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system: Correlation functions of a Morse oscillator
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We apply the optimized perturbation thedi®PT) to study the dynamics of a dimer molecule system in
condensed phases described by a Morse potential system coupled to a heat bath. The OPT combines the
techniques based on the variational principle and the perturbative expansion. The first-order approximation of
the OPT agrees with Feynman’s variational theory developed for the polaron priBfatistical Mechanics:

A Set of LectureBenjamin, London, 1972. The OPT makes it possible to deal with an anharmonic potential
system in a nonperturbative way. Combined with the inversion method, which is a technique to carry out the
Legendre transformation, we take into account the ansymmetry of the potential effectively. We then calculate
the absorption spectrum of the molecule system, which relates to a two-time correlation function of a nuclear
coordinate[S1063-651X99)04702-9

PACS numbds): 05.70.Ln, 11.10-z, 33.20—t

[. INTRODUCTION Thus one cannot use this equation of motion to study a low
. temperature system where quantum dynamics plays a role.
Sllnce the work by Leggett and cq-worke{fgz], .the dy-. For the rotating wave interaction case, one does not have the
namical roles of a quantum system in a dissipative environgeheratyre limitation. However, the rotating wave approxi-
ment has been considered in a large number of problemg,aiion may differ from the dynamics that is originally de-
e.g., chemical reactiori8], electron transfef4], and nonlin-  gcriped by the linear-linear system-bath interaction. In addi-
ear spectroscopys]. The system in a condensed phase canjon to this circumstance, these two equations of motion
be modeled by a main system and a surrounding envirorncannot treat the continuous energy states that are involved in
ment (a bath system The interaction between the system the Morse potential system as the dissociation states. For
and the bath causes dissipation on the main system. In maryich dissociative systems, the quantum Fokker-Planck equa-
realistic cases, the fluctuation induced by the environmention is easy to apply. The quantum Fokker-Planck equation is
follows the central limit theorem. A harmonic oscillator bath the equation of motion for the reduced density matrix in the
gives a Gaussian distribution for the density matré. coordinate space or the Wigner representation. This equation
Therefore, the harmonic oscillator bath can be a good modeh principle describes the same dynamics as the former two
of the environmenf7]. The main system is described by a equations if the system-bath interaction is linear-linear; thus
particle moving in a potential. If the potential is harmonic, it inherits the same high-temperature limitation. This limita-
this model agrees with the quantum Brownian oscillator systion can be partially relaxed by assuming a Gaussian-
tem and the dynamica' Variab'es SUCh as the two- and threéAarkOVian noise bath instead of a Gaussian white noise bath
time correlation functions of the coordinate can be calculated14.19. This quantum Fokker-Planck equation for a
analytically using path-integral techniqugg9). For general Gaussuan-Markov!an bath has the capablllty of dealing with
potential systems, where most of the important quantum dy2"Y shape potential surfaces at relatively low temperatures.

namics such as tunneling takes place, however, one cann W?Velﬂ So(;\_’t'_ng S_UCh equ?nt(_)ns "Of motion for _van(#]s
calculate the dynamical variables analytically. In order toPnysical conditions Is computationally very expensive. The
deal with such problems, one has to use the equations ectral distribution of the bath is also limited to the case of

motion for the reduced density matrix. Such an equation i hmic dissipation with a Lorentzian cutoff. In addition, it

) ; y ' q oes not offer much insight into the underlying dynamics
obtained by tracing out the bath degrees of freedom throug om the numerical results. Thus handy analytical solutions
the projection operator method or the path integral methoolt

hat have wider applicability and can supplement the numeri-

The dynamical variables can be calculated using a direct inz| results are called for.

tegration_of t_hese equations of motion. Examples of such |, this paper we employ optimized perturbation theory
an equation involve the quantum master equafiéh the  (OpT) to calculate analytically the dynamical variable of the
Redfield equatiorj10,11], and the quantum Fokker-Planck \orse potential[16] system in a dissipative environment.
equation[12,13. The quantum master equation and theThe Morse potential system is anharmonic and has dissocia-
Redfield equation are the equations of motion for the reducedlon states at higher energy levels. It has been used as a
density in the energy state representation. They can be desodel of many molecular systems, especially for dimer mol-
rived by assuming the linear-linear or the rotating wave formecules. The Morse potential system without coupling to the
of the system-bath interaction with the white noise approxi-ath can be studied analytically by solving the Sclimger
mation. For the linear-linear interaction, it has been assumeedquation17—19 or by performing the path integratid@0—

that the spectral distribution of the bath is Ohmic and the24]. These approaches are performed in the coordinate rep-
bath temperature is higfthe white noise approximation resentatio17,20,21,23or the coherent state representation
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[18,22,23. The latter representation is associated with theand I'[¢]. The inversion method is a systematic way to
reducible representation of Lie group25]. We are inter- evaluateW[J] throughI'[¢] for a system with some pertur-
ested in studying the dynamics of molecules in the conbation. Bothl'[¢] andW[J] can be expanded perturbatively.
densed phase since many important chemical processes plaie inversion method gives simple relations between the
a role in liquids. To include the effects of surrounding mol- nth-order term ofI'[¢] and the firstn terms of W[J] by
ecules, we attached the Morse potential system to the batfegardinge as a order of unity. We apply this technique for
However, if the system is coupled to the bath, one cannothe & expansion of the OPT. o _
solve the problem exactly. Here we have adapted the path- In Sec. Il we introduce the nonequilibrium generating
integral formalism to make approximations. We used thdfunctional[45]. The two nonperturbative methods, i.e., the
double time path formalisfi26—34 to deal with the two- OPT and the method of Legendre transformation, are re-
time correlation functions of coordinates, which are theviewed in Secs. lll and IV, respectively. We then apply the
physical observables of various experiments including fem©OPT and the OPT with the inversion method in Sec. V. The
tosecond nonlinear spectroscopy. All heat-bath effects werBumerical results for these two approaches are shown in Sec.
taken into account by the Feynman-Vernon influence funcV!- Section VIl is devoted to a conclusion and some re-
tional [28] In path_integraj formalism, we can C|assify the marks. A result of the inversion method that is a tEChnique to
two types of approaches depending on the method of agearry out the Legendre transformation is reviewed in Appen-
proximation. The first one is perturbative. We can deal withdix A. The relation between the results (@ and a propa-
the anharmonic part of the Hamiltonian or Lagrangian as &ator is given in Appendix B. The calculation of the free
perturbation. However, this approach is limited to the casénergy at zero temperature is written in Appendix C.

