PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999

Thermodynamical behavior of aperiodic Ising models on hierarchical lattices
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This work brings an analysis of the behavior of Ising spins on a hierarchical lattice subject to relevant
fluctuations on the coupling constants that are induced by a deterministic aperiodic sequence. The thermody-
namical functions are evaluated after the numerical iteration of a set of coupled maps, obtained within the
method of transfer matrices. The typical specific heat cusp of the homogeneous system is destroyed by the
fluctuations, which also cause changes in the values of all critical expoh8a63-651X%99)03001-9

PACS numbeps): 05.50+q, 64.60.Ak, 61.44.Br

I. INTRODUCTION ture of the actual changes in the thermodynamical and criti-
cal behavior. The purpose of this work is to bring an explicit

There has been much interest in the thermodynamical besvaluation of the thermodynamical and critical properties of
havior and critical properties of magnetic systems with a lackan Ising model on a hierarchical lattice subject to relevant
of translational symmetry. Former investigations have confluctuations on the exchange constants. It is motivated by
centrated on models defined on fractl hierarchical lat-  recent works on the same lattices within the renormalization
tices[2,3], etc., while more recent works have focused on thedroup approach, which indicate changes in the criticality, but
effect of deterministic aperiodicity in the couplings and do not clearly point what the new behavior look like0,11].
fields that act upon the individual Spins in an Euclidean |a'[_OUr results are obtained after the numerical iteration of a set
tice [4]. Of course the investigation of fully disordered or of maps for the relevant thermodynamical functions, which
random system has proceeded along its own way, which i&ere derived after the use of the transfer matfi¥1) for-
rather different from those we consider in this work. malism. We show that changes occur in the value of all

Hierarchical lattices have been investigated in great detaiftitical exponents, especially in the specific heat, which
They are amenable to exact So|ution5, most of which aréhOWS a Completely different behavior with reSDECt to that of
equivalent to approximate results for systems on Euclideaf’® homogeneous system. In order to test our method we
lattices. Both renormalizatiotdecimation schemes and the have reproduced the known results for the uniform model on
recurrent evaluation of the thermodynamical properties afhe simple diamond lattice, and also analyzed one situation
the hierarchy of the lattice increases have found widesprea\dhere irrelevant fluctuations do not alter the character of the
use in these investigation§—7]. criticality.

Fu”y aperiodic Sequences of two or more Symbo|s are The rest of the work is Organized as follows: In Sec. Il we
Constructed by the recurrent Substitution Of these symb0|§]tr0duce the definition of the two lattices and of the .flu.Ctua-
according to a fixed rule. The sequences of Fibonacci, Thuelion rules; in Sec. Ill we discuss the basic steps within the
Morse, and Rudin-Shapiro are only a few examples of welldransfer matrix method that are necessary to derive the
known aperiodic structures. Deterministic aperiodicity mayProper maps; Sec. IV presents the results for both lattices,
be introduced by choosing couplings in a magnetic modeWith special emphasis on the case of relevant fluctuations;
according to the symbols in such sequences, as have alreaijally, Sec. V closes with concluding remarks.
been used with success in the investigation of properties of
aperiodic electronic systeni8]. The influence of the aperi- 1. APERIODIC MODELS ON HIERARCHICAL LATTICES
odicity (or fluctuationg in the couplings and fields on the ) ) ) ) )
critical properties of the original homogeneous model is ac- W consider an Ising model on hierarchical lattices,
counted for by the Luck criteriof9], which has been ex- which are recurswgly constructed by substituting any bond
tended to treat also the hierarchical lattidd9]: possible of a given generation by a set quargllellbran.che.s, each
changes in the critical properties depend on the eigenvaludd® containing a series ptbonds. Within this definition, the
of the substitution matrix defined by the specified inflationSIMPIest diamond lattice corresponds to the situapenq
rule, the dimension of the lattice, and the value of one of the=2- A formal Hamiltonian for the system is written as
critical exponentge.g., ). Fluctuations are classified into
relgvant or irrelevant, accorqling to whether the critical prop- H=— 2 Jjjoio— hz o 2.1
erties are changed or not with respect to those of the homo- h) i
geneous system. Situations of marginal relevance are also
possible, but in such cases the criterion does not allow for avheres;= £ 1, the double sumi(j) is performed over pairs
definite indication on the behavior of the system. of first-neighbor sites, anl is a uniform field acting on all

