PHYSICAL REVIEW E VOLUME 59, NUMBER 2 FEBRUARY 1999

Planar lattice model with gas, liquid, and solid phases
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We treat a lattice gas model on the planar-honeycomb lattice with nearest-neighbor exclusion and two types
of next-nearest-neighbor attraction. In the generalized Bethe approximation described in the previous paper, the
model exhibits both a gas-liquid, Ising-like, phase transitiasith a critical poin} and a gas-solid phase
transition. We show that the qualitative features of the activity-temperature gas/liquid/solid phase diagram
found in the Bethe approximation are present in a more rigorous treatment of the model using exact series
expansions[S1063-651X99)09102-3

PACS numbds): 05.20-y, 05.50+q, 05.70.Fh, 05.70.Jk

[. INTRODUCTION behavior but simple enough to be amenable to study using
exact series.

In the present paper we treat a lattice gas model on the A central problem with lattice gases is that the lattice
planar honeycomb lattice that in the generalized Bethe apseems to introduce an artificial order in that at high density
proximation developed in the previous papef clearly dis- ~ all lattice gases look like a regular solid. But in fact the most
plays gas, liquid, and solid phases with a gas-liquid criticafamous lattice gas, the Ising model illustrated in Fig)lis
point. We also use exact series expansions to corroborate thét @ gas-solid model, but a gas-liquid model and the high-
existence of canonical three-phase behavior in this model. density phase in the Ising model is a model of a liquid, not a

To understand the motivation for choosing a particularsolid. To understand why this is so one must focus on the
lattice gas model that is likely to exhibit gas, liquid, and solid central feature of all Ising models and that is that the range of
phases we need to review some of the basic facts about |sgxcluded volume extends only to a single lattice site. Lee and
tice gases in general. We take the view that the lattice is ¥ang[4] generalized the notion of an Ising model by allow-
device that allows us to construct a discrete approximation t§1d any number of attractive interactions, as illustrated in
the configuration integral in continuous space and that the
main ingredient in the cooperative behavior between mol- J

ecules is, as one moves out from the center of a reference
molecule, a range of infinitely repulsive interactiofex-
cluded volume effegtfollowed by a range of attractive in-

teractions the strength of which rapidly go to zero far from ,/ e \\\ \

the center of the reference molecule. Figure 1 illustrates how (A) ™ +—— J"/l‘“‘“
repulsion and attraction are incorporated into simple lattice N P
models. Figure () illustrates the simplest lattice-gas model, — —

the Ising model on the planar-square lattice, where the range

of exclusion is shown by the inner circle and encompasses

just a single site while the range of attraction is the four
nearest-neighbor sites shown in the outer circle. If one keeps

the size of the regions in the concentric circles in Fig) 1

fixed and decreases the lattice spacing by a factor of two one

gets the lattice gas shown in Fighl. If one kept decreasing

the lattice spacing then the properties of the lattice gas would

(slowly) approach the behavior of system in continuous (B)
space. Of course the reason for using the lattice-gas system is

that it is much simpler to treat than the system in continuous

space. And renormalization-group theory tells us that the es-

sential features of a systefparticularly the nature of the

critical poinY are insensitive to the scale of the system. The

hope is that the lattice gas will exhibit behavior that is quali-

tatively similar to that of the continuous system. From the G, 1. jlustration of regions of repulsion and attraction around
work of Onsagef2] we know that the model shown in Fig. 5 particle in lattice gasega) The standard nearest-neighbor Ising
1(a) exhibits a gas-liquid phase diagram with a critical point. model where only the central site is excluded and attraction is felt
There is evidence in the literatuf@], based on studies of on nearest-neighbor sitéspen circles (b) The same model as in
finite chunks of lattice, that a model like that shown in Fig. (a) except that the lattice grid has been made twice as fine. Now
1(b) will show three-phase behavior. We are seeking a modethere are five excluded sitésolid circles and nine sites for attrac-
that is complicated enough to show canonical three-phasion (open circles
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Yo (A)

FIG. 2. Schematic illustration of the generalized Lee-Yang Ising
model having extensive sites for attractive interactidiapen AN Vg y
circles which are not necessarily of the same intensity, but where SN s
only the central site is excluded. This kind of model at most exhib- yo_ . (B)
its two phases with an Ising-like, gas-liquid phase diagram. solid Pid

Fig. 2, but kept the feature of single site exclusion. With a
properly defined fugacityscaled activity, the roots of the
grand partition function for the generalized Ising model all 0 |
are on the unit circle and, as the temperature is decreased, u

come from the negative real-fugacity axis around the unit
circle, and at the critical point, touch the positive real-
fugacity axis. The unit circle cuts the positive fugacity axis
only once and thus there is one and only one singularit

(phase tr_an_sitiohin gene_ralize_d Ising models and it_r_nimics nearest-neighbor attractigdiscussed in Ref1)) illustrating a gas-
the gas-liquid system with a first-order phase transition endsgjig phase diagram. In the schematic insets the solid circles

ing at a critical point. The high-density phase is not a solidrgpresent excluded sites and the open circles represent sites for
since there is no interaction forcing the particles to take Upyitractive interactions.
positions on a particular sublattice of sites. Thus no matter
how many attractive interactions one introduces, as in Fig. 2yheres is the negativéfor attractions interaction energy. It
as long as there is only a single, central excluded site thi also useful to define the inverse xf
model display gas-liquid behavior.

As soon as the range of exclusion goes beyond the central u=1/, (1.9
site, as in the model shown in Fig(k, then one has a L .
gas-solid model. The reason for this is that when one ha¥hich is a low-temperature parameter singe-0 as T
nearest-neighbor exclusion the particles are forced to occupy’0; U=X=1 whenT—c. _ o
every other site at very high density and there are two ways A.vanable tha}t is ce_ntra.l to our discussion is the scaled
of doing this, either on sublattio@) or (b), as discussed in activity or fugacity, which involves botlz and x. For the
the previous paper. The onset of sublattice order is then thel@nar-square lattice illustrated in Figal this quantity is
determining feature of a solid phase in a lattice gas. y=22 (1.5

To be more explicit in describing the phase-diagrams in- ' '

volved in various lattice models we need to define a feWrhe motivation for this definition of is that in the close-
variables. The first of the basic thermodynamic quantities Wacked limit the grand partition function for the system, us-
need is the activity ing the example just mentioned, is

z=exfd Bu— Lol (1.1 E close packed™ yM (1.9

FIG. 3. Schematic illustration of ,(u), the locus wherg/ ex-
hibits a phase-transition singularity as a function wf(a) The
nearest-neighbor Ising model illustrating a gas-liquid phase dia-
%ram. (b) The model of nearest-neighbor exclusion and next-

where 8= 1KkT (wherekT has the usual meaningnd x is for a lattice ofM sites. Note that the definition gf in Eq.