where the anharmonicity is weak and one has to obtain the

nth-order correlation functions for anharmonic potentials 1. NONEQUILIBRIUM GENERATING FUNCTIONALS
analytically [35,36. The other approach is nonperturbative. i i o

An example of this approach involves the resummation of Consider a system described by the Hamiltonian operator
the infinite number of perturbative terms, which introducesH. We are interested in calculating the expectation value of
the nonperturbative ground state, e.g., the state written as ti@ defined by

coherent sum of the modes excited above the old sfaies

40]. In this paper we apply the OPT, which was developed to (O, =Tr{p, 07(t,t)O0(t,1))}, 2.1)
calculate the energy eigenvalues or the wave functidts

43]. The OPT introduces an artificial parametethat does it

not appear in the original problem. One defines an acjgn Ot,t)=T ex;{ —+ | ds f—i(s)) , (2.2)
which interpolates between the theory we hope to solve, with t

an actionS, and another actioBy(w), which must be solv- o ) i .

able and is chosen to reflect the physical properties of th&/here the symbol’implies the time ordering operation and
original actionSwith the use of adjustable parametgrswe A" denotes the adjoint of an operatdr The matrixp, is a
then perturbatively expand the Green’s function ®by  density operator at the initial timg. To obtain such an
8(S—S,) in powers of§ and truncate at a given order. By expectation value, it is convenient to introduce a time-
assuming that the expanded and truncated Green’s functiaiependent external forcB(t) that couples t&'. Here and
can be evaluated by specifyinpgto optimize the trial action, in what follows, the indices represent the set of indices of
we evaluate the Green'’s function as a sum of expanded angle field componentsl'(t) is an auxiliary source to be set to

fited Green’s functions. The first-order OPT agrees withzero at the end of the calculation. The total Hamiltonian
Feynman'’s variational theory, which has been used to solveherefore depends on time and is expressed as

the polaron probleni44]. The second-order OPT gives the

correction of it. Thus the OPT can be regarded as the gener- - R .

alization of Feynman'’s variational theory. In this paper we Hy()=H-2 J()O. (2.3

apply the OPT to calculate the two-time correlation functions '

of the Morse potential system in the dissipative environment. : : . _
In addition to the simple OPT analysis, we also tested the Let us inroduce a generating f_unctlonal as an extension

OPT with the Legendre transformation in the framework ofoTc the C?Ibb§ fnie energy. AAssum.mg an equmt?num. initial

the field theory in order to make the OPT more efficient,distribution, i.e.,p, =exp(-AH), we introduce the imaginary

even in the lowest order. We use the inversion method ifimeé 7, which is defined ag=t,—ifi7, O=7<pg. We con-

performing the Legendre transformation. The LegendreSider the generating function®@l[J;,J,,J;] with three kinds

transformation converts the generating functiovg]J],  Of sourcesly, J;, andJs;

which is the functional of the auxiliary sourck to the an-

other functional I'[¢], where ¢=5W[J]/SJ. In general

casesW][ J] is perturbatively obtained within the finite-order I J

calculation. OrF])the other hgnﬂ[qb] is obtained by making a ex;{%W[J]> =Tr[p|3U}2(tF WUy e )] (2.4
resummation of the diagrams 6¥[J]. The mathematical R i e (. o

structure of the convertel ¢] is quite different from origi- UJa=Texp( - %f dt{ H—Z_ J'a(t)O'])

nal W[J]. Thus we can approximat&/[J] in a different b '

manner by approximating[ ¢] instead ofW[ J] itself and by i rte .
reconverting it tow[J] through the relation betweeW[J] ETexp( - %J' dt{H, (t)}), (@=1,2), (2.5
t @
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Imt In the path-integral representation, 8.9 is described
Cl N by
tr sz =t1= Ret
c 1 I i i
i n exr{%W[J])=NJ DQ exp[g
FIG. 1. Contour path€,, C,, andCs;. % SC[Q]+2 f dt Ji(t)oi(t))]
T Jc
B .
pl=T, exp( - fo drHJS(ﬂ) . (2.6 (2.14
where N is the normalization constant arg} is the action
|2|J3:|2|_ 2 Jg(f)@i_ (2.77  with the contour path time integration of the Lagrangian
I

L derived from H: Sc=[cdtL=[cdtL+[cdtL

The final timet; is taken to be sufficiently large artg<t ~ tJ/c,dtL.

<tg. The symbol7, stands forr ordering. The real time Using the generating functional, E¢g2.1) can be ex-
path and the imaginary one are represented by suffixes pressed as

=1,2 anda=3, respectively. This enables one to study the

connection with the equilibrium free energy. N SW[J;,J5,5]
Here we introduce the notion of the complex contour for O't)y=—Fr7—"
time integration in order to write various formulas in a com- 634(t) 3,=0,=35=0
pact way[29,33,34. The contour time integral-dt extends
over the contou€, which runs fromC, to C, to C5 (see Fig. __OWJ4,Jd3,J5]
1). Each path is defined to b8;: t,—tg and C,: te—t, 835(t) 3330
(return path and C5: t,—t,—iB% (imaginary time path e
The contour time ordering operat@¢ orders the time se- i SW[J1,d5,3]
guence according to the location of the operator on the con- =7 —5~J'(T (2.19
tour. Furthermore, we use the notation 8 J;=3,=33=0

JO=da(t) if tison C, (¢=1,23. (2§ The functionaW[ J,,J,,J5] itself is not a physical quan-

