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Planar lattice model with gas, liquid, and solid phases

Douglas Poland
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

~Received 15 June 1998!

We treat a lattice gas model on the planar-honeycomb lattice with nearest-neighbor exclusion and two types
of next-nearest-neighbor attraction. In the generalized Bethe approximation described in the previous paper, the
model exhibits both a gas-liquid, Ising-like, phase transition~with a critical point! and a gas-solid phase
transition. We show that the qualitative features of the activity-temperature gas/liquid/solid phase diagram
found in the Bethe approximation are present in a more rigorous treatment of the model using exact series
expansions.@S1063-651X~99!09102-3#

PACS number~s!: 05.20.2y, 05.50.1q, 05.70.Fh, 05.70.Jk
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I. INTRODUCTION

In the present paper we treat a lattice gas model on
planar honeycomb lattice that in the generalized Bethe
proximation developed in the previous paper@1# clearly dis-
plays gas, liquid, and solid phases with a gas-liquid criti
point. We also use exact series expansions to corroborat
existence of canonical three-phase behavior in this mode

To understand the motivation for choosing a particu
lattice gas model that is likely to exhibit gas, liquid, and so
phases we need to review some of the basic facts abou
tice gases in general. We take the view that the lattice
device that allows us to construct a discrete approximatio
the configuration integral in continuous space and that
main ingredient in the cooperative behavior between m
ecules is, as one moves out from the center of a refere
molecule, a range of infinitely repulsive interactions~ex-
cluded volume effect! followed by a range of attractive in
teractions the strength of which rapidly go to zero far fro
the center of the reference molecule. Figure 1 illustrates h
repulsion and attraction are incorporated into simple lat
models. Figure 1~a! illustrates the simplest lattice-gas mode
the Ising model on the planar-square lattice, where the ra
of exclusion is shown by the inner circle and encompas
just a single site while the range of attraction is the fo
nearest-neighbor sites shown in the outer circle. If one ke
the size of the regions in the concentric circles in Fig. 1~a!
fixed and decreases the lattice spacing by a factor of two
gets the lattice gas shown in Fig. 1~b!. If one kept decreasing
the lattice spacing then the properties of the lattice gas wo
~slowly! approach the behavior of system in continuo
space. Of course the reason for using the lattice-gas syste
that it is much simpler to treat than the system in continu
space. And renormalization-group theory tells us that the
sential features of a system~particularly the nature of the
critical point! are insensitive to the scale of the system. T
hope is that the lattice gas will exhibit behavior that is qua
tatively similar to that of the continuous system. From t
work of Onsager@2# we know that the model shown in Fig
1~a! exhibits a gas-liquid phase diagram with a critical poi
There is evidence in the literature@3#, based on studies o
finite chunks of lattice, that a model like that shown in F
1~b! will show three-phase behavior. We are seeking a mo
that is complicated enough to show canonical three-ph
PRE 591063-651X/99/59~2!/1523~17!/$15.00
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behavior but simple enough to be amenable to study us
exact series.

A central problem with lattice gases is that the latti
seems to introduce an artificial order in that at high dens
all lattice gases look like a regular solid. But in fact the mo
famous lattice gas, the Ising model illustrated in Fig. 1~a!, is
not a gas-solid model, but a gas-liquid model and the hi
density phase in the Ising model is a model of a liquid, no
solid. To understand why this is so one must focus on
central feature of all Ising models and that is that the range
excluded volume extends only to a single lattice site. Lee
Yang @4# generalized the notion of an Ising model by allow
ing any number of attractive interactions, as illustrated

FIG. 1. Illustration of regions of repulsion and attraction arou
a particle in lattice gases.~a! The standard nearest-neighbor Isin
model where only the central site is excluded and attraction is
on nearest-neighbor sites~open circles!. ~b! The same model as in
~a! except that the lattice grid has been made twice as fine. N
there are five excluded sites~solid circles! and nine sites for attrac
tion ~open circles!.
1523 ©1999 The American Physical Society
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1524 PRE 59DOUGLAS POLAND
Fig. 2, but kept the feature of single site exclusion. With
properly defined fugacity~scaled activity!, the roots of the
grand partition function for the generalized Ising model
are on the unit circle and, as the temperature is decrea
come from the negative real-fugacity axis around the u
circle, and at the critical point, touch the positive re
fugacity axis. The unit circle cuts the positive fugacity ax
only once and thus there is one and only one singula
~phase transition! in generalized Ising models and it mimic
the gas-liquid system with a first-order phase transition e
ing at a critical point. The high-density phase is not a so
since there is no interaction forcing the particles to take
positions on a particular sublattice of sites. Thus no ma
how many attractive interactions one introduces, as in Fig
as long as there is only a single, central excluded site
model display gas-liquid behavior.

As soon as the range of exclusion goes beyond the ce
site, as in the model shown in Fig. 1~b!, then one has a
gas-solid model. The reason for this is that when one
nearest-neighbor exclusion the particles are forced to occ
every other site at very high density and there are two w
of doing this, either on sublattice~a! or ~b!, as discussed in
the previous paper. The onset of sublattice order is then
determining feature of a solid phase in a lattice gas.

To be more explicit in describing the phase-diagrams
volved in various lattice models we need to define a f
variables. The first of the basic thermodynamic quantities
need is the activity

z5exp@bm2bm0#, ~1.1!

whereb51/kT ~wherekT has the usual meaning! andm is
the chemical potential~with m0 the standard chemical poten
tial!. With the definition of Eq.~1.1! one has

z;r as r→0, ~1.2!

wherer is the number density of particles on the lattice. T
second quantity we need is the Boltzmann factor for attr
tive interactions,

x5exp@2b«#, ~1.3!

FIG. 2. Schematic illustration of the generalized Lee-Yang Is
model having extensive sites for attractive interactions~open
circles! which are not necessarily of the same intensity, but wh
only the central site is excluded. This kind of model at most exh
its two phases with an Ising-like, gas-liquid phase diagram.
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where« is the negative~for attractions! interaction energy. It
is also useful to define the inverse ofx,

u51/x, ~1.4!

which is a low-temperature parameter sinceu→0 as T
→0; u5x51 whenT→`.

A variable that is central to our discussion is the sca
activity or fugacity, which involves bothz and x. For the
planar-square lattice illustrated in Fig. 1~a! this quantity is

y5zx2. ~1.5!

The motivation for this definition ofy is that in the close-
packed limit the grand partition function for the system, u
ing the example just mentioned, is

Jclose packed5yM ~1.6!

for a lattice ofM sites. Note that the definition ofy in Eq.
~1.5! usesx2 and notx4 since each of the four bonds pe
particle is shared by two particles. Since for the empty latt

Jvacant51, ~1.7!

one anticipates that wheny51 interesting things will happen
~since this is the balance point between the empty and
lattice! and indeed this was proved for all Ising models
Lee and Yang@4#. The exact definition ofy, as given in Eq.
~1.5!, will depend on the model.

