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The decay of structural correlations in the classical one-component plasma is analyzed by calculating the
poles of the Fourier transform of the totgairwise correlation functionh(r) for two integral equation
theories, the soft mean spherical approximation and the hypernetted(EiNG@). We show that for all except
the largest values of the plasma coupling conskanthe leading-order pole contribution provides an accurate
description ofh(r) at intermediate range, as well as the ultimate asymptotic decay. The crossover from
monotonic decay at weak coupling to exponentially damped oscillatory decay at strong coupling is shown to
arise from the same mechanism as that which occurs for charge correlations in binary ionic fluids. We calculate
the values of" at which the crossover occurs in the two theories. The role of higher-order polesviimic
the HNO other singularities in determining the intermediate range behavidr(10f for strong coupling is
discussed. We investigate the properties of the solutions of the integral equations in the strong cbupling,
—o0, asymptotic high-density limi¢AHDL ). Padeapproximants are employed in order to test the validity of
the scaling laws proposed for the potential energy, direct correlation function, and for the poles and their
contributions toh(r) in the AHDL. Our numerical results provide strong support for the validity of the
theoretical predictions concerning the AHDIS1063-651X99)01002-9

PACS numbsg(s): 61.20.Ne, 61.20.Gy, 64.18h, 52.25-b

I. INTRODUCTION are well-described by Debye-ldkel theory in the weak-
coupling regimel’<<1. At high couplings the hypernetted-
The one-component plas@CP) can be regarded as the chain (HNC) approximation has proved the most successful

simplest model of an ionic fluid. It describes classical pointof the standard theories and is accurate for a wide range of
ions, of chargee, interacting via the Coulomb potentief/r  T':0.05 <T'<50[3]. For larger values oF , the HNC yields
and immersed in a uniform neutralizing background ofradial distribution functionsg(r) with less pronounced
charge. In spite of its simplicity, the OCP plays a key role inmaxima than the corresponding Monte Carlo res[dtd].
the physics of dense stellar materfa] and as a reference Bgetter agreement is achieved by resorting to MH®di-
fluid for determining the properties of certain liquid metals, fioq HNC) approximations but these retain the main features
the effects of electron screening being treated perturbativelgf the original HNC[5]. In a remarkable early paper, Ng]

[2]. The statistical mechanics of the OCP are.well StUd.ie.dshowed that the HNC could be solved numerically, giving
Indeed near equal effort has been expended in determinin

the properties of the OCFL] as for those of the hard-sphere Hable solutions, fol® up to 7000 or thereabouts. This is

fluid, which serves as the primary reference system fOIpartlcuIarIy striking when one notes that the Monte Carlo

simple fluids where the interatomic potentials are short—s'mUIatlons predict a freezing transition in the OCP for

ranged 2]. An important feature of the OCP is that its equi- ~ 178[6,7]- In other words, solutions of the HNC exist fbr
librium properties depend on a single dimensionless param/€ll into the metastable fluid region. Ng] also showed that

eter, the plasma coupling constant the decay ofg(r)—l_E h(r), in the. range 1&r/gwss20,
could be fitted by a singléexponentially dampedsinusoidal
e? function[see Eq(41)] for 200<I"<7000. Such a result im-
I'=p_— 1 plies that at longer and intermediate range, pairwise correla-

aws’ : . ; :
WS tions are governed by a dominant conjugate pair of complex

where B=(kgT) !, kg is Boltzmann’s constanfT is the pO|ES inﬁ_(q), the Fourier trans_forr_n ofi(r). This observa-
temperature, andyys is the Wigner-Seitz or ion-sphere ra- tion provided some of the motivation for the present study,

dius, which in three dimension8D) is which analyzes the decay of pairwise correlations for the full
range ofl", i.e., from the weak-coupling, Debye-kkel re-
ays= (3/4mp)*° (2) gime whereh(r) exhibits monotonidexponential decay to

the very strong-coupling, — e, limit.
with p being the number density of the ions. All the standard In order to investigate correlations in the OCP, we employ
integral equation theories of liquids and many of the moreand, where necessary, improve upon methods developed in
recent descendants have been applied to the OCP and theiur earlier studies of the asymptotics of correlation functions
regime of validity has been ascertained by comparison withi8—11]. We focus on two integral equation approaches,
the extensive computer simulation studies which exist fomamely(i) the HNC, which, like its more sophisticated rela-
this model[1]. The structure and thermodynamic propertiestives, can only be solved numerically so that the determina-
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tion of the poles ofh(q) is rather demanding, and) the  tionsinh(r) has remained somewhat obscure. Here we show
SMSA (soft mean spherical approximatiofL2], which has  that the mechanism is the same as that which determines the
the advantage of providing an analytical solution for theonset of charge oscillations in a binary ionic fluielectro-
OCP while still yielding reasonable results for structure andYt®) [10], described first by Kirkwood16]. We provide ac-

for thermodynamic propertieg(r) can take on negative val- curate estimates dfy within the HNC and the SMSA.

ues in the SMSA but only for large couplings, i.E=400. Our paper is organized as follows. In Sec. Il we summa-

. . ize the relevant integral equation theories and describe the
AIFh'cr)] ugh tthfrsi two thﬁrc:”eti appﬁ::etosef\l/ae\;gl \::eor%:]gfr??znt_heory for the asymptotic decay of pair correlations in the
origins, at strong coupling they s . . %cP. Prescriptions are given for determining the poles of
tures[13-15. This was ascertained by studying their ther-A(q) and their contributions t(r) in both the HNC and

modynamic properties, as related to the closure relation . : . .
which define the two approximations. In particular, the varia- MSA_‘ Th_e possible role_ of smgularltl_es O‘hef than simple
oles is discussed. Section Il C contains a brief account of

tlpn_al free-energy fl_mctlo_nals of the paur fun(_:tlor_ls are veryfhe properties of the OCP in the AHDL. In Sec. Il we de-
similar. Such considerations lead to investigations of the

L TR X scribe the results of our calculations, comparing our results
AHDL (asymptotic high-density limif defined as the strong- for the leading-order pole with those obtained by 4§ in

coupling limitI'—, in which the compressibility vanishes. s fiting procedure. We show that the leading-order pole
It was establishefll3—19 that the HNC and SMSA for soft-  contrinution in both the HNC and SMSA provides an accu-
core potentials, together with the variational perturbationzte account oh(r) for separations down to second nearest
theory [based on the PYPercus-Yevick treatment of the neighbors(not just asymptotically provided I'<1500, at-
hard-sphere reference fljcbecome identical in the AHDL.  testing to the usefulness of the pole expansion. While the
In this limit the theories have the same Madelung energyprocedures we have developed for calculating the poles work
which is an exact lower bound to the true potential energywel| at leading order, there are severe difficulties in deter-
and the pair direct correlation functions can be given anining higher-order poles. Section Il B discusses how spu-
simple meaning, i.e., as overlap volumes for hard-core fluid$jous poles may be generated from numerical solutions of the
and asnteractionsbetweersmeared particlefor soft poten-  H4NC and other integral equation theories, pointing out that
tials. More significantly for the present work, it is conjec- some earlier publications have probably reported such spuri-
tured that for a certain wide class of potentials, the poles ofg poles, believing these to be genuine. In Sec. IlIC we
h(q) should exhibit some universal features in the approacltonsider second{next-to-leading- order contributions to