Assuming the equilibrium initial distribution, we can then tity. It is introduced just for mathematical convenience to
write calculate expectation values for nonequilibrium processes.
All the physical quantitiegas far as they are related to the

i i expectation values that we are probing by introducing the
exp 7 WIJ1,J2,Js] | =exp 7 WLJ] source termcan be extracted from it. For example, the two-
_ time correlation functioqO'(t)Oi(t')) is derived by taking
—TrT-exd — '_J dt A () the second derivative oM J,,J5,J3] with respect toJ(t).
¢ N P Note that we use three patf9,33,34, an extention of the

double path formalisi26,27,3Q by including the imaginary

2.9 {ime path, to take into account the effects of anharmonicity
in the initial equilibrium state.
Hy=H, (H=A-2 J, ()0 (a=1,23).
@ i
(2.10 Ill. OPTIMIZED PERTURBATION THEORY

For later convenience, we introduce the contédunction, _In this section we briefly explain the OPT for a system
the contourd function, and the contour functional differen- With an actionS The OPT employs a modified action de-

tiation defined by fined by
f dt sc(t—t")f(t)=f(t"), (2.11) Ss=(1—6)Sp(p) + 8S=Sp(p) + 8(S=Sp(1)), (3.2)
C

. whereSy(u) is the action for a solvable model and includes
9c(t—t’):j dt’ sc(t"—t'), (2.12 the arbi.trary(variation.a) parametergu. For =1, the modi-
c fied action agrees with the original one, whereas §e10,
the solvable one. We are interested in the time evolution of a
of (1) , density matrix with the initial inverse temperaturg
5f(t/) _5C(t_t )i (213) :1/kBT.
The generating functiondP.14) for the action is defined
respectively. by
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| sed Q]

fIL—Wg[J] =In j DQ exp

. (3.2

+Ei fcdtJi(t)oi(t)>

The n-point Green'’s function is then expressed as

W]
)= S3ety) - oda(ty)

£

where Xc(t) means that X;(t), X,(t), and Xjz(t)
=(ali)X(7) for teCq, teC,, andte Cj, respectively.
The symbol(A}M in Eqg. (3.3 is regarded as the expectation

value of the operator A for the action Scs
+3;fcdt J(t)O'(t). By treating the term5(Sc— Scg) as a
perturbation,\N%“)(tl,...,tn) is expanded in the powers of

\N(5n)(t1 ’.

(n—=1) . ~
) (7cO(ty) -O(tn))s,s

(n=0,1,...), (3.3

wgm(tl,...,tn)zgo SWe (. 1) (34
Differentiation of W with respect tou gives
J ISo(w) . -
@W%n)(tl,---,tn):(l—5)<7c P O(ty)--O(tp) N
(3.5

whereéo(,u) is the action in the operator form. If we s@to
unity, then we obtain the following relation for ai:

d

(9 oo
— W (ty,.. )=

\N(;:)l[k](tl yous ytn)) =0.
(3.6

In practice, the perturbative expansion in powers ofill be
truncated at some order. In such a catll | (t,... tn)
can have a residual dependence on the parameter

J . 9
@wgﬁg(tl veotn) = kgo (@ gt ,tn)) #0.
(3.7)

Then we consider different criteria to fix. One of them is
the principle of minimal sensitivity, which is a way of opti-
mizing the theory in which\/f), is to be evaluated at the
point whereW(), is not sensitive to small variations ja:
IW 1)/ au=0. If there is no valueu satisfying this con-
dition, one seeks the point at whi@W{, (1)/du has the
minimal sensitivity to a variation ofi. With this procedures
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;—lwﬁ[J]:meQ exp(%—séO[Qﬁ
2 | 2
7 %)
X{((Sc=Sco)?)s,0~[{Sc—Sco)sal®H++
(3.8

+ %—5<Sc— Sco)a,0t

where(X); o is the expectation value ot for the action
SLo=Scot+ 2 f dtJ(1)O(t).
i C

In the equilibrium system, the first and second terms on the
right-hand side of Eq.3.8) are equivalent to the upper bound
for Feynman’s variational approximation, so the first-order
expansion of the OPT corresponds to Feynman’s variational
approximation for a trial actio®cy. The higher-order terms
can be regarded as corrections to Feynman’s approximation.
The key to this approach is the choice ®f,. One may
obtain unphysical results if the trial acti@y is not suitable.
In this paper we will also employ the Legendre transforma-
tion, which converts the generating functiodato the new

functional of ¢'=(O') in order to make the OPT more effi-
cient.

IV. LEGENDRE TRANSFORMATION OF
A GENERATING FUNCTIONAL

Let us consider the Legendre transformation defined in
the contour time path by

F[¢]Er[¢1,¢2,¢3]=ww]—2i fcdtJL;(tw‘c(t),

4.1
where
i SW[J]
dc(t)= ERRTIR (4.2
The inverted relation of Eq4.2) is therefore
_ T
Je(t)y=— 57),% 4.3
Substitutingd-(t) =0 into Eq. (4.3, we obtain
_ oI ¢]
0= 5—¢'c(_t) (4.9

The solution of Eq(4.4) is written as¢'(®)(t) below. The
function ¢'(O)(t) is the solution of Eq.4.4) at J-(t)=0,
which corresponds to the solution for the original actin
At the point¢'(t)= ¢'(¥, it is known that

can be regarded as an adjustable parameter to fit the solvable

model to the original one.
If one setsn=0, Eq.(3.2 becomes

LWI=0)= L T[40= 6[1=0]]= —fF, (45
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whereF is the free energy. In the solution of E@.4), ¢'(© =¢[J] to J=J[ ¢] using the Legendre transformation. This
is not unique andV[J=0] is a multivalued function. We type of manipulation can readily be generalized from the
adapt the notation below, for example, equilibrium case to the nonequilibrium case by introducing
contour time integration. The result of the inversion method
L S2W in the contour time path is presented in Appendix A. After
Wf);'l'z(tl,tz)z i i . (4.6) T[¢] is evaluated using the inversion metha"[J] is
v 53;1("1)5352("2) obtained fromI'"[ ¢] through a relation that is given in

Appendix B of[45]. In the following we show how one can
For J,=J,=J3, we introduce a special notation defined by apply the inversion method to calculate the correlation func-

the superscrip8: tion of the Morse potential system.
2)J5iqi _ 2)5iqi V. APPLICATION TO THE MORSE POTENTIAL SYSTEM
Walazlllz(tl ,t2)=[\/\/a1a|21|2(t1 12 15,0=3,0 =350 =30t) -
4.7 We now apply the OPT to a molecular system with the

