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Kadanoff-Baym equations with initial correlations
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Equilibrium and nonequilibrium properties of nonideal many-particle systems are strongly influenced by
correlation effects that are well described by generalized quantum kinetic equations, in particular, the
Kadanoff-Baym equation€KBE). However, these equations are usually derived under the assumption of the
weakening of initial correlationgBogolyubov’s condition and, therefore, fail to correctly describe the short
time behavior. We demonstrate that this assumption is not necessary for the derivation of the KBE. Using
functional derivatives techniques, we present a straightforward generalization of the KBE that allows us to
include arbitrary initial correlations and that is more general than previous derivations. As a result, an addi-
tional collision integral is obtained, which is being damped out after a few collisions. Our results are comple-
mented with numerical investigations showing the effect of initial correlati®5063-651X%99)11202-9

PACS numbsgps): 05.20.Dd, 52.25.Dg

I. INTRODUCTION AND BASIC EQUATIONS Martin-Schwinger hierarchy, a system of coupled equations
for the s-particle Green’s function that is defined on the
The Kadanoff-Baym equationKBE) for the two-time  Keldysh contouC by
correlation functiong=(1,1'), 1=(r,t;s;) have been very g 1,...s1,...8)
successful in the description of the nonequilibrium properties =%~ R
of quantum many-body systems, thereby allowing for a high s . .
degree of generality. Knowing the temporal evolution of :(i_ (TdW¥(1)- - W(s)W7(s")--- ¥ (1)]), (D)
these correlation functions, most properties of the system can
be calculated, including the Wigner distribution, the spectraihereV is the field operatorT . the time ordering operator
function, the mean kinetic and interaction energy, and so orn the contour, ang- - -) denotes averaging over the density
However, despite their fundamental role in many-particleoperatorp. The first hierarchy equation is the equation of
theory, the original KBE[1] have a principal weakness— motion for the single-particle Green’s function
they do not contain initial correlations. Indeed, foandt’ o . .
approaching the initial time,, the KBE yield the Hartree- fdl{g‘f (11)-U(11)}g.(11",U)=6(1—-1")
Fock equations, thus describing an uncorrelated system. Fur- ¢
thermore, it can be show2] that the KBE follow from the
exact equations of motion for the correlation functidtte iif d2V(1—2)g,,(1212%), 2
Martin-Schwinger hierarchy under the assumption of
Bogolyubov’s condition of weakening of the initial correla- with U being an external potential angﬁfl the inverse
tions. Therefore, the KBE are unable to describe the initialgreen’s function
stage of the evolutiont{<t<r.,,, wherer,, is the corre-
lation time and the influence of initial correlations, which -1, . 1 ,
can be important for ultrafast relaxation processes. g) (11)= ( [ IlJr ﬁ) o(1-1"). (©)]
This shortcoming of the KBE has been first pointed out by ) . )

Fuijita[3]. Fuijita proposed generalized Kadanoff-Baym equa-Equation(2) is not a closed equation fay;(11), because
tions that, unfortunately, turned out to be inconsistent withthe interaction leads to a coupling of the one-particle to the
the exact equations of motion for the correlation functionswo-particle function and so on. The general form of the
Further investigations of these problems have been pef€sulting hierarchy is
formed by Craig[4] and Hall[5] who used a generalized J

2

perturbation theory, which incorporates initial correlations. dl{g‘{ l(11)— U(ll)}gg1,...s1',....8")
A convincing solution has been presented by Danielewicz’ ¢
[6]. He developed aerturbation theory for a general initial
stateand derived generalized KBE, which take into account  —
arbitrary initial correlationg7]. »

In this paper, we present a derivation of closed equations

(£1)" "t8(1-v")
1

VR

of motion for the one-particle Green’s functioferrelation XGs-1(2,... 810 =1 H L F)
functiong, which is not based on perturbation theoryn-

stead, we use a straightforward and very intuitive method, iif daV(1-a)gsiy(1,...;1, ... 85,a7), (4
which was proposed in Refg2,8], to generalize the KBE to

the case ofrbitrary initial correlations. with a=s+1V(1—-2)=V(r;—r,)8(t;—t,), andV(1— «)

The starting point of this nonperturbative method is the=V(r;—rg, 1) 8(t;—tgs1).
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To make further progress, the hierarchy has to be decousince the self-energy follows from the two-particle Green's
pled by means of suitable approximations, which leads to #unction, definition(7) becomes unique only if the initial
closed system of equations for the fissGreen’s functions. condition (5) is properly taken into account. With this defi-
This requires us to find formal solutions for the higher-ordernition of the self-energy, we have obtained a formally closed
functions. equation for the one-particle Green’'s function on the

