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We consider a generalization of the fixed and bounded trace ensembles introduced by Bronk and Rosenz-
weig up to an arbitrary polynomial potential. In the langdimit we prove that the two are equivalent and that
their eigenvalue distribution coincides with that of the canonical ensemble with meas{meTexf{M)]. The
mapping of the corresponding phase boundaries is illuminated in an explicit example. In the case of a Gaussian
potential we are able to derive exact expressions for the one- and two-point correlator far, firditeng finite
support.[S1063-651X99)05802-X

PACS numbd(s): 02.50.Cw, 05.46-a

[. INTRODUCTION analysis of the large-limit of observables, evaluated with
the canonical probability density, the method of orthogonal

Random matrix ensembles have been extensively studigablynomials[5] proved to be most effective. In the present
since the early works of Wigner and Dyson, as effectivepaper we study matrix ensembles defined by the probability
mathematical reference models for the description of statisdensity
tical properties in the spectra of complex physical systems,
ranging from such diverse areas as nuclear resonances or
guantum billiards to mesoscopic transport or quenched QCD.

Even a cursory glance at some recent review monographs
[1-4], shows the impressive development of analytical tools

and the variety of applications to physical systems reached in

the past decade and a combined bibliography, although vergnd the closely related probability density where the step
incomplete, of over a thousand papers. function replaces the Diraé function. We follow the classic

Historically the matrices of the ensemble belong to one obook by Mehta[6] and call collectively these mode{gen-
three classes, they are real symmetric or complex Hermitiasralized) restricted trace ensembléghey are a generaliza-
or with quaternionic entries but in recent years other ention of ensembles studied long ago by Rosenzweig and
sembles, such as complex non-Hermitian or real nonsymmeBronk [7] where only the cas&/(x)=x? was considered.
ric matrices have been studied. To keep our paper as simpl#hile the ensemble is still invariant under the unitary trans-
as possible, we restrict ourselves to complex-Hermitian maformation that diagonalizes the random matrix, the method
trices, although the results of this paper apply also to thef orthogonal polynomials cannot be directly applied be-
other two traditional ensembles with minimal changes. cause the constraint of thé& function introduces an addi-

A random matrix ensemble is defined by the joint prob-tional interaction among the eigenvalues. Restricted trace en-
ability density for the independent entries of the matrix. In asembles seem to us interesting for several features: the
large number of papers, particularly those related to twointeraction among eigenvalues is introduced through a con-
dimensional quantum gravity, the probability density has thestraint very similar to the nonlinear model in quantum field
form theory, the spectral density has compact support both for

finite n and in the largat limit (unlike the usual Gaussian
P(M)= lefg Trv(m) (1.1) random mode| and they relate to canonical probability den-
' sities(1.1) or (1.2) just in the same way as the microcanoni-
cal ensemble is related to the canonical ensemble in statisti-
whereV(x) is a polynomial. Since this probability density is ¢a] mechanics.
invariant under the similarity transformatiom=UAU" The effectiveness of random matrix theory is related
which diagonalizes the matrid, most problems may be mainly to universal properties of some observables, that is
formulated in terms of the joint probability density for the jndependence, in the largelimit, of some observables from
eigenvalues the chosen probability density. The ensemble averaged den-
sity of eigenvaluesp(A)=1/nTr{S(A—M)), in canonical
eigenvalue model$l.1) or (1.2) is known to depend from
the chosen functiol(x), yet a number of critical exponents
deduced from the spectral density were shown to be indepen-
and may be called eigenvalue models. We shall call the probdent from the details of the chosen functidfix). Much
ability density (1.1) or (1.2) the canonical density. In the earlier the density-density connected correlatgin, u),

Pg(M)EZi&é(AZ— %TrV(M)) (1.3

1 n
PNy, .. Ay EEAﬁ(x)e*BE1 Voo (1.2
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1 1 model is defined by the probability distribution
peM )=\ —Tr6(N=M) —Tré(u—M)