A massM, the coordinate€), and the momentur® coupled to
We also use the superscripgtfor T, i.e., F(al)a’zl 2, but it  a heat bath. The system Hamiltonian is given by

implies that it is evaluated at the value éft) satisfying Eq. p2
(4.2). The superscript 0 then implies the stationary value of Ae==—+Ug0D), (5.1)
¢ (1) corresponding td;=J,=J;=0. For example, 2M

whereU S(Q) is the molecular potential. We assume that the
heat bath consists of a set of harmonic oscillators with the
(4.9 coordinate; and moment#; . The interaction between the
system and théth oscillator is assumed to be linear with a
coupling strengthc;. The heat bath Hamiltonian is then

(2)0:i5i (204
Falaz ! 2(t1,t2)=[rala21 2t1,t2) 1y 0= 6o ()= o= (1) »

where we used the notation of E@t.6) for I'. Higher de-
grees of differentiation ofV or I' are also expressed in this

notation. In such a casgk,is estimated on the smallest mini- given by

mal point of (#/8)T[ ¢(®)]. Several important relations in- o p2 me?[ 0\’

volving W[J] and I'[¢] in the double path formalism are Hg+ HSB=Z m+ 5 i~ (5.2
summarized in Appendix B of45]. The relations in the ! ' | Wi

three-time path can be derived by using the same procedufg,e symmation over goes to infinity in order to describe
of [45] and we can get the same equations as in Append|?< Brhe dissipation on the molecular system. The term
of [45] even for the three-time path. The physical quantity_ ;, ,~» 2 . L
calculated throughM J] is evaluated on the perturbative 2i3(c/Qi/mwy) on the .rlght-.hand side is the Countert.erm
ground state. In the OPT this ground state is obtained fronfi@t cancels the unphysical divergence from the coupling to
the trial actionS,. Therefore, ifS, does not have a property the bath deqree§ of treedf)m. The total Hamiltonian is then
found in the original action, the result derived from{J]  expressed asl =Hgs+Hg+Hgg. We add the source term to
lacks information of this property. For instance, the originalthe Hamiltonian as
action for the Morse potential is asymmetric under the trans-
formation Q— — Q; however, the harmonic trial action that H;=H —f dtJI)Q. (5.3
we will use in Sec. V is symmetric and the results obtained c
f_rom_ this action may not show as_ymmetric physical PrOPEgy integrating over the bath coordin , the generatin
ties in the lowest-order OPT. Using the Legendre tr"’.lr.]SforTu);\ctior?al in ?he path-integral repres:ﬁ?atw[\]]g is giveng
mation, however, we can evaluate the physical quantities o
¢'©, which involves an infinite number of perturbative ex- y
pansion terms not on the perturbative ground state. Since this i i (S+B)
procedure corresponds to a resummationAgfl], we can exp 7 WLJ] If DQ exp +| Sc™ Q]
recover the properties of the original action that are not in-
cluded in the formwW[J].

The generating functionaM[J] is evaluated by using Eq. + Ldt J(t)Q(t)) ] (5.4

(2.4). Physical quantities, for examp(©i>t, can be calcu-
lated from I'[¢] through W[J] using the relation between whereSE®[Q] is the influence functional
I'Té$] andW[J] (see[45]). 5

Up to now there are three ways of performing the S<Cs+B)[Q]:f dt MQ(t)Z—U (Q)—EE Ci Q)2
Legendre transformation to obtdliii¢p]. The first is the func- c \2 S 249 mo?
tional method where the auxiliary field is introduced by a 1
Hubbard-Stratonvich transformati¢#6—48. The second is _J / , 2 (M, 07) (4 11
the method relying on the resummation of graph9,50. * 2 cdtdt Qe )Ei ¢iGc (L)
These two methods can be applied only to the limited case in 5.5
which the operato® is coupled to the sourcé The third '
method is the inversion methd81]. The inversion method andG{™“)(t,t') is the propagator of the harmonic oscillator
consists of perturbative calculations and an inversiorpof system and is given by
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(M) s o7 i 1 i Bh where the damping kernel(t—t') is given by
GC (t,t )—mm 0C(t—t )COSw(t t’ +T) )
sinh—— Ci
2 y(t—t')= 2 ——— cosw;(t—t')
. |w|
i Bh
+00(t’—t)c05w<t’—t+ T” (5.6 “»do | ()
= M o ?TCOQw(t t’ )] (512
We introduce the trial actioB{; ® in the harmonic form
as and| (w) is the spectral distribution function defined by
S$P1Qiu1= [ df| Q02— s MuQ? (513
Co M=) 2 o VK 2mI ’

The character of the heat bath is described @y). In the
following we consider Ohmic dissipation

Q(t)?

1 l(w)=Myw. (5.19
+§f dtdt’'Q(t)Q(t") )
c The friction term of Eq(5.11) is M yQ in this case. That is,
the constanty corresponds to the strength of the damping. If
x> ciZGﬁ:mi @Dt (5.7  the dissipation is Ohmic, the propagatog(t,t') is derived
! from Egs.(5.10, (5.13, and(5.14). The result was given in

. o . We sh he rel h It of
where u is the variational parameter corresponding to the[[g% in zpspeor\wl\éhtxeBre ation betwedty(t,t') and the result o

square of the frequencyu(=Q?). By substituting Eq(5.7)

; . The system potential is chosen in the Morse potential
into Eq. (3.8, W4 J] is calculated as y P P

form
h — —2aQ_9p—aQ
, whereE, anda are the dissociation energy and the curvature
In J' DQ exp{ S+B)J o[Q]) of the potential, respectively. We consider the case in which
A anda are not small and the anharmonicity plays a major

role. The difference betweed®™® andS{ ™ is now given
J.dstJ(Q o(s8)(s), (58 DY
s PIQ1- S Q]
Wis19[J]
- [ atiEse m@—ge 52t~ smugiw).
[cPQ(SEPIQ1- S5 PIQ; M])exp( s<S+B”[Q]) ¢
_ , (5.16
JeDQ eXp(gS(C%JrB)J[Q]) Then Eq.(5.9) reduces to

