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We generalize the Bethe approximation by writing the activity of the system of interest relative to the
activity of the same system in the high-temperature li(aksumed knowntimes a function involving the
grand partition function for a small block of the system. The high-temperature limit of the system can involve
extended excluded volume effects that give rise to order-disorder phase transitions. The generalized Bethe
approximation can be viewed as an approximate method for adding the effect of attractions to a hard-particle
system. As an example we treat the lattice gas on the plane-square lattice with nearest-neighbor exclusion and
next-nearest neighbor attraction. The properties of the infinite-temperature(iigaitest-neighbor exclusion
only) are obtained using Padgproximants to low- and high-density series. The Bethe approximation then
adds in the effect of attractions and gives a phase diagram similar to that obtained from exact series.
[S1063-651%99)09802-5
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[. INTRODUCTION First we note that all of the activities correspond to the same
net densityp. The quantityl(p,T) is the activity of the block
The Bethe approximation is a combinatorial approach teat a general temperatufiewhile {(p,») is the activity of the
cooperative system@attice models for fluids, magnets, al- block at the same density but at an infinite temperature
loys, etc) in which phase transitions and critical phenomena(washing out all attractive interactiond he quantityz(p,T)
are found, the results generally being better than those founid the approximate activity of the system of interest at den-
in mean-field theory for the same system. It was first intro-sity p and general temperatuflewhile z(p,) is the activity
duced as an approximate method to treat the statistical mef the system at the same density but at infinite temperature;
chanics of alloys by BethEl] and then, in a different man- the method requires that we are able to calculate the high-
ner, by Guggenheim who showed that the two approacheemperature limit of the activity of the system of interest.
were identical2]. It is sometimes referred to as the Bethe- The important feature of Eq1.2) is that the reference
Guggenheim approximation or as the quasichemical approxsystem(high-temperature limjtcan be a hard-particle lattice
mation. It is described clearly in the books by H#,4]. An  gas that exhibits a gas-solid phase transition. The Bethe ap-
important property of the Bethe approximation is that it is proximation then adds in the perturbations due to attractions
the exact solutiorf5] for the properties of a nontrivial sys- that can introduce additional or altered phase transitions in
tem, namely, for ever-branching lattices, as illustrated in Figthe system. It is thus a useful tool with which to investigate
1 for the cases of three- and two-coordinate branclithg  multiple phase transitions in lattice gases.
latter case being the one-dimensional lafti&ince the one-
dimensional lattice is a Bethe lattice, the Bethe approxima-
tion is exact for the nearest-neighbor one-dimensional Ising
model[6,7].
In the present paper we show that the Bethe approxima-
tion is equivalent to the following simple procedure. We take
a small block of the latticéin the simplest form this is just
two contiguous lattice sites or a bgndnd write the grand
partition function for the block using a special activifyhat
takes into account the sharing of particles between neighbor- (A)
ing blocks. Then ifzis the activity of the system of interest,
this activity is given in the Bethe approximation by the fol-
lowing expression:

z(p,T) _ L(p,T)

—_— = (1.2
z(p,) {(p,)
B) @ —@ @ -
or FIG. 1. lllustration of Bethgever-branchinglattices. At each
junction there are branches with no return loop&) The case of
c=3. (b) The case ofc=2, which is equivalent to the one-
2(p, T)=2(p,) {(p,T) (1.2 dimensional lattice. The Bethe approximation is exact on such lat-

tices.

{(p,»)’
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w =1/
FIG. 2. lllustration of the Ising model on the plane-square lat-
tice. Each lattice site can be occupied by a partistgid circle or
not (open circlg. At most one particle can occupy a lattice site and
particles on nearest-neighbor lattice sites experience an attractive
energy of interaction.
(d) (e)