The system(4) constitutes first-order differential equa- Keldysh contour, which may be cast into the form
tions with respect to the time; therefore, init{ar boundary
conditions are required, which constrain the solution. We  __ _, __ _ _ _
further remark that in the derivation of the hierarchy, no fdl{gtl) (11)-U(11)—-3(1D)}gy(11,U)=48(1—-1").
assumptions about the density opergipmwhich appears in ©)

Eq. (1), have been made. On the other hand, the explicit form

of p has an influence on the boundary conditions. For ex-
ample, in thermodynamic equilibrium with a grand canonical
density operator, the solutions to E@4) are uniquely fixed
by the Kubo-Martin-Schwinger condition. However, for real
time nonequilibrium Green’s functions this condition is not to the adjoint Dyson equation with the self- enedjyAs we
valid. In this case, the most general and natural choice is twill see below,>, = S for all timest,t’'>t,.

supply initial conditions for the higher order Green'’s func-  So far our considerations have been formal, and a number
tions. In particular, we will be interested in a closed equatiorof questions remain open, among thef@) Does the self-

for the one-particle Green’s function; then, the required ini-energy defined by Eq7) exist?(b) How do initial correla-

This equation is a compact notation of the Kadanoff-Baym
equations and is sometimes called the Dyson-Schwinger
equation. The same procedure for the adjoint of(E)qleads

tial condition is given by tions affect the self-energy and, thus, the KBEPHow can
o one derive suitable approximations for the self-energy? To
912121 2") |, —t,-t =ty =1, = Y12t0) = G12- (5)  answer these questions, we return to the definit®rof the

self-energy. Further analysis of this equation requires us to
The familiar condition of weakening of initial correlations, evaluate the functional derivative
which is commonly used in kinetic theory, follows as a spe-

cial case of Eq(5) from the limit 59,(11',U)
= {gf(12127) - 01(11)g4(22))
M g1(1212") [, ~t,=1) =11, sU(2'2)
th— —
0 ' , , , =*+L1(1212"), (10)
=[0:(11)91(22) = 1(12)91(21) |1, 1,11y

6) for which a simple procedure has been giyéh Here,L is
the density fluctuation function. The result is not an arbitrary
As was shown in Ref.2], a decoupling of the hierarchy with four-point function, but it is restricted th(1r,t,,1',r5t,)
condition (6) directly yields the original equations of because of the temporally local character of the potential
Kadanoff and Baym. Therefore, the question arises how th&(2'2)=U(r,r,) 8(t,—t5). However, this restriction does
KBE will change if in the derivation, conditioii6) is re-  not influence our further considerations, and so all four-point

placed by Eq(5). functions, which appear, can be regarded as formally nonlo-
cal.
Il. SELF-ENERGY AND INITIAL CORRELATIONS For t,t'>ty, the Dyson equation can be written in the
form

A formally closed equation for the one-particle Green’s
function can be derived by introducing the self-energy, . L
which we define on the Keldysh contour, by fdlg[l(ll)gl(ll’)z5(1—1’), 11
c

JCdTE(lT)gl(Tl’): tif d2V(1-2)gy(121'27). where we introduced the inverse Green’s function
7

Taking into account that;, can be derived fromg,; by
means of functional derivation, we can rewrite Ef). as

0rl(11)=¢% (11)-U(11)-3(11). (12

Functional differentiation of Eq.11) for t,t’ >t yields eas-
ily

fcdlz(ll)gl(ll’)

Y 11 — 11’
fdl 95 *( ) fdlg 91( )
=iij d2v(1-2) c  SU2 2) 5U(2 2)
(13
X iw+ ((11)g,(22%)t. (8  Using Eq.(12), the general solution of this equation is found
sU(272) immediately;
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8g4(11 = — 1 — ,
L)=gl(12')gl(21')+fdldlgl(ll) J digf (11)gf(11)=48(1-1"). 19
sU(2'2) c
52(1—5 As a result, the solution of the initial value probldiv) and
> (Tl’)iC(lZl’Z’), (14) (18) can be written as

su2'2)

rory e A4 A SR R/in
whereC is an arbitrary function, which obeys the homoge- c(121r2 )_f drydradradra0: (1.1t0)91(2:r2to)
neous equation, i.e., = = =
X C(rato,roto,rito,rato)gy(rate, 1)