(5.9

h
Wyl J]=— Eef ds{ exr{.—Zach(s,S))
and so forth. Her&(s,s’) is the propagator defined by the c '

differential equation

[ar
C

—> G "‘")(t,t’)} Ke(t' t")=68c(t—t").  (5.10

X ex;{ - ZaLdt Kc(s,t)J(t))

d? c?
(MW-FM,LH-Z mwz) Sc(t—t")

{7 geketss)
—2ex |_§a c(s,9)

Xex;{ —af dt Kc(s,t)\](t))}
C

The Euler-Lagrange equation derived form the action

SE*BIIQ] is the generalized Langevin equation . ; M,uf ds[(ﬁ s s))
2
Md§9+d%g§ﬂ+Mfwvu ) i»—xn, 2
(5.11) + det KC(S,t)J(t)> ] (5.17)




PRE 59

The system potential5.15 is not symmetric under the
transformation Q— —Q’. This transformation can be
achieved in Eq(5.17) by lettinga— —a. It is clear, how-
ever, that Eq(5.17) cannot involve this asymmetric feature
since we will setJ=0. To overcome this difficulty without
increasing the order of thé expansion(i.e., fixingn in W
= E{‘Zowgm), we perform the Legendre transformation from
Wy[J] to T' 5[ ¢]. We apply the inversion method presented
in [51]. In the present case, corresponds t@ in Eq. (Al)
and the index in Eq. (A2) to t. From the relation(A10),

hol ¢;t] is
hol ¢;t]= fcds Kc'(t,s)é(s). (5.18

By substituting Eqs(5.8), (5.17), and(5.18 into Eqgs.(A7)
and (A8), the generating functiondl 5| ¢] is calculated as

h i
FS[O][¢] = T In fCDQ ex;{ gsg:%+ B)J=0[Q;M]

—Ef ds ds ¢(s)Kcl(s,s') p(s')
2 )¢ c = ’

(5.19

h
Usgylel=— Eef dt[ exp( —2a¢(t)+2i—a2Kc(t,t))
C
1%
-2 exp( —ag(t)+ 5 i—aZKc(t,t))}

1
+ —

ﬁ 2
2M,uLdt<i—Kc(t,t)+¢(t) . (520

The sourcel(t) is obtained by differentiatind” 5| ¢] with
respect tog(t),

ol [ 4]

AR Ny

=f ds K X(t,s)¢p(s) + 5(Ee((—2a)
C

—2(—a)

%
X exp{ —2a¢(t)+ 2a2i— Kc(0,0)

1 %
X eXp< —ag(t)+ Eazi_ KC(O,O)” —Mue(t)
(5.21)

In the time-independent case, the static soluigg® is ob-
tained as

¢<°>=§a§K (0,0 (5.22
290 e '

where we se=1. Inserting Eq(5.22) into Egs.(5.19 and
(5.20, we obtain
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5 .
Tl ¢' 1= i—f DQ exp(i'i—Séa‘)[Q;u])
h h
+ 7B Ee exp( —azi—KC(O,O))
1 &
+ EM,ui—KC(O,O)}. (5.23

Various nonlinear femtosecond experiments have been
carried out for the systems described by the present model of
the Morse potential system coupled to the bath. The physical
observable in optics is the correlation function of the dipole
moment u(Q), which is expressed as a function of the
nuclear coordinat€. Since one can expand as ug+ u©,1Q
+---, what experiments are measuring is actually the corre-
lation function for the nuclear coordinates, such G&)
=i{[ 2(Q(1)), £(Q(O)])~i([Q(1).Q(0)]). The linear ab-
sorption spectrum denoted by w) is the Fourier transform
of C(t). From the above results, this is expressed as

os(w)=Im[WZk(w)], (5.24

te :
k)= [ "at et -ty
|
(5.25
HereW{)(t,t") is retarded Green’s function defined by

W (t,t)=W2(t,t") +WE(t,t)

= {(TOMOM oD O(1)yond

= = Bt— )00, 0(t)]). (5.26

For the actiorSs(w), we use the notatiows. orI' 5. instead
of Wor I' of the equations as is shown in Appendix B of
[45]. From Egs.(5.89) and (5.17) the second functional dif-
ferentiation ofWj is

Wity R(trt) =[Kaia(ty tp) =Koty 1) I=KR(ty  tp),
(5.27

te
WLttt [ s Kty a5tz
|

X

_Ee‘(_za)z
Xex;{ —ZaLds’KC(s,s’)J(s’)
f
+ 2a2i—KC(o,0)) —2(—a)?
xex;{ —af ds'K¢(s,s')J(s")
C

! M
+§ +Mu

azﬁK (0,0 (5.28
i C y . .
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In the case of Ohmic dissipatioK,c(0,0) is given by @ ,
IRty t2) = o(ti—t)| —Ee) (—2a)

h i BTN, i,Bﬁ)\l)
Kc(0,00= coth —coth —I'q(0), h
4M{ 2 2 ><exp< —2a¢(t1)+2a2.—Kc(0,O)>
(5.29 [
where —2(—a)2exp( —ag(ty)
1 2ityw, e onth 1 ,h
Fo(O=graz 2, (02+1202)2— (fyon)? Fa K00 MM}' (539

where we use the notation
(teC, st=u), (5.30

TP =T ) +TE ) (639

1
Npp=75vEIL, (5.3)  and
d? cf
SettingJ=0, the second response function is derived from Kel(ty t)=| M —+MM+2 5| 8(ti—ty)
Egs.(B1)—(B6) and(5.279—(5.29 as dt? T mw?
W20 = r +5i 1 —Ei‘, c2GLM(ty—t,), (5.39
M,u—lwy w? M2 (u—iwy—w?)?
f i =rg(me) _
X —Ee{(—Za)zex;{Zazi—KC(O,O)) (t t') [G(Tl) (t—t')— 12) (t t')
1k + Gy (1=t =Gz (1= t)]
—2(—a) ex;< —Kc(0,0 +M,u}. 1
(5.32 =0(t—t’)msinw(t—t’). (5.39