We will derive Eq.(1.2) in the next section. In the Ap-
pendix we will show that Eq(1.1) is a characteristic prop-
erty of a branching Markov chain. Since the ever-branching w =1/9
lattice, as illustrated in Fig. 1, can be treated exactly as a
branching Markov chain, Eq(1.1) implies that the Bethe
approximation is exact for such systems. The advantage of
this generalized approach to the Bethe approximation is that
all we need is the grand partition function for the block of
lattice sites and the high-temperature limit of the system of
interest. Once we have E(L.1) there are no combinatorics
required. In Sec. IIl we illustrate the method for the ISing i, 3. Illustration of blocks of lattice sites of various sizes on
model while in Sec. IV we apply the method to the lattice the plane-square Iattice. The's are geometric factors defined in
gas on the plane-square lattice with nearest-neighbor exclysq. (2.3) that relate the maximum number of such blocks to the
sion and next-nearest-neighbor attraction. In the followingnumber of lattice sites.
paper[8] we use the generalized Bethe approximation to
treat a lattice gas model that exhibits gas, liquid, and solidrhis of course requires that one know the high-temperature
phases. The qualitative behavior of the phase diagrams founinit Q(M,N, ).
in the Bethe approximation for this system are corroborated The blocks can be of any size and shape as long as one
by results from exact series. can cover all of the lattice sites in a regular manner. Several
different blocks for the two-dimensional square lattice are
illustrated in Fig. 3. The blocks are placed on the lattice so
that the sites on the border of one block overlap with those of

In this section we derive the ratio formula of EG..1). the neighboring block. This feature is illustrated in Figp)4
We begin by using the example of the standard Ising modelvhere we show the neighboring placement of two blocks of
for a lattice gas on the plane-square lattice as illustrated itype (d) from Fig. 3. The same configuration is shown in Fig.
Fig. 2. A site can be occupied or unoccupied by a partiste 4(b), where we pull the blocks apart a small amount for
most one particle per sitea feature illustrated in Fig. 2, clarity. The fact that some particles and bonds are shared
respectively, by solid and open circles. Particles on neighbetween two blocks will be taken into account in the con-
boring lattice sites experience an attractive energy of inter-
action. We takeM as the number of lattice sitebl as the
number of particles, and=exd —¢/kT] as the Boltzmann
factor between nearest-neighbor occupied sitelsere € is
the negative, or attractive, nearest-neighbor interaction en-
ergy). Then the standard presentatich4] of the Bethe ap-
proximation writes the canonical partition function as fol- *—9—¢
lows:

()

Il. RATIO FORMULA

Q(M,N,T)=C(M,N)Q'(M,N,T), (2.7

where Q' is the partition function for independent blocks
and C(M,N) is a correction factor that gives the correct (A)
value ofQ in the high-temperature limifT—o or x— 1),

(B)

FIG. 4. lllustrating of the overlapping of neighboring blocka.
Two neighboring blocks of typéd) from Fig. 3.(b) Simpler view
C(M,N)=Q(M,N,»)/Q"(M,N,c). (2.2 of the same block configuration.



1514 DOUGLAS POLAND PRE 59

struction of the block grand partition function. A feature we N*
will not address here is the case where there are bonds that SNF
cross the boundary between two neighboring blocks. This i
type of interaction can be treated using a mean-field approx
mation, but none of the models we will treat here and in th
following paper[8] require this feature.

The maximum number of blocks that can be placed on

=P;=al"q;. (2.9

The qguantity given in Eq(2.8) is simply the fraction, or
eprobability, of blocks of type. The a multiplier is easily
aeliminated by requiring that the sum over tReis one

lattice is given by the relation
a=1/ > Mg 2.9
Nmas= @M. (2.3 '
or
The coefficientw is indicated for the various blocks shown
in Fig. 3; w is usually less than 1 for large blocks but is 2 for _ _
bonds[case(a) in Fig. 3] on the plane-square lattice. The Pi:éw'Qi/ 2 ¢"ag; . (2.10

original form of the Bethe approximation was given for the
simplest type of block, namely a pair of neighboring lattice  The form of Eq.(2.10 suggests that we define a block
sites. It was soon extended to larger blocks of lattice sitegrand partition function, interpreting the undetermined mul-
[9-11]. tiplier ¢ as a kind of activity,

To constructQ’ for a given type of block one first con-
structs the canonical partition functioggx) for the differ- v
ent possible particle configurations in a block; if there are 522 ¢"0i - (2.1
lattice sites in a block the indexwill run over 2" different
states. They; are simply products ok factors reflecting the Then the probability of a block type is obtained in the stan-
number of bonds in a particular cluster. If a bond is in thedard fashion,
interior of a cluster it contributes a full factor toq; while if
it is on the edge of a cluster, so that it is shared with another _dIné
cluster, it contributes a factoyx to g;. Taking N; as the " olng;’
number of blocks of type, Q' is then given by summing
over all numbers and random arrangements of the blocks on Formally the quantity; can be determined by taking the