1 2 1 2
Pg(M)Ezé AZ=—TrM2|,

—<ETr5()\—M)><ETr5(,u—M)>
: n 1 1 (n2=n)12 (A\/ﬁ)nz
=p(N,u)=p(\) p(u), (1.4 Zaff DM 5(A2— ﬁTsz) =(§) O 3

was shown to have local universality properties, that is, for 21
IN—u|~O(1/n) and far from the extrema of the support of |, . DM=II,_, _,dM; II;-;RedM; ImdM,;,
the spectral density, in the largelimit. This was the basis n22) /1T (n2/2)1 is th ‘ f1h it soh

for the use of random matrix theory for statistical quctua—__(2 7" )/[I'(n"/2)] is the surface area of the unit sphere

tions of observables around their mean values. Other form& N° dimensions, and the factorriLhas been introduced in
of universality were derived more recently by several au-Vi€W Of the largen limit. ;o _
Expectation values ofO(n) invariant amplitudes are

thors, including a form of wide correlator which depends on  * ;
the canonical potential(x) only through the extrema of the Uvially evaluated for everyr as, for instance,
spectral density. The proof by Beenakker and a list of other
authors is recalled in Sec. | D of R¢8]. ((TrM2)ky 5 Ef DM (TrM?)K P4 M)=(nA?)k
In Sec. Il we exploit a scale transformation, already used
by Rosenzweig in a more limited extent, to relate observ- 2.2

. . _ 2 .
ables in restricted trace ensembles whé(g) =x" with the 5\ ever, we are interested in more general expectation val-
corresponding ones in the random Gaussian model. This afjes which are functions of the distribution of eigenvalues.
lows explicit evaluations for the spectral density and the tWOThey may be evaluated from the joint probability distribution

point correlators for finiter. _ Ps(N1, ... \n), Which is obtained from Eq2.1) after inte-
We then consider a generalization of the restricted trac%ration of the unitary degrees of freedom

ensembles to a geneni(x) in Sec. lll. There a very general

proof of the equivalence, in the largelimit, of the general- 1 10

ized restricted trace ensembles with the corresponding ca-  Py(Aq, ... Ay)=—A2()\) 5( X AIZ)
nonical ones is presented. This proof is a wide generalization Zs ni=1

of the old result of the equivalence, in the langeimit, of

the restricted trace ensembles with the random Gaussian - 3\ — ji—1
edel A0 =Tl =g =defn]™],

Unlike the original restricted trace ensembles, the gener- 2.3
alized ensembles have a nontrivial phase diagram in the w N 1"
largen limit. Despite the equivalence shown in Sec. Ill with Z5= H dni AZ(N) 5( A?— —2 A.z)

. . . . . . —wji=1 ni=1
canonical probability distributions, the mapping of param-
eters in equivalent models is one-to-one only in the pertur- AZ\ (n%2)~1 1072 (2m)"2 n
bative phase. We show this in detail in one example of phase = (?) — T H j!
3

wn2

.....

diagram in Sec. IV.
Let us stress that the present paper is concerned with deri- 2
vation of exact analytic results for the probability distribu-
tions we consider. Applications of physical interest are de-Closely related to this matrix ensemble is theunded trace
ferred to a future paper. While this paper was being written€nsemblelt is defined by the probability distribution
we were informed of a poster presented by Nagao at Stat-
Phys 20, discussing generalized fixed trace ensembles of ran- Po(M)= i 0<A2— ETr M2>
dom matrices. There the old model by Rosenzweig is gener- o Zg n '
alized by considering a joint probability density of

eigenvalues of the form 1 1\ (n*=nr2
Zezf DM 6| A~ =TrM?| = —) . (2.9
1 n n n 2
=_AB a 2_ 2
P(h1, .. hp)= AN ];[ A 5(A ; x,). A
(15) wn2 T
This study has very little overlap with the present paper. In the same way of Eq2.2), one easily finds
Il. RESTRICTED TRACE ENSEMBLES AT FINITE n ) 2+k )
Trm? = A 2.
Let us begin by describing the most relevant features of ( ) n2+ 2k 29

two closely related ensembles: the fixed trace and the
bounded trace ensembles. IMibe anx n Hermitian matrix. ~ which exhibits the usual factorization 6f(n?) invariant am-
The fixed trace ensembleorresponding to the Gaussian plitudes only in the larger limit. In order to evaluate expec-
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tations that only depend on the distribution probability of thelnstead of evaluating the sum by means of the Christoffel-
eigenvalues, one may use the joint probability distribution,Darboux formula, it is useful for our discussion to use the
analogous to Eq.2.3): expansion

12 k K1)22k-!
Y x?), [H01P=2, T Ha0 @1

_1.o
Py(Ny, - - ,xn)—ZGAn(M 0 < (IH2(k—1)!