to the AHDL. These features are summarized in Sec. Il C buh(r). We show that in the case of the SMSA the contribution
the main result is that in the AHDL the poles in the OCPfrom the next-to-leading-order conjugate pair of poles leads
should be identical to those arising from the PY treatment ofo a splitting of the second maximum h(r) for very large
hard spheres in the limit where the packing fractipr 1,  values ofl". Similar splittings are found in the HNC but we
which once again corresponds to the vanishing of the comargue that these are likely to be associajgdmarily) with
pressibility. In an earlier pap¢i4] by one of us, the AHDL  other singularities, i.e., logarithmic branch points which
of the OCP was investigated using the SMSA and Ngk should arise in this approximation. Section 1l D describes
numerical solutions for the HNC. Here we readdress thighe trajectories of the OCP poles in the complex plane as a
limit by performing new calculations and using the methodsfunction ofI', comparing the results with those for the hard-
of pole analysis developed ii8—11]. In addition, we carry sphere fluid as a function of. Finally, in Sec. Il E we focus
out Padeanalysis on data from both the HNC and SMSA on the results of our Padanalysis of structural properties
calculations to examine the possible scaling behavior of variand the potential energy in the AHDL. We make some con-
ous quantities in the approach to the AHDL. This enables usluding remarks in Sec. IV.

to test further the earlier conjectures and to ascertain what
(large values ofl" are required before the properties of the
OCP are those characteristic of the AHDL, i.e., when scaling
behavior, with the small parameter=1— 5(I"), is appro- A. Summary of integral equation theory of liquids

priate. Although one can associate ideal liquid with the The standard approach to the static properties of liquids
limit »=1 and imagine performing some perturbative ex—[z] is based upon the Ornstein-Zernik®Zz) integral equa-

pansion ine to describe the properties of dense liquids, it iStion, which for a homogeneous one-component fluid reads
not obvious that such a procedure should work. Recall that

n=1 lies well beyond the close-packing limif=0.74 for , , ,
hard spheres. nn=c+p [ dnde—rhed ), @
The universality associated with the AHDL does not ex-

tend to intermediate values df. Unlike the hard-sphere \herer is the position vector. This equation defines tie
fluid, where only conjugate pairs of complex poles arise andect correlation functionc(r), in terms of the total correla-
h(r) is always oscillatory, the OCP develops a pair of pureijon function, h(r), which is in turn related to the radial
imaginary poles at some particular valuelof here desig- jistribution function,g(r), by h(r)=g(r)—1. In Fourier

nated byl'y, and forI'<I'y the ultimate decay ofi(r) is  gpace the OZ equation takes the simple form
monotonic(exponentigl. Several attempts have been made

to determinel’x , using theory and simulatiofl], and this &(a)
quantity was expected to lie between about 1 and 3. How- h(g)= (—9 (4)
ever, the precise mechanism leading to the onset of oscilla- 1-pc(q)

II. THEORY
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Heref(q) denotes the 3D Fourier transform of a spherically B. Asymptotic decay of correlations
symmetric functionf(r), i.e., The theory for the OCP outlined below follows closely
) the analysis made for the asymptotic decay of correlations
f(q)=477fwdr F26(r) sin(qr) , presented i8] for simple fluids and iff10] for ionic fluids.
0 Outside the critical region, the ultimate decay of the direct

(5) correlation function of a simple fluid at large distanceis
sin(qr) given by c(r)— — B¢(r), which in the case of the OCP
qr translates inta(r)— — Be?/r. It is therefore convenient to
define a short-ranged direct correlation functiof(r), by
subtracting the long-ranged Coulomb decay

1 o N
f<r>=ﬁfo dq ¢ (q)

It can be shown using diagrammatic analyst$ that for a

system characterized by a pairwise interaction poteritfa) B€?
the exact closure to the OZ equation is c'(r)y=c(r)+ - (10
h(r)+1=e A +h(r)=c(r)=b(r) (6)

The Fourier transform of(r) is then

where—h(r) is thebridge function, the sum of albridge or
elementarydiagrams. N KD
The HNC closure to the OZ relation simply sets the pc(q)=pc (q)—q—, (11)
bridge function in Eqg.(6) to zero at all distances, i.e.,
brnc(r)=0. This closure can be conveniently written as  \\hare K2DE47TpFaWS. «p is the inverse Debye screening
c(r)+ B(r)=g(r)—1—In g(r)=0. @) length. We assume thafr(r) is exponentially decaying so
that its Fourier transform®'(q) has only even powers in the
For a specified potentiap(r) the HNC can be solved nu- Taylor expansion abowf=0,
merically using an iterative proceduf2].
The HNC plays a pivotal role in developing other closure cS(q)=cO+cPgP+c¥q*+c®gt+.... (12
approximations to the OZ relation. If the bridge function

—b(r) were known, one could determine taractstatistical Consequently&(q) andﬁ(q) are even and we can write
mechanics by solving the HNC for theffective potential

2

¢°(ry=(r)+ B b(r). Althoughb(r) is not knownex- 1 (= A

actly, it has been argu€db] that this function carrieaniver- h(r)=— f dq gsin(qr)h(q)

sal features which are determined by the bridge function for 2m°rJo

hard spheres. In the MHNC approach the HNC equation is . A

solved for an effective potentiab®™(r) which employs the = f dq qéqu(P. (13)
hard-sphere bridge function calculated with a suitably chosen A7?ri ) = 1-pc(q)

hard-sphere diameter.

The MSA (mean spherical approximatipis a closure to Any poles at complexq=a;+iag are then given by the
the OZ relation designed for systems with a hard-core repulzeros of the denominator,
sion, i.e.,¢(r)=« for r<d, whered is the hard-core diam-

eter. This closure reads 2

1- pi(a) =1 pE*'(q) + ~2 =0, (14
g(r)=0, r<d and c(r)+B¢(r)=0, r>d, q

® The integral in Eq(13) can be carried out by contour inte-
where the first equation is an exact result and the secon@ration. If no singularities other than simple poles exist, then
constitutes the approximation. The MSA also implies a spechoosing an infinite radius semicircle in the upper half-plane,
cific choice of bridge function, namelpysa(r)=g(r)—1  We obtain
—In g(r) for r>d. The functiongy(r) andc(r) in the MSA _
are discontinuous at=d. In the case of soft-core potentials eldn’ . Qn
such as the OCP, one can choose a particular hard-core di-h(r):; An r with - An=-— 27p2(de(q)/dg),
ameter,R, so that the MSA gives P q215)