2 4 i
the chemical potentidlwith uq the standard chemical poten- (1'5). usesx and notx since each.of the four bonds per
tial). With the definition of Eq(1.1) one has particle is shared by two patrticles. Since for the empty lattice

Evacam: 1, x.7

one anticipates that wher= 1 interesting things will happen
wherep is the number density of particles on the lattice. The(since this is the balance point between the empty and full
second quantity we need is the Boltzmann factor for attractattice) and indeed this was proved for all Ising models by
tive interactions, Lee and Yand4]. The exact definition o, as given in Eq.
(1.5, will depend on the model.
x=exfd — Be], (1.3 In Fig. 3@ we illustrate the locus of the phase transition

z~p as p—0, (1.2
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FIG. 4. Schematic illustration of thg, (u) phase diagram for a
substance exhibiting the gas, liquid, and solid phases. The three
phases coexist at the triple poi®olid circle. The critical point is
indicated with an open circlga), (b), and(c) indicate parts of the
Y. loci that can be located using different series techniques.

FIG. 6. A reproduction of Fig. 5 with the two types of site for
singularities in the fugacity,, for the Ising modeksingle-  attractive interactions labeled as 1 and 2.
site exclusion, nearest-neighbor attractiofhe locus isy,,
=1 from absolute zerou=0) up to the critical point where inner circle of dark circlesand next-nearest-neighbor inter-
they,, locus separates the gas and liquid phases. In Firy. 3 actions(the outer circle of open circlgof two types. The
we illustratey,, for the lattice gas with nearest-neighbor ex- types of interaction are illustrated in Fig. 6 with the excluded
clusion and next-nearest-neighbor attraction. In this case th@ites indicated by dark circles and the attractive sites by open
locus extends from absolute zero up to infinite temperaturéircles, with the two types labeled by 1 and 2. We will define
(u=1). The dashed portion of the curve indicates the line Ofche Boltzmann factors for the two types of attractive interac-
second-order transitions, the transition being first order betions as
low the tricritical point. In the latter model the attractive

interactions enforce the sublattice ordering and hence there x=exd —e1/kT] and v=exd—e,/kT]. (1.8
are only the gas and solid phases in this model, with no
liquid phase. At high density the particles take up a sublattice order, illus-

Clearly the idea is to combine the behaviors shown intrated in Fig. 7; the sublattice order is reinforced by the
Figs. 3a) and 3b) together so that one has gas, liquid, andshorter attractive interactionghe x factorg and a few are
solid behavior in one model. Figure 4 schematically showsllustrated by dashed lines in Fig. 7. The fact that there are
the y, locus we would like to find. As long as one has two types of attractive interactions leads to clusters having
nearest-neighbor exclusion one will have solidlike sublatticevery different geometries. If one uses gitype interactions
order at high densities and so the gas-solid part is easy. Ththen one gets clusters of the form shown in Fig) &with a
problem is to reintroduce Ising-like gas-liquid behavior with triangular geometnywhile if one uses all -type interactions
an ordinary critical point. The straightforward way to do this one gets clusters of the form shown in Figc)8(with a
seems to be to introduce a variety of attractive interactionshexagonal geometyy If one uses both types of interaction
not all of which reinforce the sublattice structure. The modelthen one gets the irregular networks shown in Figp) &nd
we have chosen is shown in Fig. 5. It is a lattice gas on thehe hope is that the entropy associated with the irregular
planar hexagonal lattice with nearest-neighbor exclugie®  networks will give the model gas-liquid behavior at interme-

diate densities.

FIG. 7. lllustration of the close-packed structure for the honey-
comb model of Fig. 5. As a result of the nearest-neighbor exclu-
sions, particlegshown by solid circlesmust exist on a sublattice

FIG. 5. The honeycomb lattice model. The solid circles repre-consisting of every other lattice site. The next-nearest-neighbor at-
sent excluded sites while the open circles represent sites for attratractive interactions are shown by dashed livelsich show that the
tive interactions. sublattice of the honeycomb lattice defines a triangular lattice
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FIG. 9. Three types of regular lattice configuration for the hon-
eycomb lattice gas mode(a) The empty lattice(b) The super-
FIG. 8. Possible compact clusters in the honeycomb latticehoneycomb configuration resulting from utilizing type-2 interac-
model.(a) A cluster with triangular geometry formed using type-1 tions only.(c) The triangular configuration resulting from utilizing
interactions only(b) An irregular cluster formed using both type-1 type-1 interactions only. lifo) and(c) a portion of the underlying
and type-2 interactiongc) A cluster with super-honeycomb geom- honeycomb lattice is shown using dashed lines. Wken2 all
etry formed using type-2 interactions only. The insets illustrate thehree configurations are equally probableuatO (absolute zerp
type of attractive interactionfopen circleg used to generate the
clusters; the excluded sitésolid circleg are the same in all cases. two particles and hence the definition of Ef.11). In terms

) ) ) of y the grand partition functions of E¢1.10 become
There are two simple ordered structures possible with the

two types of attractive interactions introduced. Starting with Ho=1, En=[y/x22-aMia = =yM2 (119

the basic honeycomb lattice illustrated in Figa9one gets a

regular but very open solid with honeycomb geometry illus-In general for this class of models the phase transition locus
trated in Fig. 9b). The triangular-type solid, already illus- will not be y,=1, as in generalized Ising models, but, an-
trated in Fig. 7, is shown again in Fig(®. The portions of ticipating Eq.(4.19, y,—1 asT—0 (u—0). Thus for the
dashed lattice shown ifil) and(lIl) indicate the geometry of triangular-type solid to be the most stable at absolute zero we
the original honeycomb lattice. We want the triangular-typerequire

solid to be the most stable form as the temperature goes to

absolute zero. To discuss the relative stability of the various E>En, (1.13
solid phases shown in Fig. 9 it is useful to write interaction
in terms of interactiorx as follows: or from Eq.(1.12 settingy=1,

v=x" (1.9 Kk<2. (1.19

Then the grand partition functions for the regular systems ofqr manipulations with series it is useful to hawe rational
the empty lattice, honeycomb-type solid, and triangular-typ&raction. Explorations of the behavior of models witmear
solid are, respectively, 2 show that the following value of gives interesting results:

o=1, B =(23?M4 = =(z2xM2  (1.10

jui

xk=9/5, (1.15
We letM be the number of lattice sites on the original lattice;
there are therM /4 particles on the superhoneycomb lattice
[Fig. Ab)] and M/2 particles on the triangular lattidéig.
9(c)]. We define a fugacity relative to the triangular-type
solid phasgwherez is the activity,

or introducing a parametanv,
x=w® and v=w’=x%% (1.16

The choice ofk=2 guarantees that the triangular-type
y=2%. (1.11  solid of Fig. 9c) will be the stable phase at high density.
Sincev>X, the dominant dimers formed at low density will

In the triangular-type solid phase of Fig. 7 there are six of thautilize the v interaction(h type) rather than thd type. At
x-type interactions per particle, but each bond is shared bintermediate densities there will be a mixture of the two
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types(we will show this quantitatively in Fig. 26 We will approximants to the series. First we will convert the function
refer to the choice of parameters given in E¢s15 and under consideration to the logarithmic derivative,
(1.16 as the? model.