Within the framework of the OPT explained in Sec. Ill, the By substituting the solution(5.29 into Egs. (5.3 and
absorption spectrar(w) is obtained by evaluating this ex- (5-39, we obtain

pression at the point = uqo(w), where the following condi-
tion is satisfied: I2R(t1 ) = —Kg'(ty ) + 8 8(t1—ty)

+Mpug.

d x{ —2Ea® exp( —a?ﬁ K(0,0)
(a—aﬁ(w)) =0. (5.33 I
a o-1 (5.40

From the identity of Legendre transformation
Then setting 6=1 and wu=ug in Eq. (5.32, ie, e
W2 o(w; = pe), and taking its imaginary part, the ab- f dt,I @7t ) WP (1, tg) = — 8(t;—t3),
sorption spectra is given by 4
(5.41
B 2 which implies that the functio"{?’(t,t") is the inverse of
o(@) =MWy p(@; 1= o). (534 the retarded Green’s function. The response function is cal-
culated as
As mentioned before, this result dose not contain enough ;
of the asymmetric features of the potential. As a result, the Wak (t1,t2)=|Kg* 55("1_'[2)( —2Eea
absorption calculated from the above formula will not show
the correct temperature dependence as it will be seen in Fig. M H_l
)7
= KR(tl ,t2) + 5j dt, KR(tl ,t,)KR(t,,tz)

h
2
3(a) in Sec. VI. To improve the result from Eq&.32 and Xex;{ —a’5Ke(0,0
(5.34), we derive the formula using both the OPT and the
Legendre transformation. First, we calcul&th(t; ,t,),

a=1,

Eoyatit) = 3 (-1 (Kehraltite) x[ ~2Eateq] 2t K00 + My

=—Kg(ty,ty), (5.3 +0O(8). (5.42
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FIG. 2. Temperature dependence of the free enef@yThe FIG. 3. Temperature dependence of the free energy from the

first-order OPT is shown as the solid line. The dashed line and thérst-order OPT with the Legendre transformatida) The first-
dotted line are the exact results of the Morse potential and th@rder OPT with the Legendre transformation is shown as the solid
harmonic potential with the fundamental frequeney, respec- line. The dashed line and the dotted line have the same meanings as
tively. (b) The difference between the first-order OPT and the exactn Fig. 2@). (b) The difference between the first-order OPT with the
result. The solid line and the dashed line denBf— Fecand  Legendre transformation and the exact result. The solid line and the
Fg}%T_ Fharmonic: respectively. dashed line denote FOPT+Legendre_ Fexact and FOPT+Legendre

— Fharmonic respectively.
This result is the renormalized form of the correlation func-
tion WiZX(t,,t,) obtained through Legendre transformation.
For Ohmic dissipation, the Fourier transformation of Eqg.
(5.42 is expressed as

2E a2 1/2
e

M

- (6.1)

Using wg, the physical quantities are normalized as

52.>R0(w):i ! + S ! — F _
; M M_iw,y_wZ M2(M_iw,y_w2)2 ZTO’ w=w—0, (6.2
h
X1 —2Ec.a%exp —a’—Kg(0,0 |+ Mu;. Y M
I y=—), =—. (6.3
g
(5.43

In order to see the validity of the present approach, first
Then, following the prescription of the conventional OPT we calculate the free energy without the heat bath and com-
[see Eqs(5.33 and(5.34], we obtain the absorption spec- pare with the exact solution. In this simple case, the func-
tra. tions to be optimized are then obtained by repladiigby
G¢ in Egs. (5.8, (5.17, (C1), and (5.23. The numerical
VI. NUMERICAL RESULTS calculations were carried out by obtaining the minimal point
in the sum of Eqs(5.8) and(5.17) for the first-order optimi-

We now calculate the free energy and the absorptiorzation, in the sum of Eqs(5.8), (5.17), and (C1) for the
spectra of the Morse potential system numerically using th@econd-order optimization and in E¢.23 for the first-
expression given in the preceding section. We B&t order optimization with the Legendre transformation, respec-
=66.4527 mu,E,=3649.5 cm*, anda=0.6361A as the tively. To solve these problems, we use the bisection method
ground state of the Gsnolecule. We normalized the param- to search for the solution of the equation.
eters by the frequency,= \/[aZU(Q)/aQZ]QZO/M. In the Figures 2 and 3 show the temperature dependence of the
Morse potential system, this frequency is given by free energy for the Morse potential system calculated from
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TABLE I. Comparison between the exact solution and the nu- @)
merical result of the ground-state energy through OPT. ' "
< 18f 0K
Energy Numerical result g :i: ;%g
m
2.2 1/2 2 A A ]
By A [[ZME T E] ~721.118% 1072 J 2 2t ]
2M |\ a%k 2 S 10
Epnamoni= — Ee+ S g ~721.110&10°2 J £ sf
EQ), ~721.104% 1072 J S of
E@, ~721.1166¢10°%2 J g 4
EopT Legendre —721.115& 1072 J 2r N
° 0.90 0.95 1.00 1.05 1.10
0/,
different approachedi) the exact result(ii) the first-order )
optimized perturbation(iii) the first-order optimized pertur- :
bation with the Legendre transformatiqn, and, as a refere_nce, <18 0K
we have presentedv) the exact calculation for the harmonic 1Y O 100K
potential with the frequencw,. As can be seen from Fig. Qaf iy e 300K
2(b), the discrepancy between the exact result and the ap- & o} iy gy 7T 600K ]
proximated one becomes large for higher temperatures. The % 10k
result from the OPT with the Legendre transformation in Fig. £ g[ ]
3, however, agrees with the exact one for all temperature. % sl ]
The free energy at the zero temperatufe=(1/kgT—x) is 2R
summarized in Table I. In addition to the cases in Table I, we 2 At
have presented the result calculated from the second-order . .
optimization theory. Note that the ground state enekgy 0.90 1.05 1.10

agrees with the free energy at the zero temperature. As can
be seen, the result form the first-order OPT is closer to the ) _ _
harmonic one. This is because we chose the harmonic system FIG. 4. Linear absorptlon spectra for the dlffe_rent temperatures
as the trial action. The results from OPT improve if we in- calculated from(@) the first-order OPT ancb) the first-order OPT
clude the second-order perturbation. However, even withiff'ith the Legendre transformation.