—_pt)—
9(r=R"=0, © where the operatod/dq represents the derivative with re-
i.e., g(r) can be forced to be continuodalthough its first ~SPect to the variable andqy, is thenth pole.
derivative will still be discontinuous at=R) through care- From Eq.(15) it is straightforward to see that the ultimate
ful choice of the hard-core diameter. The conditi@ can  decay ofh(r) should be driven by the pole or poles closest to
be used together with Eq8), with d=R, to define the the real axigsmallestay). If this pole is pure imaginary, i.e.,
SMSA closure, an extension of the MSA to soft-core potendf dn=iay, then the leading decay is determined by
tials. ClearlyR is an effective hard-core diameter and the
resultingg(r) can be regarded as an acceptable solution to h(r)~A
the MSA for the soft potential.

e~ o'

- (16)
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In turn, if the pole closest to the real axis is the complex ) 1
numberq,= a;+iag, then it follows that— a; +iay is also 1+ph(q)= oo (20)
a solution of Eq(14) and the ultimate decay d¢if(r), deter- pc(a)

mined by the conjugate pair of complex polesy; +iay, is . ] .
one expect$(q) to have branch points at= * 2i ¢, also.
This singularity leads to another term in the asymptotic ex-

Tt )
h(r)~|7&|e 0 (@il 0) 4 g-itayr— ) pansion ofh(r),
r
~ 7;0" e*aor 72a0r
~2|A| - cog a;r — ), 17 h(r)~A . +A?F(r) > (22)
r

where we have used the fact that the amplitudes oftttend
— poles A¢E|Ai|e:iai have the same modulubA*| where F(r) is a function that vanishes like 1fin as r
=|A‘|=|LA| and their f;ases satisty — — 6~ =6 ’ —oo, This function can be obtained explicitly by contour
Witr;n th’e MSA we (Fa)xpect the only singula_ritiés t0 be an integration around the branch cut%i(n the upper complex half-
P . ) . plane. Sincd-(r) vanishes like 1/If(r), the second term on
infinite number of simple poles. However, in other approxr(3163 right-hand side of Eq21) should be much smaller than

rnratlo:? '?PL:ChHlil‘sC tf|1e ':Ng tOtrhn?irn smtgﬂ]ulaarltles afreihlngi(:e te first except at short and, perhaps, intermediate range.
present. The closure dete es the decay ot the direct 1o argument can be generalized to all fltemplex

correlation function to be ~ )
polesq, of h(q) and the expansion df(r) then becomes

1
c(r)~—,8¢(r)+§h2(r)+-~ (18) et i 20y0
h(r)=2, Ay——+ >, AZF.(r)

(22)
which follows by expanding the right-hand side of E@). '
Therefore one expects ' (r)~\(r) with A(r)=3h?(r). If

the pole closest to the real axis is a pure imaginary pelg Further details of the derivation df,(r) can be found in
then the asymptotic decay of the total correlation function ig17] where a similar discussion was given for the HNC treat-
given by Eq.(16). Hence\ (r) ~AZe 2%/2r2, This behavior ment of binary ionic fluids.

is associated with logarithmic branch point singularities of

)’;(q) at q=*2iay, namely 1. Poles in the SMSA
In Appendix A we give the analytical solution to the
- 127A% 1-ig/2ay SMSA for the OCP as obtained from the MSA treatment of
Ma)~ 2 q Ir"1+iq/2a0' (19 the system of charged hard spheres immersed in an oppo-

sitely charged continuum background. The explicit expres-
The right-hand side of Eq19) is simply the Fourier trans-  sjon forc(q) can be obtained from the analytical solution for
form of A%2e~2%0/2r?. It immediately follows that(q) must  c(r) and this was given by Rosenfeld4]. The correct ex-

have these branch points too. Moreover, from the occurrencgression forc(q) for the charged hard-sphere system in the

of 6(q) in the denominator of the OZ relation MSA reads
p&(q’): A [sinq’'—q’ cosq’]
247 (@')°

K2 "2 __ H r_ "2__ ’ ’ 677M2 [P r_ 2 __ r_

+———{[3(q")*—6]sinq’—[(q")°~6]q" cosq'}+ ——-{2q" sing’—[(q')*—2]cosq’ —2}

6(q") Q)

+ 2( 77/)6(A+K2V){[4(q’)2—24]q' sing’—[(q")*—12(q’)?+24]cosq’ +24
q
i’

+ 6o(q,)z{[G(q’)“— 120(q’)*+720]q" sing’—[(q")°—30(q")*+360q’)*~720]cosq’ — 720

(q,)zcosq’, (23
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where q'=qR. Equation (23) corrects Eq.(C8) in [14] imaginary, given byg=ie«g. Then, from the analysis carried
which contains two misprints. For the OCP in the SMSA, theout in Sec. Il B[see Eq(16)], the ultimate decay di(r) is
expression(23) holds with M=0 and the effective hard- ~Ae™ #0"/r. Within the HNC closure the decay of the direct
sphere diameteR is determined by solving EqA9) for the  correlation function is given by Eq18) so that the short-
packing fractiony(T"). «?=12I'»?" and the quantities\  ranged direct correlation function decays as
andV are functions ofy defined in Appendix A. In order to
find the poles ofh(q), we must solve the transcendental 1 e 2a

. ~ . . Ssr — 2
equation tpc(q)=0 for gq=a;+iay. This can be c(r)~3A 2 (27)
achieved by deriving equations for the real and imaginary
parts of 1- pc(q) and then solving the resulting two equa-

tions for ag apd ay Using a.NeWton-Raphson pr_ocedure. diverge for any pole whose imaginary part is larger than
The amplitudesA, ente[mg the pole expansiod?) re- 2aq. We arrive at the same conclusion if the decay(f)
quire only the derivativedc(q)/dqg. For a pure imaginary s controlled by a conjugate pair of complex poles. In gen-
pole, the derivative is readily evaluatgd analyncglly usingeral, the integrals in Eqg25) and (26) converge only for
Eq. (23). For complex poles, the numencal eva}luatlon of thecomplexq such that Irfiq]=<2aq, whereay is the imaginary
amplitudes and phases can be carried out using complex gkt of the leading pole). In practice(see Sec. 1)l all the
gebra, avoiding the need to separate imaginary and real parsher poles lie outside the convergence range and @6s.

It follows that the integrals in Eqs25) and (26) should

in the analytical expression for the derivatidé(q)/dq. and (26) allow us to determine the leading-order fsje
_ only.
2. Poles in the HNC Pure imaginary poleg=ia, are determined by Eq25)

The HNC for the OCP must be solved numerically using@lone, withe;=0. This equation then simplifies to
an iterative procedure. We have used an efficient code which
is based upon Gillan’'s methdd8]. The Coulomb potential
is separated from(r) in the standard way and is added back 1_(
at the end of the calculation.