We now show that in the generalized Bethe approxima- D In x(2)= dlnx
tion this model shows gas-liquid-solid behavior. A key in- X dlnz
gredient in the generalized Bethe approximation is the be-
havior at high temperaturexé v =1) where the model has Wwhich converts singularities of the fornz{—2z)~” to simple
just the hard core exclusion and we turn to that limit first. poles, which are then determined by forming a Paplrox-

imant (a ratio of finite polynomialsand locating the roots of
Il. HIGH-TEMPERATURE LIMIT the denominator polynomial. The off-diagonal If’amlxproxi-
mants to the activity and density series in y,, give

: (2.6

In the high-temperature limit whex=v =1 we have the

model of nearest-neighbor exclusion on the honeycomb lat- z,=7.56, 7.55,

tice. In analogy with the behavior of the similar model on the

square-planar latticE5—7], we expect a second-order phase p,=0.411, 0.411. (2.7
transition at high density where sublattice order begins. The ) . )
second-order transition will occur at a critical dengityand On the square-planar lattice with nearest-neighbor exclu-

a critical value of the activityz, . The simplest way to de- Sions only we have founf¥]

termine these parameters is by using high-density series, _ _

which are essentially perturbation series about the close- XH In{1/z,=1/z]. 28
packed Iattlce(a}s illustrated in Fig. Yt High-density series Assuming this also holds on the honeycomb lattice we ex-
are very sensitive to sublattice order and hence allow us tg.
determine the critical parameters easily. We will defer a dis-
cussion of the calculation of the series until a later section
and here simply quote the results. The high-density series for
the pressure is given in inverse powers of the activity. The
series through eight terms is

('7])(H 1
ilnz 1l/iz,—1lz"

(2.9

If the above function exhibits a simple pole then the ratios of
1 Troel i 1oe2 A 1-—3 . 41.—a consecutive terms should be constant and equal, toThe
BPu(2)=2In(2)+32[z "+32 “+132 “+432 ratios are 4.00, 9.00, 7.56, 7.44, 7.75, 7.76, and 7.75; clearly
_ _ _ _ the form of Eq.(2.8) is strongly supported. For numerical
+1657 °+7252 °+855;2 '+184%Z "+ ). egiimates the results of the Paalgproximants of Eq(2.7)
(2.2 are more reliable since these results are not influenced by
nearby singularities.
The density and modified compressibility are given in gen-  Double-activity series, in which particles are labeled ac-

eral by cording to the sublattice on which they are located, are very
sensitive to the breakdown of sublattice order. We define the
p= Ipp and y= ap 2.2 high-density double-activity series for the pressure as fol-

dlnz dinz lows:

The modified compressibility is related to the standard iso- . , N
thermal compressibilitK 1 by the relatiorK+= x/(kTp?). It BPH(Za,Z8) =3| IN(Z4) + En: by(s)(1/za)"|, (2.10
is convenient to introduce the relative density of holes,

p'=1-2p. (2.3 here

Using the above expressions we can obtain both the activity bé(s)ZE b, ksk (2.11a
and density series foy,, (the compressibility obtained from k

the high-density seri

g y seri¢s and
xu(zZHY=z"14+22"2+122"3+682 *+405 °
S:ZB/ZA. (211b
+2616z27%+17,402 '+117,96@ 8+ -,
The (1£,) parameter keeps track of how many particles

(2.4 have been removed from the sublattice while the number
N 2 N3 N4 N5 of s factors tells how many particles have been moved from
Xu(p")=p H(p") "+ 6(p") "+ 24(p") "+ 98(p) the A to theB sublattice. The first sik;, are given below for
+504(p')®+2532p")"+12,296p" )8+ --. the planar-honeycomb lattice with nearest-neighbor exclu-
sion:
(2.5
i i b;j=1, bi=—(3)+s
Both series are very well behaved and clearly diverge at 174 D2 2

critical values of the activity and density respectivéty and
p.). The points of divergence are easily located using Pade by=(3)—3s+3s?+s®
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by=—(%)+6s—183)s?+4s%+9s*+ 38>+ s°, 20
(212
15
bi=(%)— 10s+665%— 7953~ 495" + 275°+ 265° + 225’ 2
+9s8+35%+ 510 10
bg=—(3)+155—1783)s?*+483 §)s°— 73(3)s*— 4565° s
—1123)s%+ 1178+ 117° + 7550+ 5151+ 2252
+9513+3514+515 00 0.1 0.2 0.3 0.4 0.5
' P

In the series foby there is nas’ term and the coefficients for FIG. 10. The quantitp/kT as a function of density in the high-
the s® ands® terms are the same. temperature limit for the honeycomb lattice with nearest-neighbor

The coefficients in Eq(2.12 show that sublattice order exclusion. The solid dot indicates the location of the second-order
breaks down rapidly on the honeycomb lattice as particlesransition that accompanies the onset of sublattice order as the den-
are removed from the close-packed structure. For exampleity is increased. The curves on either side of the transition are Pade
in by there ares® terms throughk=15 which means that if approximants to the low- and high-density series.

six particles are removed from the dominant sublattice, as . . _ . .
many as fifteen particles can be shifted onto the other syProximant to the high-density activity series for the pressure

lattice. We discuss the high-density series further in Sec. IV

there we will illustrate(in Fig. 21) the origin of thes® term

in by, this term representing the removal of four particles
from the A sublattice and the movement of six particles from

the A to the B sublattice.

Using the sublattice-activity series of E@®.10 we can

calculate the appropriate order parameter

R=2(pa—ps). (213
where
IBPH IBPH
PA= 9 nz, P8 nzg 219

After taking the derivatives in Eq2.14) we setzpa=zg=z2
(there is, after all, only one activitywe have thez and p’
series forR,

R(z )=1-[z '+3z ?+16z 3+93% *

+5672 °+363@ °+--],

(2.15
R(p")=1-[(p")+2(p")?+8(p")3+34p")*

+146(p')5+684(p" )8+ -],

We can estimate the point at whidR goes to zero(the

of (2.1 for activities and densities on the high density side of
the transition. For the low-density activity series for the pres-
sure and the density we can use the part of the Ising-series
for the honeycomb lattice appropriate to the high-
temperature limit. These quantities are known through 21st
term[8,9], the first few being given below:

Bp.(z)=z—47>+193—987*

+5312°— 297125+ - - . (2.17

The density as a function of the activity is given by a relation
analogous to that given in E(R.2). That relation can then be
inverted to give the pressure and the activity as a series in the
density. Since we have only eight terms in the high-density
series we find that the best fit between the low- and high-
density ends comes when we use (§h Padeapproximant

for the pressure and &) approximant for the activity. The
low and high density branches of these functions do not
match exactly ap,=0.411 andz,=7.55 [the low density
values for the pressuregdp) and the activity are 1.062 and
7.55, respectively, while the corresponding values on the
high density side are 1.089 and 7.69. To avoid an artificial
jump in the curves we add in a small correction termyin)f

for the high-density functions. This is a minor correction that
gives us a continuous curve for the pressure and the activity
as a function of density over the whole range of the density.
The Padeapproximants to the high- and low-density func-

second-order transition marking the end of sublattice 9rdertions are shown in Fig. 1(for the activity as a function of
by calculating the values of (Y andp’ that make succes- density and in Fig. 11(for the pressure as a function of the
sive truncations of the series become zero. The values agensity. The location of the second-order transition is indi-
(for truncations at the first through the sixth power of thecated with a solid dot in both and is seen to be a subtle

appropriate variabe

(1/z)p=1, 2.30, 3.34, 4.07, 4.60, 5.01,

(2.19
(p")o=0, 0.250, 0.319, 0.348, 0.363, 0.372.

These values are seen to be extrapolating smoothly to the

numbers given in Eq2.7) determined fromyy .