(2.12

the lattice, ratio of the constraint equations
SiviNF N
2iNj)! Vit _ 1%
Q' (M\N,T)=>, (2N [T aM=> t{N}, (2.9 SN oMo (213
oy LNt i I
or
where thet{N;} are defined by Eq2.4). The sums over the
N; are subject to the following two constraints: dln¢
pzwm, (214)

Zi Ni=wM (conservation of blocKs (2.5 where

p=N/M (2.15

zi viNi=N  (conservation of particlgs (2.6 .y i the geometric factor defined in E@.3).

We now return to Eq(2.1) and calculate the chemical
wherev; is the number of particles in configuratiothat can ~ Potential in the standard way,
be assigned solely to that blofik a particle is on border site ,
in a block, it must be counted as shared by more than one Bu(T)=— 9InQ = 9InC_9InQ
block in the tally for the density in E¢2.6)]. We find the N N N
most probable set of thN; subject to the above two con-
straints by using the standard Lagrange—undeterminedSIOW
multiplier method. We construct the following expression: JInQ’

Bu'(T)=— N (2.17

(2.19

——+Ina n =0, :
oN; N N Using Eq.(2.2) we have

wherea and{ are the undetermined multipliers whose value dinC ,

is unknown at this stage. Using Stirling’s approximation for TN =Bu(®) = Bu'(«), (2.18
the factorials in Eq(2.4) and taking the required derivatives

in Eq. (2.7) gives the most probable value of the genédal  which are the high-temperature limits of the two activities.

(which we designate as;*), Combining(2.16—(2.18 we have
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Bu(T)—Bu' (T)=Bu(*)—Bu'(*). (2.19 We then proceed by picking any set of valuesZand x
we want and calculating the density from E§.1),

The relation between the activity and the chemical potential
is aln ¢ év1/4Jr x§1’2

p=w = 174 i2-
dlng  1+2¢M+x¢
z=exy Bu—Bu’], (2.20
0 i Given the above value gf we then calculate the value of
whereSu” is the standard part of the chemical potential (1) takingx=1, required to give this same density, namely
lattice gases this is the momentum contribution

(3.2

The grand partition function for the total system in the p \*
block approximation can be written as {(1)= [ (3.3
E'=£,0)M=1+"+ (MM, (2.21)

Next we require the exact value of the activity in the system
of interest that also corresponds to the dengitit x=1 the

which illustrates that is the activity in the prime system. i s
overall exact grand partition function is

Thus we have

InQ’ E=(1+2)M=ePVKT, (3.9
=-— =In¢. 2.2
M N 4 (2.22 giving
Thus using Eqs(2.20 and (2.22 in Eqg. (2.19 gives the p/kT=In(1+2)=—In(1-p) (3.5

ratio formula of Eq.(1.1).

We can obtain an equation similar to E8.19 involving  and
the pressures. We start with E@.1) and instead of taking
the derivative with respect tN to give the chemical poten- p=—o (3.6
tial we take the derivative with respect kb (the analog of
the volumeV for the discrete systenobtaining

or
Bp(T)=pp(=)+[Bp"(T)—pp'(»)], (223 )
where Z(1)= —p (3.7
Bp' (T)=wIn&(T) and Bp’(°)=wln (). Combining Egs(3.3) and(3.7), and the initial value of(x),
(2.24 e then have

The quantityBp(1) is the high-temperature limit of the pres- 2(1) 1-p\3

sure for densityp, a quantity we assume that we know. zZ(X)= g(x)(m) =§(x)<T) . (3.8
1. ISING MODEL The pressure is given by

As a specific example we continue to use the Ising model Bp(X)=—In(1—p)+ w[In £x)—In &(1)] 3.9

on the plane-square lattice. We treat the simplest type of

teraction between particles, namely, the pair of sites illusthe conventional Bethe approximatié®,4].