Below, we give a prescription for calculating the poles of . ) ] ) )
the OCP based on the approach develope®jrior simple For_ fluids with short—ran_ged poter_mals the imaginary poles
fluids with short-ranged potentials. As we shall see, thissatisfy the same equation but witth=0 and c>'(r) re-
method is useful for calculating the leading-order ggléut  Placed byc(r). It was shown ir{8] that for such fluids there -
has limited use for determining the higher-order poles of thdS at most one imaginary pole. This is no longer the case in
OCP in the HNC approximation since the integrals which aréhe OCP. The presence of the Coulomb tefrfkp /q)? in
involved for the latter do not always converge. With the exe(q) modifies the analysis. In fact, as we discuss later in Sec.
ception of Ref[17] this limitation has not been realized fully Il A, we find that Eq.(28) has two solutions in the weak
in previous works8,11,19-22 where equivalent prescrip- coupling regimgsmalll’) and none at strong coupliritarge
tions for calculating the poles for short-ranged potentials and’).
for ionic fluids were given. We shall return to this point later.  In Appendix B we give a prescription for evaluating the

The polesq=a;+iaq are the complex solutions of Eq. amplitude and phase of contributions li¢r) arising from
(14), which can be rewritten in the more convenient form simple poles.

2 % in r
%) :47TPJO dr rCsr(r)M_ (28

0 ag

2 - :
1+ Ko :47.,pf dr r2cs'(r) M (24) C. Asymptotic high-density properties of the HNC
2
o} 0

r integral equation

By separating imaginary and real parts, we obtain the follow- Heré we summarize some general properties of the HNC

ing two equations: gn(_j other integral equa';ior)s_ in th_e asymptotic highfd_e_nsity
limit (AHDL), i.e., the limit in which the compressibility

K% o vanishes. As mentioned earlier, exact liquid state theory for

ap| 1- ——— =477pf dr rc3'(r)sinh agr)coq aqr), pair correlations functions can be reduced to an HNC equa-
aptaj 0 tion for some(effective potential. Thus the properties of the

(25 solution of this equation for different potentials are of central
importance. For pairwise potentiad®(r) with strong repul-

2
Kp | * r . sion at short distances, the AHDL solution of the HNC equa-
al( 1+ e a%) =d4mp fo dr re*(r)coshaor)sin(er) tion hasuniversalfeatureq15,14], some of which are listed

(26) below. We use the Wigner-Seitz radiag,s as the unit of
length, i.e.,r'=r/ays, and provide specific examples for
which are equivalent to Eq§4a) and(4b) in [8] for the poles  the OCP in 3D. Further details are given in the original pa-
in simple fluids with short-ranged potentials. This pair of pers[15,14].
equations can be solved numerically feg and «; using a (i) The Madelung energy is an exact lower bound for the
Newton-Raphson procedure witti'(r) as input. However, potential energy). This Madelung energy is the sum of the
note that the integrals in these equations might not alwayself-energies of individual dressed partic({@nsagematoms
converge. Assume, for example, that the leading pole is purand for the OCP in 3D,
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] 9 g’'=tanq’ (34
B = Buoa= 1_OF’ (29 )
with q'=qays. For the OCP in the AHDL,c(q)x=
whereug, is the self-energy of an Onsagatom consisting —T w(q)/g? with similar relations for other potentials and

of a point charge at the center of a neutralizing unit spherghe poles oﬁ(q) [determined by the zeros of_lp&(q)] are

having the background charge density. It is equal to the e”given by the zeros of:(q) in the limit T—cc. Thus, in the

ergy integral with a universal pair correlation function, AHDL the poles ofﬁ(q) should take universal values given

u 1 by the solutions of Eq(34), i.e., the poles are real with the
B—= EPJ' Bo(r)[g(r)—1]d°r leading one given by

1 Qi=ajayws=4.49340948 ... . (35

=—Q‘1f r' r'y—1]d°r’, 30 , L
2P AHrIlge(r)—1] (30 Note that for hard spheres in the PY approximation one can

_ show explicitly[14] that in the AHDL (=1) the poles of

wher_e,&b(r )El_"/r for the OCP aanD is the v0!ume of A(g) are given by solutions of Eq(34) with g’ =qays

a unit D-dimensional sphere. The universal functiangr) =qd/(27*3), whered is the hard-sphere diameter.

denote the limity— 1 of the solution of the PY equation for (v) The approach to the AHDL is quantified by the small

D-dimensional hard spheres of packing fractipn parameter
(ii) In the AHDL the direct correlation function of the
OCP in 3D is given by e=1-1. (36)
c(r’) In the SMSA treatment of the OCREy(T") is determined by
-1 v r') solving Eq.(A9), while in the HNC a prescription is required
for the effective diameter R which determines 7
6 1 3 .1 . =(R/2ayg)3. We return to this later.
=5 (M) (") — gt r'=2 Scaling relationgexpansions in powers af) have been

proposed for the behavior of the poles and their amplitudes

[14]. For soft potentials, e.g., the OCP, the imaginadiy)(
and real ¢@4) parts of the leading pole are expected to obey
the relations

where ¥ (r’) is the electrostatic interaction between two

=—, r1'>2, (31

spheres with the Wigner-Seitz radius where the charge is aoaws=A?;086+~' (37
smeared uniformly inside the sphere. It follows that in the
AHDL, and
c(r=0) 6 @jaws= ajaws— Ay et (38)
- T = g (32)

in 3D. Note that the powers depend on the dimensionality

(iii) In the AHDL the properties of the HNC equation only, but the amphtudeAaO. andAa1 are.not un.lversal and
mimic those of the MSA. The HNC builds an ion sphere N€€d not be the same for different theori@he hlqher poles
automatically in this limit. In particular, the pair exclusion have equivalent expansioh$4].) The amplitude/A| of the
condition g(r')=0, r'<2 and the MSA conditionc(r") leading pole contribution td(r) [see Eqg.(17)] also has a
+B®(r')=0, r'=2 are satisfied. The AHDL corresponds series expansion,
to an effective packing fractiop=1, i.e., the solutions cor- _ _
respond to a hard-core diameff=2as. Al _|A7]

(iv) For the general class of Green's-function potentials, 2a—WS=2a—WS+AA83+ RS (39
including the OCP and the screened Coulofvukawg
fluid, the zeros of the Fourier transform of the direct corre-where
lation function,c(q), are universal in the AHDL. Le€)(r) - " )
denote the overlap volume of twd®-dimensional unit |A"| _2[1+(atawg) 31439712 40
spheres whose centers are separated by a distaszehat aws 3 asaws e o

Q(0)=Qp. Definingw(r)=Q(r)/Q(0), then in 3D
is universal butAz is not.

The analytical solution of the SMSA for the OCP is con-
sistent with Eqs(37)—-(40). However, the general analysis
[14] which leads to these results, along with that for the
=0, r'>2 (33 internal energy(29) and forc(r=0) (32), is not completely
R R rigorous in the mathematical sense and it is of considerable
The zeros ofc(qg) are identical to those of»(q) and the interest to test these conjectures for the HNC and other theo-
latter are given as the solutiog of ries. Indeed this is one of the aims of our present study.

