsg ( l) TA l)vv/AV S/gﬂ

= £3589 65 =585 (D5)

APPENDIX E: EIGENVALUE PROBLEM

We need to find the six eigenvalues for the matrix
Q defined by Eq.(87). The analysis can be carried out by
looking at the action oQ When acting on the six basis vec-

tors: lr/,l:\’\/y;?v,\v l//2: ,u v '7/13_b ZV! 1704 ,u v 'r//5
=k,z Ye=k,C,, where we have introducedc,

AR LTV N
=€, ,z », andb=kXV. The action ofQ acting on these
states is given by

v

Qyn=(1+Z2+V2)y +ikiy, (ED)
Qo= (1+V?) gy — ik, (E2)
Q= (1+2%) yhg—ikyhp+ik- Vifsg, (E3)
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Q= ¢4+ikzﬁ1—iIZ~V¢5, (E4)
Q5= (1+2%) s+ V2k- Vs, (E5)
Que= the+ VZk- Vi, . (E6)

We see that these equations decouple into two cubic systems

(1,04,¢5) and (o, 3,16). We then only need the prod-
uctshi\oh3 and A4, As\hg. It is well known (see Ref[35])
that if one has a cubic characteristic equation

GENE F. MAZENKO

PRE 59

(E?

then the product of the three roots is given RyA,\5
=—ay. In the present case we easily find for the two sets

)\3+ az)\2+a1)\+a0=0,

all=—(1+2)(1+ 222 +k3)—(K-V)2  (E)
and

a?=—(1+22)(1+V?)1s— +Kk2—(K-V)2.  (E9)
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