It is usually the case that, when fluctuations are irrelevantsites of the lattice. We choose rules for the bodgssuch
the models are suitable for further analytical investigationthat any path linking the two root pointgoints which ap-
which ends up showing why the critical behavior remains thepear in the first generatipmas the same sequence of bonds.
same[9]. However, in the case of relevant fluctuations, theThe length of these paths is given p§, whereG indicates
analysis becomes harder and it is difficult to get a clear picthe generation of the construction of the lattice. For conve-
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nience we choose rules for the sequences governing fluctua- single bond between the root sites andr,. A usual
tions the lengths of which have the same dependend8.on 2X2 matrix T, with Boltzmann weights describes the inter-
We consider substitution rules formed by only two symbolsactionJ between the root points. In the next generation, the
(A andB), generically expressed by interaction between sites, andr, is expressed by a2

matrix T, given b
(A,B)— (ABP~L,AP), (2.2) 19 Y

T1=QuR52Q}. 3.1
and the sequences start with a single symdlWe assume 1= QoRo Qo @9

that the nearest-neighbor interactiofis in our model as- |n Eq. (3.1) the matrixR, describes the bonds between the
sume the valued, or Jg according to the symbol in the jnner new sites of the first generation. It is expressed as
sequence. Kronecker direct products @f 2X2 matrices of Boltzmann
The substitution matrixM, which links the number of \yeightsT,. The matrixQ, describes the interaction of the
symbolsA andB in two subsequent generations is written asyqot siter, with the first inner sites of thg branches. It is a
1 0 2% 29 matrix, formed by the first and last lines of the matrix
)_ 2.3 To. Its transposng describes the interaction of the lagt
inner sites with the root site,.
Through Eq.(3.1) we relate matrix elements of two suc-
cessive generations of the lattice. In such a simple cBse,
and T, contain only two distinct matrix elements, say,bg

p—1 O

Its eigenvalues arg;=p and\,=1—p, and they define the
wandering exponent

In[,| anda,,b;, which are related by nonlinear maps.
0= 2 (2.9 Due to exact scale invariance of the lattice, the matricial
In\y map (3.1) relates the TM’s of any two subsequent genera-

Fions G andG+1. The same is valid for the maps for the
matrix elements. They can be iterated in a more convenient
way if we introduce the free energy per spifg

o expresses whether the fluctuations in the distribution o

symbols within the sequence are boundeg<(0) or un-

bounded >0). The sequences defined by H.2) are _ .

non-Pisot(i.e., >0) for p>2, whereasw=0 for p=2. G(T/NG)In 76, ~and _the correlatlon_ length &g
=p°/In(ngles), where ng=ag+bg and eg=ag—bg are

The extension of the Luck-Harris criterion for relevant fluc- the eigenvalues of the matrig , andNg counts the number
tuations in the case of hierarchical lattices leads to the ex-, . 9 S ’ . G
of sites of the lattice in the generati@ Forp=g=2 and 3

pression10] we have, respectively,Ng=2(2+4%)/3 and Ng=(5
d; +3%9%)/4. The explicit forms for the maps fqu=q=2
¢=1—w—§j;<o, (25 and 3 are

where the fractal dimension is expressed hy; fGH:ﬂfG_
=[In(pg)/In(p)], and « is the specific heat exponent of the Ng+1 Ne+1
uniform system.

In the following sections we focus on two situations G G -
whered;=2: p=q=2 and 3. The analysis of renormaliza- éc+1=¢c) 1+ [In[1+exp(—4x2%/ég)]—In2]; |
tion group[10] has shown that, for any value of >0
whenp=2, even ifo=0, while <0 whenp=3. Besides

{In2—In[1+exp —4x2%/&5)1};

2G+1

(3.2

that, the same analysis shows that the nature of the fixed 9N

point associated with th&#0 transition changes from an fGH:—GfG— {In4—In[1+3 exp(—6
unstable noddwith one attractive and one repulsive eigen- Ng+1 Ne+1

vecton to a completely repulsive situation. The new proper- X 3%/¢6)]);

ties of the fixed point make it hard to get an indication about
the nature of the transition and the thermodynamical behav- r G -1
ior of the aperiodic system. So we can only obtain informa- Eor1=&ol 1+ 3 n 1+3exp(—6x3 /SG)>

tion about the nature of the changes induced by relevant 3671 | 3+exp—6x3%/¢g)
fluctuations by the explicit evaluation of the thermodynami- (3.3
cal properties of the system.