Having located the second order transition for the high-

inflection in each curve. Having a workable function for the
pressure and the activity as a function of density we can now
use the generalized Bethe approximation to treat our honey-
comb model.

Ill. BEHAVIOR IN THE GENERALIZED BETHE
APPROXIMATION

In Fig. 12 we show the lattice blocfthree joined hexa-

temperature gas-solid transition we can now use a Rpde gong that we will use for the Bethe approximation for the
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FIG. 11. The activityz as a function of density in the high-
temperature limit for the honeycomb lattice with nearest-neighbor
exclusion. The solid dot indicates the location of the second-order
transition that accompanies the onset of sublattice order as the den-
sity is increased. The curves on either side of the transition are Pade
approximants to the low- and high-density series.

honey comb model. It was chosen since it contains all of the
interactions shown in Figs. 5 and 6. How the plane can be
tiled with these blocks is also shown. The numbers on the

single block indicate the fraction of each site that is assigned 0.5

to the given block; there is one sitthe centrgl that is en- K=355x%

tirely inside the block(1) while there are three sites that 0.4 wone

belong 2 to the block and nine sites that belodgto the 0.3

block. These numbers are tlaés of the previous papdr]. P

Using the k=2 model of Egs.(1.15 and (1.16) we then 0.2

apply the procedure of the previous paper. We find that there o1

is an Ising-like critical point in the model that occursxat

=2.64. Figure 13 shows the density as a functiory ¢fle- 0p = - T
fined in Eq.(1.95] for x<x; (x=2), X=X, andx>x; (x y

=3.5). The high-density transition marking the onset of sub-
lattice order is evident in each graph by an inflection that FIG. 13. The density as a function of activity for the ¢ model
increases in intensity. At lower densities one can see aif the Bethe approximation using the block of 13 lattice sites shown
Ising-like inflection develop, giving fox>x, the typical van ?n Fig. 12. The critical value ok is x,=2.64 and shown are the
der Waals loops. Figure 14 showskT for the same values 1SOtherms fox=2.0<x;, X=X, andx=_3.5>X.

of x used in Fig. 13 and one sees a kink in the curve at higrll(

densities(marking the sublattice transitiprat all tempera- .
tures while at low densities and temperatures the typicaYVhere one clea_trly sees that there IS a curve cro§($i|u:g;Jgh .
not quite as crisp as the swallowtail-like figure involved in

Ising-like swallowtail behavior develops. One can see par- 22 : ; ; S
ticularly in Fig. 14 forx>x, that there are two kinks in the the gas-liquid crossingmarking the switch from liquid to

. o o . solid phases.
p/kT versusy curve marking the gas-liquid and liquid-solid . . .
transitions. Figure 15 shows an enlargement of the uppe,[rh From the kinks in thep/kT versusy curve we can pick off

e loci of they (u) curves for the two phase transitions.
These are shown in Fig. 16. The critical parameters are esti-

mated to bex.=2.64 u.=0.379), y.,=0.666, and p,
=0.0959. The triple point, where the two branches come
together, is estimated to occur gt=4.17 (u;=0.24) with

2/3 y;=0.986 andp;=0.312. The labels, b, andc in Fig. 16

refer to regions of the diagram that can be studied using
'3 different exact series, an approach which we will discuss in
the next section. The critical point can be located quite ac-
curately. One zooms in on the swallowtail crossing of the

curves and the3p(y) curves are fit to polynomials in the
FIG. 12. The block of 13 lattice sites used for the generalizedn€ighborhood of the crossing; the exact crossing point is then
Bethe approximation on the honeycomb lattice. The set of foudetermined analytically as is the densitglope of each
blocks indicates how the plane is covered with these blocks. Th€urve on either side of the crossing point. The order param-
numbers on the single block indicate how much of each site belongsterR= p,,— p, is used, plottindR? as a function ofi (in the
to the block. Bethe approximation the coexistence curve has the classical

ink in the p/KT versusy curve of thex>x. case in Fig. 14
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p/kT

O'061 1.1 1.2

y

FIG. 15. An enlargement of the curve in Fig. 14 for=3.5
showing the crossing of the liquid and sopidk T curves as a func-
tion of y.

liquid phase to develop. The,(u) locus is shown in Fig. 19

for this system. Now one can clearly see that the transition
changes from second order to first order at a tricritical point.

3 Using the same numerical technique as described for the gas-
liquid critical point in the2 model, we can accurately deter-
mine the density on each branch of the coexistence curve to
give thep,(u) phase-diagram and this is also shown in Fig.
19.

Having seen that thé model on the honeycomb lattice
0.1 x=3.3>Xc shows gas/liquid/solid phase behavior, we want to see how
much of this behavior we can substantiate using exact series.
In the next section we review a simple method to obtain the
series.

p/kT

IV. ACTIVITY SERIES

Y In this section we review the method developed by
FIG. 14. The quantityp/kT as a function of activityy) for the ~ SPringgate and Polar{d0] a number of years ago to obtain
2 model in the Bethe approximation using the block of 13 lattice@ctivity series for lattice models using transfer matrices. The
sites shown in Fig. 12. The curves represent the same values ofPasic idea is that one takes a strip of lattice of finite width as
used in Fig. 13. For the case Bf=3.5>x. one clearly sees two illustrated for the honeycomb lattice in Fig. (@0 The fun-
first-order phase transitions, the gas-liquid transition at low densitlamental quantity is then a finite vertical column of lattice
and the liquid-solid transition at high density. sites as illustrated in Fig. 20). One uses periodic boundary

8

exponeni3= 3 and soR? is linear inu. R? is then extrapo-

lated linearly to zero, thus giving the critical value wand

also the critical density. We can treat the gas-solid transition
in a similar manner, the main difference from it the gas-
liquid transition being that a second-order transition persists y
to infinite temperaturey=1). Thep,(u) phase diagram so
determined is shown in Fig. 17.

In the 2 model the gas-liquid and liquid-solid transitions
are distinct as seen in Fig. 13 and 14. It is of interest to see
what happens when the 2 interaction of Fig. 6 is turned off
(settinge,=0 or takingv =1). The behavior of the density

and the pressure as a function pfwhen this is done is 0 0.2 0.4 0-6 0.8 1
shown in Fig. 18 for the case af=2.5. Now one sees that u
there is only one transitiofgas-solid; this holds true at all FIG. 16. The lociy,(u) of the phase transition singularities in

temperatures. This then is the analog of the model on théye activity as a function of the low-temperature parameter
square-planar lattice with nearest-neighbor exclusion ang=1/x) for the  model in the Bethe approximation. The loci are
next-nearest-neighbor attraction of FighB The bonds in  given by the curve crossing/kT versusy) as shown in Fig. 14.
this case reinforce the triangular sublattice structure shown ilhe lettersa, b, andc label the branches of the function that can be
Fig. 7 and there is no reason for a separate, more randometermined by different series expansions.
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FIG. 17. The density-temperature phase diaggartu), show- 0.5
ing the loci of phase transition singularities for tBenodel in the
Bethe approximation. The values of the density are determined by 0.4
the slopes of the crossing curves as shown in Fig. 14, evaluated at
the crossing point. 0.3
[+]
. i . . . i 0.2
conditions, indicated by the dashed lines in Fig(a0one
can imagine wrapping the strip into a cylinder. The cylinder 0.1
can then be viewed as a set of consecutive rings of lattice
sites. One then constructs a matvikthat correlates all pos- oF 5 1 G 5 5
sible states(occupancy by particlesof one ring (the ith) u

with the states of the next ringhe i + 1sY). For the case of )

eight sites in a ring as illustrated, all possible rings are shown FIG. 19. They,(u) and p,(u) phase diagrams for the case
in Fig. 20(c). Notice that the feature of nearest-neighbor ex-Wherev=1in the Bethe approximation constructed using data
clusion has been used to reduce the number of possible ring\'?m'lar to those shown in Fig. 18. At high temperatures there is a
Also notice that one need use only one rotational position o

ne of second-order transitions marking the onset of sublattice or-
each particle configuration, the matrix element representinder. At a tricritical point(indicated in both graphs by a solid dlot

%e second-order transition becomes first order with a gas-solid co-
existence curve.