1 to obtain, with some simple algebra:
Zazf H d\; A2(\) 6 (AZ— HE % ) (2.6) ple &9

oof =

n
a 21 Hok(AVa)
_ A
_(Az)”z’znnz,z LI pon= /e <k+1)_2kk!—' @12
N 2 n j=1
F(?+ 1 To study the integrals for the fixed trace ensemble, it is con-

venient to adopt the following notation. Let us denote by
Of course the two ensembles are related by a simple differo(n,R) the surface of the sphere R of radiusR, and by
ential equation. Since da, the element of surface integration. The partition function
and the eigenvalue density, fox|<R, are
d Zs
— 2P M)=—"[Ps(M)=Py(M)]

oA° ’ Z5= H d; Az()\)é(AZ— —2 A, )
5 —oof=
= SIPAM) =Py M)

_ 2 2 A2
°R w(n,R)da”A“’ R°=nA“, (2.13

one easily obtains a simple relation between the two expec-
tations for any generic observable:

p,sm:ifﬂ dh, A2 SN, 8 A= =S N7
Zs) i=1 ni=1

2

(O(M)); = 1+£i (O(M)),. (2.7
IA?

7=

2_\2 _1JRZ2

A remarkable feature of both the fixed trace ensemble and 225 REZ AT aln AR

the bounded trace ensemble is that the density of stétes n-1

has compact support for any finite or infinite. We here Xdan,lAﬁ,l_H (N—N\p)2. (2.19
obtain the exact expression of the eigenvalue distribution of =1

the fixed trace ensemble for any value mfbased on the ﬁ h ¢ | ict both | | h
known results for the Gaussian model. After a change of scale, to restrict both integrals to the sur-

Let us first recall a few useful formulas of the Gaussian'ac€ of unit radius
model. The partition function and the eigenvalue density are

25— RN —Zf da, A2, 2.1
_ 2 —a(\2+- 422 72 oy " (2.19
zZg= | d\y---dN Afe 3N 0, (2.9

n 2
) paN)= (RN [ da 4z,
pG()\):eia)\zz_f d)\l”'d)\n—lAﬁ—l 226 w(n—1,1) 4
G

-1 n-1 A 2
xe a0d NI -n)s 29 <1l (\/R2: M) | (219

where the positive parametaris arbitrary, and for shortness L€t us first evaluate the partition function. We start

we setA2=A2(\,, ... \,). Both integrals may be com- from the integral expressiori2.8) for zg, and change
puted for finiten by means of orthogonal polynomials, which 0 Spherical varla_bleﬁ_lwnh radial component The
in this case are the Hermite ones: volume element isr" *drda,, and A“(\qi,....\;)
=r"=DA2(\,/r, ... \,/r). Therefore we have
(2,”_)n/2 n
y4 =7, kl %)
G (Za)n 12024 = Jl) dr r”z_le_arzf ( 1)danAﬁ. (217}
2.1 i
a 1" HE W) 210 : . .
pe(N\)= \/:e—axz_ _kk_ The surface integral is the same appearing in(Bd.5, and
0 ngo 27! we conclude:
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n(RVa)” (2.18 (\) ! f 2
Z5=Zg———>—. . =————— for n=2,
3T 4G , n2 P T J2AZ_ N2
R-T >
. . . _ 35,3 G
The same procedure is used in the evaluation of the eigen- ps(N)= - A%— —|[3A*—2\2A%+3\%]
value density. In radial coordinates, the integral for the STEA 3