1~ L/ 11\~(191’97) — =
Lollgl (11)C(121'2")=0. (15) KAt 2). 20

There are three similar conditions, one following from thewhere C(r,ty,r,tg,r1to,r2to) denotes the coordinate repre-
crossing symmetry (4 2) and two from the adjoint Dyson sentation of the correlation part of the two-particle density
equation. operator. With this result, the density fluctuation functlon
Let us now analyze the physical and mathematical conses formally defined too.
qguences of the functio@(121'2'). To this end, we consider In order to rewrite all relations in a compact way on the
Eq. (14) in the limit t,t'—tq. In this case, the integral over Keldysh contour, we take into account that for a function
the Keldysh contour vanishes, and it directly follows C(121'2"), which is uniquely defined on the physical time
axis, it holds
L(ry,ra,r1,ro,t0)=C(ry,ra,ry,ra,to)

+01(r1,M5,t0)91(r2,11,to). (16) JCdTgl<1T)C<T21'2'>= j d1gf(11)C(121'2"),

Hence, the functiorC(t,) is to be identified with initial bi- (22)

nary correlations. Furthermore, using the commutation relaz 4 therefore Eq20) can be rewritten in the form
tions for the field operators at equal times, it is readily veri- ’

fied that all Keldysh components &f differ only by one- == _
particle functions. This mean£(t,) is a universal initial C(121'2'):fd1d2d1d291(11)91(22)
correlation, that is the same for the correlation functions and ¢
for the causal and anticausal Green'’s functions as well.

After having given a physical interpretation to the func-
tion C(to), we now explore its temporal evolution. For that |, ..
purpose, we consider the four conditions @rEq. (15) and
the three analogous relations, which are valid on the Keldysh
contour. Taking into consideration th@, the inverse func-
tion g~ * acts only on one variable & and (b), the initial
value is universal for all Keldysh components, one readily
verifies the following two properties @: (i) C is a function,
which does not depend on the positioning of the times on thiz1
Keldysh contour. That means it is completely determined b
its values on the physical time axigi) C obeys four equa-
tions, Wthh follow from Eq.(15), by using the identity&.©
-3==3%

xc(1212)91(22)9,(117), (22

c(1212) = (1 1to. T ato, T 1to. T 2to) 8(t; —to)
X 8(t,—to) 8(t1—te) 8t —to). (23

Let us now come back to the self-energy. Introducing Eq.
4) with solution (22) into Eq. (8), the latter can be solved
y acting on it withg~1. The result is a functional equation
for the self-energy:

, 8311
2(11’):¢|f d2V(1—2)[¢Ldlgl(11)m

f digR (11)c(121'2')=0, with g§ (11)
+8(1-1")g4(227) = 8(2—1)gy(12)

—¢? (11— U(1T)-3R(17),

17) + fcd1d2d291(11)g1(22)c(121’2)91(22+) .
and analogously for the other three conditions. (29
The four equations of the typ€l7) have to be solved A
together with the initial condition An analogous equation follows readily far. With Eq. (24),
the self-energy is given as a functional of the interaction, the
C(1202')|, ~t,-1;~t;-1,= C(to)- (18 initial correlations, and the one-particle Green’s function,

where the initial correlations are contained in the last term.
This is done conveniently by introducing the functigﬁ, From the definition ofc, Eq. (22), it is obvious that this
which is the retarded function of the homogeneous differeneontribution is local in time with as-type singularity att
tial Eq. (17), and satisfies =t’. Additional terms of this structure arise from the func-
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tional derivative. A further important property of the self-

energy follows from comparing, Eq.(24), with the corre-
sponding expression fa. One verifies thak =3, for all
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3(11)=3"F(11)+3°(11)+3"(11), (29)
3IN(11)=3"(1rto) 8(t]—to). (30)

times t,t">t,;, which means, in particular, that for these The initial correlation part of the self-energy turns out to be

times, a well-defined inverse Green’s function does exist.

a temporally local contributioiisimilar to the Hartree-Fock

for the self-energy. By iteration, a perturbation series3or
in terms ofg,V, andC can be derived, which begins with

SH11)=+i8(1— 1’)[ d2V(1—2)g,(22")

iif d2V(1—2)fdldszgl(lT)gl(zE)
C

X ¢(121'2)g,(22*) + (exchangg. (25)

It is now instructive, to introduce Feynman diagrams, which.

allows for the following representation of formu(a5):

-9+

+ exchange
(26)

In contrast to conventional diagram techniques, we have
introduced the initial correlations as a new basic element,

equal to the initial time.

