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Perturbations of noise: Origins of isothermal flows
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We perform a detailed analysis of both the phenomenological and analytic backgrounds for the “Brownian
recoil principle” hypothesigPhys. Rev. A46, 4634(1992]. A corresponding theory of the isothermal Brown-
ian motion of particle ensemblgSmoluchowski diffusion process approximaticiakes into account the
environmental recoil effects due to locally induced tiny heat flows. By means of local expectation values we
elevate the individually negligible phenomena to a non-negligibbeumulategirecoil effect on the ensemble
average. The main technical input is a consequent exploitation of the Hamilton-Jacobi equation as a natural
substitute for the local momentum conservation law. Together with the continuity equattematively,
Fokker-Planck it forms a closed system of partial differential equations that uniquely determines an associ-
ated Markovian diffusion process. The third Newton law in the mean is utilized to generate diffusion-type
processes that are either anomaléershancefor generically nondispersivgS1063-651X99)09002-9

PACS numbg(s): 02.50—r, 05.40—a, 03.65-w

I. SMOLUCHOWSKI DIFFUSION PROCESSES, constituent molecules that collide not only with each other
STOKES RESISTANCE, AND WEAKLY but also with the tagge(tolloidal) particle, soenforcingits
OUT-OF-EQUILIBRIUM SYSTEMS observed erratic motion. Clearly, random molecular colli-

sions both initiate and maintain an incessant irregular motion
of the tagged particle. Once the particle is in motion, we
In random media that are statistically at rest, motion ofneed to account for an additional statistical effect of molecu-
single tracers or dispersion of pollutants, also in the presenggy impacts on the actuallyovingparticle. It is phenomeno-
of external conservative force fields, may be consistently delogically encoded in the Stokes resistance, coming from av-
scribed in terms of Smoluchowski diffusion procesEe®].  eraging over a molecular “rain” along some portion of the
Their forward drifts are interpreted to take into account thetrajectory, which is proportional to the Ve|ocity of the par-
mean velocity3~'F/m imparted by the external conserva- ticle. In the phase-space description, the particle velocity
tive force to diffusing particles, an outcome of the accelerayj(t)=y is a random quantity. The damping effect rist

tion F/m “felt” and accumulated on the relaxation time random. It stands for a statistically accumulated, passive re-
scaleB 1. This time scale is regarded to be much finer thansponse of the medium. Indeetsee, e.g., Sec. 1)
the one appropriate for the coarse-grained description. The J/ﬂfl locally averages the genuingignoring fine-
|atter, At>ﬂil, is still Significantly smaller than the avail- deta"ed random dynamics on the relaxation time Sqarel
able phenomenologic&bbservationalresolution. For a bath in equilibrium, the internal relationship be-
Our basic intuitions are rooted in the theory of a BrOWn-tween the above random and System&ﬂi@e to frictior‘) ef-
ian motion suitable for the description of colloidal particles fects of a generic noise on the Brownian particle motion is
floating in a liquid. However, the issue of particular “causesthe subject of fluctuation-dissipation theorems. This extends
of diffusion” is not that relevant, and the proper arena for theto situations when the external driving forces additionally
Brownian motion can be not only a viscous fluid, or a dilute modify the particle dynamics, but do not modify the statistics
gas, but any interacting many-particle system and even less noise. This feature is generic to Smoluchowski diffusions.
specific random medium with a suitable microscopic behav{Conventionally, the fluctuation-dissipation theorems are in-
ior. The problem of “how to make a heat bath” needs to beterpreted[5] to set a general relationship between the re-
addresse{2—4]. In the present paper we take for granted thesponse of diffusing particles in an equilibrium bath to an
validity (even if diminished to the status of an approximateexternal force and the internal fluctuation of the bath in the
theory or the conceptual playgroynaf the standard Kram- absence of this disturbange.
ers and Smoluchowski diffusion process scenarios, as the By means of Einstein’s fluctuation-dissipation theorem
reference mathematical models of random transport in theve are given the diffusion coefficielt=kT/mg. It charac-
equilibrium bath. terizes an intensity of the spati@lVienen noise in terms of
If we consider a fluid in thermal equilibrium as the noise the friction parameteg, with k the Boltzmann constant,
carrier, a kinetic theory viewpoint amounts to visualizing thethe equilibrium temperature of the bath, andhe mass of a
diffusing particle[1]. A formal exploitation of the Stokes
formula (derivable on the basis of pure kinetic arguments
*Present address: Institute of Physics, Pedagogical University, pfrom the Boltzmann theory6]) transfers to the Brownian
Stowiarski 6, PL-65 069 Zielona Ga, Poland. Electronic address: realm a concept of a frictional deceleration, originally suited
pgar@omega.im.wsp.zgora.pl to a macroscopic spherical particle of radasnd massn

A. Traditional phenomenology
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moving in a fluid with viscosity coefficien;. In the new Let us consider an instantaneous velodgt)=v that

context, it is themeanproperty of motion andiota particu-  has been achieved in the course of the random evol(tipn
:ar S|tnhglte Il?;rownlant parttlctlj_-lr;]-?]otlor} att”fbt%te'f _N:_)nethe- beginning from a certaiW(0)=uv,. We can evaluate a con-
ess, that allows us 1o establish the value of th€ ITiCtion CoNyiiqn 5 expectation valugocal mean with respect to the law

stant =6mna/m, the result amenable to positive .t anqom displacementS)] over all randomly accessible
experimental verifications in the classic studies of the = -, .
Brownian motion[1,7] velocities V(t+At)=v’ at a timet+At,At>0. It deter-

mines the forward drift of the process:

B. Meaning of stochastic models

S TN >y > 7y 3097\ _ _ p7
An observable Brownian motion of colloidal particles in a b(v’t)_l'tmo(f v'plo,p" AYdw —v|==pv (4
fluid [1,7], when interpreted in terms of random processes, :

involves a number of mathematical subtleties, such as, e.g., . o .
an inherent nondifferentiability of sample paths in velocityand thus[2,11,13 provides us with information about the

space that reappears on the spatial arena of Smoluchowsﬁﬁn;reen ddetgcqflt)h?i%ﬁnz?;;ong,rﬂaedgﬁt n?r:;?omsgﬁ"tgn-
processes as well. p B : Y,

Clearly, the phase-space stochastic process is a rath@@ncy in the case of Edl) is to decelerate the velocity at
crude approximation of reality, if compared with the kinetic the Stokes rate/g~*.
theory reasoning based on the explicit input of particle col- Sample paths of the Wiener process are nondifferentiable
lisions to the Boltzmann equation and the related kineticand play the role ofvelocity spacgidealizations of “true”
theory of hydrodynamic flow§6]. The Boltzmann equation trajectories. We need a conditional averaging over all paths
can be interpreted in terms of a jump Markov process simuemanating fromy = V(t) to bypass, cf. Eq(4), the nondif-
lating collision events, and the diffusion-type Kramers equaferentiability problem and then introduce the local decelera-
tion may arise only in a suitable scaling linj@]. This limit tion rate 6—>5—B5M) [2]. Clearly, the friction term and
can be justified in the case of grazing collisions, or as a way, ;s the deceleration concept, in the framework set by Eq.
to include the effect of long range forces by treating their 1) 5ise as statisticalocal mean valugquantities. All that
influence in a statistical way: they should generall.y prOduC‘?nust be sharply contrasted with the standard hydrodynamical
a sequence of small and almost random changes in the tracfeaning of the Stokes resistance formula, which refers to a

particle velocity[3]. L genuine (the reduced Navier-Stokes equation is involved

The Sm_oluqhowskapprox_|r_naﬂontakes_ us_further away  fluid velocity field around asingle uniformly propagating
from the kinetic theory intuitions by projecting the phase-,,icje |t is the perturbation by the moving macroscopic
space theory of random motions into its configuration spac ody that gives rise to the force with which the viscous fluid
image[9], which is a spatial Markovian diffusion process. acts upon the concrete particlelike object.