Gaussian density is
for n=3,

1 ©
pe()\)=e*a*22—f drrn-2g-ar
cJo

1 712
n-1 ) pg()\):—M<A2— Z)@) [12A%+3002A%
) A 4297A
X dan_lAn,lH T_)\i .
©(n-1.1) =1 —53A*A2+38\%] for n=4,
(2.19
2 7
The surface contribution is much like the one in the expres- p4(\)= M(A ) [375A8— 300\ 2A8
sion (2.16 for ps(\). To implement this similarity, we in- 5*(2A)%

troduce the expansion +4490\*A%—5996\°A2+ 2711\8] for n=5.

n-1 2n-2 (2.29
J da,_1A2  IT (x=1)2= X ek
w(n—1,1) i=1 k=0

(2.20 To evaluate the spectral density for the bounded trace en-
semble, for finiten, one may proceed in a similar way as in

. . . - the Gaussian case, to obtain
Since pg(N\) is even in\, only the even coefficients are

different from zero. The expressions for the densities in the

two ensembles are W (22
po(N)=
p ()\):e—akzia—(l/Z)(nz—l) n—1 N 2
G Zc XJ danflAilH (__)\.)
1 w(n—1,1) i=1
X E C2k()\\/—)2kr(—_k) (2.2 (2.29

and therefore

n 2
_ 2_y\2\[(n-1)32-1
P 225(R M 1 o 21
Pa()\)—zg(R —\9)

n—1
X D CoAK(RZ-\Y)N 17k RZ=nAZ (222 1 , ik
k=0 Cak / A 2 A2
, R=nA-.
o n2—2k—1\ 2
The coefficientsc,, are obtained by comparing the polyno-
mial expression in Eq(2.21) and the exactly known result (2.26

(2.12:

The same result may be obtained by inverting the differential

n equation(2.7). In a similar way, it is possible to write the
" i} H il explicit expressions of the two-point correlator of restricted
_21_(nz,2)(277)n (—4) i= 1 trace ensembles in terms of the known two-point correlator
2k I nZ—1 n of the Gaussian ensemble at finiteWe obtain
Jm(2!t Ck
2
1 _ 2 2y _ 2_
(21! n PG()\,M)de a?+ p?) g~ (112 (N2~ 4)
XE( DW [+1 (2.23 2G ,
n—
2_r—s
X 2 s PRI — 1>,

More explicitly, the spectral densities for the lowest-order
random matrices are (2.2
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Lo o oz which will be used to study the properties of the bounded
pship)=_—(R*=N"—pu )23 trace ensemble from a knowledge of the fixed trace one.
° Indeed, in this general setting, the latter is easier to evaluate
2n—2 in the largen limit.
X 20 Cr N uS(RE—N\2— ) ~lr+9r2] Besides the two restricted trace ensembles, it is useful to
r,s=

consider also the canonical ensemble, with the same poten-
(2.28 tial V(M) and a parametex:

where the coefficients, ;=cg, are defined by 1 .
PO, A= e KN VODAZ( L Ny,
n—2
T R | RPN 39
w(n—2,1) k=1 n
n
22 2= | T] dn; e "2 VO0AZ(n,, ... A, (37)
=> Cr.oX'Y". (2.29 i=1 =1
r,s=0
As is well known, the partition function for the eigenvalues
IIl. GENERALIZED RESTRICTED TRACE ENSEMBLES may be given the interpretation as the partition function of a
AT LARGE n one-dimensional gas af particles with pairwise repulsive

interaction and, in the canonical case, subject to the external

With some generality, for an arbitrary polynomial poten- potentialV(\). In the restricted trace ensembles the potential
tial V(M)=2=g,M¥, whereM is a Hermitiannxn matrix,  enters as a constraint depending on the positiorellgar-
we define the generalizdiked trace ensembland the gen- ticles. This main difference makes the analysis of these mod-
eralizedbounded trace ensembly the two probability den-  els difficult and interesting, especially for the issue of the
sities: universality properties of correlators.

