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Simple measure for complexity
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A measure of “complexity” is proposed, based on appropriately defined notions of “order” and “disor-
der,” which has a considerable degree of flexibility in its dependence on these concepts. The possible func-
tional dependencies which result encompass those of many earlier definitions of complexity. The proposed
measure is in principle easy to calculate and has the property of an intensive thermodynamic quantity. With
appropriate choices of parameters it behaves similarly to “effective measure complexity” for the logistic map.
It is also a generalization of the “normalized complexity” of pez-Ruizet al, but does not suffer from
“over-universality.” [S1063-651X99)03702-3
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[. INTRODUCTION from the disadvantage of being difficult to compute. An ex-
ample is algorithmic complexity7,8], the length of the
Many authors have commented on and discussed the muhortest possible program necessary to reproduce a given ob-
tiplicity and variety of definitions of complexity in the litera- ject. The difficulty arises in proving that a given program is
ture ((1—6], and references thergirCurrent definitions may indeed the shortest. In. contrast, our measure for complexity
be divided into three broad categories. First are those defintan be calculated easily. Notwithstanding the ease of com-
tions which take complexity to be a monotonically increas-putation, our measure behaves similarly to the effective mea-
ing function of disorder; examples are algorithmic complex-sure complexity 17] for the logistic map.
ity [7,8] and the various entropid®—11]. As numerous as An additional advantage of our complexity measure is
definitions of the first category are those in which complexitythat it is independent of size effects in a manner similar to
is a convex function of disorder; i.e., complexity is a mini- intensive thermodynamic quantities such as temperature or
mum for both completely ordered and completely disorderedPressure. While it is possible to argue that larger systems are
systems, and a maximum at some intermediate level of digecessarily more complex simply by virtue of their greater
order or order. To this category belong logical defit#] and size, we seek a complexity measure which does not increase
thermodynamic deptfi]. Finally, there are some definitions Simply because a system becomes larger. This advantage is
which take complexity to be loosely the same as order; thes@Ot unique to our proposal; algorithmic complex(i§] as
identify complexity broadly with the level of self- well as some other earlier proposals for complexity share it
organization and self-organization with ordsee[3]). The  [18,19.
three categories of complexity are summarized schematically Feldman and Crutchfiel20] have independently arrived
in Fig. 1. at our complexity measure for one special set of parameters
In recent studief13—-19 we have introduced another by @ procedure they refer to as “repairing nonextensivity” of
measure of complexity which, depending on the choice oftill another measure, “normalized complexity,” put for-
parameters, may display the behavior of any of the thredvard by Logpez-Ruizet al. [21]. Indeed, for this parameter
categories of Fig. 1. The impetus for developing this measur&€t the measure of lpez-Ruizet al. will be shown to be an
was provided by the question of whether biological and othefPProximation to our measure. Feldman and Crutchfield
complex systems evolve so as to optimize complexity, O,_critic_ize the repaired measure as be_ing “over—universal”;_
putting it the other way around, how such systems would-€-, it has the same dependence on disorder under all condi-
evolve if complexity were to be maximized. An approach totions. We will show that this is not the case.
this problem can be based on optimization thgdj, but to
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make this approach tractable one needs an easily evaluate =
measure for complexity. While many of the previously pro- .
posed definitions are intuitively appealing, they often suffer 3 E’ é’
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Il. MEASURES OF DISORDER, ORDER,
AND COMPLEXITY
A. Disorder and order

Since we will express our complexity measure in terms of
disorder and order, we first need to present our measures for
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the latter. As pointed out earlier by one of [&2-24, defi- ,/ °°=0 p=4 . - \._ i
nitions of order and disorder can suffer from the same prob- ! K \
lem regarding system size as those of complexity. Often en- i
tropy is taken to be an appropriate measure of disorder.
However, this tacitly assumes that the size of the system, as
measured by the number of states available to it, does not
change. In fact, if the number of states of the system in-

creases then the_ entropy and therefore the disorder of _the FIG. 2. “Complexity” T, as a function of “disorder”A for
system will also increase for no other reason than the in-

. . . , B=0. Shown are one case wi increasing monotonicall
crease in the number of states. To circumvent this problem, ﬁ;ithﬁA (a=1/4, B=0), one caset\l;v]?ftf 5 decregsing monoton?/-

has been proposd@2-24 that “disorder” be defined as cally with A (=0, B=4), and two cases whet,, shows a
A=S/S 1) convex dependence &b (a=1, B=1/4; a=p=1).