The iteration of Eq(3.2), [(3.3)] leads to the numerical
exact value of the corresponding thermodynamic functions.
The entropy and specific heat are evaluated in the same way,

TM’s were first devised for the analysis of translationally after the derivation of the maps fopfg,,/dT and
invariant systems. However, they have been used recently ioffg, 1 /9T
connection with deterministic aperiodi8,12] and random To include the effect of a homogeneous field on the spins
[13] systems as well as on the analysis of fractals with finitewe disregard, foG=0, the field acting on the root sites. In
order of ramificatior{ 14]. The approach we use in this work the evaluation oflf; we include the field effect only on the
combines elements of both quoted schemes. inner sites, and repeat this procedure for all further genera-

For the sake of simplicity we start with the homogeneousdions. In the limitG—« we have included exactly the same
case and no external field. Whén=0 the system reduces to field intensity in all sites, with exception of the two root sites

Ill. TRANSFER MATRIX FORMULATION
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that remain field free. With the inclusion of the field the 0.5 y T y T ; T
eigenvalues; and eg are not any more linear combination
of the now three distinct matrix elements of matricgs.
This makes the corresponding maps for and £ more
complex. The magnetization and susceptibility as function of
the generatiorc are obtained by derivation of these field-
dependent maps with respectto

Finally we discuss the inclusion of aperiodicity for sub-
stitution rules that include only two symbols, as those de- ¢
fined by Eq.(2.2). Suppose that the hierarchy starts with a
single bond of typeA, described by the TM , ¢, of Boltz-
mann weights defined with the couplidg . The matrixTg o
with couplingJg is constructed in the same way. To express
the interactions at second and higher order generations we
need two matrix relations of the tyg8.1) for Tp ; andTg 4,
which are formally written as

0.0 0.5 1.0 1.5 2.0

p-2 T
T..=Q.a I R, olSty, X=A,B. (3.4)
S 5 T 0 FIG. 1. Specific heat for the simple diamond lattice=(q

=2) for the coupling constant3,=0.1, Jz=1 (solid curvg and
The matrice®Q, R, andShave the same meaning as in Eq. 3,=1, J;=0.1 (small dashed The critical exponentx remains
(3.1) but we have to take into account the type of couplinginvariant.
(Ja or Jg) according to the substitution rule for the matrices . )
A andB. This is the only relevant change in the procedure,T> Tc(ho), we note tham~h~"for h<h,. For instance we
which amounts to maps for the matrix elementsAcindB. ~ Nhote that, for the value oF listed abovem drops from the
The inclusion of the external field is made in the same wayvalue 0.252 atT;—0.0001 to 0.164 aff;+0.0001 forh
as for the uniform case. In general there will be four different=10"'° and from 0.247 to 3.810"* whenh=10"**
maps for the matrix elements of each matrix. The complete For T<T, the zero-field susceptibility, diverges afl,
set of maps for the aperiodic situations analyzed here, witlput the convergence of(T,h) to xo whenh—0 is not so

inclusion of magnetic field, are listed in the Appendix. precise as fom. Results foh~ 10~ '° have relative precision
of 10 ® but, due to rounding off errors, the convergence of
IV. RESULTS X(T,h) to xo, for still smaller fields becomes poor, espe-

cially for T far fromT.. ForT>T_. we observe that the value
The maps have been iterated with double precision variof the susceptibility is finite for nonzerta However they do
ables until a relative precision of 18° in the values of the not evolve to a fixed value, but diverge witlm h| in the h
different quantities is achieved. To test the method we have. 0 limit [15,16. This behavior is in accordance with ana-
reproduced the known results for the homogeneous diamongtical results, which show thag, is infinite for T>T.. The
lattice, Jo=Jg>0, p=qg=2, where we found the critical numerical values for the critical exponents are also repro-