In Fig. 3~a! we illustrate the locus of the phase transitio

g

e
-

FIG. 3. Schematic illustration ofys(u), the locus wherey ex-
hibits a phase-transition singularity as a function ofu. ~a! The
nearest-neighbor Ising model illustrating a gas-liquid phase
gram. ~b! The model of nearest-neighbor exclusion and ne
nearest-neighbor attraction~discussed in Ref.@1#! illustrating a gas-
solid phase diagram. In the schematic insets the solid cir
represent excluded sites and the open circles represent site
attractive interactions.
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PRE 59 1525PLANAR LATTICE MODEL WITH GAS, LIQUID, AND . . .
singularities in the fugacityys for the Ising model~single-
site exclusion, nearest-neighbor attraction!. The locus isys

51 from absolute zero (u50) up to the critical point where
theys locus separates the gas and liquid phases. In Fig.~b!
we illustrateys for the lattice gas with nearest-neighbor e
clusion and next-nearest-neighbor attraction. In this case
locus extends from absolute zero up to infinite tempera
(u51). The dashed portion of the curve indicates the line
second-order transitions, the transition being first order
low the tricritical point. In the latter model the attractiv
interactions enforce the sublattice ordering and hence t
are only the gas and solid phases in this model, with
liquid phase.

Clearly the idea is to combine the behaviors shown
Figs. 3~a! and 3~b! together so that one has gas, liquid, a
solid behavior in one model. Figure 4 schematically sho
the ys locus we would like to find. As long as one ha
nearest-neighbor exclusion one will have solidlike sublatt
order at high densities and so the gas-solid part is easy.
problem is to reintroduce Ising-like gas-liquid behavior w
an ordinary critical point. The straightforward way to do th
seems to be to introduce a variety of attractive interactio
not all of which reinforce the sublattice structure. The mo
we have chosen is shown in Fig. 5. It is a lattice gas on
planar hexagonal lattice with nearest-neighbor exclusion~the

FIG. 4. Schematic illustration of theys(u) phase diagram for a
substance exhibiting the gas, liquid, and solid phases. The t
phases coexist at the triple point~solid circle!. The critical point is
indicated with an open circle.~a!, ~b!, and~c! indicate parts of the
ys loci that can be located using different series techniques.

FIG. 5. The honeycomb lattice model. The solid circles rep
sent excluded sites while the open circles represent sites for at
tive interactions.
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inner circle of dark circles! and next-nearest-neighbor inte
actions~the outer circle of open circles! of two types. The
types of interaction are illustrated in Fig. 6 with the exclud
sites indicated by dark circles and the attractive sites by o
circles, with the two types labeled by 1 and 2. We will defi
the Boltzmann factors for the two types of attractive intera
tions as

x5exp@2«1 /kT# and v5exp@2«2 /kT#. ~1.8!

At high density the particles take up a sublattice order, illu
trated in Fig. 7; the sublattice order is reinforced by t
shorter attractive interactions~the x factors! and a few are
illustrated by dashed lines in Fig. 7. The fact that there
two types of attractive interactions leads to clusters hav
very different geometries. If one uses allx-type interactions
then one gets clusters of the form shown in Fig. 8~a! ~with a
triangular geometry! while if one uses allv-type interactions
one gets clusters of the form shown in Fig. 8~c! ~with a
hexagonal geometry!. If one uses both types of interactio
then one gets the irregular networks shown in Fig. 8~b! and
the hope is that the entropy associated with the irregu
networks will give the model gas-liquid behavior at interm
diate densities.

ee

-
c-

FIG. 6. A reproduction of Fig. 5 with the two types of site fo
attractive interactions labeled as 1 and 2.

FIG. 7. Illustration of the close-packed structure for the hon
comb model of Fig. 5. As a result of the nearest-neighbor exc
sions, particles~shown by solid circles! must exist on a sublattice
consisting of every other lattice site. The next-nearest-neighbo
tractive interactions are shown by dashed lines~which show that the
sublattice of the honeycomb lattice defines a triangular lattice!.
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1526 PRE 59DOUGLAS POLAND
There are two simple ordered structures possible with
two types of attractive interactions introduced. Starting w
the basic honeycomb lattice illustrated in Fig. 9~a! one gets a
regular but very open solid with honeycomb geometry illu
trated in Fig. 9~b!. The triangular-type solid, already illus
trated in Fig. 7, is shown again in Fig. 9~c!. The portions of
dashed lattice shown in~II ! and~III ! indicate the geometry o
the original honeycomb lattice. We want the triangular-ty
solid to be the most stable form as the temperature goe
absolute zero. To discuss the relative stability of the vari
solid phases shown in Fig. 9 it is useful to write interactionv
in terms of interactionx as follows:

v5xk. ~1.9!

Then the grand partition functions for the regular systems
the empty lattice, honeycomb-type solid, and triangular-ty
solid are, respectively,

J051, Jh5~zx3k/2!M /4, J t5~zx3!M /2. ~1.10!

We letM be the number of lattice sites on the original lattic
there are thenM /4 particles on the superhoneycomb latti
@Fig. 9~b!# and M /2 particles on the triangular lattice@Fig.
9~c!#. We define a fugacity relative to the triangular-typ
solid phase~wherez is the activity!,

y5zx3. ~1.11!

In the triangular-type solid phase of Fig. 7 there are six of
x-type interactions per particle, but each bond is shared

FIG. 8. Possible compact clusters in the honeycomb lat
model.~a! A cluster with triangular geometry formed using type
interactions only.~b! An irregular cluster formed using both type-
and type-2 interactions.~c! A cluster with super-honeycomb geom
etry formed using type-2 interactions only. The insets illustrate
type of attractive interactions~open circles! used to generate th
clusters; the excluded sites~solid circles! are the same in all cases
e
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y

two particles and hence the definition of Eq.~1.11!. In terms
of y the grand partition functions of Eq.~1.10! become

J051, Jh5@y/x3/2~22k!#M /4, J t5yM /2. ~1.12!

In general for this class of models the phase transition lo
will not be ys51, as in generalized Ising models, but, a
ticipating Eq.~4.19!, ys→1 asT→0 (u→0). Thus for the
triangular-type solid to be the most stable at absolute zero
require

J t.Jh , ~1.13!

or from Eq.~1.12! settingy51,

k,2. ~1.14!

For manipulations with series it is useful to havek a rational
fraction. Explorations of the behavior of models withk near
2 show that the following value ofk gives interesting results

k59/5, ~1.15!

or introducing a parameterw,

x5w5 and v5w95x9/5. ~1.16!