To quantify the above picture one usually departs from o, jite apart from the time-scalé versusg™—1) issue, an
the _phase-spac(eangevm and Kra_me)mlgscrlptl(_)n O_f fl_uc- individual Brownian particle neither moves uniformly, nor
tuation phenomena. Let us consider an équation(in its o\ erpermanently relaxes to the state of rest. Actually, for a
symbolic differential versionfor infinitesimal increments of single Brownian particle, the respective velocity gain/loss
the velocity random variable, exhibiting the systematic fric'(acceIeration/deceleratioﬁ raten the 3~ ! time scaleis a

tional resistance random quantity
SN - =7 Conversely, the standard interpretation of the Stokes re-
dv(t)= - gV(1)dt+ Sy2DdW(D), (1) sistance for a large particle in a viscous fluid makes unavoid-
- ) , able an ultimate stopping of the particle, unless an external
WhereV\/_(t)_stands for the normallz_ed Wiener process. On&grce would balance the damping and so maintain (tive-
can easily infef10] the corresponding second Kolmogorov form) particle motion at a certain terminal velocity. This lat-

(Fokker-Planck equation ter concept forms the basis of the Einstein fluctuation-
- - . dissipation formula in the case of the gravitationally induced
p(vo,v,t)=BDA;+BV;-[vp(ve,v,t)] (2)  sedimentation phenomenon, §L], although in the case of

B . . ) the Brownian motion only local mean velocity fiel(fsence,
for the transition probability density of the time homoge- ensemble averagesan be employed for that purpose. The

neous process in the velocity space alph@,2]. picture of “a Brownian particle moving at its terminal ve-
In view of locity” [13] is certainly inappropriate.
3 We can supplement Eq1) with the spatial increment
- s m definition: dX(t)=V(t)dt, extending Eq(1) to the phase-
p(UO!vut)_ _ : H : H
27kT(1—e 2R space process whose Smoluchowski projection in the large

damping regime reduces to the pure spatial Wiener noise

dX(t)=\2DdW(t). In this case, the generic spatial scale
(wandering distance over which the dissipation prodess
the meanis completed is set by OB~ 1)¥2 The Smolu-
the time interval3 ! effectively accounts for an approach of chowski approximation amounts to ignoring the fine details
the transition density to the equilibrium Maxwell distribu- of the dynamics on thg~* and (D3~ %)¥? scales. One dis-
tion. regards all possible remnants of the phase-space process that

Xexp) 5=

m (v—vge P2
2kT 1-e 2 |

)
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extend beyond those scalghe damping typically induces heavy particle immersed in a gas of much lighter ones. Each
exp(— Bt) factors in all relevant formulas, hence a certaincollision (kick) has an entirely negligible effect on the veloc-
amount of “memory” must be eliminated to yield a Markov ity of the Brownian particle. It is only fluctuations in the
proces$|[1]. accumulation of an enormous number of very slight changes
That particulardisregard/ignoreissue is worth emphasiz- in the particle velocity which give the trajectory its irregular
ing in the context of typical approximatanalytic or numeri- appearence, in both velocity and position pictorial represen-
cal) manipulations with the Brownian motion. A strong so- tations of motion. Consequently, E(p) makes sense as a
lution of Eq. (1) [we takeV(0)=u, as the initial conditioh ~ Useful approximation of physical phenomena, if the coarse-
has the form grained time scale\t in Eqg. (6) (which is far below an
observational oneis much larger thar8~?, but still small
- - t - enough for a sufficiently fine coarse grainit® of Eq. (5).
V(t)=voexp—pt)+ JO exfl - B(t—s)]V2DdW(s). The previously mentioned space and time scales justify
(5) the utility of the Smoluchowski description of conservative
force effects upon a spatially diffusing partidt2]:
This expression, albeit looking physically unrealistic, is a

-

fairly accurate approximation of a phenomenological mo- R F .
lecular collision scenario for the Brownian motion. Namely, dX(t)= m_,BdH V2DdW(t). (7)
let us introduce a finite Riemann sum approximation of the
integral in Eq.(5): The Smoluchowski forward drift can be traced back to a
. presumed selective action of the force on the Brownian par-
J exf — (t—s)]8v2DdW(s) ticle that has a negligible effect on the thermal bath. Indeed,
0 we take for granted that there is no physically relevant mean

(induced flow in the bath proper, unless the isothermality
~exp(— Bt) D, exp(BnAt)AV, (6)  assumption is abandondd3,14, or other hitherto disre-
n garded effects on th@ ™! scale(such as those due to the
. . action-reaction principl¢11]) are incorporated into the for-
whereAV,,= 8y/2DAW(nAt) stands for thaith consecutive  malism.
velocity increment, e.g., an effect of all “random accelera- Brownian particles appear to be driftimm the local av-
tion” events taking place in the time intervainAt,(n eragerelative to the bath, with a uniforrtbut in the meah

+1)At). If we resort to a molecular collision mechanism  yeocity F/mg. Clearly, a repeated series of observations, at
a dilute gas for example the velocity increments due to regularly spaced time intervals, ofsingletagged Brownian
collisions of t_he Brownlan_ particle with molecules of the particle would not in general reveal any specific motion ten-
bath can be viewed as statistically independent, and occur @ency. The graphical picture of motion would be as irregular
an approximate rate of 16 per second. The collisions may as ever(“no purpose” sample paths of the Wiener process,
be interpreted to occur consecutively one after another, bifs in the absence of any fojceThe respective coarse-
multiple collision events are allowed as well. If we regard grained approximation of the trajectory does correspond to
the coarse graining time in E¢6) as referring to a typical an experimental resolution, which is incomparably rougher
relaxation time 8 1~10"8 s, (notice that the respective than the previous time scales.
coarse graining appropriate for the Smoluchowski approxi-  Only a numerical simulation of the statistical ensemble of
mation would involveAts8~1), it is obvious that eachth  sample paths with a controlled probability distributiéfre-
velocity increment can be interpreted as a sum of an enofguency, in factof initial conditions, or a realistic monitoring
mous number of independent identically distributed randonyf the Brownian motion-induced dispersion of a low density
variables (minute acceleration/deceleration, e.g., collisiong|oud of dust particles suspended in a liquid, would lend a
events. Let us stress that we exploit here a defining propertygefinite meaning to the “motion tendency” concept and to
of the Wiener process; the velocity random variatBe of  the related mean Brownian flows. Realistic diffusion pro-
the Ornstein-Uhlenbeck proces¢$)—(3) is known not to  cessegand diffusive transpoytare observed in the case of
have independent random incremefit8]. nonuniform concentrations of colloidal particles but they are
The accumulated fluctuation irregularities, on t8e'  regarded as being a result of random migration of individual
time scale, are the primary reason for the erratic behavior 9articles which is actually observablender a microscope
the Brownian motion in the velocity space. Thus an integraand interpreted as the Brownian motion.
tion with respect to the normalized Wiener prockﬁtﬁ) in In the context of a sedimentation phenomenon, a suffi-
Eq. (5) quite satisfactorilyin a suitable scaling limjtmodels  ciently long overall observation time of a single tagged par-
a cumulativeoutcome of phenomenologically motivated im- ticle traveling along its erratic patimours or days in a real or
pulses(kicks exerted by the noise carrjesn the Brownian computer simulation experimentwould presumably reveal
particle. that a particle more frequently visits certain spatial areas, in
Let us emphasize at this poiff] that it is not correct to accordance with the barometric formulergodic features of
think that conspicuous jiggles in the Brownian trajectory aremotion). Early experiments on this iss{ig,7] pertained to a
due tosingle kicks. (In mathematical terms the situation is cloud of suspended particles executing an extremely slow
even worse, since the Wiener process has an unboundégractically adiabaticdiffusion process. In some cases, the
variation at arbitrary time intervalsThe realistic Brownian  spatial displacement of the size 20 ® m tracer particles
motion is unbelievably gentle, specifically if we refer to a has been measured in 30 s time interald] to yield the
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observationally relevant outcomes. Very recent observationthe mean must have been done on Brownian particéshe
of an individual Brownian particle motion refer 1d—2.5) expense of the bath.ocal conversion of work into heat

X108 m tracers and thes s time resolution. seems to be unavoidable, and local heat flows are unavoid-
able as well, cf[13,7]. That creates a number of problems to
C. Problems with thermal equilibrium which no attention is normally paid in the literature.

A spectacular solution of the sedimentation problem due Smoluchowski diffusions are conventionally regarded as
P . X Proble isothermal processegossible heat flows are ignored for
to_Smoluchowski refers to the isothermal dynamids various reasons If we, however, admit that the emergin
which is constrained to the positive vertical semiaxis: ’ ’ ging

dZ(t)= — Bcdt+ By2DdW(t), with a reflecting boundary 1Y heat flows may have an effect on the particle transport

s th spatl pont 0 The tanston oty censty ofoe 9,1 BrOWIe, Tt & sutabe cescitn of e
this one-dimensional process reddsl(] 9 P

of Brownian particles must be invented.