temperature to b&;=1.6410179 ... . The best estimate duced with high accuracy:a=—0.672, 3=0.1617, vy
for T, is obtained by gradually reducing from the high =2.351, y=1.338.
value region and observing whegediverges. The iteration The same procedure was repeated for several pairs of val-

of the maps shows tha@t— for all T<T.. At T, we also  ues ofJ,,Jg>>0. Besides the change ifi., the value of
observe the criticality for the specific heatthe curve of  which for J,# Jg could not be obtained within the renormal-
which has the form of a cusp, with maximum jzation group approach, we have checked that the critical
0.9597630... . exponents remain invariant, indicating that the critical be-
The evaluation of the spontaneous magnetizatigrhas  havior are the same as in the homogeneous situation. Other
to be performed in the limih—0, since if we seh=0 in  relevant changes in the thermodynamical behavior are ob-
the beginning of the iteration we end up with=0. ForT  served in the curve for: in the limit of smallJg the cusp at
>T., high precision values fom=m(T,h<1)=mg, with T. has its size reduced and becomes embedded within a
error <10 8, are obtained forh~10 1 when t=(T  Schottky profile that dominates the greater part of the curve;
—T.)/T.>0.01. Fort<0.01 we have to take still smaller in the limit of smallJ, the cusp still dominates, but a small
values of h in order to achieve convergence. Fdr  Schottky profile develops foF>T., as shown in Fig. 1.

>T., m fallsinitially along the same way as far<T., as We expect changes is the critical behavior when fluctua-
the critical temperatur@ .(h) is somewhat larger tham. tions in the coupling constants are introduced in the second
We have estimated that lattice, p=q=3. The homogeneous situation presents the
same qualitative features of the standard diamond lattice.
t(h)= Tc(h)_Tc:O 44038 @.1) WhenJ,=Jg we have foundl,=1.3853912 ... , and the
¢ Te ' | ' maximum of the cusp foc at 0.9307335 ... . The critical
exponents are «=-0.701, B=0.168, y=2.356, v
After reachingT.(h), m falls very rapidly witht, according  =1.354, which, like the estimates for the diamond lattice,

to a power law with exponent 2.24. If we fix the value of satisfy the Rushbrook and hyperscale relations to a high pre-
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cision, with errors less than 0.3%. the same precision as the first three exponents. When
When J,# Jg both qualitative and quantitative changes >T, we do not have a limitation for the interval where scal-
are observed, respectively, in the critical behavioc ahd in  ing occurs. The double logarithm plot ot shows that the
the critical exponentg, B, andvy. points align along a straight line, although a careful analysis
The critical temperaturd is again estimated by the di- show that there are some fluctuatigfay. 3(d)] of the same
vergence ofé. For instance, whed,=1 andJg=0.2 we kind as those observed for the susceptibility. The best esti-

haveT.=0.40906698 ... . Asin allformer cases pre- mates for the values of the exponents are —0.80 and

sents a clear power-law behavior for a large interval e o’ =—0.89.

measured a new value=1.485, which remains invariant as In order to provide a closer analysis of the fluctuations in

long asJa# Jg. the behavior of(T) for T~ T, we have evaluated its deriva-
We also find that in the limih—0, my=m—0 when tive dc/dT, which is shown in Fig. 4. The most relevant

T—T., with a new universal valug=0.067 forJ,#Jg. aspect is the log-periodic oscillations @€/dT with respect