While for canonical models the powerful technique of or-
thogonal polynomials applies, giving at least formally and
for any value ofn the explicit expressions of all correlators,
for the restricted trace ensembles we must content ourselves

1 1 with the analysis of the eigenvalue density in the large
Po(M)= = 0( AZ— —TrV(M)), (3.2  limit. This is easily done for the fixed trace ensemble, éhe
Zy n . - . .
constraint of which can be taken into account in the energy

where Zs and Z, are the normalization factors, and we usedf.un.Ctlonal _through a Lagrangg “?“'“p"ef: In the large-
limit, the eigenvalue configuration is described by a normal-

the same notation of the previous section, where they corre- . : : .
spond to the simplest casx) =x. !zed densityp(\), and the energy functional associated to it

Both ensembles are invariant under the action of the uni'—S

tary group. Therefore, when changing matrix the parametri-
zation fromn? independent matrix elements to thereal Hipl= —f dhdu p(N)p(p)In|\ — u|
eigenvalues and the parameters for eigenvectors, the mea-

1 1
Pa(M)Ezé(AZ— ﬁTrV(M)), (3.1

sures factorize into a part given by the Haar measure of )

SU(n) and a part involving only the eigenvalues. The latter +“(A _f dx P(}\)VO\)) +,3(1_j dA P()\))-
provides the joint probability density of the eigenvalues, the

starting point for all spectral statistics. Lettirgy stand for (3.8

the & or the 6 function, the expression for the joint probabil- The saddle point configuration is the one that minimizes the
ity density is energy, and is precisely the sought limit dengify It solves
the following equation, valid for any inside the unknown

! L tL of p,:
P¢()‘1*---:)\n)=£¢(A2—ﬁi21V(M))Az()\l,...,)\n), Supportt- of -

SH[p]
(3.3 _ _ f = eV -
0 o0 2| dups(u)In]A—pul—aV(\)—-B.
n 1 (3.9
2= d\; ¢| A2— =D, V(N | A%\, ... \p).
¢ fﬂl R nz'l (hi) | A% ) A derivative in\ eliminates the parametgd associated to

(3.9 the constraint of normalization, and yields a Cauchy-Hilbert

integral equation for the limit density:
The two ensembles are obviously related by the differential

equation analogous to E.7): a
q g @7 j( ILLNC VNN (3.10
L )\—,LL 2
(g, 20
Polhas - An)=| 1+ 25 IA? Po(Ays - -+ An), For anya, which is still unknown, and after having fixed a

(3.5  geometry for the suppoit (an interval, for exampleEq.
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(3.10 is solved using analyticity arguments, and the extrema PN ) =ps(N, ) —ps(N)ps( )
of L are fixed by the normalization conditi¢a5]. Inside the

family of pairsL(«) andps(\;a) parameterized by, the d
pair that describes the largedimit of the fixed trace en- :(1+an>lje()‘v“)
semble is determined by the value= «, solution of the
equation d d
1+Cné’A po(N) 1+Cn(9A po( )
A%= fL()dx ps(N;a)V(N). (3.11) ;
o :p(),c()\uﬂ)+cn_zpa,c()\aﬂ)
The numberg of the extremal solution may be evaluated A
from eq.(3.9) by choosing a convenient value ®fin L. P
The densityps so far obtained, coincides with the limit —(cp)? 2p(,()\) wpg(,u) . (3.1

density of the canonical mod€3.7), with parameteK = a.
In the particularly simple casé(M)=M?, one obtains also
for the restricted trace ensemble a limit density described byvVe have not proven that the generalized restricted trace ma-
Wigner's semicircle law, with radius/2 The energy func- trix ensembles have a topological expansion in the large-
tional (3.8) evaluated at the extremum, is limit and the factorization of invariant operators, analogous
to matrix ensembles defined by canonical probability densi-
ties. The analysis of the next section, where the fixed trace
H[P&]:_J dhdups(Mps(m)inN—wf, (3.12  constraint is reached as a limit of the probability density
P (M) indicates that such properties are very likely. There-

where the double integral may be simplified by using Eq.fore it seems reasonable to assume, as for the canonical prob-

(3.9 and the constraints ability densities,
_ _ 12 1. 1 1
f AN dpeposMpal )N\ = pa|= = A"~ 2. Pa(N )= (N pg() + FP¢()\,M)+O(n—>,
3.1
313 (3.18
We then obtain the large-expression of the partition func-
tion where¢ stands for theS or the 6 functions. This assumption
(3.18), as well as more general assumptions, together with
Z5e" 1/2n%(aA?+ ) — g~ N?1(A%) (3.14 Egs.(3.17 and(3.16), imply in the largen limit psc(\,u)
=pgc(N ). The results of this section are rather general
Sincezs=(d/9A?)z,, Eq.(3.14 implies and formal. The determination of the Lagrange multipker
in Eq. (3.12) of course depends on the model poteriiaM)
z Zg 1 in a nontrivial way and on the various phases of the model.