1 3 1 3 )
'NN—1_— ¢! (! I<
w(r') 4r +16(r), r
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TABLE |. Leading conjugate pair of complex polesa;+ia, and the respective amplitud&q and
phasesp= — 6+ /2 for the OCP treated in the HNC for different valuedof(a) as obtained from the pole
analysis prescribed in Sec. I B %) Ng's results for the parameters as listed in Table 1[4}, obtained
from fitting the asymptoté¢41) to his numerical data foln(r) in the range 1€r/a\s=<20.

anws ajdws 2|NA'|/aWS P=— 6+ m/2

r @ (b) @ (b) @ (b) @ (b)

200 0.4255 0.4251 4.1637 4.1638 2.8902 2.8714 0.4656 0.4641
250 0.3741 0.3736 4.1849 4.1851 2.8503 2.8226 0.4231 0.4195
300 0.3358 0.3352 4.2012 4.2013 2.8210 2.7878 0.3889 0.3859
350 0.3060 0.3053 4.2141 4.2143 2.8014 2.7627 0.3628 0.3596

lll. RESULTS OF CALCULATIONS below, for this range of’, i.e., 200<I'<350, the asymptote
fs also very accurate at much smaller distances.
The poles of the SMSA can be computed, in turn, using
e prescription given in Sec. II1B 1. At low, in both the
SMSA and the HNC, we find that the ultimate decayhf)
is given by a simple pole lying on the imaginary axds,

A. Asymptotic decay ofh(r) =iay, as was expected. This leading pole is accompanied,

We consider first the ultimate decay lofr) in the OCP. however, by another imaginary poleyy, with ag>ag. As

Ng [4] analyzed this problem in the framework of the HNC. I is increased, these two poles move towards each other and
Following a similar path to what we presented in Sec. Il B,coalesce when a certain value bfis reached. For consis-

In this section we describe the results of our numerica
calculations for structural properties of the OCP obtaineqh
using both the HNC and SMSA.

he arguedin our notation that for sufficiently large’, tency with previous work10,24 we designate this particular
~ value of I the Kirkwood couplingI'x. As T is increased
~ e @ abovel', the two poles move off the imaginary axis and
h(r)~2|A| r sin(ayr +¢). (4)  symmetrically into the complex plane, giving rise to oscilla-

tory decay ofh(r). This type of mechanism for the onset of

Comparison with Eq(17) shows = — 6+ /2. However, oscillations inh(r) for the OCP was alluded to by Choquard
Ng does not provide a means for calculating the poles of"d Sari25] and earlier by Del-Rio and DeWi[26], but a

A(q), nor does he give the amplitude and the phase. In th ull description was not given. AB—1I", , the amplitudes of

. ; .~ e two imaginary poles diverge. The amplitude of the pole
Y%akhggﬂﬁtgg ;fglmel“<1, by expandingc(a) aboutq  ¢joser to the real axish, is negative while the other’, is

positive. Both amplitudes tend to equal absolute values as
ag— ) SO that the combination

h(a) > (42
pd 3T +0g%as e e
h(r)~A——+A'— (44)
which exhibits a simple pole ajays=i(3T)Y>=ikpays.
Thus remains finite al’x . ForI'>T"y, h(r) decays as
—«pf e
ph(n)~-Taws——, r—=, (43 h(r)~2|A]| coq ayr — ). (45)

r

which is the Debye-Hekel asymptotic form valid only in the AsT—T} |z\| diverges but the phase— — 7/2 anda;

limit of very weak coupling 23,3]. 0" (th | | e h o
ForI'>1, Ng argues that the leading pole should be com-ang ag(]tr:li?h((:?)mrzr?]);iﬁg Eiitzomudeso that cosgyr—6)—0

Blex. For the range 268I'<7000, he fits the parameters This scenario for the onset of oscillations in the OCP is

ag, a1, |A], andg in the asymptoté41) to the decay of identical to that found for the charge correlations in the re-
the solutionh(r), obtained by solving numerically the HNC, stricted primitive model(RPM) [10,19. It was first de-
calculated in the range ¥0r/ays=<20. scribed by Kirkwood16] in his discussion of the potential
Here we use the prescription described in Sec. 1| B2 angf mean force in strong electrolytes. It is also found in the
Appendix B to compute the leading polesfufg), their am-  Yukawa screened-RPI¥YRPM) [24], a model similar to the
plitudes, and phases for the OCP treated in the HNC. IiRPM where screening is explicitly included by replacing the
Table | we compare our results with those of Ng, who fittedlong-ranged Coulomb interactions by Yukawa potentials.
his numerical data to Eq4l), and we find an excellent We have calculatelx in the SMSA and in the HNC. In
agreement. This means that the asymptdt® provides a the SMSA the two imaginary poles coalesce @ays
very accurate account of the decayhgf) over the range of =i4.548 whenI'v=2.1199, and in the HNC atays
distances used by Ng in his fitting analysis. As we shall see=i2.85 whenl'x=1.120. Choquard and Sdr5] obtained



1442 R. J. F. LEOTE de CARVALHO, R. EVANS, AND Y. ROSENFELD PRE 59

TABLE II. (a) The pair of imaginary polesa, andiag and their respective amplitudésand A’, as
obtained from the SMSA and HNC, are given 1. (b) The leading conjugate pair of complex poles
*a,+iag and their respective amplitud¢§| and phased®, as obtained from the SMSA and HNC, are
given for three values of'. The poles of the HNC cannot be computed accurately’at7000 using
our prescription(see text (c) The next-to-leading-order poles for the SMSA are given at two different

values ofl".
(@
aoaws A/aws aéaws A,/aWS
r SMSA HNC SMSA HNC SMSA HNC SMSA HNC
1 1.8531 2.2457 —1.3185 —3.9219 13.492 3.3203 32.438 5.4343
(b)
Zloaws alaWS 2|’A|/aWS 0
r SMSA HNC SMSA HNC SMSA HNC SMSA HNC
10 1.9214 1.8099 3.6965 3.4677 5.3876 4.4748 0.2310 0.1729
100 0.6112 0.6201 4.0927 4.0864 3.0411 3.0625 0.9585 0.9507
7000 0.0340 4.4043 2.9050 1.5204
r agaws aj@ws 2|Al/ays 0
100 2.2624 8.0631 8.4274 1.0053
7000 0.3948 7.4618 5.0732 1.3397

I'k=1.0in the HNC from an analysis of E(L4). In numeri-  scribed in a sensible, qualitative fashion. As we shall discuss
cal work, based on a modification of the HNC, Coof&T¥] in Sec. Il C, this scenario changes ok 1500, where other
found that oscillations develop fdf between 2 and 3, and contributions become important.

the same estimate was obtained by Hangénfrom his
Monte Carlo study. In an earlier study, Del-Rio and DeWitt

; L B. Spurious poles
[26] obtainedI'x=1.812 and this is close to the value of P P

1.818 found by Deutscét al.[28] from a graphical analysis. I Sec. IIB2 we gave a prescription for calculating the
I'k was also estimated to be approximately 1.0 in Appendixpoles ofh(q) for the OCP treated in the HNC that should
B of [5]. yield at least the leading-order pédg If the imaginary part