The choice ofk5 9
5 guarantees that the triangular-typ

solid of Fig. 9~c! will be the stable phase at high densit
Sincev.x, the dominant dimers formed at low density w
utilize the v interaction~h type! rather than thet type. At
intermediate densities there will be a mixture of the tw

e

e

FIG. 9. Three types of regular lattice configuration for the ho
eycomb lattice gas model.~a! The empty lattice.~b! The super-
honeycomb configuration resulting from utilizing type-2 intera
tions only.~c! The triangular configuration resulting from utilizin
type-1 interactions only. In~b! and ~c! a portion of the underlying
honeycomb lattice is shown using dashed lines. Whenk52 all
three configurations are equally probable atu50 ~absolute zero!.
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PRE 59 1527PLANAR LATTICE MODEL WITH GAS, LIQUID, AND . . .
types~we will show this quantitatively in Fig. 26!. We will
refer to the choice of parameters given in Eqs.~1.15! and
~1.16! as the9

5 model.
We now show that in the generalized Bethe approxim

tion this model shows gas-liquid-solid behavior. A key i
gredient in the generalized Bethe approximation is the
havior at high temperature (x5v51) where the model ha
just the hard core exclusion and we turn to that limit first

II. HIGH-TEMPERATURE LIMIT

In the high-temperature limit whenx5v51 we have the
model of nearest-neighbor exclusion on the honeycomb
tice. In analogy with the behavior of the similar model on t
square-planar lattice@5–7#, we expect a second-order pha
transition at high density where sublattice order begins. T
second-order transition will occur at a critical densityrs and
a critical value of the activity,zs . The simplest way to de
termine these parameters is by using high-density se
which are essentially perturbation series about the clo
packed lattice~as illustrated in Fig. 7!. High-density series
are very sensitive to sublattice order and hence allow u
determine the critical parameters easily. We will defer a d
cussion of the calculation of the series until a later sect
and here simply quote the results. The high-density series
the pressure is given in inverse powers of the activity. T
series through eight terms is

bpH~z!5 1
2 ln~z!1 1

2 @z211 1
2 z2211 1

3 z2314 1
4 z24

1161
5 z251722

3 z2613551
7 z27118431

8 z281¯#.

~2.1!

The density and modified compressibility are given in ge
eral by

r5
]bp

] ln z
and x5

]r

] ln z
. ~2.2!

The modified compressibility is related to the standard i
thermal compressibilityKT by the relationKT5x/(kTr2). It
is convenient to introduce the relative density of holes,

r85122r. ~2.3!

Using the above expressions we can obtain both the act
and density series forxH ~the compressibility obtained from
the high-density series!,

xH~z21!5z2112z22112z23168z241405z25

12616z26117,402z271117,960z281¯ ,

~2.4!

xH~r8!5r81~r8!216~r8!3124~r8!4196~r8!5

1504~r8!612532~r8!7112,296~r8!81¯ .

~2.5!

Both series are very well behaved and clearly diverge
critical values of the activity and density respectively~zs and
rs!. The points of divergence are easily located using P´
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approximants to the series. First we will convert the functi
under consideration to the logarithmic derivative,

D ln x~z!5
] ln x

] ln z
, ~2.6!

which converts singularities of the form (zs2z)2g to simple
poles, which are then determined by forming a Pade´ approx-
imant ~a ratio of finite polynomials! and locating the roots o
the denominator polynomial. The off-diagonal Pade´ approxi-
mants to the activity and density series forD ln xH give

zs57.56, 7.55,

rs50.411, 0.411. ~2.7!

On the square-planar lattice with nearest-neighbor ex
sions only we have found@7#

xH;2 ln@1/zs21/z#. ~2.8!

Assuming this also holds on the honeycomb lattice we
pect

]xH

] ln z
;

1

1/zs21/z
. ~2.9!

If the above function exhibits a simple pole then the ratios
consecutive terms should be constant and equal tozs . The
ratios are 4.00, 9.00, 7.56, 7.44, 7.75, 7.76, and 7.75; cle
the form of Eq.~2.8! is strongly supported. For numerica
estimates the results of the Pade´ approximants of Eq.~2.7!
are more reliable since these results are not influenced
nearby singularities.

Double-activity series, in which particles are labeled a
cording to the sublattice on which they are located, are v
sensitive to the breakdown of sublattice order. We define
high-density double-activity series for the pressure as
lows:

bpH~zA ,zB!5 1
2 F ln~zA!1(

n
bn8~s!~1/zA!nG , ~2.10!

where

bn8~s!5(
k

bn,ks
k ~2.11a!

and

s5zB /zA . ~2.11b!

The (1/zA) parameter keeps track of how many particl
have been removed from theA sublattice while the numbe
of s factors tells how many particles have been moved fr
theA to theB sublattice. The first sixbn8 are given below for
the planar-honeycomb lattice with nearest-neighbor exc
sion:

b1851, b2852~ 1
2 !1s

b385~ 1
3 !23s13s21s3
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1528 PRE 59DOUGLAS POLAND
b4852~ 1
4 !16s218~ 1

2 !s214s319s413s51s6,
~2.12!

b585~ 1
5 !210s166s2279s3249s4127s5126s6122s7

19s813s91s10,

b6852~ 1
6 !115s2178~ 1

2 !s21483~ 1
3 !s3273~ 1

2 !s42456s5

2112~ 1
2 !s61117s81117s9175s10151s11122s12

19s1313s141s15.

In the series forb68 there is nos7 term and the coefficients fo
the s8 ands9 terms are the same.

The coefficients in Eq.~2.12! show that sublattice orde
breaks down rapidly on the honeycomb lattice as partic
are removed from the close-packed structure. For exam
in b68 there aresk terms throughk515 which means that if
six particles are removed from the dominant sublattice,
many as fifteen particles can be shifted onto the other s
lattice. We discuss the high-density series further in Sec.
there we will illustrate~in Fig. 21! the origin of thes6 term
in b48 , this term representing the removal of four particl
from theA sublattice and the movement of six particles fro
the A to theB sublattice.

Using the sublattice-activity series of Eq.~2.10! we can
calculate the appropriate order parameter

R52~rA2rB!, ~2.13!

where

rA5
]bpH

] ln zA
and rB5

]bpH

] ln zB
. ~2.14!

After taking the derivatives in Eq.~2.14! we setzA5zB5z
~there is, after all, only one activity!, we have thez and r8
series forR,

R~z21!512@z2113z22116z23193z24

1567z2513630z261¯#,
~2.15!

R~r8!512@~r8!12~r8!218~r8!3134~r8!4

1146~r8!51684~r8!61¯#.

We can estimate the point at whichR goes to zero~the
second-order transition marking the end of sublattice ord!
by calculating the values of (1/z) andr8 that make succes
sive truncations of the series become zero. The values
~for truncations at the first through the sixth power of t
appropriate variable!:

~1/z!051, 2.30, 3.34, 4.07, 4.60, 5.01,
~2.16!

~r8!050, 0.250, 0.319, 0.348, 0.363, 0.372.

These values are seen to be extrapolating smoothly to
numbers given in Eq.~2.7! determined fromxH .

Having located the second order transition for the hig
temperature gas-solid transition we can now use a Pade´ ap-
s
le,

s
b-
;

r

re

he

-

proximant to the high-density activity series for the press
of ~2.1! for activities and densities on the high density side
the transition. For the low-density activity series for the pre
sure and the density we can use the part of the Ising-se
for the honeycomb lattice appropriate to the hig
temperature limit. These quantities are known through 2
term @8,9#, the first few being given below:

bpL~z!5z24z2119z3298z4

1531z522971z61¯ . ~2.17!