the framework of the first-order approximation, we can ob-gsymmetric for the transformatio®— — Q. However, the
tain the same accuracy with use of the Legendre transformaria| action (5.7) is symmetric. On the other hand, if one
tion. Since the calculation from the second-order OPT iSperforms a Legendre transformation, the asymmetry of the
much harder than the one from the first-order OPT with thepotential can be taken into account through the higher-order
Legendre transformation, hereinafter we concentrate ouperturbations and thus the approximation will be improved
analysis on the first-order OPT and the first-order OPT withdramatically without increasing the order of calculation.

the Legendre transformation. Note that in the first-order Here we should note the case in which the trial action is
OPT, there is no point where the conditiokV3/du=0 is  chosen as the shifted harmonic potentit/R)u(Q— £)?,
satisfied if the temperature is very high. The reason for this igvhere u and £ are the variational parameters instead of the
attributed to the dissociation states of the Morse potentialharmonic potential i1/2)uQ? in Eq. (5.7). In the first-order
This situation may be improved if we take into account theOPtimized perturbation, the free energy is closer to the exact

higher-order derivatives oV® . This will be the next step one than the result from the trial qcticﬁﬁ.?). However, the .
of the present study g peak of the absorption spectra shifts the same amount as in

Fig. 4(@. This indicates that the introduction of another

We include the heat bath. The equations to be optimizeg/ g ;
: X ariational parameter does not always improve the resumma-
are then given by Eqd5.8), (5.17), and(5.23. The linear tion of the terms in the ordinary perturbation expansion.

absorption spectrum that is the Fourier transformation of the From the quantum Fokker-Plank equation approdd
two-time correlation function of the coordinate can be evalu4; \was shown that the width of the peak becomes larger as the
ated by searching for the minimal point of E(5.32 or  temperature increases. However, the present calculation does
(5.43. Figure 4 shows the linear absorption spectrum formot show such a change. The overtone peak, which is the tiny
different temperatures. Figure(a} is calculated from the peak caused by the anharmonicity of potential located
first-order OPT, whereas Flg(m is calculated from the around twice the fundamental frequencw@' was not ob-
first-order OPT with the Legendre transformation. In theserved. This is because the first-order calculation gives only
Morse potential, the energy between adjacent le®gls;  the type of self-energy in Fig. 5. Here we remark that the
—E,, whereE, is thenth energy level, decreases with in- self-energy2, is defined by the Schwinger-Dyson equation
creasing quantum number. Therefore, at higher temperatures,

the Morse system shows a smaller resonant frequency, asGC(tl’tZ):KC(tl’t2)

was observed in Ref13]. As can be seen in Fig(d), how-

ever, the peak shifts to the blue with increasing temperature. +f ds;dsKc(t1,81)%c(S1,52) Ge(S2,t2),

This unphysical result is due to the choice of the trial func- c

tion. As it was pointed out before, the Morse potential is (6.4
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o . <o

2@, Q- i

FIG. 6. These diagrams not only cause the peak shift but also

FIG. 5. These diagrams lead to the peak shift of the absorptior?vertone peaks.
spectra. A dot and a line represent a system interaction vertex and a

bare propagatofK) in Eq. (64), respectively. ACKNOWLEDGMENTS
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lation. APPENDIX A: INVERSION METHOD

The general procedure of the inversion method is ex-

VIl. CONCLUSION AND REMARKS plained in this appendix. Suppose that the Hamiltorais

In this paper we have developed the optimized perturbagiVided into two parts, the free part and the interaction part

tion theory for a system coupled to a dissipative environ- N
ment. The first-order OPT is equivalent to Feynman'’s varia- H=Ho+gH, (A1)
tional theory and the higher order OPT can be regarded as its i )

correction. We have calculated the free energy for a Morsd/Nereg is the coupling constant. We add the source term to
potential system and have shown that the result from thé&l as

first-order OPT is close to the harmonic one. However, the

result from the second-order OPT agrees very well with the =[] —E 3o
exact one. We then found that the result from the first-order J i

OPT with Legendre transformation is as good as the one

from the second-order OPT. Since calculations from the&o investigate the set of the nonperturbative states. The
second-order OPT are much harder, we used the first-ordgburce term is chosen so as to give a nonzero perturbation
OPT with the Legendre transformation for the rest of theseries ofp'=(0O'), where the term in angular brackets can
calculation. We then calculate the linear absorption Specpe the expectation value including the static or the time de-
trum, which is the Fourier transformation of the two-time pendent one. Notice here that it is not necessary for the
e Shon 1 M source term to have the form 0. Then we can regard
order OPT since the trial action in the first-order OPT has g method as an extension of ordinary Legendre transior-

different symmetry from the original action. We then discov- ation formalism. In order to recover to the original Hamil-
Y y gnal ' : . tonian, the source is set to be zero at the end of the calcula-
ered that the Legendre transformation based on the inversiqn

ion.
method corrects such a problem. Although some features, Let us review the result of the inversion method below.

such as the existence of an overtone peak and the change fe enerating function&[J] is expanded in the powers of
peak width, are missing in the present calculation, the OP 9 9 P P

gives reasonable results.

(A2)

In this paper we discussed the Morse potential system o
only. However, our approach can be applied to systems with WRIED 9"Win[J1. (A3)
any shape of potentials. To study the dynamics of an anhar- n=0

monic system in a dissipative environment, we have so far

three approaches: the perturbative diagrammatic approacthe expectation value &' is obtained by
[35,36, the quantum Fokker-Planck approdds8], and the

present OPT approach. Each approach has advantages and o * W[ ]
disadvantages. For instance, the diagrammatic approach is ¢'=(0"=2, g”—m]l—
straightforward. However, it may not be good for a system n=0 J
with strong anharmonicity. The quantum Fokker-Planck ap- i i i
proach is a powerful approach for studying the time evolu-BY Performing the Legendre transformation, the functional
tion of a system with an arbitrary potential. Still, it can be I L¢] i written in the power series @f as

applied only for the high-temperature Gaussian white noise W]

or Gaussian-Markovian noise cases. The present approach is _ i OWnILYl n

complementary to the other approaches and has special ad- F[¢]_W[J]_Ei J 3J! _nzo 9T ml 1.
vantages in the study of a system with strong anharmonicity (A5)

at low temperature, where the other approaches fail. Such

problems involving tunneling processes in a double well sysAccording to the identity of the Legendre transformation, we
tem are left for future studies. obtain

(A4)
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i__ﬁr[Cb]__ - Gl é]
J= N n:og—_&b' . (A6)

Following the procedure of the inversion method, Egs.