¢.5
o4 one ring state followed by another including the contribu-
' tions of all possible rotations; the use of symmetry reduced
0.3 matrices was introduced by Runnels and Cofdd3. For the
o honeycomb lattice one sees that there is an alternating struc-
0.2 ture of the ringgsee Fig. 2(b)] that also must be taken into
account; because of this one can only use rings with an even
0.1 number of sites.
The method then simply involves the multiplication of the
oh 1 2 matrices and extraction of the part of the grand partition
y function linear in the number of lattice sitéanalog of the
volume); this quantity is the coefficiert,, in the Mayer ac-
0.4 tivity series for the pressure
Bp=2 by2". 4.1)
0.2 n
p/KT For the case of nearest-neighbor interacti¢atractive or
0 repulsive a finite ring withL sites will give theb,, exact for
the doubly infinite planar lattice through=L —1. The rea-
son for this is that foL particles there can be a cyclic chain
0.2 of interactions that go around the tor(due to the periodic

0 ! 2 boundary conditionsthat is not present in the infinite sys-
Y tem. Thus for the system with=8 illustrated in Fig. 20 we

FIG. 18. The density and the pressure as a function of the fugac@btain the first seveh,, exact for the particles with nearest-
ity for the model of Fig. 6 withy =1 (s,=0) in the Bethe approxi- Neighbor exclusion on the honeycomb lattice. Thmodel
mation. In this case there is only one curve crossing at any givefllustrated in Fig. 5 has nearest-neighbor exclusion and next-
temperature and a single gas-solid phase transition. The case showgarest-neighbor attractions. For that model in order to get
is for x=2.5. mbs correct for the infinite lattice requires a ring with
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(A)

O
o

o, . . :
FIG. 20. Lattice configurations used to calculate exact s€@ags. The quantityz .represeinlts an isolated hole introduced into
lllustration of a long row of vertical strips of lattice sites on the the 'perfect SO|Id._;|—h€ term represents'the removal of
honeycomb lattice(b) Nearest-neighbor vertical rows of lattice Particle and thex™® term represents the six bonds broken
sites; the dashed lines indicate the periodic boundary condition&hen a single particle is removed. Notice tizatis distinct
whereby the strip is wrapped into a torgs) The irreducible set of ~ from the definition ofy in Eq. (1.11). The grand partition
ring configurationga ring circling the torusrequired to construct function for the perfect solid is writter® =y [see Eq.
the transfer matrix. (1.10] since in the perfect solid every bond is shared by two
particles(so we getx® instead ofx®).
=2(m+1) sites(for the same reasons just indicated for the The series for the generatv model(not restricted to the
case of nearest-neighbor interactipn¥hus for theL=8 5 mode) through four terms is
rings of Fig. 20 we will get only througim=3 of theb's

“N WDy o

FIG. 21. The illustration of a perturbation in the perfect high-
density solid caused by removing four particles and moving six
particles onto the alternate sublattice. The dashed lines indicate
bonds.
©

exact. bi=1, by=(v/x)3—33+3x,
The matrix sizedirreducible set of ring configuratiops
required for varioud.’s are 8<x8(L=8), 26x26(L=12), bs=(v/x)%+3(v/x)*—12v/x)3+6(v3/x?)
49X 49(L=14), and 9% 99(L =16). The largest matrigor
L =16) will give the b’'s exact throughm=7 for the model. +3(v?/x)+19% — 30x+ 9x?+ 2x3,
This method also can give high-density series that represent (4.4

perturbations about the perfect solid. In that case the series is b’ =(0/x)°+9(0/x) = 27% (0/x)6+ 12(v/X)®
in terms of the 17, this quantity representing a hole in the 4= (/%) (v/x) 2(vlx) Av/x)

perfect solid. +9(v8/x%) — 48(v/x)*+ 9(v>/x*) + 13Qv/x)*®
We now want to use activity series for temodel to 43 ) I o
show that the features found in the Bethe approximation are +15(v"/x%) = 3(v/x) == 126(v°/x) +6(v"/x%)

also present in a more rigorous treatment of the model. We
will focus on they (u) phase diagram shown in Fig. 16. In
that figure we have labeled various branches of the function
by the lettersa, b, and c. Each of these branches can be

determined by a different type of series and we will treat , ! . . . .
these in turn. For the high-density series the relation between the ring size

and the number of terms one gets exactly for the infinite
_ _ _ lattice can be a little tricky since one is dealing not only with
A. abranch (high-density serie$ the range of bonds, as in the low-density case, but with the
The line of singularities indicated kyin Fig. 16 is most nhumber of particles that can be rearranged when a given

simply determined by using the high-density series. Thetumber of holes are introduced into the lattice. We take an
high-density series has the form empirical approach to this question, determining the series

for L=8, 12, 14, and 16 and seeing how many terms are the
1 o same ad is increased. Comparing the resultslof 14 and
BPH=2 In(zx3)+; ba(z')" |, (4.2 L =16 the first six of the high-density's are the same and
we assume that fdr=16 we are indeed getting seven exact
b’s.

Notice that in theb’'s given in Eq.(4.4) there are terms of
the form @/x)™. The origin of these is illustrated in Fig. 21
where we illustrate they(x)® term inby . Four particles are
removed from the perfect triangular structure and then six

—42(v?/X) +30(v3/x) — 129 + 3v + 1802+ 288

+9xv2—1785x%+ 5x3+ 12x*+ 3x°.

where

, 1
4 _ﬁ' (43)
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additional particles are moved off of the dominant sublattice

(breaking a net of ning-type bonds onto the other sublat- 7
tice (forming a net of niney-type bonds
It is useful to change variables and convert E42) into 5

a series iny and the appropriate low-temperature parameter.