1 For example, in the case of thermally inhomogeneous
P(z,29,t)= ————iexd —(z— 20)?/4Dt] gases it is well known that a dust-free region appears about a
2(7Dt) hot body, showing that a temperature gradient has an effect
c on the motion of dust particles in a gl6]. Tracer particles
+exd — (z+20)2/4Dt]} + ——= are transported away from the hot areas to the cooler ones
D\/; (we may interpret that as a repulsion by the heated domain
They appear to be attracted by the cooler areas while escap-
><exp(—cz/D)fw ing from Fhe hot domains. Particles float down the tempera-
(z+20—ct)/2(Dt) Y2 ture gradients.
Remark 1Let us mention an approach to a quite similiar
X exp(—x?)dx (8)  problem[13] which was originally formulated for a cloud of

contaminants in a liquid, under the following phenomeno-

and shows that a particle starting its motion from any posidogical assumption: “a gas of Brownian particles falling in
tive zo near 0 may wander along the positive semiaxis in-gravity should leave a trail of warm fluid in its wake, since
definitely. In particular, it can be transported against theits potential energy is being converted into heat.” Obviously,
gravitational force to an arbitrary height. Depending on thef the particles move against gravitational force, then the
actualz, the Brownian particle may have a higher probabil-temperature of the medium should drop locally. Those fea-
ity of ascending than descending. tures, if we are to keep track of the local heating and cooling

The correspondingnean workhas been evaluated to be (as opposed to the isothermal Einstein or Smoluchowski dif-
KT per particle, cf.[1,10] for a related discussion of the fusive dynamickwere interpreted as a source of the space-
entropy decrease issue. Certainly, the ability of the mediuntime dependence of temperature. The Fokker-Planck equa-
to perform work(in the meab i.e., to give a kinetic energy tion must then be supplemented by an evolution equation for
to the Brownian particléon the ensemble average agais  the temperature fielth clear-cut kinetic theory reasoning can
not unique to the sedimentation problem. It appears to be be read in this strategyyso that the coupled nonlinear system
universal feature of the thermal bath even in the absence afould take the form of a “consistent thermodynamical sys-
any external forces. tem” i.e., the one manifestly respecting the first and second

In the equilibrium situation[t—=p(z,zy,t)—p(2)] laws of thermodynamics; see, e.g., Rdf4]. Here, the heat
we would arrive at the familiar balance condition: the meanflows are assumed to be neither slow nor fast enough to be
tendency of motiorfforward drift) due to gravitational accel- effectively disregarded.
eration must be exactly balanced by the oppositely directed Remark 2An issue of suitable slow and fast process time
motion tendency of the diffusivéosmotic pressurgl,2]) scales is crucial in our discussion. One should be aware that
origin, valid for nonuniform concentrations of a contaminantlocal temperature perturbations of the bath may be safely
in a solvent. The latter tendency involves sending particlesieglected when the dissipatigfast processtime scale and
away from the areas of higher probability of their presencehe diffusion(observational for tagged particleime scales
(concentration, if a low density pollutant is consideréml  are generically incompatible, such as, e.g., in the case of a
accordance with the Fick formula for the diffusion currentrapid dissipation set against a slow diffusion process. Then,
—c=—DVp(2)/p(z). The barometric formula does follow. the usual isothermal diffusion process follows and the stan-

It is interesting to spend a while on some taggsidgle  dard Brownian motion paradigm is left intact.
particle features in the nonequilibrium—but isothermal— In the discussion of the Carnot principle, in reference to
regime admitted by Eq8) for not too large times, when the the free Brownian motion and to the sedimentation problem
Einstein(mean balance condition is still invalid. Clearly, to [1,7], Brownian particle fluctuations are regarded to occur
have defined an analog of the Fick diffusion flow, a prob-due to causes that are intrinsic to the random medium. If we
ability density of initial datazy, must be chosen. In a com- think about minute acceleration/deceleration events that
puter simulation we would have under control a bunch ofmodify (say, at a rate of ¥ times per secondvelocities of
relevant sample pathgll consecutively executed on a fixed realistic particles, the microscopic energy-momentum con-
duration time intervaJ 0;t]) and the related probability den- servation laws need to be respected in each separate collision
sity evolution along the bunch. Depending on the initial dataevent. In contrast to derivations based on the Boltzmann col-
distribution, for a time period the osmotic drift would domi- llision scenario, this feature is completelglien to the
nate the gravitationally induced drift. To this end, wdik  Brownian motion theory, cf[11,12. (This happens quite
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apart from the elusive power of the flutuation-dissipationnormally it is necessary to idealize the situation by regarding
mechanisni5]: “The friction, or more generally the resis- “fast processes” to be completed, while the “slow” ones
tance of a given system, represents the method by which thare still running.
external work is dissipated into microscopic thermal energy. In such a weakly nonequilibrium system with small heat
The reverse process is the generation of random force as tliews, we may expect that the standard equilibrium tempera-
result of thermal fluctuation)’ ture notion is replaced by aaffectivetemperature notion
Let us point out that the phenomenology allowing us to(and an effective thermal equilibriumvhich depends on the
regard Eq(1) as a satisfactory model for Brownian particle chosen fast-versus-slow-process time scales and the en-
velocity fluctuations blurs possible advantages of the closelgemble averaging. Repetitions of a single-particle experiment
related argument appearing in the diffusion modeling of than the same thermal bath should now be replaced by repeti-
Rayleigh pistor{17]: “Collisions between the large particle tions of the same experiment with different realizations of
(piston and the bath particles are elastic. After each collisiorthe out-of-equilibrium heat bath, cf18] for similiar con-
the bath particles are given a new distribution, which evolvegepts in the context of randomly disordered media.
until the next collision.” In the above sense only an effective isothermal regime
To avoid an apparent contradiction with the law of energymay be maintained, since the compensating heat flows allow
conservation, it seems tempting to require that each minutes to regain the equilibrium temperatuaémost instanta-
acceleration of a Brownian particle be accompanied by deously. After averaging over the tracer particle ensemble
minute cooling of the medium in its immediate neighbor- and the correspondingveakly out-of-equilibrium sample
hood. Correspondingly, any deceleration event should induceaths, we should be able to capture possible statistically rel-
a localheatingof the immediate neighborhood of a particle, evant effects due to temperature inhomogeneitesall de-
see, e.g.[7]. Since[cf. Eq.(1)] we always disregard the fine Viations from thermal equilibrium conditiopand the result-
details of about 1% collision impacts on the Brownian par- ant effective flowsn a bath that are possibly induce@via
ticle on a typical relaxation time scale of 19 s, there is  back reaction on the time scale probably larger tan but
definitely enough room to allow for local statistical measuresstill much below the Smoluchowski approximation time
of heating and cooling. scaleAt) by propagating Brownian particles. All that is to
Remark 3The heating, cooling, and temperature notionshappen well beyond the limits of an available, [df], obser-
are quantitative mean measures of the degree of agitation ¥Rtional resolution.
the noise carrier. If the random medium is interpreted on the We have thus set a phenomenology of a spedijizami-
molecular level to be composed of light particles, these meacal response of the random medium to the Brownian motion
sures can be correlated with the mean square deviation of tH¥ asingletagged particle, whose sole outcome is the minute
(bath moleculg velocity random variable, or an average of deviations from the thermal equilibrium of the fluctuating
the squared velocity if its mean value vanishes. Those quarmedium itself and the resultant heat flo@weeded to restore
tities are purely statistical characteristics of the bathaoid  the equilibrium). This is independent of the traditional fric-
of the Brownian particle immersed in it. Only under restric- tional resistance argument, directly referring to the thermal
tive thermal equilibrium conditions can the notion of tem- equilibrium conditions and thg~* time scale.
perature appropriate to the bath be elevated to the status of a We deal here with a generiteedback mechanisrsce-
measure of thermal agitation for tracer particles. nario. The Brownian particle propagates “at the expense” of
b. Goals the .t_)at_h, which, howgver, remains “close” to its theymal
: equilibrium. The bath in turn activelseacts backo what is
In the Kramers approach to the phase-space dynamics, th@ppening to the particle in the course of its propagation.
stochastic properties of the medium were considered to b&he instantaneous local deviations from the state of equilib-
independent of random phase-space data of the Browniaium (“perturbation of noise’) along the trajectory surely
particle. The statistics of noige.qg., the thermal equilibrium have an effect on each subsequent stage of the particle propa-
features of the bajimust have remained unperturbed by thegation. Even if residual for an individual Brownian particle
very presence of the particle and its phase-space fluctuationsnd its sample path, the feedback effect is expected to accu-
albeit those arenforcedby the intrinsic randomness of the mulate statistically(on the ensemble averagm a sizable
bath. One assumes that there is no reledymamicalre-  quantity. Under the name of the “Brownian recoil principle”
sponse of the bath to the very presence of the Browniamve have made a preliminary study of such random dynamics
particle and its induced dynamics. We recall that thein Refs.[11,12.

