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Thermodynamical behavior of aperiodic Ising models on hierarchical lattices

R. F. S. Andrade
Instituto de Fı´sica, Universidade Federal da Bahia, 40210-340 Salvador, Brazil

~Received 20 August 1998!

This work brings an analysis of the behavior of Ising spins on a hierarchical lattice subject to relevant
fluctuations on the coupling constants that are induced by a deterministic aperiodic sequence. The thermody-
namical functions are evaluated after the numerical iteration of a set of coupled maps, obtained within the
method of transfer matrices. The typical specific heat cusp of the homogeneous system is destroyed by the
fluctuations, which also cause changes in the values of all critical exponents.@S1063-651X~99!03001-9#

PACS number~s!: 05.50.1q, 64.60.Ak, 61.44.Br
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I. INTRODUCTION

There has been much interest in the thermodynamical
havior and critical properties of magnetic systems with a la
of translational symmetry. Former investigations have c
centrated on models defined on fractals@1#, hierarchical lat-
tices@2,3#, etc., while more recent works have focused on
effect of deterministic aperiodicity in the couplings an
fields that act upon the individual spins in an Euclidean
tice @4#. Of course the investigation of fully disordered
random system has proceeded along its own way, whic
rather different from those we consider in this work.

Hierarchical lattices have been investigated in great de
They are amenable to exact solutions, most of which
equivalent to approximate results for systems on Euclid
lattices. Both renormalization~decimation! schemes and the
recurrent evaluation of the thermodynamical properties
the hierarchy of the lattice increases have found widespr
use in these investigations@5–7#.

Fully aperiodic sequences of two or more symbols
constructed by the recurrent substitution of these symb
according to a fixed rule. The sequences of Fibonacci, Th
Morse, and Rudin-Shapiro are only a few examples of w
known aperiodic structures. Deterministic aperiodicity m
be introduced by choosing couplings in a magnetic mo
according to the symbols in such sequences, as have alr
been used with success in the investigation of propertie
aperiodic electronic systems@8#. The influence of the aperi
odicity ~or fluctuations! in the couplings and fields on th
critical properties of the original homogeneous model is
counted for by the Luck criterion@9#, which has been ex
tended to treat also the hierarchical lattices@10#: possible
changes in the critical properties depend on the eigenva
of the substitution matrix defined by the specified inflati
rule, the dimension of the lattice, and the value of one of
critical exponents~e.g., a). Fluctuations are classified int
relevant or irrelevant, according to whether the critical pro
erties are changed or not with respect to those of the ho
geneous system. Situations of marginal relevance are
possible, but in such cases the criterion does not allow f
definite indication on the behavior of the system.

It is usually the case that, when fluctuations are irreleva
the models are suitable for further analytical investigati
which ends up showing why the critical behavior remains
same@9#. However, in the case of relevant fluctuations, t
analysis becomes harder and it is difficult to get a clear p
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ture of the actual changes in the thermodynamical and c
cal behavior. The purpose of this work is to bring an expli
evaluation of the thermodynamical and critical properties
an Ising model on a hierarchical lattice subject to relev
fluctuations on the exchange constants. It is motivated
recent works on the same lattices within the renormalizat
group approach, which indicate changes in the criticality,
do not clearly point what the new behavior look like@10,11#.
Our results are obtained after the numerical iteration of a
of maps for the relevant thermodynamical functions, wh
were derived after the use of the transfer matrix~TM! for-
malism. We show that changes occur in the value of
critical exponents, especially in the specific heat, wh
shows a completely different behavior with respect to tha
the homogeneous system. In order to test our method
have reproduced the known results for the uniform model
the simple diamond lattice, and also analyzed one situa
where irrelevant fluctuations do not alter the character of
criticality.

The rest of the work is organized as follows: In Sec. II w
introduce the definition of the two lattices and of the fluctu
tion rules; in Sec. III we discuss the basic steps within
transfer matrix method that are necessary to derive
proper maps; Sec. IV presents the results for both lattic
with special emphasis on the case of relevant fluctuatio
finally, Sec. V closes with concluding remarks.