The density as a function of the activity is given by a relati
analogous to that given in Eq.~2.2!. That relation can then be
inverted to give the pressure and the activity as a series in
density. Since we have only eight terms in the high-dens
series we find that the best fit between the low- and hi
density ends comes when we use an~8

8! Padéapproximant
for the pressure and an~7

7! approximant for the activity. The
low and high density branches of these functions do
match exactly atrs50.411 andzs57.55 @the low density
values for the pressure (bp) and the activity are 1.062 an
7.55, respectively, while the corresponding values on
high density side are 1.089 and 7.69. To avoid an artific
jump in the curves we add in a small correction term in (r8)9

for the high-density functions. This is a minor correction th
gives us a continuous curve for the pressure and the act
as a function of density over the whole range of the dens
The Pade´ approximants to the high- and low-density fun
tions are shown in Fig. 10~for the activity as a function of
density! and in Fig. 11~for the pressure as a function of th
density!. The location of the second-order transition is ind
cated with a solid dot in both and is seen to be a sub
inflection in each curve. Having a workable function for th
pressure and the activity as a function of density we can n
use the generalized Bethe approximation to treat our hon
comb model.

III. BEHAVIOR IN THE GENERALIZED BETHE
APPROXIMATION

In Fig. 12 we show the lattice block~three joined hexa-
gons! that we will use for the Bethe approximation for th

FIG. 10. The quantityp/kT as a function of density in the high
temperature limit for the honeycomb lattice with nearest-neigh
exclusion. The solid dot indicates the location of the second-or
transition that accompanies the onset of sublattice order as the
sity is increased. The curves on either side of the transition are P´
approximants to the low- and high-density series.
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PRE 59 1529PLANAR LATTICE MODEL WITH GAS, LIQUID, AND . . .
honey comb model. It was chosen since it contains all of
interactions shown in Figs. 5 and 6. How the plane can
tiled with these blocks is also shown. The numbers on
single block indicate the fraction of each site that is assig
to the given block; there is one site~the central! that is en-
tirely inside the block~1! while there are three sites tha
belong 2

3 to the block and nine sites that belong1
3 to the

block. These numbers are thea’s of the previous paper@1#.
Using thek5 9

5 model of Eqs.~1.15! and ~1.16! we then
apply the procedure of the previous paper. We find that th
is an Ising-like critical point in the model that occurs atxc
52.64. Figure 13 shows the density as a function ofy @de-
fined in Eq.~1.5!# for x,xc (x52), x5xc , and x.xc (x
53.5). The high-density transition marking the onset of s
lattice order is evident in each graph by an inflection t
increases in intensity. At lower densities one can see
Ising-like inflection develop, giving forx.xc the typical van
der Waals loops. Figure 14 showsp/kT for the same values
of x used in Fig. 13 and one sees a kink in the curve at h
densities~marking the sublattice transition! at all tempera-
tures while at low densities and temperatures the typ
Ising-like swallowtail behavior develops. One can see p
ticularly in Fig. 14 forx.xc that there are two kinks in the
p/kT versusy curve marking the gas-liquid and liquid-soli
transitions. Figure 15 shows an enlargement of the up

FIG. 11. The activityz as a function of density in the high
temperature limit for the honeycomb lattice with nearest-neigh
exclusion. The solid dot indicates the location of the second-o
transition that accompanies the onset of sublattice order as the
sity is increased. The curves on either side of the transition are P´
approximants to the low- and high-density series.

FIG. 12. The block of 13 lattice sites used for the generaliz
Bethe approximation on the honeycomb lattice. The set of f
blocks indicates how the plane is covered with these blocks.
numbers on the single block indicate how much of each site belo
to the block.
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kink in the p/kT versusy curve of thex.xc case in Fig. 14
where one clearly sees that there is a curve crossing~though
not quite as crisp as the swallowtail-like figure involved
the gas-liquid crossing! marking the switch from liquid to
solid phases.

From the kinks in thep/kT versusy curve we can pick off
the loci of theys(u) curves for the two phase transition
These are shown in Fig. 16. The critical parameters are e
mated to be xc52.64 (uc50.379), yc50.666, and rc
50.0959. The triple point, where the two branches co
together, is estimated to occur atxt54.17 (ut50.24) with
yt50.986 andr t50.312. The labelsa, b, and c in Fig. 16
refer to regions of the diagram that can be studied us
different exact series, an approach which we will discuss
the next section. The critical point can be located quite
curately. One zooms in on the swallowtail crossing of t
curves and thebp(y) curves are fit to polynomials in the
neighborhood of the crossing; the exact crossing point is t
determined analytically as is the density~slope of each
curve! on either side of the crossing point. The order para
eterR5rH2rL is used, plottingR2 as a function ofu ~in the
Bethe approximation the coexistence curve has the clas
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d
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gs

FIG. 13. The density as a function of activity~y! for the 9
5 model

in the Bethe approximation using the block of 13 lattice sites sho
in Fig. 12. The critical value ofx is xc52.64 and shown are the
isotherms forx52.0,xc , x5xc , andx53.5.xc .
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1530 PRE 59DOUGLAS POLAND
exponentb5 1
2 and soR2 is linear inu. R2 is then extrapo-

lated linearly to zero, thus giving the critical value ofu and
also the critical density. We can treat the gas-solid transi
in a similar manner, the main difference from it the ga
liquid transition being that a second-order transition pers
to infinite temperature (u51). Thers(u) phase diagram so
determined is shown in Fig. 17.

In the 9
5 model the gas-liquid and liquid-solid transition

are distinct as seen in Fig. 13 and 14. It is of interest to
what happens when the 2 interaction of Fig. 6 is turned
~setting«250 or takingv51!. The behavior of the density
and the pressure as a function ofy when this is done is
shown in Fig. 18 for the case ofx52.5. Now one sees tha
there is only one transition~gas-solid!; this holds true at all
temperatures. This then is the analog of the model on
square-planar lattice with nearest-neighbor exclusion
next-nearest-neighbor attraction of Fig. 3~b!. The bonds in
this case reinforce the triangular sublattice structure show
Fig. 7 and there is no reason for a separate, more rand

FIG. 14. The quantityp/kT as a function of activity~y! for the
9
5 model in the Bethe approximation using the block of 13 latt
sites shown in Fig. 12. The curves represent the same valuesx
used in Fig. 13. For the case ofx53.5.xc one clearly sees two
first-order phase transitions, the gas-liquid transition at low den
and the liquid-solid transition at high density.
n
-
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e
ff

e
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liquid phase to develop. Theys(u) locus is shown in Fig. 19
for this system. Now one can clearly see that the transiti
changes from second order to first order at a tricritical poin
Using the same numerical technique as described for the g
liquid critical point in the9

5 model, we can accurately deter
mine the density on each branch of the coexistence curve
give thers(u) phase-diagram and this is also shown in Fig
19.

Having seen that the95 model on the honeycomb lattice
shows gas/liquid/solid phase behavior, we want to see h
much of this behavior we can substantiate using exact ser
In the next section we review a simple method to obtain t
series.

IV. ACTIVITY SERIES

In this section we review the method developed b
Springgate and Poland@10# a number of years ago to obtain
activity series for lattice models using transfer matrices. T
basic idea is that one takes a strip of lattice of finite width
illustrated for the honeycomb lattice in Fig. 20~a!. The fun-
damental quantity is then a finite vertical column of lattic
sites as illustrated in Fig. 20~b!. One uses periodic boundary

FIG. 15. An enlargement of the curve in Fig. 14 forx53.5
showing the crossing of the liquid and solidp/kT curves as a func-
tion of y.