fluctuation-dissipation theorems merely account fpaasive Remark 4.In connection with Remark 1, let us mention
response, in terms of the statistically implemented Stokethat a spatial diffusiofSmoluchowsKi approximation of the
resistance of the bath to the particle in motion. phase-space process allows us to reduce the number of inde-

On the other hand, the above local heating and coolinggendent local conservation lawsf. [15,19,20) to just two.
notions refer to the dynamical response of the bath to th&herefore, the Fokker-Plancfor continuity) equation can
Brownian particle which is immersed in it. We need to ac-always be supplemented by anotkiedependentpartial dif-
count for the out-of-equilibrium properties of the bath in theferential equation to form a closed system. Nonisothermal
presence of a single particle, whose motion is solely enforceflow description needs to accommodate the variations of
by the bath. Thus very weatalthough possibly fagtheat temperature of the batief. [13,14]), while we investigate the
flows should accompany an individual Brownian particlelimits of validity of the isothermal scenario. That amounts to
motion. That conforms with an obvious intuition that no inequivalent choices of the supplementary equation. We em-
physical system is ever in thermodynamical equilibrium, andpohasize a single tagged particle in a bath description in a
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repeatable experimentation sequence, under basically the Let us emphasize that it is the diffusigBmoluchowski
same(or very similiap physical conditions. In such a situa- approximatior[9,15] which makes the right-hand side of Eq.
tion, a stochastic process executed by a single particle i€10) substantially different from the usual moment equations
practically isothermal*“the Brownian motion is unbeliev- appropriate for the Brownian motidi5]. In particular, the
ably gentle”[2]). Each sample path of the Brownian particle force F presumed to act upon an individual particle does not
(and the related cooling/heating phenomena induced alon

the path is a random quantity. The state of the medium, if
giving account of itsdynamical responsdi.e., deviation
from thermal equilibriumto the Brownian propagation, is a
random quantity as well. It is the local me&erlated to the
ensemble average over various realizations of out-of
equilibrium conditions for the bajtthat may properly quan-
tify this picture.

Il. LOCAL CONSERVATION LAWS
FOR THE BROWNIAN MOTION
IN THE SMOLUCHOWSKI APPROXIMATION:
DIFFUSION CURRENTS AND DRIVING FLOWS

Previously, we have identified the forward diffmg,F
=—VV as a quantitative measure of a statisti¢atal) ten-

dency of the Brownian motion, obtained through averagingan
over an ensemble of sample paths. If we assign a probabilit

density po(X) with which the initial datax,=X(0) for Eq.
(7) are distributedweak solutions of Eq(7) enter the scerje

then the emergent Fick law would reveal a statistical ten-=

dency of particles to flow away from higher probability resi-

&ive rise in Eq.(10) to the expression-(1/m)VV which
might be expected on the basis of kinetic theory intuitions
and moment identities directly derivable from the Karmers
equation, but to the term VQ, cf. Eq. (12).

_ Moreover, instead of the standard pressure term, there ap-
pears a contribution from a probability denspydependent
potentiaIQ(i,t). It is given in terms of the so-called osmotic

velocity field a(x,t) (cf. [2]),

- 1. .
Q(x,t)=§u2+ DV-u,

(12
U(x,t)=DV In p(x,t),

d is generic to a local momentum conservation law re-
pected by isothermal Markovian diffusion processes, cf.

2,11,12,19. Notice that in the case of the free Brownian
motion (admitted, if we sef)=0), we would havey(x,t)
—u(x,t) for all times.

An equivalent form of

the potential (12: Q

dence areas. This feature is encoded in the correspondirig2D?Ap*¥p' induces rather obvious quantum mechani-
Fokker-Planck equatioriequivalently, a continuity equa- cal associationghe de Broglie—Bohm “quantum potential

tion):

>

atpz—v*.(z?p)=—v[ 9

where a diffusion current velocity isﬁ(f,t)=5(§,t)
—DVp(x,t)/p(X,t) while the forward drift readsb(x,t)
=F/mg, cf. Eq. (7). Clearly, the local diffusion currerta
local flow that might be experimentally observed for a cloud

of suspended particles in a liquifi=vp is nonzero in the

nonequilibrium situation and a non-negligible matter trans-
port occurs as a consequence of the Brownian motion, on th@

ensemble average.

It is interesting to note that the local velocity fiakgx,t)
obeys the naturallocal) conservation law, which we quite
intentionally pattern after the moment identitigserarchy of
conservation lawsvalid for the Boltzmann and Kramers
equationg9,15]. The pertinent momentum conservation law
directly originates from the rules of the ltmlculus for Mar-
kovian diffusion processef?], and from the first moment
equation in the diffusion approximation of the Kramers
theory[9,15]:

o0+ (v-Vv=V(Q-Q). (10)

An effective potential functiorﬂ(i) can be expressed in
terms of the forward drifﬁ(i) = If(i)/m,B as follows:

11

with the opposite sign, modulo an adjustment of consjants
[21]. In the context of the Brownian motion, this “quantum
potential” has been deduced in earlier investigations of local
conservation law$20].

Remark 5Let us note that by demanding=Q identi-

cally for all x,t, we would reduce Eq.(10) to dw
+(v-V)v=0. Despite its classical-looking Riemann equa-
tion form, this conservation law still refers to a diffusion
process. Namely, in view of Eq11), we must identify for-

ward drifts with osmotic velocity fields an®V In p(x)

= If/m,B holds true. The related diffusion process is station-
ry and preserves the probability measupeig now time
independent See[22] for more general considerations on
that issue.

As repeatedly stated before, Smoluchowski drifts refer to
mean motions relative to the bath at rest, and there is no
place for any flows intrinsic to the random medium in this
formalism. On the other hand, it is of fundamental impor-
tance to understand how genuine flows in a random medium
may be generated and what their effect on dispersion would
be [12]. (Solutions of the incompressible Navier-Stokes
equation may serve as a common-sense model of the flow in
a bath, and the diffusion enhancement is known to be related
to various turbulent motion scenarips.

To analyze random perturbations that are either superim-
posed upon or are intrinsic to a driving deterministic motion,
a configuration space equatiot=w(x,t) is normally in-
voked, which is next replaced by a formal infinitesimal rep-
resentation of an Ttaliffusion process

dX(t)=b(X(t),t)dt+ 2DdW(t) (13
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patterned after Eq(7). The tacit assumptiorn(basically

wrong[23]) is thatb does not substantially differ fromw.
It is useful to exploit a standard phase-space argume
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Equations(17) and (11) are trivial identities, if we take
for granted that all drifts are known from the beginning, as in
ripe case of typical Smoluchowski diffusions where the exter-

that is valid, under isothermal conditions, for a Markoviannal forceF is a priori postulated. We can proceed otherwise

diffusion process taking place ifor relative t9 a flow

and, on the contrary, one can depart from a suitably chosen

vT/(i,t) with as yet unspecified dynamics and concrete physispace-time-dependent functiﬁmz,t). Then Eq.(16) should

cal origin. We account for an explicit foradgere, accelera-
tion K=If/m) exerted upon diffusing particles, while not
directly affecting the driving flow itself. Namelf10,2], let
us set for infinitesimal increments of phase-space rando
variables

dX(t)=V(t)dt,
o i (14)
dV(t)=B[wW(X,t) = V(t)]dt+K(x)dt+ B2DdW(t).

Following the leading idea of the Smoluchowski approxi-

mation, we assume that is large, and consider the process
on time scales significantly exceedigg * (that is normally
achieved by taking to be very large, cf. the infinite friction
limit procedure. Then, an appropriate choice of the velocity
field vT/(i,t) may in principle guarantef2] the convergence

of the spatial parb?(t) of the process to the Ttdiffusion
process with infinitesimal increments:

dt+ V2DdW(t). (15)

- - - 1.
dX(t)—(W(x,t)+ EK

be considered as a nonline@iccatti-type equation which

is to be solved with respect to the drift field potenﬁwf,t).
Such a solution, when inserted in the Fokker-Planck equation
rti6), would ultimately yield an evolution of an initial prob-
ability densityp(x,0).

From this point of view, while developing the formalism,
one should decide what is a quantity pfimary physical

interest: the field of drifts(x,t) or the potential((x,t).