In Table 1l we compare the leading poles for the OCP a%f the leading polés) is «y and the short-ranged direct cor-
obtained from the SMSA and HNC for three valuesIaf  relation function decays likes'(r)~3h?(r), Egs.(25) and
The results from these two approaches are somewhat diffe(26) will diverge for any higher pole whose imaginary part
ent in the weak coupling regim&,<1, where the details of =2«,. However, in the numerical evaluation of the integrals
the approximation become important. At hifjhthe leading in this pair of equations, one is forced to truncat&r) at
poles from the two theories become much closer. In Hig. 1 some finite distance where the value of this functiosus-
we compare the fulh(r) obtained from the SMSA and HNC ably small. This may seem harmless at first sight but in fact
atI'=1 with the asymptotic contribution given by E@l4), it has important repercussions for the numerical solutions to
i.e., that determined by the two imaginary poles in Table II.Egs.(25) and (26). Although the integrals should no longer
In the SMSA the agreement is remarkably good at all dis-converge, the truncation means that the numerical algorithm
tances outside the imposed hard core. In the HNC the agrestill converges. The issue is then how to separate the actual
ment is equally good down to abouftays~1. In Figs. 1b) poles from any spurious solutions arising from truncation. In
and Xc) we plot the fullh(r) against the asymptot&5) Fig. 2 we show the numerical solutions, at three different
obtained from the leading conjugate pair of complex poles agalues ofI’, which we obtain from solving Eqg25) and
given in Table Il. In Fig. 1b), I'=10 while in Fig. 1c), I (26) for aqy and a4 taking c3'(r) to be truncated beyond a
=100. The asymptotes obtained from the leading poles imlistancer, chosen so that®'(r)<1.5x10°°. The leading
the SMSA and HNC are almost identical fB.=100, which  poles are given in Table Il but for eathwe have found also
is not surprising since the poles and the amplitudes obtaineal line of solutions with imaginary values at abouiy with
from the two theories are very close. In both the SMSA andy the imaginary part of the leading pé8: These values
the HNC, h(r) is described accurately by the contribution are in the region where convergence problems should arise.
from the leading conjugate pair of poles for distances down In order to investigate whether the solutions constituting
to about the second maximum. For a wide rang& pbther  this line are actual poles or spurious solutions to E@5)
(highe) poles and singularities do not play a role at interme-and (26), we performed a simple test. We considered the
diate and long range. Even the shorter range behavior is dédsard-core Yukawa fluid
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FIG. 1. Total correlation functiom(r) for the OCP treated in
the SMSA (solid line) and HNC (dotted ling, at three different
values ofI". In (@) I'=1, in (b) I'=10, and in(c) I'=100. The

0.0

L 1 L 1 L 1
0.0 20.0 40.0 60.0
Oy 8yg

FIG. 2. Solutions of Eq925) and(26) for the poles of the OCP
treated in the HNC, at three different valueslaf Only the right-
hand complex pole+a;+ia, is shown. ¢ corresponds td
=1, O toI'=10, andX to I'=100. Note that fol’=1 there are
two poles lying on the imaginary axis. Fbr=10 the leading pole,
with @y~1.8, is well separated from the other solutions. For
=100 the leading pole, witlary~0.6, is also well separated from
the other solutions. The lines of closely spaced solutions, which

extend to higher values af,, are not actual poles but are spurious
solutions arising from truncation a®'(r).

Sincec(r) and its Fourier transforlﬁ(q) are known ana-
Iytically, the poles can be calculated in a similar way to that
described earlier for the SMSA, i.e., by separating the equa-

tion 1— pc(q) =0 into its imaginary and real parts and solv-
ing the two resulting equations fer, and «,. This proce-
dure enables us to find all the poles. Alternatively, we can
attempt to use the method described by Evetral. [8]. This

is equivalent to that prescribed here for the HNC d#a
and (4b) in [8] suffer from the same convergence problems
as our Egs(25) and(26) in Sec. IIB 2. In the MSA for the
hard-core Yukawa fluid we have(r)=exp(-z)/r outside
the hard core; the integrals i@a) and (4b) in [8] diverge

when the imaginary part of the pole is greater tizarCon-
sequently, one can easily examine the range of convergence

of the integrals simply by changirgjin the model. In Figs.

3(a) and 3b) we show the poles ofi(q) for the hard-core
Yukawa fluid treated in the MSA, at a reduced temperature

dot-dashed line and the dashed line are the asymptotes in the SMSg¥ = kgT/e=1.18 and reduced densip* Epd3:o_8l4, as
and HNC, respectively. Iita) the decay is monotonic and the as- gptained from the analytical path and from solving Eds)

ymptote is given in Eq(44). In (b) and (c) the ultimate decay is
oscillatory and the asymptote is given in E¢5). The parameters
of the asymptotes are given in Table II.

¢Yuk(x) =o, X 1

De— %
=— , X>1, (46)
X

wherex=r/d andd is the hard-sphere diamet&.andz are
both positive constants. Browet al. [29] have investigated
the pole structure dﬁ(q) for this model fluid treated in the
MSA, which can be solved analyticallfsee[30] and also
[31]). For consistency with their study, we tak®

=2ee?/(:+7 *+Z7?), wheree is an energy parameter.

and (4b) in [8]. Forz=1 [Fig. 3a)] a line of spurious solu-
tions is found atagd~z when this latter method is em-
ployed. The leading conjugate pair of poles as obtained from
both the analytical path and frofda) and(4b) in [8] lies at
gd=*6.63+i0.82, i.e.,agd<1. In this case the next-to-
leading-order pole neayd= *+12.4+i2.1 (obtained from the
analytical path could not be found using the second method.
Forz=2.5[Fig. 3(b)], and identical temperature and density,
the leading pole shifts tgd=*6.69+10.78. Now, both the
analytical path and the numerical solution(df) and(4b) of

[8] yield not only this solution but also the next-to-leading-
order conjugate pair of complex poles gd=*+12.53

+i2.00. Note that the imaginary part is still bel@y2.5.
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(a) o,d Mays
, , : | FIG. 4. Total correlation functiom(r) for the OCP treated in
3.0 7 the SMSA atl’=7000. The solid line is the solution to the integral
000V O000OCO0 g 0O equation while the dashed line F(r), obtained by adding the
25 . Lo . . . .
| contribution from the leading and the next-to-leading conjugate pair
200G o) i of complex poles as given by EG19). The parameters are given in
o, 1 Table Il. Note thatg(r)=1+h(r) can take on negative values in
15 . this approximation.
10 F o i} C. Second-order contributions toh(r)
05 7 If we subtract the ultimate asymptotic decé4b) from
0.0 , ‘ , ‘ , L h(r), then at sufficiently high, i.e.,I'’>I"y, we obtain the
0.0 5.0 10.0 15.0 function
(b) o,d -
o e«
FIG. 3. The poles of the hard-core Yukawa fluid treated in the h(r)=h(r)—2|A| cogasr — 6). 47

~ ~ r

MSA for (a) z=1 and(b) z=2.5. The filled squares are the actual

poles obtained by solving -1pc(q)=0, using the analytical ex-  Since the only singularities in the SMSA are simple poles
pression forc(qg). The diamonds are the numerical solutions to Egs.and all contributions from conjugate pairs of complex poles
(4a8) and (4b) in [8] (see text The lines of diamonds extending to to h(r) in the expansiorl5) have the same form, we expect
higher values ofal_in both (g) and (b) are not actual poles but H(r) to decay as

correspond to spurious solutions.