trated in Fig. 8). Using 0's and 1's to indicate empty and  For the nearest-neighbor Ising model with general coordi-
occupied lattice sites, respectively, there are four possiblgation number Eq. (3.1) is

states for a pair of contiguous lattice sites: 00, 01, 10, and

11. The quantityé is then a sum over these four states. In E=1+27Y+x7%e (3.10
using ¢ of Eq. (2.11) we require the exponenis that tell

how the particles in a particular configuration are shared bewhile Eq. (3.8) becomes

tween pairs of sites. It is convenient to factor the quaritity o1

into contributions from factors per site of the foigfi with a 2(x) = g(x)(l_p) _ (3.12
characteristic value of for each different kind of lattice site

p
in the block. For the block we are considering an empty site ) _ )
gets a factorr®=1(a=0) while each occupied sites gets a | "€ pressure equatiof8.9) is the same withw=c/2. We

factor {4 (a=1); the ! arises since, for a lattice with coor- note again thgt Eg$3.10) and (_3.1]) are all there is to the_
dination numbeic=4, each occupied site is shared by four Bethe approximation for the Ising model on the level of pairs

different bonds The ¢ for this model is then of sites. In the Appendix we show that EG.1) is a property
of branching Markov chains so Eq8.10 and(3.11) are the
E=1+27Y44x 2 (3.1 exact solution for ever-branching lattices as illustrated in Fig.

And this is all there is to constructing the Bethe approxima- The Bethe approximation for the Ising model is of interest
tion for the Ising model on the plane-square lattine com-  since forc>2 it exhibits gas-liquid phase transitions and a
binatorics). critical point. For generat the critical value ofx is
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c 2 1
XC:<C_—2> , (312

which for the Ising model on the plane-square lattice gives
X.=4 {which is to be comparef3,4] with the result from
standard mean-field theory for the same modelxgfe
=2.718 and the exact value of=[1/(v2—1)]?=5.828.
For c=2 (the 1d Ising mode) x.= 0, which is equivalent to
T.=0, i.e., the critical temperature is absolute 2ero

The utility of an approximate method like the Bethe ap-
proximation is that for a very modest investment of effort,
basically, Eq.(3.10, one obtains an approximate indication
of the kind of phase transitions present in a system. The
phase-transition behavior is best seen using the fugacity

y=2zx", (3.13

which forc=4 givesy=zx>. The reason that this variable is
of interest is that Lee and Yang provgt?] that the phase-
transition singularities in any nearest-neighbor Ising model
occur whery=1. In Fig. 5 we show the density as a function
of fugacity for the Ising model on the plane-square lattice for
x=3, 4, and 5; since for this modgL=4 these values of
represent, respectively, the casesx;(T>T.), x=x.(T
=T.), andx>x.(T<T.). Above the critical temperature
p(y) exhibits a typical sigmoidal shape; at the critical tem-
perature this function develops an inflection point at the mid-
point; and, below the critical temperature the function devel-
ops the famous van der Waals loops. In Fig. 6 we show the
pressurep/kT as a function of fugacity for the same cases
shown in Fig. 5. Now the development of a first-order phase
transition below the critical point is very clear: tipdy)/kT
curve develops a swallowtail kind of cusp. The swallowtalil
cusp itself is an artifact of the approximate mettitte ther-
modynamic behavior in the cusp region is nonphysjcso
one simply removes the cusp, leaving the crossing of
branches of th@(y)/KT curve representing the gas and lig-
uid phases. FIG. 5. The density as a function of fugacfsee Eq(3.13] for
Lee and Yand12] proved that a phase transition corre- the Bethe approximation for the Ising model as given by B
Sponds to a Singularity in the grand partition fUI’]Cti('DT, for three different tempera’[urdx:& T>T,; x=4,T=T,; and
equivalently, in the pressureThe kink in thep(y)/kT curve  x=5,T>T,).
left when the cusp is removed is the phase-transition singu-
larity in the Bethe approximation. In Fig. 7 we interpret the
case ofx=5 using parts of Figs. 5 and 6. Figia shows the

course this procedure is equivalent to the Maxwell equal-area

. ; : g . construction, but it is simpler to implement in that one can fit
ressure with the swallowtail cusp as given in Fig. 6. In Fig. . . . .
?(b) the cusp is removed, Ieal\o/ing gthe Kink %vhere th%p(y)/kT to a polynomial on either side of the kink and then