They are not independent quantities, and enter the discussion
as entangled objects. Mathematical features of the formalism
appear to depend crucially on the propertigsch as conti-
nuity, local and global boundedness, Rellich class the
potential(); see, e.g.[]12].

If we decide that the momentum conservation law is gov-
erned by a continuous functicm(i,t) bounded from below
(cf. [12)]), then it seems worthwhile to mention a close con-
nection of the considered framework with the general theory
of small random perturbations of the classical Hamilton-
Jacobi dynamic$19]. An assumption that the forward drift
is defined in terms of a gradient of a suitable function allows
us to rewrite the formul&l7) in a form clearly reminiscent
of the Hamilton-Jacobi equatiojwe set®=2D ¢ in Eq.

Consequently, the forward drift of the process would read(17) and taked(x,0) as the initial data for the=0 evolu-

b(x,t) =w(x,t)+(1/8)K(X). Notice that thes 1K contri-
bution can be safely ignored if we are interested in the dom
nant driving motion.

Throughout the paper we are interested in Markovian dif-

tion]:
|-

1.
Q=P+ §|V<I>|2+DA<D. (18

fusion processes, which propagate, respectively, the phase-

space or configuration space probability densifigeak so-
lutions of stochastic differential equations are thus involved
In the configuration space variant corresponding to Ef3,
(15), we deal with a stochastic process whose probabilit

density p(x,t) evolves according to the standard Fokker-

Planck equation

dp=DAp—V-(bp), (16)

which is supplemented by the momentum conservation law

(in the mean of the form (10) for 5=5—D§p/p. If we
compare Eq(15) with Eq. (7), we realize that the transfor-

An associated functiortknown as the so-called backward
drift of a Markovian diffusion process, =b—2u, cf. Eq.

11), if denotedb, =V®, is known to yield another modi-
ied Hamilton-Jacobi equatiori2,19:

1.
Q=0®, +5|V®,[>-DAD, (19)

to be solved with given terminal dath*(Q,T) for times 0
<t<T.

Equation (19) is identifiable as the so-called Hamilton-
Jacobi-Bellmann programming equation in the optimal con-

mation of drifts has been executed. Under suitable restricqq) of stochastic diffusion processgid]. A related issue of
tions, we can relate probability measures corresponding tQiscosity solutions of the standard Hamilton-Jacobi equation
those equations by means of the Cameron-Martin-Girsanoj,¢ peen extensively studied in the literature as BHe®
theory of measure transformations. The Radon-Nikodym deﬁmit of solutions of the modifiede.g., Bellmanh equation.

rivative of measures is here involved and for suitable for
ward drifts that are gradient fields it yield42] the most

general form of an auxiliary potentiél(x,t) that is allowed
to appear in Eq(10):
b2
E +V-b/||.

Q(x,t)=2D at¢+; 17

Hereb(x,t)=2DV ¢(X,t).

“A direct connectior{via the logarithmic Hopf-Cole transfor-
mation of Eq. (19) with the forced Burgers equation and the
generalized heat equatighence, with the related Feynman-
Kac potentials, semigroups and kerneis well known
[12,19,23.

It is, however, more interesting to observe that a gradient
field ansatz for the diffusion current velocity € VS),

ap=—V-[(VS)p], (20)
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allows us to transform the momentum conservation (2@  tions(cf. the Appendix in the framework of the Schdinger
of a Markovian diffusion process to the universal Hamilton-boundary-data problem. The standard heat equation appears
Jacobi form: as a very special case in this formalism.

1. I1l. THE THIRD NEWTON LAW IN THE MEAN
Q=4S+ E|vs|2+Q, (21

A. Free Brownian motion in terms of local conservation laws

where Q(%,t) was defined before in Eq12). By applying Th(_a local conservation la@l0) acquires a dire.ct physical
the gradient operation to ERO) we recover Eq(10). Note meaning(the rate OT char)ge of momentum ca_rned by a vol-
that Eq.(20) is sensitive to any additivéconstant or time- ume locally comoving with th_e floy12]) only if ave.raged
dependentmodification of the potential. In the above, the With respect tao(x,t) over a simply connected spatial area.
contribution due toQ is a direct consequence of an initial Namely, if V stands for a volume enclosed by a two-
probability measure choice for the diffusion process, whiledimensional outward oriented surfaé¥, we define a co-
Q via Eq.(17) alone does account for an appropriate forwardMoving volume on small time scales, by deforming the
drift of the process. _bou_ndary surface in accordance Wlth the _Iocal current veloc-
The derivation of a hierarchy of local conservation lawsitY field values. Namely, we consider at tiniéhe displace-
(moment equationsfor the Kramers equation can be pat- ment of the boundary surfacg/(t) defined as followsx
terned after the standard procedure for the Boltzmann equasz 9vV—x+uv(x,t)At for all xe 4V. Up to the first order in
tion [6,9,15. Those laws do not form a closed system andAt this guarantees the conservation of magsobability
addltlonal_ specificationgsuch as the familiar thermodynami- measurg contained inV at time t, ie., fV(tJrAt)P()zvt
cal equation of stajeare needed to that end. In the case Of+At)dsx—f\,(t)p(i,t)d3x~0.

the isothermal Brownian motion, when considered in the Th di the leadi der int tit
large friction regime(e.g., Smoluchowski diffusion approxi- . e correspondingto the leading order it) quantita-
&ve momentum rate-of-change measure reads, [£2],

mation), the Fokker-Planck equation must be supplemente )

by one conservation lawnly to yield a closed system. Such JveV(Q—Q)d*. In view of 4,Q=(1/p)=;9;P;;, where

a system uniquely determines the stochastic process. the stress tensaP;;=D?pd;d; Inp is determined up to an
That happens under a definite choice of external forcesdditive time-dependent or constant term, the standard diver-

and hence Smoluchowski drifts. If the drifts are mgpriori ~ gence theorem allows us to isolate an explicit surfalue to

specified, then the only freedom left in the momentum conStresses or of the pressure-typeontribution. Namely, it

servation law amounts to the choice of a concrete functionaholds that— [ypd,Qd3x= —Jn2jPjjdo;, with do being

form for the potentialX(x,t). In the theory of Brownian an infinitesimal area element ¥/ in R°.

motion this particular decision making replaces the standard For a particular case of the free Brownian expansion
equation of state constraint, suitable for the kinetic theory
description of gases and liquids.

- 1 X2 R
. e : p (X)=—rexﬁ{——)—>l)(x't)
In view of more sensitive dependence on the potential and 0 (ma?)¥? o’

hence more detailed discrimination between distinct dynam- -
ics scenarios, we adopt the Hamilton-Jacobi equadnas _ 1 exp( _ X 22)
a generic substitute of the momentum conservation(lE). [47D(t+t9)]%? AD(t+tg) )’

Thus we can consider a closed system which is composed ofh 5 d d h
> o - = =

the continuity equatioy,p=—"V(vp) [this, in view of v " ET€ 4Dt andto>0=0, we would have

=b-DVplp, is equivalent to the Fokker-Planck equation . R D R

(16)] and the Hamilton-Jacobi equatid@1), plus suitable Pij(X,t):P(X,t)tsij:——2(t+tO)P(th)5ii (23

initial (and/or boundarydata. Alternatively, we can supple-

Q,e”t tf[,h? Fokker-FI%g%kt e(fquatlcmf;) W'éh th? nor}llneat\_r I for all xe R® andt=0. Here &; stands for the Kronecker
iccatti-type equatio o form a closed system of partia _ 5~ 3 -

differential equations, provided the functional form @fis symbol. Then,~ fypVQ*X= = [,Pda, where

preselected. In contrast to the p&ir6),(21) where p()?,t) R %2 3D

f;rfglrzdan entangled relationship, the g&8),(17) is not en- Q(X’t):8(t+t0)2 - i+t
We need to stress that it is the closed system of E2{3. P P

and (21) which directly refers to physically motivated local The cur_rent velocn)f;(xlt)—VS(x,t): X/g(tf tP)’ apart

conservations lawsmoment equationsassociated with the from solving dpp==V-(vp) and dw+(v-V)v=-VQ

Brownian motion[20,15,13, and to the respective diffusion With pg andvo= —uq standing for initial data, is also linked

currents. The underlying Markovian diffusion process is therio the Hamilton-Jacobi equation

specifieduniquely[that will not be the case if Eq(10) has

been used instead of E1)]. However, Eqs(20) and(21)

form a coupled nonlinear system, whose analytic solutions

are not readily accessible. It is therefore useful to know that . R

a linearization of this formidable nonlinear problem is pro- whose solution is S(x,t)=x%/4(t+1to)+ 3 D In[47D(t

vided by a time-adjoint pair of generalized diffusion equa-+tg)].