Both “order” and “disorder” lie between 0 and 1 and are

where S is the Boltzmann-Gibbs-ShanndiBGS) entropy  freed from the size effect. It is now possible that entropy and

[9.10] “order” increase together as the size of the system increases.
This has been shown to occur for certain simple, well-
N defined examples, as well as for certain aspects of the uni-
SE—ki_El pilnp; . (2 verse, including evolution and phylogefy3—15,22—2%

p; is the probability of staté of the N states available to the B. Complexity

system, andk is the Boltzmann constant, appropriate to a For complexity measures of categoryHig. 1) complex-
physical system. It can be replaced by any other appropriatiéy is a monotonically increasing function of disorder. Since
constant for other types of systerfesg., In2 for information  the definition[Eq. (1)] of disorder has advantages over en-
systems or omitted for a dimensionless entrofgyVhen re-  tropy as a measure of disorder, any monotonically increasing
ferring to specific measures of disorder, order, or complexityfunction of disorder as defined here would also be an appro-
we enclose these words in quotation marks to distinguish thpriate measure of complexity for this category. For the third
measures from the general concepts. category of complexity measures, where complexity is taken
In the simplest case, that of an isolated system, the erio increase with order, any increasing function of orfdex.
tropy maximum occurs at the equiprobable distributipp, (4)] would similarly be an appropriate measure. For category
=1/N, 1<i<N, yielding Il complexity measures, where complexity is a convex func-
tion of disorder, one of the simplest possible functional
forms for complexity is the product of “order” and “disor-
der,” AQ=A(1-A)=Q(1—-Q). All three categories of

. . . complexity measures can thus be subsumed by a measure of
as the maximum possible entropy. However, in many Caseg o torm

this maximum is not attainable, for example in grand canoni-
cal equilibrium, when the mean energy and mean number of (5)
particles are fixed. Consider a system of particles with a
given total energy and assume that it is not at equilibriumwhich we call the “simple complexity of disorder strength
We now isolate the system and let it relax to equilibrium.and order strengti.” When 8 vanishes andv>0, “com-
Since the system is now isolated neither the total number gflexity” is an increasing function of “disorder,” and we
particles nor the total energy can change. The equilibriumhave a measure of category I. Whanvanishes ang3>0,
state is characterized as that state with the maximum entropicomplexity” is an increasing function of “order,” and we
subject to the constraints on particle number and total en-have a definition of category Ill. When botl and 8 are
ergy. This maximum entropy will be less than that corre- nonvanishing and positive, “complexity” vanishes at zero
sponding to the equiprobable distribution, and is the appro“disorder” and zero “order,” and has a maximum of
priate maximum entropy to be used in the definition of
disorder for this system. This was done in our study of a (T o) max= @ *BPl(a+ B) * P
nonequilibrium ideal ga$13]. When such constraints are
absent, as in the microcanonical ensemble, and the entropy
maximized, one naturally finds the larger entropy of 8].
“Order” is defined as

Smax=KINN ()

T=A%0F=A%1-A4)F=0F(1-0)",

(6)

A=al(a+pB), Q=pl(at+p).

Several cases for both and 8 non-negative are shown in

O=1-A. (4)  Fig. 2. The qualitative behavior if either or 8 (or both is
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negative, as well as possible normalizations and transforma-  0.25 7
tions to extensive quantities, are treated briefly in the Appen-
dix.