FIG. 16. The lociys(u) of the phase transition singularities in
the activity as a function of the low-temperature parameteru
(51/x) for the 9

5 model in the Bethe approximation. The loci are
given by the curve crossing~p/kT versusy! as shown in Fig. 14.
The lettersa, b, andc label the branches of the function that can b
determined by different series expansions.
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PRE 59 1531PLANAR LATTICE MODEL WITH GAS, LIQUID, AND . . .
conditions, indicated by the dashed lines in Fig. 20~a!; one
can imagine wrapping the strip into a cylinder. The cylind
can then be viewed as a set of consecutive rings of lat
sites. One then constructs a matrixW that correlates all pos
sible states~occupancy by particles! of one ring ~the i th!
with the states of the next ring~the i 11st!. For the case of
eight sites in a ring as illustrated, all possible rings are sho
in Fig. 20~c!. Notice that the feature of nearest-neighbor e
clusion has been used to reduce the number of possible r
Also notice that one need use only one rotational position
each particle configuration, the matrix element represen

FIG. 17. The density-temperature phase diagramrs(u), show-
ing the loci of phase transition singularities for the9

5 model in the
Bethe approximation. The values of the density are determined
the slopes of the crossing curves as shown in Fig. 14, evaluate
the crossing point.

FIG. 18. The density and the pressure as a function of the fu
ity for the model of Fig. 6 withv51 («250) in the Bethe approxi-
mation. In this case there is only one curve crossing at any g
temperature and a single gas-solid phase transition. The case s
is for x52.5.
r
e

n
-
gs.
f
g

one ring state followed by another including the contrib
tions of all possible rotations; the use of symmetry reduc
matrices was introduced by Runnels and Combs@11#. For the
honeycomb lattice one sees that there is an alternating s
ture of the rings@see Fig. 20~b!# that also must be taken int
account; because of this one can only use rings with an e
number of sites.

The method then simply involves the multiplication of th
matrices and extraction of the part of the grand partit
function linear in the number of lattice sites~analog of the
volume!; this quantity is the coefficientbn in the Mayer ac-
tivity series for the pressure

bp5(
n

bnzn. ~4.1!

For the case of nearest-neighbor interactions~attractive or
repulsive! a finite ring withL sites will give thebn exact for
the doubly infinite planar lattice throughn5L21. The rea-
son for this is that forL particles there can be a cyclic cha
of interactions that go around the torus~due to the periodic
boundary conditions! that is not present in the infinite sys
tem. Thus for the system withL58 illustrated in Fig. 20 we
obtain the first sevenbn exact for the particles with neares
neighbor exclusion on the honeycomb lattice. The9

5 model
illustrated in Fig. 5 has nearest-neighbor exclusion and n
nearest-neighbor attractions. For that model in order to
m b’s correct for the infinite lattice requires a ring withL

y
at

c-

n
wn

FIG. 19. Theys(u) and rs(u) phase diagrams for the cas
where v51 in the Bethe approximation constructed using d
similar to those shown in Fig. 18. At high temperatures there i
line of second-order transitions marking the onset of sublattice
der. At a tricritical point~indicated in both graphs by a solid do!
the second-order transition becomes first order with a gas-solid
existence curve.
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1532 PRE 59DOUGLAS POLAND
52(m11) sites~for the same reasons just indicated for t
case of nearest-neighbor interactions!. Thus for theL58
rings of Fig. 20 we will get only throughm53 of the b’s
exact.

The matrix sizes~irreducible set of ring configurations!
required for variousL’s are 838(L58), 26326(L512),
49349(L514), and 99399(L516). The largest matrix~for
L516! will give the b’s exact throughm57 for the 9

5 model.
This method also can give high-density series that repre
perturbations about the perfect solid. In that case the seri
in terms of the 1/z, this quantity representing a hole in th
perfect solid.

We now want to use activity series for the95 model to
show that the features found in the Bethe approximation
also present in a more rigorous treatment of the model.
will focus on theys(u) phase diagram shown in Fig. 16. I
that figure we have labeled various branches of the func
by the lettersa, b, and c. Each of these branches can
determined by a different type of series and we will tre
these in turn.

A. a branch „high-density series…

The line of singularities indicated bya in Fig. 16 is most
simply determined by using the high-density series. T
high-density series has the form

bpH5 1
2 F ln~zx3!1(

n
bn8~z8!nG , ~4.2!

where

z85
1

zx6 . ~4.3!

FIG. 20. Lattice configurations used to calculate exact series~a!
Illustration of a long row of vertical strips of lattice sites on th
honeycomb lattice.~b! Nearest-neighbor vertical rows of lattic
sites; the dashed lines indicate the periodic boundary condit
whereby the strip is wrapped into a torus.~c! The irreducible set of
ring configurations~a ring circling the torus! required to construct
the transfer matrix.
nt
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re
e
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The quantityz8 represents an isolated hole introduced in
the perfect solid. Thez21 term represents the removal o
particle and thex26 term represents the six bonds brok
when a single particle is removed. Notice thatz8 is distinct
from the definition ofy in Eq. ~1.11!. The grand partition
function for the perfect solid is writtenJ5yM /2 @see Eq.
~1.10!# since in the perfect solid every bond is shared by t
particles~so we getx3 instead ofx6!.

The series for the generalx-v model~not restricted to the
9
5 model! through four terms is

b1851, b285~v/x!323 1
2 13x,

b385~v/x!613~v/x!4212~v/x!316~v3/x2!

13~v2/x!1191
3 230x19x212x3,

~4.4!
b485~v/x!919~v/x!72271

2 ~v/x!6112~v/x!5

19~v6/x5!248~v/x!419~v5/x4!1130~v/x!3

115~v4/x3!23~v/x!22126~v3/x2!16~v4/x2!

242~v2/x!130~v3/x!21293
4 13v118v21288x

19xv221781
2 x215x3112x413x5.

For the high-density series the relation between the ring
and the number of terms one gets exactly for the infin
lattice can be a little tricky since one is dealing not only w
the range of bonds, as in the low-density case, but with
number of particles that can be rearranged when a gi
number of holes are introduced into the lattice. We take
empirical approach to this question, determining the se
for L58, 12, 14, and 16 and seeing how many terms are
same asL is increased. Comparing the results ofL514 and
L516 the first six of the high-densityb’s are the same and
we assume that forL516 we are indeed getting seven exa
b’s.

Notice that in theb’s given in Eq.~4.4! there are terms of
the form (v/x)m. The origin of these is illustrated in Fig. 2
where we illustrate the (v/x)9 term inb48 . Four particles are
removed from the perfect triangular structure and then

ns

FIG. 21. The illustration of a perturbation in the perfect hig
density solid caused by removing four particles and moving
particles onto the alternate sublattice. The dashed lines indicav
bonds.
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PRE 59 1533PLANAR LATTICE MODEL WITH GAS, LIQUID, AND . . .
additional particles are moved off of the dominant sublatt
~breaking a net of ninex-type bonds! onto the other sublat
tice ~forming a net of ninev-type bonds!.

It is useful to change variables and convert Eq.~4.2! into
a series iny and the appropriate low-temperature parame
First we introduce the variabley851/y, which, using Eqs.
~1.11! and ~4.3! can be written as follows:

y85
1

zx3 5~z8!x3. ~4.5!

For the 9
5 model with x5w5 and v5w9 we have the low-

temperature parameter

t51/w. ~4.6!