II. APERIODIC MODELS ON HIERARCHICAL LATTICES

We consider an Ising model on hierarchical lattice
which are recursively constructed by substituting any bo
of a given generation by a set ofq parallel branches, eac
one containing a series ofp bonds. Within this definition, the
simplest diamond lattice corresponds to the situationp5q
52. A formal Hamiltonian for the system is written as

H52(
~ i , j !

Ji j s is j2h(
i

s i , ~2.1!

wheres i561, the double sum (i , j ) is performed over pairs
of first-neighbor sites, andh is a uniform field acting on all
sites of the lattice. We choose rules for the bondsJi j such
that any path linking the two root points~points which ap-
pear in the first generation! has the same sequence of bond
The length of these paths is given bypG, whereG indicates
the generation of the construction of the lattice. For con
150 ©1999 The American Physical Society
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nience we choose rules for the sequences governing fluc
tions the lengths of which have the same dependence oG.
We consider substitution rules formed by only two symb
(A andB), generically expressed by

~A,B!→~ABp21,Ap!, ~2.2!

and the sequences start with a single symbolA. We assume
that the nearest-neighbor interactionsJi j in our model as-
sume the valuesJA or JB according to the symbol in the
sequence.

The substitution matrixM, which links the number of
symbolsA andB in two subsequent generations is written

M5S 1 p

p21 0D . ~2.3!

Its eigenvalues arel15p andl2512p, and they define the
wandering exponent

v5
lnul2u
ln l1

. ~2.4!

v expresses whether the fluctuations in the distribution
symbols within the sequence are bounded (v,0) or un-
bounded (v.0). The sequences defined by Eq.~2.2! are
non-Pisot~i.e., v.0) for p.2, whereasv50 for p52.
The extension of the Luck-Harris criterion for relevant flu
tuations in the case of hierarchical lattices leads to the
pression@10#

f512v2
df

22a
,0, ~2.5!

where the fractal dimension is expressed bydf
5@ ln(pq)/ln(p)#, anda is the specific heat exponent of th
uniform system.

In the following sections we focus on two situation
wheredf52: p5q52 and 3. The analysis of renormaliza
tion group @10# has shown that, for any value ofq, f.0
whenp52, even ifv50, while f,0 whenp53. Besides
that, the same analysis shows that the nature of the fi
point associated with theTÞ0 transition changes from a
unstable node~with one attractive and one repulsive eige
vector! to a completely repulsive situation. The new prop
ties of the fixed point make it hard to get an indication ab
the nature of the transition and the thermodynamical beh
ior of the aperiodic system. So we can only obtain inform
tion about the nature of the changes induced by relev
fluctuations by the explicit evaluation of the thermodynam
cal properties of the system.

III. TRANSFER MATRIX FORMULATION

TM’s were first devised for the analysis of translationa
invariant systems. However, they have been used recent
connection with deterministic aperiodic@8,12# and random
@13# systems as well as on the analysis of fractals with fin
order of ramification@14#. The approach we use in this wor
combines elements of both quoted schemes.

For the sake of simplicity we start with the homogeneo
case and no external field. WhenG50 the system reduces t
a-
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a single bond between the root sitesr 1 and r 2 . A usual
232 matrix T0 with Boltzmann weights describes the inte
actionJ between the root points. In the next generation,
interaction between sitesr 1 and r 2 is expressed by a 232
matrix T1 given by

T15Q0R0
p22Q0

t . ~3.1!

In Eq. ~3.1! the matrixR0 describes the bonds between t
inner new sites of the first generation. It is expressed
Kronecker direct products ofq 232 matrices of Boltzmann
weightsT0 . The matrixQ0 describes the interaction of th
root siter 1 with the first inner sites of theq branches. It is a
232q matrix, formed by the first and last lines of the matr
T0 . Its transposeQ0

t describes the interaction of the lastq
inner sites with the root siter 2 .

Through Eq.~3.1! we relate matrix elements of two suc
cessive generations of the lattice. In such a simple caseT0
andT1 contain only two distinct matrix elements, saya0 ,b0
anda1 ,b1 , which are related by nonlinear maps.