branches of the function crossed. To obtain the densities did/culate the crossing poiriand the slopes at the crossing
the gas and liquid phases at the phase-transition point orfind analytically. Knowing the gas and liquid densities at
takes the slope op/kT on either side of the singularity the phase transition as a function of temperature then gives
point. UsingL andH as symbols for the gad =low den- the coexistence curve. One should note that the mean-field

sity) and liquid (H = high density states one has approximation shows the same qualitative behavior found in
Figs. 5 and 6.
IBp pp Hill [3] has pointed out that the mean-fieldr Bragg-
pL= dlny . and py= dlny y+’ (3.14 Williams) approximation for the Ising model can be cast in

the form of an average grand partition function per lattice
where the subscriptg— andy+ indicate that the slope is to site. Since this is not strictly a proper grand partition func-
be evaluated ay=1 on the sidegyy<1 andy>1, respec- tion, it is useful to point out the differences between that
tively. The above slopes are schematically illustrated in Figfunction and the block grand partition functions we are us-
7(b) where the densities so obtained are then used in Figng. For the nearest-neighbor Ising model the mean-field ca-
7(c) to interpret the loops in thp(y) curve as a jump dis- nonical partition function forN particles onM sites with
continuity in the density at the first-order phase transition. Ofcoordination numbec is given by
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FIG. 6. The pressurp/kT as a function of fugacity for the same
systems as illustrated in Fig. 5. For the casexnfx, (T<T,) the
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FIG. 7. A comparison of the curves from Figs. 5 and 6 for the
case ofx=5>Xx;. (&) The pressure curve shown in Fig.(®) The
same curve as ifa) with the nonphysical swallowtail cusp re-
moved. The symbolg, andpy indicate gaglow) and liquid(high)
densities, respectively, that are determined by the slope of the pres-
sure curve on either side of the phase transition singulafiy.

function develops the swallowtail cusp that is the signature of anierpretation of the curve shown in Fig. 5 adding a vertical discon-

first-order phase transition.

M!

Q= (M—N)!N! ()",

where 6=N/M which is the same as the density The

activity and the pressure are obtained using @),

Bp=—In(1—p)—(c/2)p?Inx,

Inz=In[p/(1—p)]—cpInx.

Now instead of using) we write an average grand partition

function per site as follows:

E=1+2zx°

(3.19

(3.16
(3.17

(3.18

Then the probability a site is occupié€the densityp) is

Xl
P= 1527

(3.19

tinuity betweenp, andpy determined as indicated ifb).

But p= 6 and solving Eq(3.19 for z we obtain Eq(3.17.
However, if we interpre of Eq. (3.18 as a proper grand
partition function and take the appropriate derivative to ob-
tain the pressure we g@p=In &=In[p/(1—p)], which is in-
correct. We can obtain the correct pressure by usiofEq.
(3.17 and the standard thermodynamic relation

B J' dlnz d a2
Bp= i (3.20
The ¢ of Eq. (3.18 is a strange construction for several rea-
sons. First, it containg® while we would expeck®?, as in
Eq. (3.15, since every bond is shared by two particles. Sec-
ond, it explicitly contains the density rather than the activity.
And third, it does not give the proper pressure directly.

IV. LATTICE GAS WITH EXCLUSION AND ATTRACTION

Our main purpose in this section is to treat the lattice gas
on the plane-square lattice with nearest-neighbor exclusion
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p/kT

(B) -

FIG. 8. lllustration of large blocks for the plane-square lattice. y
(@ A large square block for treating the nearest-neighbor Ising 0
. ) Y 0.6 0.8 1 1.2 1.4
model. The values a& are shown for typical sites and indicate the