First we introduce the variablg’ =1/y, which, using Egs. Yo
(1.17) and(4.3) can be written as follows: :
1 1
y'=53=(2)x% (4.5
ZXB o] 0.2 0.4 0.6 0.8 1
u
For the 2 model withx=w® andv=w® we have the low-
temperature parameter
0.5
t=21/w. (4.9
/\
0.4
While we need to write the series in terhswe will still
refer to our previous low-temperature paramateof Eqg. 0.3
(1.4), which is related td by P
0.2
u=1/x=t>. 4.7
0.1
With the variablesy’ andt defined above the series of Eq. .
(4.2) becomes 0 0.2 0.4 0.6 0.8 1
u
=1 nv’ + b’(t) (v )" 4.8 FIG. 22. The gas-solid part of the,(u) andp,(u) phase dia-
Ppn=z|Iny ; (D) (4.8 grams for theg models determined b In y, using exact high-

density series.
The first severb,(t) are given in the Appendix.
In Sec. Il we have already given the high-density activitymodel shown in Fig. 16. We turn now to tibebranch asso-
series in the high-temperature limit ®&v=1. The relation ~ ciated with the gas-liquid critical point.
between the series f@p,, and the densityp) and modified
compressibility fy) are given in Eq(2.2). The series for B. b branch (low-density serie3

1 f . =
{H(Z. ) and xu(p’) are illustrated for the case of=uv To determine the gas-liquid branch of tye(u) phase
=1in Egs.(2.4) and(2.5. As an example of the behavior of yiagram we will utilize the low-density activity series. The
the series at lower temperatures we have the following serieg«t four b's for generalx andv are

for D In y evaluated ak= 3.8 (this turns out to be the criti-

cal value ofx for the 2 mode): b;=1, b,=—6%+3x+1kv
dln
—Xt‘:1+2,37](y')+2.323y')2+3,213y')3 by=673 — 57x+ 9x2+ 2x3— 30 + 3v 2+ 12w,
dlny (4.10

+4.104y’)*+5.193y")%+6.76Qy" )6+ - .

9 b,=—8503 + 1035 — 343 x?— 173+ 12x*+ 3x°

1 1 2 3_ 2 2
The (3/3) Padeapproximant givesy! =0.788 ory,=1.27 +55%u — 11507+ Tv7— 43207+ 66«

(there is also a spurious rooty}/~=0.365 in the numerator +11x224 9x3
and denominator that cancgls ? '

Pade approximants to series such as illustrated in Eqhree more coefficients for the special case of $raodel
(4.9 have no trouble in picking up the singularitiesyiand . given in the Appendikasb,,(w)].
p associated with the onset of sublattice order. The loci of The simplest way to see ?he development of a critical
these singularities as a functionxfor u=1/x) are shownin - int s to follow the roots of the grand partition function in
Fig. 22. The points at the high-temperature linit{1) have  the complexz (or -y) plane as the temperature is lowered
already been determined in Sec. Il and are given in(Eq).  from infinity. For all Ising modelgsingle-site exclusionat

The one thing that this analysis does not give is any indicajnfinjte temperaturex=1) the grand partition function for a
tion of the nature of the phase transition changing from secpattice of M sites is

ond order to first order. We assume that at the high-

temperature limit the transition is second order and that the E:(1+y)M_ (4.11
line of singularities associated with the freezing transitions

remains second order at least for a range of values ®he  Setting Z(y)=0 to obtain the roots of the grand partition
curvey,(u) shown in Fig. 22 is then tha branch of the2  function one has the result
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_ FIG. 23. The motion of the Lee-Yang roots of the grand parti-  FIG. 24. The anglef, as illustrated in Fig. 23, plotted ag6
tion function for thes model as determined b In y, using exact  versusx for the Ising model on the planar-triangular lattitebeled
low-density series. At infinite temperatune= 1) the root closestto  as Ising and for the2 model (labeled as Honeycomlgiving the

the origin is aty,=—0.155 and then, as the temperature is de-results of (3) and (3) Padeapproximants toD In y, using exact
creased, moves out into the compleplane. The points show in-  |ow-density series.

crements of 0.2 irx for the rangex=1-2.4. The angl® is illus-

trated. final value shown is fox=2.4). The angled that a point in
the complexy plane makes with the real, positiyeaxis is
Yo(Xx=1)=—1 (M-fold degenerate (4.12  also illustrated.
To compare the behavior of themodel with that of the
Ising model we have also used the 10 exagtx) that are
the complexy plane and finally, at the critical value of known for the Ising model on the planar-triangular lattice
' [8]. For that case we determine the closest singularity to the

touches onto the real positiyeaxis aty,= + 1. " . .
All lattice gas models with nearest-neighbor exclusion ex-real positivey axis usingD In . . The value of the angl®

4 B . I
hibit a singularity on the negative activity axis close to thefrom .the(S) and(3) approximants are then ;hown In Fig. 24
- ; : ! plotting 6 as a function ok). The known critical value ok

origin at high temperatures. The nature of the singularity a or the Ising model on the triangular lattice is simpls]

this point has been considered by Poldf@d] and Lai and 9 9

Fisher[13]. This means of course that at high temperatures (Ising mode] x.=3. (4.14
activity series are not very well behaved since the radius of

convergence is very smdlh contrast, high temperature den- One sees that one of the Paggproximants anticipates the

As the temperature is lowereg,. moves from—1 out into

sity series are well behaved locus on the real positivg axis, but that the other extrapo-
For the 2 model in the high-temperature limit Pad@-  lates smoothly to the known critical point. In Fig. 24 we also
proximants ofD In y, constructed from Eq2.10 give plot the same quantities for tRenodel and one sees that one
gets exactly analogous behavior simply shifted to lower tem-
y,=—0.155, 4.13 peratures. We estimate that the critical point occurs at
(2 mode) x.=3.8. (4.15

which is seen to be much closer to the origin than the result

of Eq. (4.12 for Ising models. As the temperature is de- which represents a lowér, than the value.=2.64 found in
creased one can follow this singularity out into the complexthe Bethe approximatiofithe Bethe approximation on the
plane. To do this we use the Pabdn y, method, using the level of bonds gives.=4 for the Ising critical point for the
sevenb,(w) given in the Appendix plus three additional plane-square lattice while the exact valuexis=5.828.
approximate terms. At lower temperatures the most impor- The functionD In x, is very well behaved ak=x, as
tant contribution to theb, are from compact cluster@s shown below:

illustrated by Fisher’s cluster modgl4] and a modification

to include excluded volume effedi$5]). The contribution of ain x, B 2 3

compact clusters will be correctly included in the approxi- dlny =1+1.566/+1.31y"+1.53Y

mateb,, we use(recall that it is linear clusters that stretch 4 5 6

around the torus that are treated incorrectignd in the +1.378"+1.79%°+ 1.57¢
high-temperature limit the approximate, are exact(the +1.8547+1.7998+2.074%+ . (4.1

only interaction being nearest-neighbor exclugiorhe mo-

tion of the roots in the complex-plane is indicated in Fig. For x>x, (T<T,) we can use the Pad2In y, method to
23, where in the high-temperature limit one startg aiven  reliably give estimates of the gas-liquid,(u) locus (the b

in Eq. (4.13 and, as the temperature is decreased, moves ifranch of Fig. 16 A few pairs (from (£) and (5) Padeap-
the direction of the arrows around toward the real, pos§ive proximants are

axis; points are shown for valuesstarting atx=1 for the
point of Eq.(4.13 and increasing in increments of Othe x=3.8 y,=0.951,0.951,
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x=4.0 y,=0.964,0.966,
(4.17
x=4.2 y,=0.982,0.987,

x=4.4 y,=1.004,1.011.