Due to exact scale invariance of the lattice, the matric
map ~3.1! relates the TM’s of any two subsequent gene
tions G and G11. The same is valid for the maps for th
matrix elements. They can be iterated in a more conven
way if we introduce the free energy per spinf G
52(T/NG)ln hG , and the correlation length jG
5pG/ ln(hG /eG), where hG5aG1bG and eG5aG2bG are
the eigenvalues of the matrixTG , andNG counts the number
of sites of the lattice in the generationG. For p5q52 and 3
we have, respectively,NG52(214G)/3 and NG5(5
1339G)/4. The explicit forms for the maps forp5q52
and 3 are

f G115
4NG

NG11
f G2

T

NG11
$ ln 22 ln@11exp~2432G/jG!#%;

jG115jGH 11
jG

2G11
@ ln@11exp~2432G/jG!#2 ln 2#J 21

;

~3.2!

f G115
9NG

NG11
f G2

T

NG11
$ ln 42 ln@113 exp~26

33G/jG!#%;

jG115jGH 11
jG

3G11F lnS 113 exp~2633G/jG!

31exp~2633G/jG!
D G J 21

~3.3!

The iteration of Eq.~3.2!, @~3.3!# leads to the numerica
exact value of the corresponding thermodynamic functio
The entropy and specific heat are evaluated in the same
after the derivation of the maps for] f G11 /]T and
]2f G11 /]T2.

To include the effect of a homogeneous field on the sp
we disregard, forG50, the field acting on the root sites. I
the evaluation ofT1 we include the field effect only on the
inner sites, and repeat this procedure for all further gene
tions. In the limitG→` we have included exactly the sam
field intensity in all sites, with exception of the two root site
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152 PRE 59R. F. S. ANDRADE
that remain field free. With the inclusion of the field th
eigenvalueshG andeG are not any more linear combinatio
of the now three distinct matrix elements of matricesTG .
This makes the corresponding maps forf G and jG more
complex. The magnetization and susceptibility as function
the generationG are obtained by derivation of these fiel
dependent maps with respect toh.

Finally we discuss the inclusion of aperiodicity for su
stitution rules that include only two symbols, as those
fined by Eq.~2.2!. Suppose that the hierarchy starts with
single bond of typeA, described by the TMTA,0 , of Boltz-
mann weights defined with the couplingJA . The matrixTB,0
with couplingJB is constructed in the same way. To expre
the interactions at second and higher order generations
need two matrix relations of the type~3.1! for TA,1 andTB,1 ,
which are formally written as

Tx,15Qx,0F )
k51

p22

Rxk,0GSx,0
t , x5A,B. ~3.4!

The matricesQ, R, andS have the same meaning as in E
~3.1! but we have to take into account the type of coupli
(JA or JB) according to the substitution rule for the matric
A andB. This is the only relevant change in the procedu
which amounts to maps for the matrix elements ofA andB.
The inclusion of the external field is made in the same w
as for the uniform case. In general there will be four differe
maps for the matrix elements of each matrix. The comp
set of maps for the aperiodic situations analyzed here, w
inclusion of magnetic field, are listed in the Appendix.

IV. RESULTS

The maps have been iterated with double precision v
ables until a relative precision of 10216 in the values of the
different quantities is achieved. To test the method we h
reproduced the known results for the homogeneous diam
lattice, JA5JB.0, p5q52, where we found the critica
temperature to beTc51.641 017 9 . . . . The best estima
for Tc is obtained by gradually reducingT from the high
value region and observing wherej diverges. The iteration
of the maps shows thatj→` for all T,Tc . At Tc we also
observe the criticality for the specific heatc, the curve of
which has the form of a cusp, with maximum
0.959 763 0 . . . .

The evaluation of the spontaneous magnetizationm0 has
to be performed in the limith→0, since if we seth50 in
the beginning of the iteration we end up withm[0. For T
.Tc , high precision values form5m(T,h!1).m0 , with
error ,1028, are obtained forh;10210 when t5(T
2Tc)/Tc.0.01. For t,0.01 we have to take still smalle
values of h in order to achieve convergence. ForT
.Tc , m falls initially along the same way as forT,Tc , as
the critical temperatureTc(h) is somewhat larger thanTc .
We have estimated that

tc~h!5
Tc~h!2Tc

Tc
.0.44h0.38. ~4.1!