As we must perform the evaluation of with a small non- to the reduced temperatutdor T>T.. An indication of a
zeroh, the former discussion on the behaviorm&=m, ap-  similar behavior is also obtained fan and y. However,
plies to the present situation. The convergencendd my is  since these quantities, respectively, vanish and divergg,at
much slower than in the uniform case or in the presence othe effect can only be depicted if we compute the logarithmic
irrelevant fluctuations. Our estimates are that derivative. Log-periodic phenomena has also been reported
for magnetization and free energy of the mean field approxi-
Te(h)—T¢ 0.35 mation of an aperiodic systefil7], whenT<T.. We ob-
———=7.2n"" 4.2 : AP
T, serve that the period of oscillation is roughly equal to the
wandering exponen®.4) w=1In2/In 3=0.64. So we can re-
So, for the values od, andJg quoted abovem, drops from late the oscillations to the increase of disorder in the succes-
0.587 at T,—0.0001 to 0.122 atT.+0.0001 whenh sive hierarchies of aperiodicity induced by the sequence. We
=3x10"'% and from 0.587 to 2.2410 % when h also note that, to accurately describe such an effect, the form
=3x10 '8 As the numerical variables we work with are (4.3) we assumed for the dependencecdbr T>T, should
limited to 16 significant digits, this is the smallest valuehof a log-periodic function be included. However, the amplitude
for which t.(h) could be obtained with confidence. Finally of fluctuation is so minute that it does not alter substantially
we note that folT>T.(h), m decays according to a power the obtained values for the critical exponents. Another rel-
law with t; the exponent 2.54) is even larger than in the evant feature of the curve in Fig. 4 is the slow increase of the
uniform case. The main features of the analysis of our datguantity (dc/dT)T:TC_A—(dc/dT)T:TC+A asA—0, if we

are shown in the Figs.(3 and 2b). ' averagedc/dT over the period of oscillations. This is con-
The behavior ofyo for T<T. has now a steeper diver- sjstent with the forn{4.3) and with the values obtained far

gence.The scaling region is large, but we note that the corgnd’.

stant steep slope suffers a slight break at an intermediate The numerical estimation for the critical exponents leads

point, returning afterwards to the same steep d¢sag Fig. 1o

2(c)]. This effect must be of the same nature as the log-

te(h)=

periodic oscillations detected in connection to the specific a+2B+y—2=0.05,

heat, as we discuss below. If we measure the slope in any of (4.4)

the two steeper parts, we come to the same resslR.72. a'+d;y—2=0.08.

When T>T,. the inhomogeneous model also have infinite

zero field susceptibility, which diverges for smhllas Inh.  Thjs result is worse than that obtained for the uniform mod-

The fact that these three thermodynamical functions havels. |t is not possible to assert whether it depends on the
the same qualitative behavior as the uniform model is imporemployed method or it is an essential feature of the model,
tant to characterize the nature of the critical behaviofat  caused by the presence of relevant fluctuations.

We think that the overall picture fits into the framework of a

second-order transition, even if the criticality in the specific
heat suffers the destruction of the cusp. As shown in Fig. 3,
the curve now displays a smooth maximumrgi< T, such In this work we have evaluated the thermodynamical
thatt,,=|T,—Tcl/Tc~10"3. At T=T, the curve suffers a functions of an aperiodic Ising system on hierarchical lattices
discontinuous change in its derivative, suggesting that théhrough the numerical iteration of a set of maps. The impor-

V. CONCLUSIONS

critical behavior is of the type tant issue was to uncover the nature of the transition and of
the thermodynamical behavior of a system subjecteio
c(T)=cotcy(Tc—T)%, for T<T, evant fluctuationsn the coupling constants, as is the case of
(4.3 the hierarchical lattice witlp=q=3 subject to the fluctua-
c(T)=c0—c1(T—TC)”', for T>T,, tions induced by the inflation rul@.2). For such system, the

relevant character of the fluctuations has been established by
with a# a'. ForT<T,, the interval where Eq4.3) isvalid  a renormalization group analysis. The same study shows that
is reduced ta<t,,. Ast,, is rather small the evaluation ef  the fixed point associated with the transition a0 be-
is restricted to a very narrow interval aroutrd 0. Note that comes a fully unstable nod@wo repulsive eigenvectors
the numerical fluctuations become more relevantt @&-  The elimination of the attractive manifold of the fixed point
creases. Therefore the value @fcannot be estimated with fact makes it hard to get a picture of what the transition looks
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FIG. 2. Scaling properties of correlation lengttia), magnetizationrm, and susceptibilityy in the h—0 limit (b) and(c) with respect to
the reduced temperatuteThe squares indicate the uniform cadse=Jg=1, and the triangles indicate,=1, Jz=0.2. The new values for
the slopes remain constant as longJast Jg. In (d) we plot the specific heat for both<T. (lower branch and T>T.. The small
irregularities in the upper branch are magnified in Fig. 4.