(24)

1.
9,S+ §|VS|2+Q=0 (25)
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Let us observe that the initial data,=—DV Inpy= of the bath. A nonzero mean kinetic energy must have been
— U, for the current velocity field indicate that we have to- INitially transferred(pumped from the bath to the diffusing
tally ignored a cruciapreliminary stage of the dynamics on (blowing up, expandingswarm of particles. This energy is
the B! time scale, when the Brownian expansion of anP€ing returned to the bath only asymptotically.

initially static ensemble has been ignited and so particles Recalling our previous discussion, for a sufficiently fast
have been ultimately set in motion. diffusion process, all that should correspond to a local cool-

Notice also that our “osmotic expansion pressure” ing of the bath and implement a tiny deviation from its ther-
P(x,t) is not positive definite, in contrast to the familiar mal equilibrium conditions in each single-particle propaga-

A X . tion (simulation experiment. Accordingly, the tendency to
kinetic theory(equation of stadeexpression for the pressure regain the local thermal equilibrium by the baieflecting

_P(X):“PB(X):5¥>0 appropriate for gases. The admissibil- 5" attraction of tagged particles by the cooler areasst
ity of the negative sign of the “pressure” function encodes ggyt in induced local flows—they can become identifiable
the fa(_:t that the Brownian evolving c.oncentrauon.of paruclesomy on the ensemble average. All that is to happenlit-
generically decompresséslows up, instead of being com-  grqly on theg ! relaxation time scale but ostill relatively
pressed by the surrounding medium. The compres§ites-  gmgj) time scaleAt of the diffusion process which is well
sure upon the control volume coming from its surroundling pejow the observational one.
is the standard feature in the kinetic theory of gases, except T4 each executed sample path there corresponds a sample
for the cavitation phenomenon in liquids and the exotiC,qgjization of the random mediurtpushed slightly away
blow-up conditions in the concentrations of dense hot matterqm jts thermal equilibrium, in view of the postulated feed-
The loss(in view of the “osmotic” migration) of momen- 5ok mechanisin Those randonisamplé realizations of the
tum stored in a control volume at a given time, may bepaih should be ensemble averaged as well to yield an “ef-
interpreted here in terms of an acceleratiorf,pVQd®x  fective” bath in thermal equlibrium, which is, however, no
induced by afictitious “attractive force.” By invoking an  |onger in a statistical state of rest. The emergent driving
explicit Hamilton-Jacobi connectiof21), we may attribute  flows mimic, on the average, the “return to equilibrium” of
to a diffusing Brownian ensemble floating througki@cally  the bath in each sample propagation experiment. The thermal
co-moving control volumeV the mean kinetic energy per conditions are maintained on the ensemble average, so that
unit of massfyp %52d3x. We can also evaluate the mean the effectiveprocess guiding thensemblelynamics can be
total kinetic energy per unit of mass obtained after extendingiewed as isothermal.
integrations fromv to R3. We recall close links of this scenario with an idea of a
For the considered example, in view Qf2>=6D(t random wa_lk in a random meo_l|uh1_8]. However, presently
172430 a disorder in the random medium is coupled to the random-
+1o), we havefR3f 2v°d°x=3D/A(t+1o). Note that the oqq of the walk and is no longer of independent origin.
mean energyyp(3v2+Q)d3x does not have to be positive. Let us assume that “an effortthence, an energy losef
Indeed, this expression identically vanishes after extendinthe random medium, on thg ™! scale, to produce a local

integrations fromV to R®. On the other hand, the kinetic Brownian diffusion current (x,to) out of the initially static
contribution, initially equal tof g3 pv2d3x=3D/a? and evi- ensemble and thus to decompréksver the blow-up ten-
dently coming from nowhere, continually diminishes and isdency an initial nonuniform probability distribution, results
bound to disappear in the asymptotie-o limit, when in the effective osmotic reactioof the random medium.
Brownian particles become uniformly distributed in space. Whatever is being transported awéyn the ensemble aver-
age according to the Fick law is assumed to induce a com-
pensating osmotic counterflow in tledfective thermal bath
That is the Brownian recoil effect of Rdf11].

Now, the particle swarm propagation scenario becomes

Normally, diffusion processes yielding a nontrivial matter entirely different from the standard one, E¢K0), (20). First
transport(diffusion currentg are observed for a nonuniform of a|, the nonvanishing forward drifi=u is generated as a
concentration of colloidal particles. We can devise a thoughfiynamical(effective, statistical heyeresponse of the bath to
(numerical experiment that gives rise to a correspondingthe enforced by the bath particle transport with the local
transport in terms of an ensemble of sample Brownian mOVeIocity 5=—10. Second, we need to account for a parallel

tion realizations on a fixed finite time interval, instead of . ) f th & . Y0 should
considering a multitude of thefmigrating swarm of Brown- nversion of the pressure effedtsompressiont+VQ shou

ian particles simultaneously. One may surely implant par- replace the decompressieriVQ) in the respective local mo-

ticles at initial (random space locations to mimic a certain mentum conservation law.

probability density and next releagendividually in each Those features can be secured through an explicit realiza-

sample experimehtnd allow them to execute their Brown- tion of the action-reaction principle¢‘the Brownian recoil”

ian paths independently, in a fixed duration time interval. Ineffect, cf. Ref.[11]), which we promote to the status of the

terms of such a particle ensemble, we can safely return to th&ird Newton law in the mean

previous colloidal diffusion picture where migrating Brown-  On the level of Eq(10), once averaged over a finite vol-

ian particles are also regarded as independand so are ume, we interpret the momentum per unit of mass rate of

their individual Brownian motions changefypV (Q—Q)d3x which occurs exclusively due to
Consequently, in both visualizations, after the relaxationthe Brownian expansion, to generate a counterbalancing rate-

time 81, the diffusion current is initiated “at the expense” of-change tendency in the random medium. To account for

B. The third Newton law in the mean
and the Brownian recoil principle
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the emerging forward drift and an obvious modification of with a solution
the subsequent dynamics of an ensemblgtafged par-
ticles, we redefine Eq10) by setting— fypV (Q—Q)d3x in
its right-hand side instead oft+ fvpﬁ(Q—Q)dsx. That . o o
amounts to an instantaneous realization of the third NewtoA"d its complex adjoint does the job, if we regartbgether
law in the mearn(action-reaction principle Hence, the mo- with Sto remain in conformity vy|th the previous notations of
mentum conservation law for the procesith a recoil (the  EQs.(20),(27). The choice ofiy(x,0) gives rise to a solvable
reaction term replaces the decompressive “action” ferm Cauchy problem. We shall exploit this feature later. Notice
would read that, in view of Eq.(30), for time-indepedenf}, the total
energy [ rs(v?/2—Q+Q)pd3x of the diffusing ensemble is
a conserved quantity.

The problem(20),(27),(28) can be reformulated as the
Schralinger boundary-data problefaf. the Appendiy, but
the resulting generalized diffusion equations are nonlinearly
coupled (by means of the potential), replacing the
Feynman-Kac potentidll. Hence the previous linearization
needs to be exploited anyway. The general existence criteria
stands for the corresponding Hamilton-Jacobi equation, cfior Markovian diffusion processes of that kind were formu-
[19,24, instead of Eq(21). Here, a suitable adjustme¢rie-  lated in Ref.[25]; see alsd19,17 and the Appendix.
setting of the initial data is necessary, which we shall ex-
plain below(see Sec. Il ¢

Here we present the main principles of Brownian motion

with a recoil. . . _ '
In the coarse-grained picture of motion we shall deal with For the sake of clarity of discussion, we shall confine our

a sequence of repeatable scenarios realized on the SmoltRnsiderations to one—dimension_al problems_. In the abs.ence
chowski process time scalkt: the Brownian swarm expan- of external forces, we may consider a solution of equations
sion buildup is accompanied by the parallel counterflow(in Space dimension ongp=—V(vp) anddw +(vV)v =
buildup, which in turn modifies the subsequent stage of thet VQ, where an initial probability densify,(x) is chosen in
Brownian swarm migratioribeing interpreted to modify the correspondence with the previous free Brownian motion ex-

y=pexpiS) (31)

oo+ (v-Vv=V(Q—-Q), (26)

implying that

1.
2S+5IV87-Q=~0 (27)

C. Brownian motion with a recoil as an anomalous
(enhanced diffusion model

forward drift of the procegsand the corresponding built-up-
anew counterflow.