C. ¢ branch (low- and high-density serie$

Thec branch ofy,, in Fig. 16 involves the phase transition
separating gas and solid at very low temperatures. Recall that
we picked a value ok<<2 (=9/5) that guaranteed that the
triangular-type solid of Fig. 7 would be the dominant phase

at low temperatures. The condition for the equilibrium of gas

and solid at low temperatures is that

We have already express@py as a function ofy’ =1l
and the low-temperature parameterl/iw of Eq. (4.6). Like-
wise we can also expregp, as a function ofy andt so that

both sides of Eq(4.18 are written in terms of the same

variables. Then we writg (t) as a series in powers tf

y,(t)=1+at+at’+---, (4.19

where thea's are unknown coefficients. Using the known

series[of Egs.(4.1) and(4.8), both given in the Appendix
one inserts the form of Eq4.19 in both seriegone is in

powers ofy the other in powers of ¥j, and this then be-
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FIG. 25. They,(u) phase diagram and parts of thg(u) phase

comes a recursion relation for theés. This approach has gjagram for thed model as determined by exact series. The behav-

been discussed in detail elsewhgt&—19. Thus we can use

ior is qualitatively the same as shown in Fig. 16 for the Bethe

the low and high-density activity series and determine theypproximation.

low-temperature expansion of tiedoranch of Fig. 16 explic-

itly through Eq.(4.19. One can also then use the form of Eq. the Bethe approximation. The result is shown in Figure 25
(4.19 in they series for the density on the low- and high- where thea-branch comes fror® In x4 as illustrated in Fig.
density sides to obtain the density along the low- and high22, theb branch comes fror® In y, , using the results shown

density sides of the phase diagram. We have ttlseries
exact through the term it*® as given below:

y,=1+t15— 118+ 2121 1244+ 31?5
+5t27— 6t28— 3t29— 530+ 1531
—ot324 20— 153 155+, (4.20

pL = t+3t?1+ 6t25+ 9t?’— 6t
+36t30+ 61324+ 273+ 394%5+--- . (4.2)
pn= 12— (12t —t18— 1)t
— 2t%4- 3t 2(5)t?'- 9%
—4(1/2)t%°—2t30— 18t31—22(5)t%

+10t33— 36t34— 82(%)t35+ oo, (4.22

We emphasize that the above series are expansions along the

in Eq. (4.17), and thec branch is a plot of Eq4.20. While

the parameters for the critical point and the triple point are
quantitatively different from those found in the Bethe ap-
proximation, the qualitative features gf.(u) are the same.
Our estimate of the critical-point and triple-point parameters
are(showing those for the Bethe approximation for compari-
son shown in Table I.

The qualitative agreement between thgu) phase dia-
grams gives us some confidence that the generalized Bethe
approximation is a useful tool to describe the pattern of sin-
gularities represented by (u) in systems with multiple
phases and phase transitions.

The p,(u) phase-diagram is also shown in Fig. @8e
analog of Fig. 17. In this case series expansions cannot give
the full picture simply because we have no series represent-
ing the liquid phasgand hence the center of the figure is
blank). We can follow the locus of the second-order gas-

TABLE I. Critical point and triple-point parameters.

. . Critical point Triple point
low-temperature coexistence curve and not just low-
temperature expansions of the fugacity and densities. Series Xc=3.80 (U.=0.263) % =4.40 (U;=0.227)
We have now determined the locys(u) for each of the y.=0.950 y;=1.008
three branches of this function labeled in Fig. 16 and camethe X.=2.64 (U,=0.379) x=4.17 (U,=0.240)
now combine them to give the analogous figure, but this time y.=0.666 y,=0.986

constructed from the results of exact series rather than from
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solid transition from high temperatures downward as shown 3
in Fig. 22 and we have the high- and low-density branches of

the gas-solid coexistence curve at low temperatures, as giver 23
by Egs.(4.21) and(4.22. In particular, we have no estimate

of the location of the tricritical point where the gas-solid

transition switches from second order to first or@i€indeed 1.5 X
it doeg and we have no estimate of the triple-point density.
One of the main features of the present model is the in- 1
clusion of two types of bonding that lead to very different v
geometries for clusters as illustrated in Fig. 8. In particular, ~ °*°
the presence of a liquid phase can be attributed to the occur- 0
rence of random combinations of the two types of bonding as 0 0.1 0.2 0.3 0-4 0.3
illustrated in Fig. 8b). It is of interest therefore to quantita- P

tively determine the extent of each type of bonding. We can £ 6. The bond density as defined in E4.28 for x andv

do this readily for an infinitely long torus of lattice sites with ),n4s at the critical isotherm,=3.8, as a function of density for
a finite circumference, as illustrated in Fig. 20. For this casep infinite torus with a circumference of 12 lattice sites illus-

the grand partition function is given in terms of the transferyated in Fig. 20.
matrix W that correlates the possible states of nearest-

neighbor rings on the torus, Yo=1+u3+3u’—u®+ 120" — 1208+ 61u%— 1050+ - -,
E=Trw* (4.23 (4.27)
— 3 5_ 6 7_ 8
whereL is the length of the torus. The density is then given pL=U"+6U"—3u"+ 37— 4
by +28%— 44710+ -, (4.28
, Trw/w-—1
(L“m)P:W (4.24 pr=3—(HuE-3ud+ub-19)u’
+13(3)u- 13+ 14W%+--- . (4.29
where
W Presumably we could link the separate regions shown in Fig.
W' = 7 (4.25 27 into a continuous curve if we had longer exact series.
nz
The limit L—c is achieved by increasiniguntil the result is V. DISCUSSION

independent of. One can also calculate the density of bonds | this paper we have treated the model illustrated in Fig.
by replacing the variablein Eq. (4.27) with eitherx or v10  5and 6, with parameters given in Eqs.15 and(1.16), the
give the density of the two types of bonds. We define the2 mogel. The essential feature of the model is that at high
bond density as the density of a particular type of bond pefensity and low temperature the triangular-type solid shown
particle, in Fig. 7 will be the stable phagéhe choice of parameters in
B B Egs. (1.15 and (1.16 guarantees th|s Since there is

Re=pxlp and R,=(9/5)p,/p. (4.2 ngarest-neighbor exclusi%n in the model there will be a fluid-

solid transition of some type at all temperatures marking the

Note that for comparison we multiply, by 2 since thev X s .
P bW, BY onset of sublattice ordefin a second-order transitipror

bonds represent an energy thafithat of thex bonds.

The quantitieRR, andR,, are plotted as a function @f at
the critical value ofx (x;,=3.8) in Fig. 26. One sees that at
low density most of the bonding is of thetype, but as the 7
density of particles increases tikeype of bonding starts to 6
predominate and as one approaches the limit of close pack-
ing all of the bonding is of tha type. So clearly both types Ug °
of bonding play an important role with a shift from one type 4
to the other as the density increases.