After reachingTc(h), m falls very rapidly witht, according
to a power law with exponent;2.24. If we fix the value of
f
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T.Tc(h0), we note thatm;h21 for h,h0 . For instance we
note that, for the value ofTc listed above,m drops from the
value 0.252 atTc20.0001 to 0.164 atTc10.0001 for h
510210 and from 0.247 to 3.331024 whenh510214.

For T,Tc the zero-field susceptibilityx0 diverges atTc ,
but the convergence ofx(T,h) to x0 when h→0 is not so
precise as form. Results forh;10210 have relative precision
of 1026 but, due to rounding off errors, the convergence
x(T,h) to x0 , for still smaller fields becomes poor, esp
cially for T far from Tc . ForT.Tc we observe that the valu
of the susceptibility is finite for nonzeroh. However they do
not evolve to a fixed value, but diverge withu ln hu in the h
→0 limit @15,16#. This behavior is in accordance with an
lytical results, which show thatx0 is infinite for T.Tc . The
numerical values for the critical exponents are also rep
duced with high accuracy:a520.672, b50.1617, g
52.351, n51.338.

The same procedure was repeated for several pairs of
ues of JA ,JB.0. Besides the change inTc , the value of
which for JAÞJB could not be obtained within the renorma
ization group approach, we have checked that the crit
exponents remain invariant, indicating that the critical b
havior are the same as in the homogeneous situation. O
relevant changes in the thermodynamical behavior are
served in the curve forc: in the limit of smallJB the cusp at
Tc has its size reduced and becomes embedded with
Schottky profile that dominates the greater part of the cur
in the limit of smallJA the cusp still dominates, but a sma
Schottky profile develops forT.Tc , as shown in Fig. 1.

We expect changes is the critical behavior when fluct
tions in the coupling constants are introduced in the sec
lattice, p5q53. The homogeneous situation presents
same qualitative features of the standard diamond latt
WhenJA5JB we have foundTc51.385 391 2 . . . , and the
maximum of the cusp forc at 0.930 733 5 . . . . The critica
exponents are a520.701, b50.168, g52.356, n
51.354, which, like the estimates for the diamond lattic
satisfy the Rushbrook and hyperscale relations to a high

FIG. 1. Specific heat for the simple diamond lattice (p5q
52) for the coupling constantsJA50.1, JB51 ~solid curve! and
JA51, JB50.1 ~small dashed!. The critical exponenta remains
invariant.
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cision, with errors less than 0.3%.
When JAÞJB both qualitative and quantitative chang

are observed, respectively, in the critical behavior ofc and in
the critical exponentsn, b, andg.

The critical temperatureTc is again estimated by the d
vergence ofj. For instance, whenJA51 and JB50.2 we
haveTc50.409 066 938 . . . . As in allformer cases,j pre-
sents a clear power-law behavior for a large interval oft. We
measured a new valuen51.485, which remains invariant a
long asJAÞJB .

We also find that in the limith→0, m0.m→0 when
T→Tc , with a new universal valueb50.067 for JAÞJB .
As we must perform the evaluation ofm with a small non-
zeroh, the former discussion on the behavior ofm.m0 ap-
plies to the present situation. The convergence ofm to m0 is
much slower than in the uniform case or in the presence
irrelevant fluctuations. Our estimates are that

tc~h!5
Tc~h!2Tc

Tc
.7.3h0.35. ~4.2!

So, for the values ofJA andJB quoted above,m0 drops from
0.587 at Tc20.0001 to 0.122 atTc10.0001 when h
53310214, and from 0.587 to 2.2431023 when h
53310216. As the numerical variables we work with ar
limited to 16 significant digits, this is the smallest value oh
for which tc(h) could be obtained with confidence. Final
we note that forT.Tc(h), m decays according to a powe
law with t; the exponent (;2.54) is even larger than in th
uniform case. The main features of the analysis of our d
are shown in the Figs. 2~a! and 2~b!.

The behavior ofx0 for T,Tc has now a steeper diver
gence.The scaling region is large, but we note that the c
stant steep slope suffers a slight break at an intermed
point, returning afterwards to the same steep decay@see Fig.
2~c!#. This effect must be of the same nature as the l
periodic oscillations detected in connection to the spec
heat, as we discuss below. If we measure the slope in an
the two steeper parts, we come to the same resultg.2.72.
When T.Tc the inhomogeneous model also have infin
zero field susceptibility, which diverges for smallh as lnh.