_ __e @’ -
An imaginary pole can be found using both methods and this h(r)—2|Al——codayr—0), r—e, (48)

lies atqd=i1.99, which is again belowz=2.5. Equations
(48 and (4b) of [8] yield a line of spurious solutions at i.e., as the contribution from the next-to-leading-order con-

agd~2.5, i.e., close to the value @ Clearly this line is jugate pair of polesq=*a;+iag. The amplitudgA| and
located where convergence problems are expected and tipased are determined in a similar fashion to those for the
third pole obtained from the analytical path, which kagl  leading-order pair of poletsee Sec. || B2

>7=2.5, cannot be found. Given the strong similarity be- N his early study, Ng4] noted the appearance of a shoul-
tween the lines of solutions in Fig. 3 and those in Fig. 2, weder in the second peak of the distribution function for the

conclude that the latter, for the OCP treated in the HNC, ar@CP treated in the HNC, when=1500. He remarked that
a numerical artifact of our truncation. the shapes of the peaks at such strong coupling were unlike

These results suggest that the linespofesin Fig. 1 of those found for simple fluids. Of course, we should recall

[11], for a truncated Lennard-Jones 6-12 fluid treated in thdhat the OCP freezes into a bec solid at abBet178(6,7]
HNC and HMSA, are also spurious. In the HNC this line lies@nd therefore these unusual features develop deep in the
at about 3v,, Whereay is the imaginary part of the leading mgtastable fluid region. The shoulder observedl by Ng is not
poles, and this falls in the region of the complex plane wher nique to the HNC. We fou_nd the SM.SA solution also ex-
convergence problems are expected.2@] a similar line of ibits a Sp“?[ second peak ih(r). I.n '.:'g' .4 we plot the
solutions was found, using identical equations for the polesSMSA solution afl”=7000. The solid line is the numerical
SMSA solutionh(r) and the dashed line is what one obtains

for the hard-sphere fluid treated in the HNC, and within an- ; : .
other approximation that also leads to convergence prod2y @dding the leading-order to the next-to-leading order pole

lems. We believe these lines also correspond to spurious sgontribution, i.e.,
lutions. Similar numerical prescriptions for determining the = .
poles of simple and ionic fluids from integral equation theo- | 5, | _ % 0 _ —e "o
ries have been givell7,19,23. These will also suffer from h*(r)=2|A| r cogayr — ) +2|A| r

convergence problems. (49)

cog a;r —6).
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The two conjugate pairs of complex poles and their ampli-
tudes and phases were computed following Sec. 11B 2, and
their parameters are listed in Table Il. The agreement be-

0.015

tweenh(r) and Eq.(49) suggests that, at least in the SMSA, 0.010
the next-to-leading-order pole contribution does become im- 0.005
portant at intermediate distances in the very strong coupling =
regime and that the splitting of the second peak is due pri- 0.000
marily to such contribution. Higher-order poles do contribute
atI'=7000 but are less important. -0.005
In the HNC, h(r) should decay as E¢48) provided «
<2aq. Should this not be the case, then the contribution '0-01023 28 33 58 43 a8
associated with the logarithmic branch point singularities ' ' ) ) ' '

should dominate over the next-to-leading-order pole contri- @
bution. In such circumstances we expb¢t) to decay[see

Eqg. (22)] as 0.05
0.04 -
-~ 0.03
. _ —2aqr
h(r)=2|Al>———cog2a:r—26), r—», (50) 0.02
r<in“r . 0.01
= 000
where we have used the proportional sign to indicate that an -0.01
additional prefactor will arise from the functida(r) in Eq. 0.02
(21). We have computeti(r) in the SMSA and HNC, at -0.03 ‘ , ‘ ‘ ,
I'=100, by subtracting the leading asymptotic contribution 23 28 33 38 43 48
from the numerical result fan(r). The results are plotted in (b) Mays
Figs. 5a) and §b) (solid lineg. We note that the height of .
the first maximum oﬂT(r) (near 2.5y for the SMSA in FIG. 5. The functiorh(r) defined by Eq(47), i.e., h(r) minus

Fig. 5a) is about 50% of that found for the HNC in Fig. its leading asymptotic decay, for the OCHat 100.(a) SMSA and

5(b). The leading-order pair of poles and their respective(b) HNC. In both figures the solid line is obtained by subtracting the
amplitudes and phases are listed in Table I asymptotic contribution td(r), determined by the leading poles in

. : Table IlI, from the solution to the integral equation.(& the dashed
Figure $a) shows there is very good agreement bewVeeqine is the contribution from the next-to-leading order pair of poles,

h(r) and the decay given by E¢48), the next-to-leading- gq. (48), with the parameters given in Table II. [b) the dashed
order pole contribution, with the parameters listed in Tablgjne is the leading contribution from a logarithmic branch €50),
Il. This is not surprising since for the SMSA Bt=100 the  with the parameters listed in Table II.
higher poles have much larger imaginary parts.

If we assume that in the strong coupling regime the HNC D. Trajectories of poles
and SMSA poles should be similar, then fbr=100 the ) )
imaginary part of the next-to-leading-order pole should Sat_thejpmgzjyer{aﬁigg?g;?ﬁizg gﬁhgeegecslf rltt(fg r?ggéslggri/e% de
isty a0.>2a° and the dec_:ay plh(r) in the HNC s_hou_ld be termine the nature and location of the poles for the full range
determined by the logarithmic branch cut contribution, Eq.

. . i of I'. In Fig. 6 we show the trajectories in the complex plane
(50). The fact that we could not find any higher-order polesOf seven poles of the OCP calculated in the SMSA. For

with imaginary part smaller thand when solving Eqs(25 =2 1199, there are two poles lying on the imaginary
and (26) numerically is consistent with this assumption. In axis"and an infinite number of complex poles. The leading
Fig. 5(b) there is reasonable agreement betwle@) and the  pole is the pure imaginary pole closest to the real axis and
decay(50), the dashed line. The period of the oscillations isfor I'<1 this gives rise to Debye-H#el-like limiting be-
reproduced fairly well buh(r) decays less rapidly than is havior. AsT is increased beyondl, the two imaginary
predicted by Eq.(50). Note that no attempt was made to poles merge and move off symmetrically into the complex