(A3)—(Ab6) lead to

F[O][¢]=W[OJ[J=hL,]—Z hoo', (A7)
Tl ¢1=Wig[I=hg], (A8)
. 1 ; .
Lol ¢1=Wo [ I=hg]+ EIEJ W/3i[J=hg]
STl ¢1. i
x qu[%r Wi [I=hj], (A9)
and so on. Herda{)[d)] is defined as
hol 1= (fo ) 4], (A10)
that is, fo[ho[ 11= ¢',
) or OWioi[J
hy=- ——[;(;[.(ﬁ]. =" any
and
y IWr 149 J
Wi [J]= %u (A12)

The general forms olﬁ'n andI'[,; are given in[52].

APPENDIX B: PROPAGATOR WITH A HEAT BATH

We show the relation between the result[8f and the
propagatorK(t,t") derived from Eqs(5.10, (5.13, and
(5.19 below:

Kr(t—t")=Kqq(t,t") — Ky (t,t")
=Ka(t,t") —Ky(t,t")

=0(t—t") p( i )Sin[z(t—t’)]
(B1)
dz 2. o
= ﬂgm(—%A(z))e“ ), (B2)
Ka(t—t")=Kqq(t,t") —Kyy(t,t")
=Kt t") —Ky(t,t") =Kg(t'—1t), (B3

YOKO SUZUKI AND YOSHITAKA TANIMURA
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K33(T_TI):K33(t,t,)
1 < 2.
:En; (—ggA |wn|/ﬁ))
x e ten(r=7) (B4)

Kqg(t, 7) =Kyg(t, 7)

B
=Kg(7,t)=Kgy(7,1)= fo dr

X § dz eiwnTeZt i
27 hz+ w,

2. 2. )
X —%A(z)+gA(—|wn|/h) , (B5

1
Ko(t—t’ )Ez[ 11(61) + Kpo(t,17) + Kog(t,t") + Koot t7)]

ff [o(t—t")e* )+ gt —t)e*t' V)]

i

X %S(z)), (B6)

where w,, is defined byw,=2#n/B and
{=Np—vy 14, (B7)
A 1 (B8)
(2= 2M ,u,0+22+Z'y’
S( —i i A(2)—A(w, /%
=55 2 /ﬁ)z[ (2)=A(wq /)],
(B9)

The functionsA(z) andS(z) are given in[8] under the con-
dition that the quantityug in these functions is replaced with
M in this paper.

APPENDIX C: FREE ENERGY AT ZERO TEMPERATURE

In this appendix we calculate the free energy without a
heat bath at zero temperature. The expressions of the zeroth

and first orders of thé expansion are given in Sec. V. From
Eq. (3.8) the second-order contribution is calculated as
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i1 2 ' ’ /Y ’ h 2 ! <!
Wé[z][J]=g§ Eefcds ds{ex —ZaJCdt [Ke(s,t") +Ke(s',t")]I(t") + i—2a [Ke(s,s)+Ke(s',s")]

X

h fi
exp(i—4a2KC(s,s’)) - 1} —4 ex;{ —aJCdt’[KC(s,t’) +2K(s',t)]I(t") + i—az[%KC(s,s)

fi hl
+2Kc(s’,s’)]) exp{i—ZazKC(s,s’))—l +4 ex;( —ajcdt’[Kc(s,t’)+KC(s’,t’)]J(t’)+i—zaz[KC(s,s)

h f
+ Kc(s’,s’)]) ex;{i—ach(s,s’)) — 1” — EeM,quds[ eXp< —ZaLdt Ke(s,t)J(t) + i—ZaZKC(s,s))

T

% 2
fds’(—f dtKC(s’,t)J(t)+.—aKC(s,s’)>
c c i

X

5 2
fds'(—f dtKC(s’,t)J(t)+.—2aKc(s,s’)> —f dS’U dt Ke(s',1)I(t)
c c | C C

fl
-2 ex;{ —afcdt Kc(s,1)J(t)+ T EazKC(s,s))

2 2

_ ' ' 1 22 ’ (E '
fcds (LdtKC(s DI ]+4M Eefcdtdt {2 ~Kc(tt)

+4fit— Lds ds Kc(t,s)J(s)KC(t’,s’)J(s’)KC(t,t’)D. (C1

Substituting T=0 into the propagator&. of Egs. (5.8), Here we have introduced the functitu{x) defined by
(5.17), and(C1), the free energy at zero temperature, which
is derived fromF s= —(i/hB)Wg, is given by

2 2(—
Fs=FaotFantFoz, (C2) L(X)zm(i_) (Ei

xXh xXh
2MQ)_7_'”(2MQ)}' (6

1
Fﬁ[O]:EﬁQ’ (€3 whereE;(x) is the related exponential integral ands the

Euler constant.
1 After performing the Legendre transformation and using
)]_ 24 the relationF 5= — (i/48)I'%, we obtain the free energy at
(C4)  zero temperature in the form

h 1 h
= 2 — iy
Far1 Ee{exp< 2a MO ) 2 ex;{za MG

E2 % 5 _
—-_ < 2 2y _ —_ 12 F&—Fﬁ[o]‘l‘ F&[l] (C?)
Fa2) Zﬁz[exp{4a SMQ L(4a%) 4ex;{2a ZMQ)
X L(2a%)+4 ex;{ a? L(a?) =@—E exp —a? —EMQZi (C8)
2MQ 2 € 2MQ ) 2 2MQ°
+ 2B | en] 202"
aMQ a“exp ca 2MQ As mentioned in Sec. lll, the free energy is calculated from
L the above equation by obtaining the minimal pqint g of
942 1.2 = Eq. (C2) or (C8). We present the numerical results for,Us
2a e"p( 22%5Ma ] 16" €9 Taple I.
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