— —. (3.15 We provide a specific example in the next section, by the
_f A2 study of the potentia/(M)=g,M?+g,M*.
n?— S f(A%)

Zs Za

. . . . . IV. PHASE TRANSITIONS
A simple check is provided by the monomial potentials

V(x)=x2X. In this simple case, the normalization constants In the previous section it was shown that, in the lange-
z, andzs may be evaluated by a rescaling of the eigenvalue§mit, the spectral density of restricted trace ensembles with

with the resultz,/z;= 2k A%/n?. polynomial potentialV(\,g;), whereg; are the couplings,
The result(3.15 is most useful and it implies the gener- coincides with the spectral density of the canonical ensemble
alization of Eq.(2.7), with potential «V(\,g;). The scaling factor, solution of

Eqg. (3.11), is actually a nonlinear function of the couplings

9 g; . The correspondence between the two sets of parameters,
(O(M))5 = 1+Cna (O(M))y, namelyg; and ag;, is one to one only in the perturbative
(3.16 phase.
' In this section we show in detail the case of the even
o 1 quartic potential
n .
2 2
"oz A V(M) =g; M2+, M?, .0

By using this equation both for the spectral density and forwhere the nonlinear relation originates different phase dia-
the density-density correlat¢t.4), we obtain an exact equa- grams. To this end, we find it useful to consider supiared
tion, for anyn: trace ensembl@® (M),
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P,(M)=%exr[—l(—2nA2TrV(M)+[TrV(M)]2)], csz d\ Ao (N) (4.5
|

(4.2) , : :
andgy are the effective couplings:

z,:f DM exd — 1 (—2nA2TrV(M)+[TrV(M)]?)].
0= 21(g2C2+g4Cs— A?) gy (4.6

The largen limit of the model described by the probability

distribution 7,(M) is easily found by the saddle point ap- TR
proximation. These type of models, where the exponent O?xpecteo! o t_)e one segment or two segments, In either case
the Boltzmann weight is a sum of different powers of tracessymmetnc with respect to the origin. The solution of the

of even powers of the random matrix was analyzed in severaﬁaddle_IOOInt equatioft.4) in the one segment phase reads
matrix models in zero and one dimensi@+-14]. The addi-
tional “trace-squared” terms were interpreted to provide pi(N)=
touching interactions to the dynamical triangulated surfaces B
defined by the matrix potential M(M). ) o

For any fixedl, the model in Egs(4.1) and (4.2 is  Where the endpoint of the suppgrtb,b] is given by the
equivalent in the larger limit to a random matrix ensemble Normalization condition on the eigenvalue density
with the well-studied canonical probability distribution . b2

1 1:f_bd7\ P|(7\)=2'(9202+9404_A2)ﬁ(292+3b294)y

P(M)zzexp[—nTrV(M)], (4.8

From the symmetry of the potential the supportppf)) is

2
—(g5+04b%+2g\2)\Vb2-\2, (4D

where we have used again tbgs.

Z:f DM exd —nTrV(M)], (4.3 The momentg, andc, can be obtained when requiring
self-consistency by inserting the solution, Ed.7), back
into the definitions(4.5), which yields the linear system of

V(M)=g,M2+g; M4, equations

4

rovided the parametergs, andg, are suitable functions of 2 b
p p g andg, CZ:EZ|(gzc2+ g4c4—A2)§(gz+ 2b%g,),

the parameters of the model in E¢4.1) and(4.2). This may

be accomplished by two equations, such as the requirement (4.9
that the expectations dffr M2) and(Tr M%) should be the 2 b6
same for the two probability distributions. C4=/—32| (922 + 9404—A2)@(492+ 9b%gy).