Whena or g are both positivd’, ; can be interpreted in
terms of the popular notion that complex systems are often
nonequilibrium systems. As can be inferred from the discus-T"
sion of the maximum entropy in the preceding sectifin, 11 u{

=1-5/85=1-95(S49/Sqis a measure of the dis-

tance from equilibrium; in fact, Ebeling and Klimontovich

[26] introducedS,,— S as a correct measure of distance from
equilibrium where the equilibrium state is achieved by the
isolation procedure described above. Thus, for nonequilib- 0 ' ' ! ' !
rium systems, our simple measure of complekiyg. (5)] is 85 3.6 8.7 . 38 3.9 4
a function of both the “disorder” of the system and its dis-
tance from equilibrium. “Complexity” vanishes either if the
system is at equilibrium, implying maximum “disorder,” or .
if it is completely ordered, implying maximal distance from SYmPol sequences of lengthand takes the limit ag— .

equilibrium. Only if the system has some less than maximal!" Symbolic dynamics symbols are assigned to bins, and
“order” and is not at equilibrium, does it possess a nonva-S€duences are obt:?uned as the strings of symbols in consecu-
nishing level of “complexity.” tive steps. Finally, in calculating EMC Wackerbauet al.

used a generating partition, i.e., one based on the dynamics
of the logistic map, to obtain the binning. On the other hand,
IIl. THE LOGISTIC MAP—AN EXAMPLE in calculatingT';; we used a homogeneous partititegual

To illustrate the properties of our proposals for measure$iZ€ bing, used effectively symbol sequences of length 1 to

of complexity we choose the logistic map as a concrete eXgalculate the en.tro.py itself, not the local slope, and did not
ample: need to take a limit.

Additonal calculations based on thé@entropy[11] of
@) order 2, not the BGS entropy, were done. They showed
qualitatively the same behavior as those based on the BGS
entropy.

FIG. 3. “Complexity” T";; of the logistic map.

Xn+1=Xp(1—Xy).

The logistic map is a well-studied simple system which dis-

plays a rich variety of behaviors. Depending on the value of

the parameter the map may show a stable point, oscilla- V. RELATION TO SOME OTHER COMPLEXITY

tions, period doubling, or chaos. In our calculations for fixed MEASURES

r we discarded the first 10 000 points and calculated an ad- Lopez-Ruizet al. [21] have proposed a complexity mea-

ditional 100 000. The values afwere then assigned to 1024 sure which we now show is an approximation to duy,.

bins of equal size between 0 and 1. The probabilities that thef_h - lized lexitv” C is defined b

points are in the various 1024 bins were then used to calcu- eir “normalized complexity”C Is defined by

late the entropies and other valuesvas varied between 3.5 — , )

and 4.0 in steps of 0.001. C=AD (Lopez-Ruizet al), ®)
“Disorder” is proportional to the entropy here, since the

number of possible states of the system, just the number d¥here

bins, does not change from one valueratfo another. The N )

refinement of the calculations (1024 bjnis enough that\ D=3 1 9

behaves identically to the ‘Rgi dimensionD™) ([5]—Fig. = \PTN ©)

6). Thus “disorder” itself does not lead to any new results,

since entropy has often been proposed as a measure for cogkpresses the notion of “disequilibrium” of a system of

plexity. . _ o N accessible states and measures the “distance” of a system
The behavior of the “complexity'T’;;, shown in Fig. 3,  state, given by the probabilitigs,, p,, ...,py, from the

is more interesting. It behaves similarly to the “effective system state of equiprobability, defined bp;=p,

measure complexity'(EMC) of Grassbergef17], as calcu- =...=py=1/N. It vanishes only in microcanonical equilib-

lated by Wackerbauest al. ((51—Fig. 10. It has the same rjym.

general form; major maxima as well as less major ones occur Wwe develop a Taylor expansion 6 around the equi-

at the same values of as do the plateaus. Different are the propable distribution, denoted by {.) Noting from Egs.
relative values of the peaks. WHyy; behaves similarly to  (1)—(4) that

EMC is not readily apparent; nor is the breadth of the class

of systems for which this is the case. The two quantities are, N

after all, calculated in very different ways. Although both >, pilnp,

would be classified by Wackerbauet al. as structural mea- 0=1+ =1 0.=0 (10)
sures of complexity, EMC is defined in terms of the local InN ’ 0

slopes of the information entropy in an attempt to obtain a
dynamic measure. Furthermore, EMC uses these slopes ftie required expansion is
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systems. “Complexity”I";; is calculated in the absence of interac-
tions and “disorder” in the presence of interactions. Solid line:

B 1N ferromagnet (interaction parameterJ=1, external field=0.3);
) WD T 11 dashed line: antiferromagnénteraction parametei=—1, exter-
nal field=1.8).