While we need to write the series in termst, we will still
refer to our previous low-temperature parameteru of Eq.
~1.4!, which is related tot by

u51/x5t5. ~4.7!

With the variablesy8 and t defined above the series of E
~4.2! becomes

bph5 1
2 F ln y81(

n
bn8~ t !~y8!nG . ~4.8!

The first sevenbn8(t) are given in the Appendix.
In Sec. II we have already given the high-density activ

series in the high-temperature limit ofx5v51. The relation
between the series forbpH and the density~r! and modified
compressibility (xH) are given in Eq.~2.2!. The series for
xH(z21) and xH(r8) are illustrated for the case ofx5v
51 in Eqs.~2.4! and~2.5!. As an example of the behavior o
the series at lower temperatures we have the following se
for D ln xH evaluated atx53.8 ~this turns out to be the criti-
cal value ofx for the 9

5 model!:

] ln xH

] ln y8
5112.371~y8!12.323~y8!213.215~y8!3

14.101~y8!415.193~y8!516.760~y8!61¯ .

~4.9!

The ~3/3! Padéapproximant givesys850.788 or ys51.27
~there is also a spurious root 1/ys50.365 in the numerato
and denominator that cancels!.

Padéapproximants to series such as illustrated in E
~4.9! have no trouble in picking up the singularities iny and
r associated with the onset of sublattice order. The loc
these singularities as a function ofx ~or u51/x! are shown in
Fig. 22. The points at the high-temperature limit (u51) have
already been determined in Sec. II and are given in Eq.~2.7!.
The one thing that this analysis does not give is any ind
tion of the nature of the phase transition changing from s
ond order to first order. We assume that at the hi
temperature limit the transition is second order and that
line of singularities associated with the freezing transitio
remains second order at least for a range of values ofx. The
curve ys(u) shown in Fig. 22 is then thea branch of the9

5
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model shown in Fig. 16. We turn now to theb-branch asso-
ciated with the gas-liquid critical point.

B. b branch „low-density series…

To determine the gas-liquid branch of theys(u) phase
diagram we will utilize the low-density activity series. Th
first four b’s for generalx andv are

b151, b2526 1
2 13x11 1

2 v,

b35671
3 257x19x212x3230v13v2112xv,

~4.10!

b4528503
4 11035x23431

2 x2217x3112x413x5

15591
2 v21131

4 v217v32432xv2166x2v

11 1
2 x2v219x3v.

Three more coefficients for the special case of the9
5 model

are given in the Appendix@asbn(w)#.
The simplest way to see the development of a criti

point is to follow the roots of the grand partition function
the complex-z ~or -y! plane as the temperature is lowere
from infinity. For all Ising models~single-site exclusion! at
infinite temperature (x51) the grand partition function for a
lattice of M sites is

J5~11y!M. ~4.11!

Setting J(y)50 to obtain the roots of the grand partitio
function one has the result

FIG. 22. The gas-solid part of theys(u) andrs(u) phase dia-
grams for the9

5 models determined byD ln xH using exact high-
density series.
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1534 PRE 59DOUGLAS POLAND
ys~x51!521 ~M -fold degenerate!. ~4.12!

As the temperature is lowered,ys moves from21 out into
the complex-y plane and finally, at the critical value ofx
touches onto the real positivey-axis atys511.

All lattice gas models with nearest-neighbor exclusion
hibit a singularity on the negative activity axis close to t
origin at high temperatures. The nature of the singularity
this point has been considered by Poland@12# and Lai and
Fisher@13#. This means of course that at high temperatu
activity series are not very well behaved since the radius
convergence is very small~in contrast, high temperature den
sity series are well behaved!.

For the 9
5 model in the high-temperature limit Pade´ ap-

proximants ofD ln xL constructed from Eq.~2.10! give

ys520.155, ~4.13!

which is seen to be much closer to the origin than the re
of Eq. ~4.12! for Ising models. As the temperature is d
creased one can follow this singularity out into the comp
plane. To do this we use the Pade´-D ln xL method, using the
sevenbn(w) given in the Appendix plus three addition
approximate terms. At lower temperatures the most imp
tant contribution to thebn are from compact clusters~as
illustrated by Fisher’s cluster model@14# and a modification
to include excluded volume effects@15#!. The contribution of
compact clusters will be correctly included in the appro
matebn we use~recall that it is linear clusters that stretc
around the torus that are treated incorrectly!. And in the
high-temperature limit the approximatebn are exact~the
only interaction being nearest-neighbor exclusion!. The mo-
tion of the roots in the complex-y plane is indicated in Fig.
23, where in the high-temperature limit one starts atys given
in Eq. ~4.13! and, as the temperature is decreased, move
the direction of the arrows around toward the real, positivy
axis; points are shown for values ofx starting atx51 for the
point of Eq. ~4.13! and increasing in increments of 0.2~the

FIG. 23. The motion of the Lee-Yang roots of the grand pa
tion function for the9

5 model as determined byD ln xL using exact
low-density series. At infinite temperature (x51) the root closest to
the origin is atys520.155 and then, as the temperature is d
creased, moves out into the complex-y plane. The points show in
crements of 0.2 inx for the rangex51 – 2.4. The angleu is illus-
trated.
-
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final value shown is forx52.4!. The angleu that a point in
the complexy plane makes with the real, positivey axis is
also illustrated.

To compare the behavior of the95 model with that of the
Ising model we have also used the 10 exactbn(x) that are
known for the Ising model on the planar-triangular lattic
@8#. For that case we determine the closest singularity to
real positivey axis usingD ln xL . The value of the angleu
from the~ 4

5! and~ 5
4! approximants are then shown in Fig. 2

~plotting u as a function ofx!. The known critical value ofx
for the Ising model on the triangular lattice is simply@16#

~ Ising model! xc53. ~4.14!

One sees that one of the Pade´ approximants anticipates th
locus on the real positivey axis, but that the other extrapo
lates smoothly to the known critical point. In Fig. 24 we als
plot the same quantities for the95 model and one sees that on
gets exactly analogous behavior simply shifted to lower te
peratures. We estimate that the critical point occurs at

~ 9
5 model! xc53.8. ~4.15!

which represents a lowerTc than the valuexc52.64 found in
the Bethe approximation~the Bethe approximation on the
level of bonds givesxc54 for the Ising critical point for the
plane-square lattice while the exact value isxc55.828!.

The functionD ln xL is very well behaved atx5xc as
shown below:

] ln xL

] ln y
5111.566y11.311y211.531y3

11.378y411.797y511.570y6

11.854y711.799y812.074y91¯ . ~4.16!

For x.xc (T,Tc) we can use the Pade´-D ln xL method to
reliably give estimates of the gas-liquidys(u) locus ~the b
branch of Fig. 16!. A few pairs ~from ~ 4

5! and ~ 5
4! Padéap-

proximants! are

x53.8 ys50.951, 0.951,

-

-

FIG. 24. The angleu, as illustrated in Fig. 23, plotted asAu
versusx for the Ising model on the planar-triangular lattice~labeled
as Ising! and for the9

5 model ~labeled as Honeycomb! giving the
results of ~4

5! and ~ 5
4! Padéapproximants toD ln xL using exact

low-density series.
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x54.0 ys50.964, 0.966,
~4.17!

x54.2 ys50.982, 0.987,

x54.4 ys51.004, 1.011.