like, as we can never approach the fixed point through theniform models and the situation of irrelevant fluctuations
iteration of the renormalization transformations. Conjecturesire of quite good quality, which attests to the reliability of
that the second-order character of the transition be lost cadur method.
be raised in such cases. The relevant fluctuations have induced quantitative
The picture described above is typical also for other situchanges in the values of the exponensg, andy. How-
ations where relevant fluctuations have been considered. Thever, the new values are universal as longdas Jg. We
analytical methods cannot be further developed and a definhave observed that the critical temperatiigeestimated by
tive statement about the behavior of the system remains fahe divergence of agrees to high precision with those where
off. The elucidation of these points demands the exact evalun,—0 andy,— . The scaling region is large for the three
ation of the thermodynamical functions of the system. exponents, and high precision values were obtained for the
The results we present here are numerically exact, as thf@st two of them. In the evaluation of, we have observed
maps we iterate were derived without any approximationthat the points do not align so precisely along a straight line
However they are subject to rounding off errors in the itera-as the former two exponents, which is the reason for a larger
tion of the maps and imprecision in the fitting for the critical error.
exponents. As shown in the last section, the numerical esti- The most relevant change refers to the destruction of the
mates for the critical temperature and exponents for botlspecific heat cusp. A complex behavior develops, character-



PRE 59 THERMODYNAMICAL BEHAVIOR OF APERIODIC ISING . .. 155

T T T T ™ T T T T

1+ ]
04} g A
O -
4k
03} I
2ok
dc i
dT 5l
€ o2} I
4

LS _

01} |- ]

0.256 tr 1

TC
0.408 , 0.409 R e ———
0-%0 : 0'5 : 1'0 : 1'5 Y 10 107 10® 10% 10* 10% 10% 107
T t

FIG. 4. Curve for @c/dT) vst for both T<T_ (upper branch
andT>T.. Note that the slight increase in the distance between the
two curves ag—0. This divergence is consistent with the expres-
sion (4.3). The period of the oscillations of the lower branch
~In2/In3.

FIG. 3. Specific heat for J,=1, Jg=0.2. The inset is a mag-
nification of the region around.. Note the smooth maximum at
T, and the change in the slope®&t.

ized by a smooth maximum at a temperatdig slightly

smaller thanT., and a change in the derivative ofwith APPENDIX

respect tol at T., which can only be interpreted as a mani- .
festation of the same criticality that causes the divergence qf M?]ps f9|_r htkleo frc—;e eﬂergth(T,r;])_ alntlzi the co_rrelitlon
¢ and o and the vanishing ofny. We emphasize that the '€N9t ¢6(T,h=0) for the hierarchical lattice wittp=g
detailed numerical investigations shows clearly the existence <*

of the two distinct valued,,, andT,, and that the difference N A
between these two values is much larger than the deviation fG+1:2—G(fG+gG)— |n(—G),
found in the values of the temperatures at which the critical- Ng+1 Ng+1 4

ity sets in the different functions. So we can definitely rule .

) where the recurrence f@g is given b
out that two temperature values are an artifact due to numeri- ¥e'5 9 y
cal imprecision. The complex behavior is further character- Ng T (BG>

, . ~T. Thi =4——Ffs———1In
ized by small changes in the slope ©fvhenT>T,.. This Je+1 Ne:s © Ngis

effect is clearly shown in the curve dic/d T, which displays 4

log-periodic oscillations with respect to the reduced temperaThe termsAg andBg are further expressed by
ture. We found that the period is approximately given by the
wandering exponent of the aperiodic sequence controlling Ag=(1-x5—-y2+2z%)(1—u3)
the fluctuations.