The fact that these three thermodynamical functions h
the same qualitative behavior as the uniform model is imp
tant to characterize the nature of the critical behavior atTc .
We think that the overall picture fits into the framework of
second-order transition, even if the criticality in the spec
heat suffers the destruction of the cusp. As shown in Fig
the curve now displays a smooth maximum atTm,Tc, such
that tm5uTm2Tcu/Tc;1023. At T5Tc the curve suffers a
discontinuous change in its derivative, suggesting that
critical behavior is of the type

c~T!5c01c1~Tc2T!a, for T,Tc ,
~4.3!

c~T!5c02c18~T2Tc!
a8, for T.Tc ,

with aÞa8. ForT,Tc , the interval where Eq.~4.3! is valid
is reduced tot,tm . As tm is rather small the evaluation ofa
is restricted to a very narrow interval aroundt50. Note that
the numerical fluctuations become more relevant ast de-
creases. Therefore the value ofa cannot be estimated with
of

ta

n-
te

-
c
of

e
r-

3,

e

the same precision as the first three exponents. WheT
.Tc we do not have a limitation for the interval where sca
ing occurs. The double logarithm plot ofct shows that the
points align along a straight line, although a careful analy
show that there are some fluctuations@Fig. 3~d!# of the same
kind as those observed for the susceptibility. The best e
mates for the values of the exponents area520.80 and
a8520.89.

In order to provide a closer analysis of the fluctuations
the behavior ofc(T) for T;Tc we have evaluated its deriva
tive dc/dT, which is shown in Fig. 4. The most relevan
aspect is the log-periodic oscillations ofdc/dT with respect
to the reduced temperaturet for T.Tc . An indication of a
similar behavior is also obtained form and x. However,
since these quantities, respectively, vanish and diverge atTc ,
the effect can only be depicted if we compute the logarithm
derivative. Log-periodic phenomena has also been repo
for magnetization and free energy of the mean field appro
mation of an aperiodic system@17#, when T,Tc . We ob-
serve that the period of oscillation is roughly equal to t
wandering exponent~2.4! v5 ln 2/ln 3.0.64. So we can re-
late the oscillations to the increase of disorder in the succ
sive hierarchies of aperiodicity induced by the sequence.
also note that, to accurately describe such an effect, the f
~4.3! we assumed for the dependence ofc for T.Tc should
a log-periodic function be included. However, the amplitu
of fluctuation is so minute that it does not alter substantia
the obtained values for the critical exponents. Another r
evant feature of the curve in Fig. 4 is the slow increase of
quantity (dc/dT)T5Tc2D2(dc/dT)T5Tc1D as D→0, if we

averagedc/dT over the period of oscillations. This is con
sistent with the form~4.3! and with the values obtained fora
anda8.

The numerical estimation for the critical exponents lea
to

a12b1g22.0.05,
~4.4!

a81dfn22.0.08.

This result is worse than that obtained for the uniform mo
els. It is not possible to assert whether it depends on
employed method or it is an essential feature of the mo
caused by the presence of relevant fluctuations.

V. CONCLUSIONS

In this work we have evaluated the thermodynami
functions of an aperiodic Ising system on hierarchical lattic
through the numerical iteration of a set of maps. The imp
tant issue was to uncover the nature of the transition an
the thermodynamical behavior of a system subject torel-
evant fluctuationsin the coupling constants, as is the case
the hierarchical lattice withp5q53 subject to the fluctua-
tions induced by the inflation rule~2.2!. For such system, the
relevant character of the fluctuations has been establishe
a renormalization group analysis. The same study shows
the fixed point associated with the transition atTÞ0 be-
comes a fully unstable node~two repulsive eigenvectors!.
The elimination of the attractive manifold of the fixed poi
fact makes it hard to get a picture of what the transition loo
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FIG. 2. Scaling properties of correlation lengthj ~a!, magnetizationm, and susceptibilityx in theh→0 limit ~b! and~c! with respect to
the reduced temperaturet. The squares indicate the uniform caseJA5JB51, and the triangles indicateJA51, JB50.2. The new values for
the slopes remain constant as long asJAÞJB . In ~d! we plot the specific heat for bothT,Tc ~lower branch! and T.Tc . The small
irregularities in the upper branch are magnified in Fig. 4.
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like, as we can never approach the fixed point through
iteration of the renormalization transformations. Conjectu
that the second-order character of the transition be lost
be raised in such cases.