On the other hand, for fixen, in the larget limit, 7,(M)

reproduces precisely the generalization of the fixed trace eN=or a potential of higher degree we will again get a linear
semblePs(M), as one sees from the following representa-system of equations for the corresponding momentsk
tion of the & function §(x)=lim,_.../(I/m)exp(-Ix?). Of =1, ... m, which is due to the fact that the solution of the
course, when choosing, =0, we merely reobtain the results s5qqje-point equation will again depend linearly on the cou-
of the analysis by Bronk and Rosenzweig. pling constantg, as in Eq.(4.7). Instead of solving the Egs.

Let us now recall the saddle point analysis for the lamge- (4.9 for c : ;
- . . . » andc, we can also express them entirely in terms
limit of the ensembleP, (M), Eqs.(4_.1) and_(4.2). Since it tihe couplings with the help of E¢4.8)
proceeds along well-known analysis, we include, for more

generality, the cases of the random maftxbelonging to

the ortho i i - b*(g,+2b%g,)
gonal, unitary, or symplectic ensembles, corre = =
sponding to the parametg=1, 2, or 4. It is important to 2(2g,+ 3b2g4)’
notice that, unlike the familiar quartic probability distribu- (4.10
tion (4.3), the probability distributior(4.1) and (4.2) is well b%(4g,+ 9bg,)
defined for any real value of the two parametgssg,. Let (o e ———
us begin by assuming,>0,g,>0, which corresponds to the 16(2g,+3b%g,)

perturbative(or one-cut phase; later in the section the com- ) ) _
plete phase diagram will be described. For any finite positivel h® same trick can be used to express the eigenvalue density
value of the parametdr the density of eigenvalugs(\) is  €duation(4.7) only in terms of thegy, which reads

the solution of the singular integral equation

A’ =
P = e 20,4 3b%g,)

pi(p) ,
,Bj( dﬂm:2|(9202+9404_A2)V (N)
X(gp+g4b%+2g9,02)Vb2=22,  (4.1D)
=295\ + 4gi\3, (4.9
where the endpoint of the suppdiris the root of the fourth-

where the moments, are defined by order equation irb?
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1(9(g,)?b®+20g,9,b%+8[(g,)%— 6A%g,]b* of parameters bounded by the two curvdsl8, while the
. s one-cut solution holds everywhere else in the plane of real
—32A%g,b?) =168, (412 values ofg,,g,.

The image of the existence ling.14), in the space of

which, for vanishingg, and positiveg, is asymptotic tab? parameters,,g, is a couple of curves:

~2[A%+ A%+ BI(21)]/g,. By comparing Eq.(4.4) with
the analogous saddle point equation for the canonical quartic I

probability distribution(4.3) it is obvious that they have the Ua===(0,)2[A2— A%+ T7I(6])], g,>0, g,<0,
same eigenvalue density, in the langdimit, for both phases 12

of the model, provided the effective coupling E¢.6) are (4.19

precisely identified with those of the canonical distribution |
94=1_2(92)2[A2+ VA*+7/(61)], 9,<0, g4>0.

2
gé:2'(9202+94C4—A2)92:%921 _ ,
b=(2g,+3bgy) There are two regions of the plane of real varialdgsy,:
the first one bounded by the first lirid.19 and the positive
2 axis g,, and the second one bounded by the second line
94=2l(g,Co+ 9404—A2)94:m94- (4.19 and the negative axig,, where the equation of the
2 4

4.13 support(4.12 of the one-cut solution has three possible val-
' ues. The one-cut solutio@.11) as function of the param-

Of course, the last equality on the right sides of previoustersdz,9, has a first-order discontinuity in these regions

equations only holds in the one cut phase. For simplicity, lefu€ to the cubic type instability of the solution of H¢.12)

us now proceed with8=2. In terms ofg} andg}, the equa- with respect to the parameteys,d,. As usual, the Ilngs of

tion for the support(4.12 is the more familiar equation the first-order transition are determined by comparing the

3g.b*+2g,b2—4=0. The phase diagram of the canonical evaluation of the free energy of the model, as functions of