C. c branch „low- and high-density series…

Thec branch ofys in Fig. 16 involves the phase transitio
separating gas and solid at very low temperatures. Recall
we picked a value ofk,2 ~59/5! that guaranteed that th
triangular-type solid of Fig. 7 would be the dominant pha
at low temperatures. The condition for the equilibrium of g
and solid at low temperatures is that

bpL~ys!5bpH~ys!. ~4.18!

We have already expressedbpH as a function ofy851/y
and the low-temperature parametert51/w of Eq. ~4.6!. Like-
wise we can also expressbpL as a function ofy andt so that
both sides of Eq.~4.18! are written in terms of the sam
variables. Then we writeys(t) as a series in powers oft,

ys~ t !511a1t1a2t21¯ , ~4.19!

where thea’s are unknown coefficients. Using the know
series@of Eqs.~4.1! and ~4.8!, both given in the Appendix#,
one inserts the form of Eq.~4.19! in both series~one is in
powers ofy the other in powers of 1/y!, and this then be-
comes a recursion relation for thea’s. This approach has
been discussed in detail elsewhere@17–19#. Thus we can use
the low and high-density activity series and determine
low-temperature expansion of thec branch of Fig. 16 explic-
itly through Eq.~4.19!. One can also then use the form of E
~4.19! in the y series for the density on the low- and hig
density sides to obtain the density along the low- and hi
density sides of the phase diagram. We have thet series
exact through the term int35 as given below:

ys511t152t1812t212t2413t25

15t2726t2823t2925t30115t31

29t32120t33215t34215t351¯ , ~4.20!

rL5t1513t2116t2519t2726t30

136t3116t32127t33139t351¯ , ~4.21!

rH51/22~1/2!t152t1821~ 1
2 !t21

22t2423t2522~ 1
2 !t2729t28

24~1/2!t2922t30218t31222~ 1
2 !t32

110t33236t34282~ 1
2 !t351¯ . ~4.22!

We emphasize that the above series are expansions alon
low-temperature coexistence curve and not just lo
temperature expansions of the fugacity and densities.

We have now determined the locusys(u) for each of the
three branches of this function labeled in Fig. 16 and c
now combine them to give the analogous figure, but this ti
constructed from the results of exact series rather than f
at
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the Bethe approximation. The result is shown in Figure
where thea-branch comes fromD ln xH as illustrated in Fig.
22, theb branch comes fromD ln xL , using the results shown
in Eq. ~4.17!, and thec branch is a plot of Eq.~4.20!. While
the parameters for the critical point and the triple point a
quantitatively different from those found in the Bethe a
proximation, the qualitative features ofys(u) are the same.
Our estimate of the critical-point and triple-point paramet
are~showing those for the Bethe approximation for compa
son! shown in Table I.

The qualitative agreement between theys(u) phase dia-
grams gives us some confidence that the generalized B
approximation is a useful tool to describe the pattern of s
gularities represented byys(u) in systems with multiple
phases and phase transitions.

The rs(u) phase-diagram is also shown in Fig. 25~the
analog of Fig. 17!. In this case series expansions cannot g
the full picture simply because we have no series repres
ing the liquid phase~and hence the center of the figure
blank!. We can follow the locus of the second-order ga

FIG. 25. Theys(u) phase diagram and parts of thers(u) phase
diagram for the9

5 model as determined by exact series. The beh
ior is qualitatively the same as shown in Fig. 16 for the Bet
approximation.

TABLE I. Critical point and triple-point parameters.

Critical point Triple point

Series xc53.80 (uc50.263) xt54.40 (ut50.227)
yc50.950 yt51.008

Bethe xc52.64 (uc50.379) xt54.17 (ut50.240)
yc50.666 yt50.986



w
s
iv
e
lid

ity
in
nt
la
c
a

-
a

th
s

fe
es

en

d

th
pe

t

ac

e

se
ur

d

re
i

Fig.
.

ig.

igh
wn

n

id-
the

r

e
ap-
all

1536 PRE 59DOUGLAS POLAND
solid transition from high temperatures downward as sho
in Fig. 22 and we have the high- and low-density branche
the gas-solid coexistence curve at low temperatures, as g
by Eqs.~4.21! and~4.22!. In particular, we have no estimat
of the location of the tricritical point where the gas-so
transition switches from second order to first order~if indeed
it does! and we have no estimate of the triple-point dens

One of the main features of the present model is the
clusion of two types of bonding that lead to very differe
geometries for clusters as illustrated in Fig. 8. In particu
the presence of a liquid phase can be attributed to the oc
rence of random combinations of the two types of bonding
illustrated in Fig. 8~b!. It is of interest therefore to quantita
tively determine the extent of each type of bonding. We c
do this readily for an infinitely long torus of lattice sites wi
a finite circumference, as illustrated in Fig. 20. For this ca
the grand partition function is given in terms of the trans
matrix W that correlates the possible states of near
neighbor rings on the torus,

J5Tr WL ~4.23!

whereL is the length of the torus. The density is then giv
by

S lim
L→` Dr5

Tr W8WL21

Tr WL ~4.24!

where

W85
]W

] ln z
. ~4.25!

The limit L→` is achieved by increasingL until the result is
independent ofL. One can also calculate the density of bon
by replacing the variablez in Eq. ~4.27! with eitherx or v to
give the density of the two types of bonds. We define
bond density as the density of a particular type of bond
particle,

Rx5rx /r and Rv5~9/5!rv /r. ~4.26!

Note that for comparison we multiplyrv by 9
5 since thev

bonds represent an energy that is9
5 that of thex bonds.

The quantitiesRx andRv are plotted as a function ofr at
the critical value ofx (xc53.8) in Fig. 26. One sees that a
low density most of the bonding is of thev type, but as the
density of particles increases thex type of bonding starts to
predominate and as one approaches the limit of close p
ing all of the bonding is of thex type. So clearly both types
of bonding play an important role with a shift from one typ
to the other as the density increases.

Finally we want to show that the gas/liquid/solid pha
diagram collapses to a gas/solid phase diagram if one t
off the v type bonds~setting«250 or v51!. We have al-
ready shown this in the Bethe approximation, as illustrate
Fig. 19. We determineys(u) in this case by using the Pade´-
D ln x method using high- and low-density series, as befo
The points that we obtain reliably in this case are shown
Fig. 27. The almost straight line at lowu is the low-
temperature locus ofys(u) obtained as in Eq.~4.19!. We
have this series exactly throughu10 as given below:
n
of
en

.
-

r,
ur-
s

n

e
r
t-

s

e
r

k-

ns

in

.
n

ys511u313u52u6112u7212u8161u92105u101¯ ,
~4.27!

rL5u316u523u6139u7242u8

1282u92447u101¯ , ~4.28!

rH5 1
2 2~ 1

2 !u323u51u6219~ 1
2 !u7

113~ 1
2 !u82137u91141u101¯ . ~4.29!