nature_ of the factog“ to be assigned to each typt_a of site when FIG. 9. The nearest-neighbor Ising model treated with the large
occupled_ by a_partlcle. The values of are determlned_ by .hOW block of Fig. 8a). (a) The density as a function of fugacitfh) The
many neighboring blocks would share a site andarel (interior : .
. . 1. . ) pressure as a function of fugacity. Both curves are evaluated at the
3|te,1no sharln)g.a= 2 (side §|te, share with one other bIQchnd critical value ofx (x,=4.2048) for the approximation shown.
a=73 (corner site, share with four other blogkgb) Maximum
density of partic!es in the_ bloc_k ghown @) with nearest_-neighbor between four blocks has= 3. The correct assignment of the
exclusion; the diagonal lines indicate next-nearest-neighbor bondsd,S through theZ® factors in the construction of is the
crucial part of the generalized Bethe approximation. For the
and next-nearest-neighbor attraction using the generalizegdrge square indicated in Fig.(a the critical value ofx
Bethe approximation. Before turning to that model it is use-(marking the value ok at which one first obtains the swal-
ful first to briefly consider how fast the properties of the |owtail cusp illustrated in Fig. 7is x,=4.025. In Fig. 9 we
Ising model in two-dimensions converge to the exact resultgjustrate the variation of the density and the pressure as
when the block size is increased. Using the blo@ks (d),  function of fugacity for block(f) at x=x.. For the large
and(f) shown in Fig. 3 for the plane-square Ising model thesquare one sees that the density curve is very sharp indeed,
critical values ofx arex.=3.171, 4.000, and 4.205, respec- reflecting the very flat nature of the coexistence curve for the
tively (compared to the exact valug=5.823. We have |sing model in two dimensions.
already noted that.=4 for the simplest type of bloclblock The lattice gas model on the plane-square lattice with
(@) in Fig. 3]. Thus in going from blockKa) to block (b) the  nearest-neighbor exclusion has been studied by many authors
estimate of the critical point gets worfelock (a) gives the  as a prototype model for the gas-solid phase transition
exact solution for a Bethe latti¢elf one plotsu,=1/x. ver-  contrast to the gas-liquid phase transition exhibited by the
sus 1h (labeling the blockgb), (d), and(f) asn=1,2,3 one  standard Ising modgl|Early treatments were given by Gaunt
gets a smooth curve pointed toward the exact valuei.of and Fisher[13], Runnels and Comb§l4], and Ree and
=0.1716, but the rate of convergence to the exact result iShestnut[15] while more recent investigations have been
very slow. Indeed, the main value of the Bethe approximagiven by Poland16], Baram and Fixmafl7], and Todo and
tion is not in calculating accurate critical parameters, but as &uzuki[18].
simple means of obtaining qualitatively correct phase dia- The central feature of the model is that at high density the
grams for complex systems. particles must sit on alternating lattice sites due to the re-
In Fig. 8(a) we reproduce blockf) and indicate represen- quirement of nearest-neighbor exclusion. Since there are two
tative values of the exponent required to construct the sets of alternating site@wo sublatticey the system must
block grand partition functio. Recall thate measures the pick one of them(sublattice ordering It is found that there
extent to which a particle at a particular site in a block isis a second-order phase transition in the system that marks
shared with neighboring blocks. Thus an interior site that ighe onset of sublattice order. Only one lattice gas model with
not shared at all hag=1, an edge site that is shared be-excluded volume has been solved exactly and that is the
tween two blocks has=3 and a corner site that is shared hard-hexagon model of Baxtdrl9). That model has a
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second-order phase transition at a critical value of the activ- 15
ity given byz,=11.09. For the model with nearest-neighbor

exclusion on the plane-square lattice, the value of the activity

at which this transition occurs is know8] with very high 10
accuracy(uncertainty in the last digit

Inz,=1.334 015 101) 4.1

or (rounding off

2,=3.796 255. (4.2 °% 0.1 0.2 0.3 0.4 0.5

The critical value of the density {13-15

p.=0.36781). 4.3

We now apply the generalized Bethe approximation to the 1.3
above model with the added feature of next-nearest-neighbor
attractions. The phase diagram of this model has been ob- p/kT 1
tained using exact series expansj@f], so we have a com-
parison for the results obtained from the Bethe approxima-
tion. We have previously compared the results obtained from
exact series with those obtained from the Bethe approxima-
tion for another systerf21]. 0

For the generalized Bethe approximation we require the
pressure and the activity as a function of density in the high-
temperature limit, i.e., the model with nearest-neighbor ex-

lusion d ibed ab Th f ' in t FIG. 10. The high-temperature limit for the model with nearest-
clusion describéd above. us our reference Ssystem in hr?eighbor exclusion and next-nearest-neighbor attraction. The curves

generalized Bethe approxir_n_ation alrgady has a critical pOinéhow Padepproximants based on exact low- and high-density ac-
(second-order phase transition marking the onset of sublaly;iy, series. (a) The pressure as a function of fugacitiy) The
tice ordey. Both low- and high-density activity series are gensity as a function of fugacity. The solid dot in each curve indi-

known for this high-temperature limit as a by-product of cates the second-order phase transition marking the onset of sublat-
series for the Ising moddl13]. Baxter, Enting and Tsang tjce order.