Although the new closed system of partial differential
equations(20) and (27) is very different from the previous
one(20),(21), it nonetheless describes Markovian diffusion-
type processes agadifi,12,23. The link is particularly obvi-

ous if we observe that the new Hamilton-Jacobi equation

(27) can be formally rewritten in the previous for(@21) by
introducing

1.
Q=35+ 5|VS2+Q,

(28
0,=2Q0-0,

ample. We denote?=4Dt,. Then,
o 2a2
PO =T a4+4thz>]meXP< B m) 32
and
2D(a?—2Dt)x
b(x,t)=v(x,t)+u(x,t)= (33

are the pertinent solutions. Notice thagx,0)= —2Dx/a?
=Db(x,0) amounts ta (x,0)=0, while in the previous free
Brownian case the initial current velocity was equal to
—DV Inpq. This readjustment of the initial data can be in-
terpreted in terms of the counterbalancifgcoil phenom-

where() represents the previously defined potential functionenon: the would-be initial Brownian ensemble current veloc-

of any Smoluchowskior more generaldiffusion process,
Eq. (11). It is ©, which via Eq.(17) would determine for-
ward drifts of the Markovian diffusion process with a recoil.
They must obey the Cameron-Martin-Girsanov identity

62

55+ Vb

. (29

1
0,=2Q-0Q=2D| s+ 5

Our system of equation@0),(27) is badly nonlinear and
coupled, but its linearization can be immediately given in
terms of an adjoint pair of Schdinger equations with a
potentialQ) [2,19]. Indeed,

Q
ig= DAY+ 559, (30

ity vo=—Uq is here completely saturated by the emerging
forward drift by=uy, see, e.g., alsd1l]. This implies
u(x,t)=—2Da?x/(a*+4D%?) and v(x,t)=4Dxt/(a*
+4D?%?). Note thatVQ=xa*/4(a*+D?t?), to be com-
pared with the respective expressionVQ=—D?x/(a?
+4Dt) in the preceding section. Presently, we deal with a
fictitious “repulsive” force, which corresponds to the com-
pression(pressure uponof the Brownian ensemble due to
the counter-reaction of the surrounding medium.

We can write things more explicitly. Namely, now

2D%a? a®x?

a*+4D%?\ o*+4D%? -1

Q(x,t)= (39

and the corresponding pressure tdiWiQ=(1/p) VP] reads



1508 PIOTR GARBACZEWSKI PRE 59

2D?% 42 encoded in the Smoluchowski diffusion process equations
P(x,t)=— mp(xi) (35  (7),(9), and then(9)—(11). Those in turn can be motivated by

invoking the Kramers equatiofil4) and its Smoluchowski

giving a positive contribution VQ to the local conservation diffusion approximation(15). _
law (26). As emphasized before, on the level of local conservation
The related Hamilton-Jacobi equation laws, in the diffusion approximation, the microscopic force

Fis represented by th@&eynman-Kag potential(), defined
through the Girsanov formuléll).
Let us adapt the third Newton law in the mean and the
related Brownian recoil strateg26)—(29) to this case. Evi-
is solved by dently, the potentiaf) will explicitly appear in the lineariza-
tion (30) of the problem. On the other hand, it is the potential
37 0,=2Q-Q which via Eq.(29) determines forward drifts
appropriate for the diffusion process with a recoil. In view of
the inherent nonlinearity of the problem, one should not ex-
With the above form of)(x,t) one can readily check that pect that the emergent drifts would allow for the simple de-
Egs. (28) are identically satisfied, and that the Cameron-composition met in Eqs14),(15).
Martin-Girsanov constraint equation for the forward drift of ~ Our further discussion will be carried out in one space
the Markovian diffusion process with a recoil is automati- dimension and will focus on quadratic potentials.
cally valid for ¢=3 Inp+S: For a parabolic(harmonic oscillator potential V(x)
=1mw?x? defining the acceleratiok (x) = — w?x, the cor-

%w-b”, (38 rf?pgnging Feynman-Kac potentia{ll) reads Q(x)

1
9,S+ §|VS|2=+Q (36)

B 2D%x?t
T a*+4D%?

2Dt

S(x,t) D arctar( -
(44

1v°x2—Dvy,y=w? B. It is useful to mention that the

1
2Q= 20[ a5
choice of the repulsive potentiaf(x)= +3mw?x? would

cf. the general identity29). yield an innocent-looking modification by a constant in the
In anology with our free Brownian motion discussion, let function (17): Q(x)=3%7°x>+Dy. That demonstrates an
us observe that presently extraordinary sensitivity of the Riccatti-type equatiqid)
and(17) to the choice of().
,_a® 2D%? In fact, a suitable additive modification dfy’x? by a
(x >=7+ o2 (39) constant allows us to generafdy directly solving the

Riccatti-type equation11)] the whole family of forward

It is easy to demonstrafeise a linearizatiori30),(31) of drifts pertaining toinequivalent stationary diffusion pro-
the problenj that the quadratic dependence on time persist§esses, cfl12]. Nonetheless, all of them correspond to the
for arbitrarily shaped initial choices of the probability distri- SameV Q=+ y°x generic contribution to the local momen-
bution py(x)>0. That signals an anomalous behavien-  tum conservation law10). Clearly, the law(10) does not
hanced diffusioh of the pertinent Markovian process when provide a sufficiently fine discrimination between admissible

0=0,ie.,0,=2Q. stochastic motion scenarios, unless we know the Smolu-
We can evaluate the kinetic energy contribution chowski force and its potential from the beginning. Itis onIy
the Hamilton-Jacobi equation level, where the closed system
v?2 4D4t? of partial differential equationgrespectively, Egqs(20),(21),
pr?dx: (T 4D%?)’ (400 or Eqgs.(20),(27)] determines the process uniquely.

It is clear that stationary processage the samén the
which in contrast to the Brownian case shows a continuafase of both the standard Brownian motion and the Brownian
growth up to the terminalasymptoti¢ value D2/, This  motion with a recoil. The respective propagation scenarios
value was in turn an initial kinetic contribution in the previ- substantially differ in the nonstationary case only.
ous Brownian example. In contrast to that case, the total T0 exemplify the above statemefute have discussed be-
energy integral is now finitéfinite energy diffusions of Ref. fore the()=0 case, let us consider an explicit solution of

[25]) and reads Egs. (20) and (29) in the case ofQ(x)=3%7’x>—Dvy. By
means of the linearizatiofB0),(31), this can be easily ac-
1, D2 complished, cf[24]. We shall utilize exactly the same inital
gl 2Y —QJpdx= o2 (4D probability densitypy(x) as before. We have
) . ) ) @? 12
for all times(it is a conservation lay The asymptotic value p(x,t)= : Y - )
of the current velocity ~x/t is twice larger than this appro- [ sir(Jy2Dt) + ya cos'(y2Dt)]
priate for the Brownian motiory ~ x/2t. ya?x2
X - =
ex”( sm2(ﬁ2Dt)+ya4cosZ(ﬁ2Dt)>

D. Response to an external force: nondispersive
diffusion-type processes (42

Let us regard=(x) = —VV(x) as an external force field,
whose effects on the dynamics of Brownian particles areand
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D(7)%2a*x2tg(\/y2D1) D /yx2
H=-
S0 tarf(\/y2Dt+ ya*)sin(\y2Dt)  tan(\y2Dt)
D tr( tan( /201 Dyt (43)
+ - ——— | -D1t.
arcta Ty ¥

The forward drift of the corresponding diffusion-type pro-
cess reads

(1— ya?) \/;/sin( \/;4Dt) —2vya? 5
X

b(x,t)=
o sir?(\/y2Dt) + ya* cog(\/y2Dt)

(44)

and X(t) =x holds true in terms of the random variable o

the process. The additive decomposition of the drift, valid in

Eqgs.(9),(15), is completely destroyed by the Brownian recoll
scenario. Notice that(x,0)= — 2Dx/a?=u(x,0), while[cf.
Eq. (9] b=F/mB=— yx would hold true for all times, in
the case of the standard Smoluchowski diffusion process.

Because of the harmonic attraction and suitable initial
probability measure choice, we have here wiped out all pre

viously discussed enhanced diffusion features. Now, the di
persion
diffusion-type process is realizek?) does not spread at all

despite the intrinsically stochastic nature of the dynamic

(finite-energy diffusions of Ref.25]).