We also call attention to the fact that the entropy varies
continuously through the entire temperature interval. We
have carried out a detailed investigation of its behavior

H2
+7[(1+yG)2+(XG+ z6)?]

around the critical region, but could not observe any evi- X[(1+v6)*+(Ugtvc)?]

dence for a discontinuous change, which would provide evi-

dence for a first-order transition. +——[(1-ye)?+(Xe—25)?]
To conclude we stress that the detailed numerical evalua- 2H?

tion of the thermodynamical behavior of a system subject to 2 2

relevant fluctuations does support the survival of the second- X[(A=ve)"+(Ug=ve)7],

order transition, though characterized by new universal criti- 4
cal exponents,, B, andvy, and the presence of a disconti-

nuity in the slope of the specific heat B¢ . H2
Bo=(1-Xx§~Yg+23)°+ 5 [(1+ye)*+ (Xa+20)°]
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A(26—XgYe)va(1—Ug) +2HA(1+Ye)(Xe+26) (1+ve)(Ug+ve)

XG+1:A_G
2 .
+_H2(1_ye)(XG_ZG)(l_UG)(UG_UG) ;

2(1-X5—y5+25)ve(1—ug) + HZ[(1+Ye)?+ (Xe+26)?1(1+ve) (Ug+ue)

1
YG+1:A_G
1
_m[(l_ye)2+(XG_ZG)Z](]-_UG)(UG_UG)];
1
ZG+1:A_6[ 2(26—XaYe)(1-ud) + HA(1+Yg) (Xg+26)[ (1 +v6) 2+ (Ug+vg)?] (A1)
1
_m(l_ye)(xe_ze)[(l_UG)2+(UG_UG)Z]};
_1 2 2 2 2, 2 2 2| .
UG+1—B_G 4(zg—XgY) +2H(1+ye) (Xt Zs) +m(1_ye) (Xe—23)“(;

1
UG+1:B_6{ 2(1-x3—y&+73)(za—xaYe) + HA (1+Ye) 2+ (Xg+26) 21(1+yo) (Xa + Za)

1
_m[(l_yG)z_"(XG_ZG)Z](]-_YG)(XG_ZG)] .

The initial conditions for these maps are Ng 3T
fG+1:3N_(fG+ZgG)_ N In(Ag),
T T G+1 G+1
fo=—=In[cosiIA/T)]; =—=In[coshJg/T)]; o
o 2 [cosiIA/DI: 8o 2 LcoshtJs/T)] where the recurrence fayg is given by
Xo=tannJA/T); up=tanhJg/T); Yo=2z9=v,=0. Ng
In(Bg).

gG+1:9N fG_ N
For the&(T,h=0) the corresponding maps are Gl Gl

fouim2 éalc [1+ 27%cls
G+l §G+€G[ §G+€G AG:H4+U(23+XGUG+XGUGWGH74;

( 1+exd — 28+ (1gs+ 1/56)])
XIn 2

The termsAg andBg are further expressed by

-1
Bg=H*+x5+xgys+x5zcH *.

In Ag andBg we haveNg=(5+3%x9°)/4 andH has the
where the variablé follows the recurrence relation: same meaning as before. The recurrence relations for the
quantities present iAg andBg are

o 1+exp —2°%2/¢g)\ |71
{er1=&c|1+27 % 1égin > : 1
XG+1:_3{UGH4+XGU(23+UGWG+XGW(23H74}3;
The initial conditions are As
3 - ¢ - Yo :i{yGH4+yGu2+ZGUG+ZGUGWGH_4}3'
O n[taniJA/T)]’ % InftaniJg/T)]" A ¢ '

Maps for the free energys(T,h) and the correlation 1
length &5(T,h=0) for the hierarchical lattice wittp=gq Z6+1= 5 {YoveH*+ 2gv & +YaUWe+2gWEH 4}
=3 are Ac
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1
_ 4 2 2 -3
uG+l_B3 {ycH"+Xcyg+XeZe+XeZgH "}
G

1
UG+1:B_3{yGH4+ X&Yo+YeZo+XeZaH 3
G

1
WG+1=B_3{y(23H4+XGYGZG+YCZBZG+ ZgH ™43,
G

The initial conditions are
Ia B Js
PE Jo=— P
UOZUOZGXHJB/T); Z():W():l.

Xo=Yo=eXp(JA/T);

For the&(T,h=0) the corresponding map is

. bals | 3 %%als
§G+1_U§G+§G\_1+ §ct24c

1+3 exq—36(2/§G+4/§G)])
3+exd —3%(2/ég+41Lg)]

-1
XIn

where the variable follows the recurrence relation:

-1

{o+1= 6| 1+37C 1&gIn

1+3 exp(—sst/gG))
3+exp—6x3%/&g)

The initial conditions foré, and ¢, are the same as fqu
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