[22] have given 42 terms in the low-density series and 24

terms in the high-density series. We will use a modest numthe two sublattice phases are all in equilibrium. We esti-

ber of these term¢l5 terms in the Iow—density,series, nine mated the following tricritical parameters:

terms in the high-density serje® construct Padepproxi-

mants for the required functions from both the low-and high- Xiep=3.65 and py,=0.29. (4.9

density sides. We convert the activity series to density series

and then use &) Padeapproximant to fit the low-density We also obtained exact low-temperature expansions of the

functions and &%) Padeapproximant to fit the high-density fugacity and densitflow and high along the gas-solid co-

functions. Forp<p. we use the low-density branches, while existence curve. The appropriate low-temperature parameter

for p>p. we use the high-density branches given in Eq. s

(4.3)]. The Padeapproximants do not quite match ag so

we add a correctioftenth order in the densityto the high- u=1xK, (4.5

density functions so that there is no discontinuity where the

branches join. The functiorp) and p(p)/kT obtained in  wherex=exgd —¢/kT] is the Boltzmann factor for the next-

this manner are shown in Fig. 10 where the solid dots markearest-neighbor interaction.

the position of the critical point. One sees that the second- To apply the generalized Bethe approximation to this

order phase transition in the hardcore system involves only enodel we require, in addition to the high-temperature limits

subtle inflection in the curves at. . for the activity and the pressure shown in Fig. 10, the grand
We now add in next-nearest-neighbor attractions. Thespartition functioné for the block of lattice sites shown in Fig.

interactions are illustrated by the diagonal lines in Figh)8 8(b). Since there are 16 lattice sites in the blogks a sum

which shows the close-packing limit for the block shown in over 2° different particle configurationgnany of these are

Fig. 8@a). Nearest-neighbor exclusion forces the particles tdorbidden due to nearest-neighbor exclugioAll of the

sit on alternate sites and the next-nearest-neighbor attractiotarms in ¢ are products of the Boltzmann fact&rfor the

reinforce that structure. Thus the two types of interactionattractive interactions and the block activityThe exponents

both favor sublattice order. From our study of this modelfor the site factorg® are illustrated in Fig. & (where we

using exact serieg20] we found that the second-order tran- havea =%, 3, and 1, respectively, for corner, edge, and in-

sition persists as the temperature is lowered from infinityterior siteg. We have chosen the block shown in Figh)&for

down to a tricritical temperature below which the transitionthis model specifically because there are no interactions be-

becomes first order. The tricritical point is where the gas andween particles in the interior of one block with those in the
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FIG. 11. The lattice gas with nearest-neighbor exclusion and 1
next-nearest-neighbor attraction treated with the large block of Fig.
8(b). (a) The density as a function of fugacitfb) The pressure as a
function of fugacity. Both curves are evaluated at the critical value Oo . 42 5 '40 5 '60 ojao : ; '00
of x=3. There is a swallowtail cusp, indicating a first-order phase 00 020 ’ ’ ) ’
transition, for allx>1. At all temperatures there is only one phase ~u
transition.

FIG. 12. The phase diagram for the lattice gas with nearest-

. . . . . . heighbor exclusion and next-nearest-neighbor attraction treated
interior of a nelghbor!ng blocl(a feature discussed previ- . the large block of Fig. &). The upper graph shows the coex-
ously in connec_tlon with F_'g')4 . istence curve giving the low- and high-density sides of the first-