As the second term of the expansion vanishes, we see thaks probability 1. FoN= 100 there are only a total of 101
“disequilibrium” D is, to within a factor dependent ax, distributions which lead td&";,=0.

just a second-order expansion@faround the equiprobable  Feldman and Crutchfielt20] have independently arrived

distribution. Thus the “normalized complexityC satisifies  at ourI";; from C by a procedure they refer to as “repairing
nonextensivity.” However, they criticizel';; as being
. 21NN 21NN “over-universal”; i.e., it is uniquely determined b¥. This
C=AD=A——0= (12 criticism applies implicitly to our complexity measure for
N any values ofe and 8, and to any other measure of com-
plexity which can be expressed solely in terms of disorder.

Let us also note that the criticism of a somewhat uncon WO complexity measures which Feldman and Crutchfield

VinGing maximum com Iexit)ﬁ_? noted recenty27], does consider superior in that they are not “over-universal” are
not a gI to oul’ Ant%neodo’ and Plastirj@7] fouﬁd that the excess entropfeffective measure complexifi7]) and
not apply - the statistical complexityC, [28,29. They studied these

C is maximum only for distributiongp;} where onep;  measures for simple one-dimensional spin systems with in-
:2/3 and all othe_rpi are equal. On the other hand, our {araction parametet and found thaC,=A_, and the ef-
maximum complexity occurs at fective measure complexity is given hy;_,—A;, where
Aj_o is (in our nomenclaturethe disorder of the system in
N the absence of interactions, ang the disorder in the pres-
— E pilnp; ence of interactiong30]. They found that the dependence of
_ =1 E (13 both C,, and EMC onA; varies with the value od. It is in
2 this sense thaC,, and EMC are not “over-universal.”
Let us do a similar calculation here. We calculhtg for
the spin system in the absence of interactiods Q) and
i 4y ' . consider its dependence on disorder in the presence of inter-
constraint. We give just two of the simpler examples which,ctions g#0). Sample results are shown in Fig. 4. We see
yield maximum complexity, i.e.A=1/2. In the first ex-  hat the two curves, one for a ferromagnet and the other for
ample,n of the states have probabilityp*, and the other 5 antiferromagnet, are different. Therefore our complexity
N—n states have probability (inp*)/(N—n). For N measyre is not “overuniversal” in the same sens€asand
=100 andn=9 we findp*~0.109 57; this distribution can gpmc are not: “complexity” is obtained from “disorder”
be realized in more than 1dways. The second example cajculated under one set of conditions, and its dependence on

distribution hasn, states of probabilityp* andn, states of  «gisorder” calculated under different conditions is consid-
probability p** ; the othemN—n; —n, states have probability greq.

(1—nyp* —nyp** )/(N—n;—ny). Taking N=100 again
andn;=n,=5, we find thatp* =0.002 andp** ~0.177 05
yield another set of distributions giving=1/2. These dis-
tributions can be realized in more than'i@vays. On the We have proposed a definition of complexity which en-
other hand, low complexity situations lead to a comparacompasses the qualitative behavior of most previous defini-
tively small number of setp;}. ThusI'y;=0 implies one of tions. Depending on the values of the disorder and order
only two types of distributiondp;}={1,0,...,¢ or {p;}  strengths, it may increase monotonically with “disorder,”
={1/N,1/N, ...,1N}. The ordering of the states has beenincrease monotonically with “order,” or reach an extremum
arranged here so as to assign the label to the state which value at intermediate values of “order” and “disorder.”

TFM.