The picture described above is typical also for other s
ations where relevant fluctuations have been considered.
analytical methods cannot be further developed and a de
tive statement about the behavior of the system remains
off. The elucidation of these points demands the exact ev
ation of the thermodynamical functions of the system.

The results we present here are numerically exact, as
maps we iterate were derived without any approximati
However they are subject to rounding off errors in the ite
tion of the maps and imprecision in the fitting for the critic
exponents. As shown in the last section, the numerical e
mates for the critical temperature and exponents for b
e
s
an

-
he
i-

ar
u-

he
.
-

ti-
th

uniform models and the situation of irrelevant fluctuatio
are of quite good quality, which attests to the reliability
our method.

The relevant fluctuations have induced quantitat
changes in the values of the exponentsn, b, andg. How-
ever, the new values are universal as long asJA5JB . We
have observed that the critical temperatureTc estimated by
the divergence ofj agrees to high precision with those whe
m0→0 andx0→`. The scaling region is large for the thre
exponents, and high precision values were obtained for
first two of them. In the evaluation ofg, we have observed
that the points do not align so precisely along a straight l
as the former two exponents, which is the reason for a lar
error.

The most relevant change refers to the destruction of
specific heat cusp. A complex behavior develops, charac
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ized by a smooth maximum at a temperatureTm slightly
smaller thanTc , and a change in the derivative ofc with
respect toT at Tc , which can only be interpreted as a man
festation of the same criticality that causes the divergenc
j and x0 and the vanishing ofm0 . We emphasize that th
detailed numerical investigations shows clearly the existe
of the two distinct valuesTm andTc , and that the difference
between these two values is much larger than the devia
found in the values of the temperatures at which the critic
ity sets in the different functions. So we can definitely ru
out that two temperature values are an artifact due to num
cal imprecision. The complex behavior is further charact
ized by small changes in the slope ofc when T.Tc. This
effect is clearly shown in the curve ofdc/dT, which displays
log-periodic oscillations with respect to the reduced tempe
ture. We found that the period is approximately given by
wandering exponent of the aperiodic sequence control
the fluctuations.

We also call attention to the fact that the entropy var
continuously through the entire temperature interval. W
have carried out a detailed investigation of its behav
around the critical region, but could not observe any e
dence for a discontinuous change, which would provide e
dence for a first-order transition.

To conclude we stress that the detailed numerical eva
tion of the thermodynamical behavior of a system subjec
relevant fluctuations does support the survival of the seco
order transition, though characterized by new universal c
cal exponentsn, b, andg, and the presence of a discon
nuity in the slope of the specific heat atTc .
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FIG. 3. Specific heatc for JA51, JB50.2. The inset is a mag
nification of the region aroundTc . Note the smooth maximum a
Tm and the change in the slope atTc .
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APPENDIX

Maps for the free energyf G(T,h) and the correlation
length jG(T,h50) for the hierarchical lattice withp5q
52.

f G1152
NG

NG11
~ f G1gG!2

T

NG11
lnS AG

4 D ,

where the recurrence forgG is given by

gG1154
NG

NG11
f G2

T

NG11
lnS BG

4 D .

The termsAG andBG are further expressed by

AG5~12xG
2 2yG

2 1zG
2 !~12uG

2 !

1
H2

2
@~11yG!21~xG1zG!2#

3@~11vG!21~uG1vG!2#

1
1

2H2
@~12yG!21~xG2zG!2#

3@~12vG!21~uG2vG!2#,

and

BG5~12xG
2 2yG

2 1zG
2 !21

H2

2
@~11yG!21~xG1zG!2#2

1
1

2H2
@~12yG!21~xG2zG!2#2.