Interestingly, the same result was obtained by
Danielewicz based on his perturbation theory for general ini-
tial stateqd 6], which was mentioned in the Introduction. The
agreement of the two approaches becomes particularly obvi-
ous from the diagrammatic representation>of

If one considers the first two iterations for the self-energy,
Egs.(25 and(27), more in detall, it becomes evident that, in
the initial correlation contribution in front of the functian
appear just the ladder terms, which lead to the buildup of the
two-particle Green’s function. Thus, obviously, the iteration
upgrades” the product of retarded one-particle propagators
in the functionC to a full two-particle propagator, in the
respective order, i.e3'" is of the form

2‘“(11')=¢if d2v<1—2)f drdr,dr,dr,
X G127 19,1 2t0) C(F to. T oL, 1’ T oto)

X gA (1 ot0,2") B(t, o). (31)

drawn as a shaded rectangle. Second-order contributions aN®tice especially that this renormalization occurs not sym-

evaluated straightforwardly, too, with the result
22(11')=21(11')¢i2f d2d2v(1-2)
C
Xg1(11)g1(22)V(2—-1")g;(22")

+i2 J d2d1d2d1d2d2V(1-2)
C

X 91(11)0:(22)V(1-2)g,(11)94(22)

xc(ﬁl’ )gl(?2+)+ -+ (exchangg,
(27)

or, in terms of Feynman diagrams,

(3N = ? + @f
+3+ @i b o

(28

The analysis of the iteration scheme allows us to conclude

that all contributions to the self-enerdgll diagrams fall
into two classesti) the terms3"F und = ¢, which begin and
end with a potential, andi) X'"—those which begin with a

potential but end with an initial correlation. This means the

self-energy has the structure

metrically, i.e., in the adjoint of Eq31), 2;,=[2""]" (2,
denotes the initial correlation contribution B appears the
adjoint propagatogy),.

Ill. GENERALIZED KADANOFF-BAYM EQUATIONS

Let us now come back to the Kadanoff-Baym equations.
In order to discuss the influence of initial correlations, we
insert expressiofi29) into Eq.(2) and find

deT[gE‘luT)—u<1T>—2HF<1T>]gl<T1'>

=6<1—1'>+deT[E%lT)+zi”(1T>]gl<T1'>.

(32

From this equation, we obtain the KBE for the correlation
functions if we restrict the time arguments to opposite
branches of the Keldysh contour:

9 Vi
i—+ =
aty  2m

gf(ll’)—f dTU(1D)g3(11)
—f dr,3"F(11)g7(11")

=fwdTER(lT)gf(Tl’)Jrfwdﬁ22(15
to to

+3i(11)]gh(11"), (33

whereas the adjoint equation reads
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P Vi/ L since then Eqgs(33) and (34) would go over into the usual
( —i—+ 2—) gf(ll’)—J dlgf(ll)U(ll’) Kadanoff-Baym equations, which in the limit’' —t,, yield
aty m the Hartree-Fock equations.

— e CHE T A further consistency criterion is, of course, the require-
—f drygr (11)X77(11") ment that the equal time limit of the additional collision in-
. o . tegral of Eq.(33) coincides with the well-known results of
:f dlgﬁ(ll)[E%(ll’)+Ein(11’)] density operator theory, e.10,11]. In order to explore this
to problem more in detail, we consider the approximation

gfA~gRA. gRA i.e., the initial correlation part of the self-

= A i
+ ftodlgl (1DEH(117). (34 energy is taken in second-order Born approximation. Then,
I'S(t) reads, in momentum representation,
In contrast to the original KBE, there are two important new
properties, which have to be underlined here: Equati8Bs 1'“(py.t)= 12ﬁ5f
and(34) are valid for anarbitrary initial time point t,, and
they explicitly contain the influence @frbitrary initial cor-
relationsin the additional self-energy teri'".

dp, dp, dp,
(27h)3 (27h)2 (27h)3

XV(py—p1)(27h)38(p1+ P2~ P1— P2)

The analytical properties of the retarded and advanced X Im{gR(p1,tte)gR(ps.tto)
Green’s functions give rise to a damping, leading to a
decay of the initial correlation term after a time of the order X c(P1,P2,P1.P2;t0) 90 (P2,tot) gR(P1,tot)},

t~1/y1o~7e0r- Thus, there is no need at all to postulate
Bogolyubov’'s weakening condition; far> 7.,,, the gener-
alized Kadanoff-Baym equations switch from the initial re-
gime into the kinetic, or Bogolyubov regime, “automati-
cally.” _

As we have seen in the previous section, the t&ith
contains all singular in time contributions to the self-energ
(except the Hartree-Fock term, of coursthe importance of
this temporal structure becomes obvious if we consider the

(36)

which exactly agrees with the corresponding density operator
result.