Finally we want to show that the gas/liquid/solid phase
diagram collapses to a gas/solid phase diagram if one turns

off the v type bonds(settinge,=0 orv=1). We have al- 11— —
ready shown this in the Bethe approximation, as illustrated in
Fig. 19. We determing,(u) in this case by using the Pade 0 0.2 0.4 0.6 0.8 t

D In y method using high- and low-density series, as before.
The points that we obtain reliably in this case are shown in  F|G. 27. They,(u) and p,(u) phase diagrams for the case
Fig. 27. The almost straight line at low is the low- wheny=1 as determined by exact series. As with the Bethe ap-
temperature locus of,(u) obtained as in Eq(4.19. We  proximation of Fig. 19, there is a single gas-solid transition at all
have this series exactly through® as given below: temperatures.
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marking a discontinuous jump in sublattice ordier a first-  =3.8 the functionsy, (y) and xn(y 1) give distinctly dif-
order phase transition The presence of a liquid phase is ferent values ofy,.. The series foD In yy(y ™) is given in
made likely by the inclusion of two different modes of bond- Eqg. (4.9) while the series forD In y, (y) is given in Eq.
ing (x-type andv-type bondgthat, at intermediate values of (4.16), both for x,=3.8. Both of these series are very well
density and temperature, lead to mixed types of clusters asehaved and so thg, values obtained from them are very
illustrated in Fig. 8b); the presence of both types of bonding reliable. But it is not just a single pair of values wpf that
is documented in Fig. 26. convinces, but the trends of the numbers as a function of
In the generalized Bethe approximation this model doesemperature. And it is clear in Fig. 25 that there are distinct
indeed show gas, liquid, and solid phases with a standardranches to the(u) function.
gas-liquid critical point(as illustrated in Figs. 16 and 17n Thus this model supports the use of the generalized Bethe
their famous paper on phase transitions, Lee and Ydhg approximation to give qualitatively correct phase diagrams
give a figure(Fig. 2 in their Ref[1]) showing pressure as a for complex systems. One advantage of the Bethe approxi-
function of activity, the curve having two kinks in it that mation is that the entire range of density and temperature can
represent the location of the two singular poifithere the be treated using a single, very simple formalism. Another is
density is discontinuoysrepresenting the gas-liquid and that a first-order phase transition shows up clearly as a swal-
liquid-solid phase transitions. Our Fig. 1fbr x=3.5 is a  lowtail cusp in8p(y) (first-order phase transitions are diffi-
realization of the schematic figure of Lee and Yang for acult to describe using series
specific model(the 2 mode); of course one must imagine Finally we note that in our model the gas-solid transition
removing the swallowtail cusps from our Fig. {the equiva- is second order at high temperatures. There is evidence in the
lent of using Maxwell’s construction for the van der Waals literature[ 20] that if the extent of the repulsive core in lattice
loops. gases is made great@r, equivalently, if the lattice grid is
We have already reviewed the evidence obtained fronmade finey the sublattice-order transition is first order at
exact series expansions that shows that the presence of ghigh temperature. Thus there is the possibility that a model
liquid, and solid phases in the model is not just an artifact ofonly somewhat more complex than the present one can be
the Bethe approximation. The key point in the evidence thatonstructed that shows a gas-liquid critical point and a first-
the 2 model does have a standard liquid phase is that.at order fluid-solid transition for all temperatures.

APPENDIX

Low- and high-density activity series for tiemodel;x=w® andv =w®.

1. Low-density series

by=—6(3)+3w°+1(5)w?,
b3=67(3) — 57w°— 30w+ 9w+ 12w+ 2w+ 3w1s8,

b,=—8502)+ 10350°+ 559 3 )w®— 343 ) wi— 4324 — 17ws— 113 3w+ 66w

+ 12020+ B+ 9w+ 3w+ 7w+ 1(3) W,

bs=12009%)— 18 987°— 10 434v°+ 96661710+ 11 8591*— 886n 15+ 3192018
— 3780n1°— 435n20— 2235n23— 48W24— 21w?5— 408827+ 27328+ 96W2%+ 21w 3P

+126W:°324 48w33+ 15w34+ 6w+ 18w+ 6w+ 3wS8,

be=—181974%)+35354W°+ 196 450 3 )Ww°— 242 956 3 ) w'’— 294 26 TW!*
+5412°— 80527 3 )W+ 144 190 2 )w®+ 7525 ) w?°+ 85 17w ?®
— 15 68?4 2058v2°+ 15 625 3 )w?'— 24 61Q 3 )w?8— 4680n?°— 8051 *°
—10 10W32— 60933+ 24w34— 5735 — 1425036+ 1029037+ 501w38+ 1842 )w®
+ 42W*%+ 408041+ 202+ 93w A3+ 33w+ 60( 3 )W+ 24w+ 19( 3w’

+7(3)W (3)w™,
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b;=28967113)—6 671 33W°—3 736 740v°+ 5 774 96 W'+ 6 941 79v**
—2017 73315+ 1 921 238 4 607 99 W%+ 34 326v20— 2 719 155v23
+1 055 844v?>*+ 100 803v>°— 502 84T?'+ 1 249 13W?8+ 86 922v2°
+10 352039+ 499 149v32— 123 591w 33— 35 724v34— 43058°%+ 70 257w 3°
— 1315137 35 445v38— 8742n3%— 1749v*0— 42 53 W41 4956142 — 25503
— 48W*— 506245+ 362445+ 215 W47+ 1023v*8+ 408149+ 140 WSO
+ 858n°1+ 5251°2+ 234w >3+ 185n°4+ 1175+ 90w 6+ 48w+ 21w>8

+ 6w+ w804 3w+ 3wo3,
2. High-density series(t=1/w)
b;=t*®
by=1'%+3t%-3(3)t%,
bs =121+ 6128+ 3t2%9+ 230+ 3t32— 12133+ 9t35—- 30149+ 19 )t*°,
b, =t24+ 9t31+ 91324 3133+ 334+ 12435— 27(3) 130+ 637+ 3038+ 1839+ 24140+ 18t%2
— 12643 — 484+ 55+ 3t46— 42447+ 1272%8— 178 3)t50+ 288 55— 259 1)t5C,
be =127+ 123+ 1835+ 6135+ 3t37+ 24t38— 46139+ 12140+ 75414 93442+ 10243+ 364
+123%°— 31546231147+ 82t *8+ 66t 40— 14450+ 555 51— 99F 53— 47454 4205
+18t56— 45@57+ 20071%8+ 603 59— 67%%0— 4851+ 48352— 130953+ 26371%°
—279879+971( $)t7°,
bg=t30+ 15374 30t38+ 11139+ 340+ 3041 — 74( 5 ) 142+ 15643+ 13844+ 251145+ 32446
+ 13547+ 363*8— 4804%— 72659+ 308>+ 72&°°— 57t°°+ 2087 3 )t54+ 627°°
—310%56—-3129°%"— 2815 3)t°8— 234%9— 344350+ 784251+ 4800%2— 550953
—3667 3)t%4+4955°—8752%6— 241257+ 21 5618+ 87305°+ 3434 $)t"°
—522714+79027%—28273"3- 697274+ 16 782"°+ 597 ®~ 5247 "+ 1343078
—349208%+ 27 555%°— 7794 $)t*°,

b, =133+ 18t40+ 45t41+ 15642+ 6t 43+ 60t 44— 1145+ 30t5+ 213147+ 4898+ 780t*°

+31&°0+ 81151 486°2— 178253+ 86 71%*+ 28085+ 1263%°+ 697 1>
+3372%8-5703%- 10 638°0— 12 3155+ 1383%2— 10 76953+ 22 035%4+ 27 783%°
—2166%%—-33957°"—13743%-53594%9—328327°+91 27271+ 76 2032
+37572°-16 686"+ 61 001 "°— 158 6047°— 93 273"+ 168 49378+ 94 290 "°
+80498+ 120 88181+ 70 82782— 387 3633~ 136 64454+ 17 532%°+ 975386
—116 89287+ 372 34288+ 77 679%°— 307 235%°— 683191+ 55 824%2— 138 0403

+437997%°— 275184109+ 65718 2)t1%5,
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