In AG and BG we have NG52(214G)/3 and H
5exp(h/T) (kB51). The recurrence relations for the quan
ties present inAG andBG are

FIG. 4. Curve for (dc/dT) vs t for both T,Tc ~upper branch!
andT.Tc . Note that the slight increase in the distance between
two curves ast→0. This divergence is consistent with the expre
sion ~4.3!. The period of the oscillations of the lower branc
; ln 2/ln 3.
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xG115
1

AG
H 4~zG2xGyG!vG~12uG!12H2~11yG!~xG1zG!~11vG!~uG1vG!

1
2

H2
~12yG!~xG2zG!~12vG!~uG2vG!J ;

yG115
1

AG
H 2~12xG

2 2yG
2 1zG

2 !vG~12uG!1H2@~11yG!21~xG1zG!2#~11vG!~uG1vG!

2
1

H2
@~12yG!21~xG2zG!2#~12vG!~uG2vG!J ;

zG115
1

AG
H 2~zG2xGyG!~12uG

2 !1H2~11yG!~xG1zG!@~11vG!21~uG1vG!2#

2
1

H2
~12yG!~xG2zG!@~12vG!21~uG2vG!2#J ;

~A1!

uG115
1

BG
H 4~zG2xGyG!212H2~11yG!2~xG1zG!21

2

H2
~12yG!2~xG2zG!2J ;

vG115
1

BG
H 2~12xG

2 2yG
2 1zG

2 !~zG2xGyG!1H2@~11yG!21~xG1zG!2#~11yG!~xG1zG!

2
1

H2
@~12yG!21~xG2zG!2#~12yG!~xG2zG!J .
the
The initial conditions for these maps are

f 052
T

2
ln@cosh~JA /T!#; g052

T

2
ln@cosh~JB /T!#;

x05tanh~JA /T!; u05tanh~JB /T!; y05z05v050.

For thej(T,h50) the corresponding maps are

jG1152
jGzG

jG1zG
F11

22GjGzG

jG1zG

3 ln S 11exp@22G11~1/jG11/zG!#

2 D G21

,

where the variablezG follows the recurrence relation:

zG115jGF1122G21jGlnS 11exp~22G12/jG!

2 D G21

.

The initial conditions are

j05
21

ln@ tanh~JA /T!#
; z05

21

ln@ tanh~JB /T!#
.

Maps for the free energyf G(T,h) and the correlation
length jG(T,h50) for the hierarchical lattice withp5q
53 are
f G1153
NG

NG11
~ f G12gG!2

3T

NG11
ln~AG!,

where the recurrence forgG is given by

gG1159
NG

NG11
f G2

3T

NG11
ln~BG!.

The termsAG andBG are further expressed by

AG5H41uG
2 1xGvG1xGuGwGH24;

BG5H41xG
2 1xGyG1xG

2 zGH24.

In AG andBG we haveNG5(51339G)/4 andH has the
same meaning as before. The recurrence relations for
quantities present inAG andBG are

xG115
1

AG
3 $vGH41xGvG

2 1uGwG1xGwG
2 H24%3;

yG115
1

AG
3 $yGH41yGuG

2 1zGvG1zGuGwGH24%3;

zG115
1

AG
3 $yGvGH41zGvG

2 1yGuGwG1zGwG
2 H24%3;
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uG115
1

BG
3 $yGH41xGyG

2 1xGzG1xGzG
2 H24%3;

vG115
1

BG
3 $yGH41xG

2 yG1yGzG1xGzG
2 H24%3;

wG115
1

BG
3 $yG

2 H41xGyGzG1yG
2 zG1zG

3 H24%3.

The initial conditions are

f 052
JA

2
; g052

JB

2
; x05y05exp~JA /T!;

u05v05exp~JB /T!; z05w051.
ot

e

tt
n-
For thej(T,h50) the corresponding map is

jG1153
jGzG

jG1zG
F11

32GjGzG

jG12zG

3 ln S 113 exp@23G~2/jG14/zG!#

31exp@23G~2/jG14/zG!#
D G21

,

where the variablezG follows the recurrence relation:

zG115jGF1132G21jGlnS 113 exp~2633G/jG!

31exp~2633G/jG!
D G21

.

The initial conditions forj0 and z0 are the same as forp
5q52.
. J.
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