It is readily confirmed that the collision integréB6)
conserves density and total energy and that it vanishes for
Yi> Teor: S€€, also, the numerical results below.

Kadanoff-Baym equations in the limitt’—t,. Then only IV. NUMERICAL ILLUSTRATIONS AND DISCUSSION
the terms with4 singularities remain, and we get for the oy jliustration of our theoretical results, we have per-
right-hand side, formed numerical solutions of the Kadanoff-Baym equations

including the initial correlation integrdB6). We considered

the relaxation of a weakly coupled electron gas with self-
f draV(ri—r){g1(rar1,te)ga(rar,to) energies in second Born approximation. Starting from an ini-
tial nonequilibrium distribution, we compared the relaxation

*£01(rar5,t0)9a(rary,to) +c(raroriry,to)}, for two cases(1) without initial correlationsC(ty)=0, and

(2) with nonzero initial correlations, which were chosen in
(39 . ; .
the form of the Debye pair correlation function,

which is just the right-hand side of the first hierarchy equa- Vp(Q)
tion (2), for t=t’=t,. This identity is an essential consis- C(4,p1,p2:to) = — — 7 T(P)T(P2)
tency criterion for the theory. This condition would be vio-
lated if weakening of initial correlations would be assumed, X[1=f(py+I[1—f(p2—a)],
(37)
41 =
mergy wheref=f(ty). As expected, the presence of initial correla-
—~ 40 ! , . ; ;
“ N\ ] ] tions turns out to be important on short times. This becomes
L 39} N j particularly clear from analyzing the time evolution of the
Z Total Ener;
& L8 Y mean potential and kinetic energy, Fig. 1. While for the un-
o 0 correlated initial state, potential energy starts with zero and
E \ Potential E builds up continuously, the picture changes if there exist ini-
Moo/ QT Bherey tial correlations. With the choice of the for(87), the corre-
lations are stronger than in equilibrium that corresponds to a

0 10 20 30 40 50 60 70 larger magnitude of potential energytatt,, which, conse-
. quently, is reduced in the course of the relaxation. Due to
Time T (fs) . -

conservation of total energy, kinetic energy shows exactly

FIG. 1. Time evolution of kinetic, potential, and total energy for the Opp.OSite trend. One clearly sees the decay of the initial
zero(solid lineg and nonzerd¢dashed linesinitial correlations. The ~ correlation term as the curves for the two cases merge after

initial distribution is an uncorrelated equilibriugFermj distribu-  times of the order of the correlation time. This confirms that,
tion with T=290 K andn=10' cm3, indeed, Bogolyubov’s weakening principle is reproduced by
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30

function g=(tt’) perpendicular to the time diagonal for
=t’ (i.e., derivative with respect ta=t—t’,d/dr=dl/dt
—dlat"), this derivative can be used to isolate the effect of
initial correlations on(V). In fact, 9g/d7~2i Im(I +1'C),
cf. Egs. (33 and (34). We, therefore, show in Fig. 2 the
evolution(along the time diagonabf Im ' as a function of
momentum. One clearly sees the decay of the initial correla-
j tions within the correlation time.
covooal [T [ [T : Our numerical results illustrate the effect of initial corre-
: ' lations on the short-time relaxation behavior for a simple
model case. But our theoretical approach is completely gen-
eral and allows for numerical investigations of far more com-
plex initial correlations. Besides the fundamental interest in
the problem of initial correlations in the Kadanoff-Baym
equations, our results are also of practical importance. With
FIG. 2. Imaginary part of the initial correlation contribution to the possibility to start quantum kinetic calculations from a
the = derivative of the correlation functiog=(tt’) for t=t’(+  general initial state, the scope of nonequilibrium processes in
=0). many-body systems, which are accessible for numerical in-
vestigation, is essentially extended. Although the determina-
the presented generalized Kadanoff-Baym equations in a d¥on of C(t,) can be complicated by itself, our approach

namic and self-consistent way. _ allows us to separate this probleithe “generation” of the
The behavior of the initial correlation term can be ana-correlated stafefrom the relaxation dynamics.

lyzed directly by investigating its contribution to the corre-
lation energy,

1
k (units of ag )
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