InN

and there are many distributiofip;} which can satisfythis

V. DISCUSSION
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Furthermore, our definition is easy to calculate in principle
and provides measures of complexity which are independent
of extensive size effects. Atmanspactatral. [6] have ar-
gued that measures of complexity can be classified as deter-
ministic or statistical, corresponding broadly to our category
| (complexity increases monotonically with disordemd 0
category ll(complexity shows “a globally convex behavior
as a function of randomnesg’respectively. They argue that
measures of category | are first-order statistical measures,
whereas those of category Il are second-order measures. It
would seem that, at least in simple cases, our proposed defi-
nition fits into their arguments in that when complexity 0
shows nonmonotonic behavior it is a function of twe-
lated statistical measures, “disorder” and “order.” o . ) )

It is important that the “complexity’T’;; behaves as ef- I_:IG. 5. T_he qualitative behavior df 4 for the p055|b!e compl-
fective measure complexifi1 7], one of the more frequently Nations of signs otr and 5. All curves show “complexity” as it
used measures of complexity, for the logistic map. Why thischanges from zero “disorderfon the left to maximum *“disor-
is the case will require further investigation. However, it is ad€" (©n the right. Itis assumed that both and 5 are nonzero.
significant finding since the “complexity’T ;; is perhaps
easier to fathom than effective measure complexity and since007 (J.S.S) and EU Contracts No. ICOP-DISS-2168-96
I'y, is simpler to calculate than EMC. and No. ERB CH RXCT 92 0007P.T.L.)

These results negate what would seem to be reasonable
contentions that complexity cannot have a simple measure
and that it cannot be expressed simply in terms of entropy or APPENDIX: POSSIBLE MODIFICATIONS
disorder. Indeed’,; is a simple quantity and is defined OF OUR COMPLEXITY MEASURE

solely in terms of the entropy and system size. Nonetheless, |, gctual cases one might expectand 8 in Eq. (5) to be

it behaves as one would expect for the various complexityysitive and nonzero, and this case can be shown to yield
categories and even approximates the behavior of EMC we k/pe Il complexity (see Fig. 2 It is of course possible in

for the logistic map. Our results therefore support Simonyrinciple that eithew or 8, or both, be negative. The quali-
[31], who argued that the description of complex systemsayive hehavior of", 4 for the four possible combinations of

need not be complex; i.e., complexity is not a conserve%ignS ofa and 8 are shown in Figs. 5 and 6

quantity. . _ We also wish to hint at two possible further modifications
The very simplicity of our complexity measure adds to its of Eq. (5).

usefulness. If we were to work only with simple model sys-
tems, we might be able to make use of more involved com-
plexity measures, but for real systems these will rarely be 1. Normalization
available. Consider biological systems, which are among
those for which concepts such as complexity are thought t&

be important. Many of these systems are poorly understoo nd “disorder,” it may be convenient to normalize “com-

e suee s o e oot pdEX1Y” 0 s alue t he exremum. For tese cases we
. . define the normalized “complexity” as
able to make an estimate of the number of states available to
such systems and the relative frequencies of the states. This
would just suffice to calculate “disorder,” most likely at p=0
some coarse grained level of description, and through “dis-
order” our simple measure of complexity. However, at the
present state of our knowledge we are far from having
enough information to calculate many of the other complex-
ity measures, such as effective measure compld4ifj or 1 0
statistical complexity28,29. Nonetheless, many important <0 o0
guestions, e.g., the suggestion that neutral evolution can oc-
cur only under conditions of isocomplexif{t8,19, require
that we be able to evaluate some measure of complexity if o=0
we are to begin to attack them.

[=]
o

For the cases where and 8 are of the same sign and
ere is an extremum in the relation between “complexity”
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L _(atp) A _ _
Faf—aaﬁg A% 0<, 0p<1 | 0>a,B; 2 0p=1/up).
(a+p)@th _ g
I—BA“(l—A)B 2. Related extensive complexities
a’B
Although we have maintained up to this point that com-
(a+p) P plexity should not in general be an extensive quantity, occa-
=—————01-Q)~ (A1) : . : X T
a®BP sionally it may be desirable to have an extensive complexity
measure. If this is the case, one can simply remove the nor-
Then the limits on the normalized “complexity” are malization factorS,,, from the definition of “order” or

“disorder” or both [Egs. (1)—(4)] to obtain the following

0<TI p<1(e,>0), extensive “complexities”:

1<f‘aﬂ<00(0>a,,8). (A2) S*(0)A=S%(1—S/Sya”
In the latter case, it might be more appropriate to take the Gup= A*(Smax—S)P= (5 Sma) “(Smax— S)* (A3)
reciprocal_of complexity, which could be called “simplic- S*(Smax—S)?,
ity,” to arrive at
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