We show typical behavior of the density and pressure as grger phase transition as a function of the low-temperature param-
function of fugacity §/=25%) in Fig. 11 for the case ok eteru=1/x. The lower graph shows the phase-transition value of
=3. The density curve shows van der Waals loops while thene fugacity as a function af.
pressure curve has a swallowtail cusp, indicating a first-order
phase transitiofas described in Fig.)7 We find that the APPENDIX
first-order phase transition vanishes onlyxas 1. Thus in ) ) )
the Bethe approximation the tricritical temperature is infinite. N this appendix we show that E¢L.1) is a property of
In Fig. 12 we show the density and fugacity phase diagramBranching Markov chains. We begin by considering the par-
showing the locus of the phase transition singularities as H¢€ configurations(l) and (Il) for the square-planar lattice
function of the low-temperature parametedefined in Eq. shqwn in Fig. 13. The_y show a central Iattlcg site surrounded
(4.5). The phase diagrams given in Fig. 12 are qualitativelyPY its four nearest neighbors. () all of the sites are empty
similar to those obtained from exact ser[@§], except that while in (II) the central site is filled. The probabilities of
in the Bethe approximation the transition is first order up to
x=1. In particular, the behavior of,(u), the locus of the
fugacity singularities, given by the generalized Bethe ap-
proximation is quite accurate. The main feature of the model I 1
obtained from both the Bethe approximation and by exact
series is that at all temperatures there is one transition from
gas to solid.

In the following papef8] we will treat a model similar to
the one just presented but with the added feature of having
two types of attractive interaction, one of which does not
reinforce the sublattice structure favored by nearest-neighbor I8l 8%
exclusion. Both the generalized Bethe approximation and ex-
act series indicate that the model exhibits a typical gas- FIG. 13. Lattice configurations for the treatment of branching
liquid-solid phase diagram. Markov chains.
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these two structures can be written as 1-p\ct
o o —]  {(1)=z(1). (A9)
P=E'(1/Z) and P,=E'(Z/E), (A1) p
where E is the total grand partition function of the system The ratio of these two equations gives
and E’ is the grand partition function for all of the other
o e 2(x)/2(1)={(x)/¢(D), (A10)

particles outside of the central quintet of sites. Since interac-
tions in this model are strictly nearest-neighbgar’, is the
same for(l) and (Il). Thus the ratio of the probabilities is
exactly

which is our ratio formula of Eq(1.1).
We note in passing that one of course does not need the
Bethe approximation of EqA6) to proceed from Eq(A5)
to a final answer. One need only consider the case of the
lattice quintetglll) and(IV) shown in Fig. 13. Proceeding in
Now the central property of a branching Markov chain isthe same manner as before, the ratio of the probabilities of
that the probabilities of structures liké) and (Il) can be these two structures isve give the result for general coor-
written in the form dination numberc)

P||/P|:Z. (AZ)

— 4 _ 4 c c—1
Pi=poP(0]0)* and P,=P;P(1/0)*,  (A3) Py 1P =zx°(z—1l> (%) _ (ALD)
wherepy andp, and thea priori probabilities that any site is ot !
empty or occupied, respectively, ai{i|j) is the condi- Then we use the constraints
tional probability that given statie statej follows. Using the
definition of conditional probabilitywhere p;; is the prob- Po1tPoo=Po: P11+ P10=P1, P10=Po1, (Al2)
ability of finding the nearest-neighbor sequemngg one has ) ) ) ,
which gives(again usingp;=p andpg=1—p)
pi=piP(ilj) or P(ilj)=p;/pi. (A4)
o ! Poo=1—p—Po1, P11=p~Po1- (AL13)
Putting all of this together givefaking p;=p and py=1 ] ) )
Po1 x=(p—Por) (1= p—Por)/Poy. (A14)

P||/P|: - (AS)

c 1_p c—1
e

Poo P which can be solved fqgoy; in terms of given values of and

We now turn to the grand partition function for a pair of © (it i quadratic inpo; independent o). Then one can use

sites in the Bethe approximation. For all Ising models weth€ result of Eq(A14) in either Eq.(A5) or (A1) to givez

have

E=1+2Me4x %, (AB)

In this formulation, the probabilities of the various types of

bonds are
Poo=1/¢, P10=Por=L 1€, pu=x{IE (A7)
Using the above probabilities in EGA5) gives
1_p c—1
T) {(X)=2z(x) (A8)

with a similar equation for the high-temperature limit

as an explicit function ok and p,
1— c—1 1 c
=[5 ligened
p f(x,p)—1

2(x—1)(1-p)
Vi+4p(l-p)(x—1)—1

(A15)

where

f(x,p)= (A16)

This is straightforward, but the use of EGA6) directly is
much simpler. Referring to equations in the text, 2111,
using ¢ from Egq. (3.10, gives exactly the samg(x,p) as
does Eq(Al5).
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