4 2 =0 ; ; i
quartic modelP(M), Eq. (4.3, is well known: ifgj is fixed the different possible values of the endpoint of the support

- ] In the remaining part of this section, we consider the limit
posm\,/e, the one-cut solutiof#.7) and (4.8) holds for any | — where we obtain the distributioRs(M) with the po-
real g, such that =

tential (4.1) explicitly. We shall denoteg,=lim,_,..c, and

gs=— %(95)2, (4.14 b=Iim,_ b. Because of thé function in the distribution it
will hold
which is a border of existence for the model.glf is fixed
positive, the one-cut solution holds for any reglsuch that A2 = 92€2+ 9434, (4.20
92= =20 (4.19 whereas the quantiti(g,c,+g,c,—A?) will stay finite, as

. . " . one can see from Ed4.8). Equation(4.20 is actually Eq.
which is the line of phase transition to the symmetric t\No—cut(3_1D for the quartic potential considered in this section.

solution: Equation (4.4) shows that the model witPg(M) has the
294\ same eigenvalue gensity of thg canonical quartic model
pi(N)= :T V(D?2=2\?)(A\%2-C?), (4.16 (4.3, providedg,= ag,, andg,=ag,, where
with ends of supporf—D , —C JU[ C, D ] being solutions a= lim21(g,co+g,cq—A?)
Of | -0

! 2 2\ — / 2_0r2\2— HZ — -
92+04(C7+ D=0, gy(D°-CH"=4. (4.17) :(Z(2g2+3bzg4)> : (429

The map betweefg,,94} and{g;,g,} in this phase may be
found after the evaluation dftc,,c,} and the requirement of  The results for the moments equatigdsl0 and the density
self-consistency just as before. equation (4.11) carry over when replacing everything by

It is straightfor_ward to see that the phase transition linebarred quantities. Equatiof@.21) gives the solution to Eq.
(4.19 becomes, in the parameters of the mo@kl) and  (3.11) and shows its dependence on the coupling constants of

(4.2), the couple of lines the quartic potential equatio@.1).
I The phase diagram fdr=o is similar to the one previ-
_ 2 A24 [RE Ao ously described for finité, with some simplifications. The
94 4(92) (ZATEVAT=3/21)), 92>0,  94=0. couple of lines(4.18 which are boundaries of the two-cut

(4.18 phase become the line

Therefore ifA*—3/(21)<0 the model4.1) and(4.2) has the

2
one-cut solution for every real value gf,g4. In the other = 3 (92) g,>0, ¢4<0, (4.22

caseA*—3/(21)>0 the two-cut solution holds in the region t16 42
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and the negativg, axis. Similarly there are two regions of . 4A?
multiple solution for the one-cut support, where a first order bz:g— (4.29
discontinuity will occur. One is bounded by the positive part 2
of the g, axis and the line
with the corresponding eigenvalue density from E411),

7 (92)?
94=~ T4z pz g,>0, 04<0. (4.23 ,
)\ = — b2_)\2. 42

The second region is the entire regigp>0 and g,<O0. PolN) 1?2 (4.29
Equation(4.20 for the endpointb of the one-cut solution
trns into This is the well-known semi-circle spectral density and to-

0=b2(9 25642 b? gether with Eq.(2.7) it reproduces the old resUl7] th'at the .

{9(g4) 09292 spectral density of the restricted trace ensembles is equal, in
+8[(g,)%— 69,A2]b2—329,A%}. (4.24)  the largen limit, to the spectral density of the Gaussian en-
semble.

The vanishing suppoﬂ?zo actually provides the limiting
solution ps(\)=8(\) in the sectorg,<<0,g,<0. In other
regions of parameter space the support is determined by the

solution of the third-order equation ¥ above. The work of G.A. was supported by European Commu-

Let us finally extract the result for the Gaussian distribu-nity Grant No. ERBFMBICT960997. In particular, he wishes
tion Ps(M) with potentialV(M) =g,M? from the above for-  to thank the Physics Department of Parma for its warm hos-
mula by settingg,=0. Equation(4.24) leads to pitality while part of this work was being done.
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