IV. OUTLOOK

The main objective of this paper was to investigate th

very foundationgphenomenology and the traditional theory

dating back to Langevin and Kramérsf Brownian motion

and related diffusion-type processes. Our ultimate goal wa
to set up the limits of validity of the isothermal scenario for
the Smoluchowski diffusion processes and to determiné!
whether one can go well beyond the class of phenomena f

which this theory is regarded to be perfectly working.
Mathematical tools of the kinetic theofipased on exploi-
tation of the Boltzmann equatipnare insufficient for a
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is attenuated and actually the nondispersivéeco'l principle[11], meant to account for environmental re-
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perature effective thermal equilibriumand effectively iso-
thermal regime may be introduced only after taking an en-
semble average.

This conceptual input shares common points with the
mathematical theory ofandom motions in random media
but urgently needs development along the new lines outlined
in the present papdcf. Sec. | D.

That was the starting point for considerations of Sec. Il,
where local conservation laws for the Brownian motion in
the Smoluchowski approximation were cast in the form of
the closed system of partial differential equations, compris-
ing the continuity and the Hamilton-Jacobi equations. The
latter captures all relevant features of the energy balance in
the diffusing system, in terms of locahean velocity fields

f supplemented by external forces and pressure témssic

to a particle ensemble antbt to the medium

A consequent exploitation of the Hamilton-Jacobi equa-
tion and a deepened analysis of the local momentum conser-
vation law for a statistical ensemble of diffusing particles led
us to a formulation of the third Newton law for mean veloc-
ity fields as the environmental reaction to the medium-
induced Brownian motion. It provides a novel, consistent

version of the tentatively introduced notion of tBeownian

coil effects(“perturbations of noise} in the course of the
Brownian particle propagation.

We have analyzed(Sec. IlI) examples of related
diffusion-type processes in some detail, to indicate that
anomalous(here, enhanceddiffusion processes naturally
arise in this framework. The general theory of the response
of a diffusing ensemble to external forces was formulated in
terms of Feynman-Kac kernels, in the framework of the so-
called Schrdinger boundary-data probleief. the Appen-
gix). Under suitable external forcing, diffusion processes
with a recoil may become nondispersive. Other, most un-
sual anomalies can be associated with diffusing particles by

dyroper tuning of external forces.
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tion of the Boltzmann or Kramers equations. In particular,
the standard theory does not account for generic perturba-
tions of the noise carrigrandom medium in which a tagged
particle is immersex due to the fact that the Brownian mo-
tion is initiated and maintaineaxclusively by the medium.
Also, work performedby the medium upon a diffusing par- There are many procedures to reproduce the intrinsic dy-
ticle is generally out of sight in typical discussions of the namics of a physical system from observable data, such as,
Brownian motion. We have discussed rather obvious probe.g., time series analysis. We shall outline an algorithm al-
lems with the notion of thermal equilibriurisec. ). lowing us to reconstruct thmost likelymicroscopic motion
Obviously, weakly out-of-equilibrium systems must scenario under an additional assumption that the sought after
propagate heat currents, but their effect on the Browniamlynamics actuallyis a Markovian diffusion process. This
particle dynamics is negligible, if merely an individual par- reconstruction method is based on solving the so-called
ticle motion is addressed. One needs a theory of BrowniaSchralinger boundary-data and interpolation problem
particle ensembles to account for environmeftatoil) ef- [19,12,23.
fects due to locally induced heat flows. In the case of weak Given two strictly positive(usually on an open space in-
perturbations of the medium, the notions ofeffectivetem-  terval) boundary probability densitigsy(x),p1(X) for a pro-

APPENDIX: RECONSTRUCTION OF A MARKOVIAN
DIFFUSION PROCESS FROM THE INPUT-OUTPUT
STATISTICS DATA
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cess with the time of duratiom=0, one can single out a atp(it):vAp(it)—ﬁ[B(i t)p()? 0]
unique Markovian diffusion process which is specified by ’ ’ ’ v

solving the Schrdinger boundary-data problem: with p()Z,O) given, while for the backward interpolation

.. [starting fromp(x,T)] we have
mT(A,B)=f d3XJ d®yme(x,y),
AE ip(X,t)= = vAp(X,t) = V[b, (X,1) p(X,1)].

f d3ymp(X,y) = po(X), The drifts are gradient fields, cur=0. As a conse-
guence, those that are allowed by any prescribed choice of

. the functionc(i,t) mustfulfill the compatibility condition
f d*xme(x,y)=pr(y),

where the joint probability distribution has a density 2

mT(§,37)=u0(>2)k(x,0,y,T)vT(37)0 which e§taPILshes th(i Glrfanoy—type connection of the for-
ward drift b(x,t)=2vV®(x,t) with the Feynman-Kac po-
and the two unknown functionggy(x),v(y) come out as tential c(i,t). In the Schrdinger interpolation framework
(unique solutions, ofthe same sigrof the integral identities. considered, the forward and backward drift fields are con-
To this end, we need to have at our disposal a continuougected by the identitp, =b—2vV In p.
bounded strictly positivéways to relax this assumption are  gqr Markovian diffusion processes the notion of taek-

known) functionk(x,s,y,t),0=s<t<T, which for our pur-  \yard transition probability densitp, (y,s,x,t) can be con-

poses(an obvious way to secure the Markov propeny  gjstently introduced at each finite time interval, sag9<t
chosen to be represented by familiar Feynman-Kac integrak -

kernels of contractive dynamical semigroup operators:

p(X,0)py (¥,5,X,1)=p(y,5,X,1)p(y,S)

k(;?,s,i,t)=J exp[—ftc(@(f),r)dr dﬂgf))(w).

so that [p(y,s)p(y,s,x,t)d%=p(x,t) and p(y,s)
- = v,s,X,t) p(X,t)d3x.
In the abovedul(w) is the conditional Wiener measure f'lpﬁe();ransp)oprt((de%sity evolutioh equations refer to pro-
over sample paths of the standard Brownian motion. cesses running in opposite directions in a fixed period, com-
The pertinent(interpolating Markovian process can be mon for both time durations. The forward one executes an
ultimately determined by means of positive solutiditsis  interpolation from the Borel sék to B, while the backward
desirable to have them boundeaf the adjoint pair of gen- one executes an interpolation frdito A.

eralized heat equations: The knowledge of the Feynman-Kac kernel implies that
R R . _ the transition probability density of the forward process
du(X,t)=vAu(x,t)—c(x,tHu(x,t), reads
v = — A v —+ < Y B > > > > v )_(),t
dv(X,1)=—vAv(X,t)+c(X,t)v(Xt) 05550 =K(5.55.1) (é ),
v(y.s)

Here, a functionc(i,t) is restricted only by the positivity

and continuity demand for the kernel. while the corresponding transition probability density of the
Solutions, upon suitable normalization, give rise to thebackward process has the form

Markovian diffusion process with thiactorizedprobability
densityp(x,t) =u(x,t)v(x,t) which, while evolving in time, e u(y,s)
interpolates between the boundary density dﬁ(lﬁ,O) and Ps(y,8.X,0)= (y,s,x,t)u()z,t) '

p(x,T). The interpolation admits an’ltealization with the
respective forward and backward drifts defined as follows: Obviously in the time interval & s<t<T it holds that

Bty =2 2 w0 [ UoDK.S KDY,
v(X,t)
T 1(% 7o) — Y V43
5*(>Z,t)=—21»vu(*x't) v(y,S) f k(y,s,x, T)vt(x)d>x.
u(x,t)

Consequently, we have fully determined the underlying
in the prescribed time interv@D,T]. (Markovian) random motions, forward and backward, re-
For the forward interpolation, the familiar Fokker-Planck spectively. All that accounts for perturbations(ahd condi-

(second Kolmogorovequation holds true: tioning upon the Wiener noise.
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Remark 6.Various partial differential equations associ-

ated with Markovian diffusion processes are knavatto be
invariant under time reversdhence being dissipative and
linked to irreversible physical phenomendowever, the
correspoding processes admistatistical inversion Let us

PERTURBATIONS OF NOISE: ORIGINS OF ...
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ward in time in this interval and reproducing the most likely
(statistical past of the process, given the present probability
measure data. See, e.(2,11,12,19 and [26]. In fact, see
[27], p. 255: “any probabilistic treatment of the heat equa-
tion involves a time reversal.” This feature is explicitly uti-

consider a process running in a finite time interval, saylized in the analysis of the above-outlined Sdinger
[0,T]. We may consistently define a process running backboundary-data and interpolation probl¢9,12].
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