Presumably we could link the separate regions shown in
27 into a continuous curve if we had longer exact series

V. DISCUSSION

In this paper we have treated the model illustrated in F
5 and 6, with parameters given in Eqs.~1.15! and~1.16!, the
9
5 model. The essential feature of the model is that at h
density and low temperature the triangular-type solid sho
in Fig. 7 will be the stable phase@the choice of parameters i
Eqs. ~1.15! and ~1.16! guarantees this#. Since there is
nearest-neighbor exclusion in the model there will be a flu
solid transition of some type at all temperatures marking
onset of sublattice order~in a second-order transition! or

FIG. 26. The bond density as defined in Eq.~4.28! for x andv
bonds at the critical isotherm,xc53.8, as a function of density fo
an infinite torus with a circumference of 12 lattice sites~as illus-
trated in Fig. 20!.

FIG. 27. Theys(u) and rs(u) phase diagrams for the cas
when v51 as determined by exact series. As with the Bethe
proximation of Fig. 19, there is a single gas-solid transition at
temperatures.
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marking a discontinuous jump in sublattice order~in a first-
order phase transition!. The presence of a liquid phase
made likely by the inclusion of two different modes of bon
ing ~x-type andv-type bonds! that, at intermediate values o
density and temperature, lead to mixed types of cluster
illustrated in Fig. 8~b!; the presence of both types of bondin
is documented in Fig. 26.

In the generalized Bethe approximation this model d
indeed show gas, liquid, and solid phases with a stand
gas-liquid critical point~as illustrated in Figs. 16 and 17!. In
their famous paper on phase transitions, Lee and Yang@4#
give a figure~Fig. 2 in their Ref.@1#! showing pressure as
function of activity, the curve having two kinks in it tha
represent the location of the two singular points~where the
density is discontinuous! representing the gas-liquid an
liquid-solid phase transitions. Our Fig. 14~for x53.5! is a
realization of the schematic figure of Lee and Yang fo
specific model~the 9

5 model!; of course one must imagin
removing the swallowtail cusps from our Fig. 14~the equiva-
lent of using Maxwell’s construction for the van der Waa
loops!.

We have already reviewed the evidence obtained fr
exact series expansions that shows that the presence o
liquid, and solid phases in the model is not just an artifac
the Bethe approximation. The key point in the evidence t
the 9

5 model does have a standard liquid phase is that axc
as

s
rd

as,
f
t

53.8 the functionsxL(y) and xH(y21) give distinctly dif-
ferent values ofys . The series forD ln xH(y21) is given in
Eq. ~4.9! while the series forD ln xL(y) is given in Eq.
~4.16!, both for xc53.8. Both of these series are very we
behaved and so theys values obtained from them are ver
reliable. But it is not just a single pair of values ofys that
convinces, but the trends of the numbers as a function
temperature. And it is clear in Fig. 25 that there are disti
branches to theys(u) function.

Thus this model supports the use of the generalized Be
approximation to give qualitatively correct phase diagra
for complex systems. One advantage of the Bethe appr
mation is that the entire range of density and temperature
be treated using a single, very simple formalism. Anothe
that a first-order phase transition shows up clearly as a s
lowtail cusp inbp(y) ~first-order phase transitions are diffi
cult to describe using series!.

Finally we note that in our model the gas-solid transiti
is second order at high temperatures. There is evidence in
literature@20# that if the extent of the repulsive core in lattic
gases is made greater~or, equivalently, if the lattice grid is
made finer! the sublattice-order transition is first order
high temperature. Thus there is the possibility that a mo
only somewhat more complex than the present one can
constructed that shows a gas-liquid critical point and a fi
order fluid-solid transition for all temperatures.
APPENDIX

Low- and high-density activity series for the95 model;x5w5 andv5w9.

1. Low-density series

b151,

b2526~ 1
2 !13w511~ 1

2 !w9,

b3567~ 1
3 !257w5230w919w10112w1412w1513w18,

b452850~ 3
4 !11035w51559~ 1

2 !w92343~ 1
2 !w102432w14217w152113~ 1

4 !w18166w19

112w20139w2319w2413w2517w2711~ 1
2 !w28,

b5512 009~ 1
5 !218 987w5210 434w919666w10111 859w142886w1513192w18

23780w192435w2022235w23248w24221w252406w271273w28196w29121w30

1126w32148w33115w3416w35118w3616w3713w38,

b652181 974~ 1
6 !1353 541w51196 450~ 1

2 !w92242 956~ 1
2 !w102294 267w14

154 120w15280 527~ 1
2 !w181144 190~ 1

2 !w1917525~ 1
2 !w20185 170w23

215 681w2422058w25115 625~ 1
2 !w27224 610~ 1

2 !w2824680w292805w30

210 101w322609w33124w34257w3521425w3611029w371501w381184~ 1
2 !w39

142w401408w411207w42193w43133w44160~ 1
2 !w45124w46119~ 1

2 !w47

17~ 1
2 !w481~ 1

2 !w54,
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b752 896 711~ 1
7 !26 671 337w523 736 740w915 774 967w1016 941 790w14

22 017 733w1511 921 239w1824 607 991w19134 326w2022 719 155w23

11 055 844w241100 803w252502 847w2711 249 137w28186 922w29

110 352w301499 149w322123 591w33235 724w3424305w35170 257w36

2131 517w37235 445w3828742w3921749w40242 531w4124956w422255w43

248w4425062w4513624w4612151w4711023w481408w4911407w50

1858w511525w521234w531185w541117w55190w56148w57121w58

16w591w6013w6113w63.

2. High-density series„t51/w…

b185t15,

b285t1813t2523~ 1
2 !t30,

b385t2116t2813t2912t3013t32212t3319t35230t40119~ 1
3 !t45,

b485t2419t3119t3213t3313t34112t35227~ 1
2 !t3616t37130t38118t39124t40118t42

2126t43248t4415t4513t46242t471127t482178~ 1
2 !t501288t552259~ 1

2 !t60,

b585t27112t34118t3516t3613t37124t38246t39112t40175t41193t421102t43136t44

1123t452315t462231t47182t48166t492144t501555t512993t532474t542420t55

118t562456t5712007t581603t592679t60248t611483t6221309t6312637t65

22796t701971~ 1
5 !t75,

b685t30115t37130t38111t3913t40139t41274~ 1
2 !t42115t431138t441251t451324t46

1135t471363t482480t492726t501306t511726t52257t5312082~ 1
3 !t541627t55

23105t5623129t5722815~ 1
2 !t582234t5923443t6017842t6114800t6225509t63

23662~ 1
2 !t641495t6528752t6622412t67121 561t6818730t6913436~ 1

2 !t70

2522t7117902t72228 275t7326972t74116 789t751597t7625247t77113 430t78

234 920t80127 555t8527796~ 2
3 !t90,

b785t33118t40145t41115t4216t43160t442114t45130t461213t471489t481780t49

1318t501811t512486t5221782t531867t5412808t5511263t5616971t57

13372t5825703t59210 638t60212 315t6111383t62210 769t63122 035t64127 783t65

221 667t66233 957t67213 743t68253 594t69232 832t70191 272t71176 203t72

137 572t73216 686t74161 001t752158 604t76293 273t771168 493t78194 290t79

18049t801120 881t81170 827t822387 363t832136 644t84117 532t8519759t86

2116 892t871372 342t88177 679t892307 235t9026831t91155 824t922138 040t93

1437 997t952275 184t100165 718~ 1
7 !t105.
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