adjust the amplitude. Although we feel trﬁtr) probably plane while all othgr conjugate pairs of poles move down
does reflect the presence of logarithmic branch singularitiegoWards the real axis. Note that evenlat 7000 the higher
it is very likely that the next-to-leading-order poles, which poles are~st|ll far from the real axis and the leading conjugate
we are not able to calculate in the HNSee Sec. llI B, also  pair hasay=0.0340. According to the predictions of the
make a substantial contribution in this range when100. general theory of the AHDLSec. 11 Q, in the limit '—x
Accounting for the shoulder in the second peak@f) at  all poles should touch the real axis at the points given by
very highT in the HNC is clearly more complicated than in solutions of the equatioa;as=tan(a;ays), and we have
the SMSA. We expect the next-to-leading-order pair of polesirawn the solid lines in Fig. 6 continuing to these points. We
and the leading logarithmic singularities to contribute at in-discuss the limiting behavior in the next subsection. It is
termediate range, i.e., we require E48) plus Eq.(50). instructive to compare the present results for the trajectories
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20.0 o1 investigate the behavior of the potential energ{r =0),
o2 and the poles ofi(q) as the AHDL is approached, in both
150 L x5 the HNC and SMSA. Within the SMSA we have generated
) Zlgo the potential energy;(r =0), the poles, and their respective
” I %1000 amplitudes as functions df using our own codes. For the
& 100 | +7000 potential energy in the HNC we use Ng's d@fd as well as
$ our own, calculated from
> pU_ 3 de h(a) (51)
NI~ an2a2 Jo o0
0.0 5 : ' :
0.0 20'0a a 40.0 60.0 which was used also by Ng and which proves to be much
1 WS

more numerically reliable than the real-space counterpart
. .. (30). Forc(r=0) in the HNC we use our own data only,

FIG. 6. Pole structure_ of. the OCP treateq in th_e SMSA at d'f'whereas for the leading poles in the HNC we employ Ng’s

ferent values of". The solid lines show the trajectories of the seven . . .

lowest poles ag is varied up to =5% 10. For['=1,2 there is a data only, i.e., we assume that his least-squares fitting to Eq.

pair of poles lying on the imaginary axis. These mergel'ais (41) provides accurate parameters even for very large values

increased toward§',=2.1199 and then move off symmetrically of I', where we encountered difficulties with the direct cal-

into the complex plane. The plot shows only the right-hand com-culation of the poles via Eq$25) and (26) becausec*'(r)

plex polesa; +ia,. Note that the AHDL scaling relation7)— decays too slowly. .In our HNC calculation we have used a

(40) are obeyed accurately only whéh~10'. mesh of 16 384 points witkhr =0.0125, whereas Ng used

. ] ] ) 2048 points forI'<<600 and 4096 otherwise, withr
in the OCP with those for the hard-sphere fluid, treated in the- 9 025. Within the HNC¢ is defined by[14]

Percus-Yevick approximation for whiat(q) is known ana-

lytically. Such a comparison is presented in Fig. 7, where the e=1—n=1—(R/2ays)’, (52)
four lowest poles are shown. In the case of hard spheres there

is no pole on the imaginary axis for any value:pfThe two  yhere the effective diameteR is the lowest value of for

sets of trajectories are rather different. For hard spheres thgi-p g(r)=1, i.e., g(r)<1 for r<R. R was determined

real parta; of each pole increases monotonically with in- | o) u’siﬁ ! a quadratic intér olatiom(g(r))=a

greasingn, Whﬁfeas for .t:g ((DCP wit?in tr%e SIMilA eaag +bg(r)+cygz(r) gwith ?hree points tV\F/)O fOtg(r)gil) and
ecreases with increasi except for the leading-order i e ' ;

pole) until very high values of", when they reach a mini- (F)zr;erf(olr)gire)ligfche quadratic intersects the three points and

mum value before finally increasing in the AHDL, i.d, The results we -present were obtained using’ oxi

- mants[32] to extrapolate the desired quantities to the AHDL.

Several sets of data in different rangeslofvere analyzed.

. ) . The results we selected for publication are obtained from
The expected properties of the solutions of integral equag,ia atT"'=200. 250 300. 350. 400. 500 600. 800. 1000

tions in the AHDL were described in Sec. IIC. Here we 1200, 2000, 3000, 4000, 5000, and 6000, the same values as
: : : in Ng's papef4]. Given the demanding numerical nature of

this work, we believe it is useful to provide the actual data

used in our calculations. These are compiled in Tables Il
and V.

It is known that in the SMSA the AHDL analytical ex-
pansion fore in powers ofl" is given by[33,14]

108\¥6 1/108/¥® 5 (1082
e(D)=|=—| —=|=]| + —_

E. Results in the AHDL
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FIG. 7. The solid lines are the trajectories of the four IowestThIS fOIIO\.NS by solving Eq.(A9). In order to t_est our
poles of the OCP treated in the SMSA at differéht The dashed extrapolatlonlslchem_e, we have cqmputed the flrst.and_the
lines are the four lowest poles of hard spheres treated in the P§e(i%nd coefficients in thlﬁe eXpar}glorImby extrapolllgtlng first
approximation at different varied up top=0.95. The open circles €I~ and second [eI'""— 1081 r=> as 10""-0,
denote the poles at a fixed packing fractign-0.01579 for the USINg Padeapproximants obtained from our numerical
hard spheres and, on the imaginary axis, for the OCP Withl. SMSA data. For the first coefficient we obtéin182 247 1
The triangles denote the poles at=0.2857 which in the OCP +1077, whereas 108°=2.182247323, and for the
corresponds t& = 100. AsT — or — 1, the poles meet the real second we  obtain —1.5873974:10 /, whereas
axis at the solutions of,as=tan(a,ays) represented by dots.  —108Y%3 = —1.587 401 126.
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TABLE IIl. Our present results foc(r=0) and the potential TABLE IV. The parametee=1— 5(I') and the leading conju-
energyU of the OCP treated in both the SMSA and the HNC. Note gate pair of comp|ex p0|es with its amp|itu4j’é| obtained for the
that in the AHDL, —c(r=0)/I'=1.2 and— BU/NI'=0.9. OCP in the SMSA. Note that in the AHDLgyaws=0, ajaws

=4.4934095, and |A|/ays=3.1439717. Also given is=1
—c(r=0)/r —BUINT — (Ri2ayg)?® for the HNC.
r SMSA HNC SMSA HNC

' &HNC) &(SMSA) @dws  a1dws  2|A|/ayws
200 1.218020 1.214319 0.87924043 0.87928
250 1215787 10213657 088145267  088les 200 05820 0.6620336112 0.4203516 4.156587 2.853307

500 1210562 1211709  0.88692500  0.88735 400 0.5417 0.6107125712 0.2803584 4.216211 2.764137
800 1208097 1210300  0.88896373  0.89009 600 0.5174 0.5814421722 0.2174176 4.249317 2.746074
1000 1207149 1209609  0.89077769  0.89114 800 0.5001 0.5610900035 0.1799764 4.271859 2.745275
1200 1206461 1209046  0.89158608  0.89192 1000 0.4868 0.5455653443 0.1546377 4.288714 2.750397
5000  1.202983 1205344  0.89589267  0.89587 4000 0.4061 0.4549383501 0.0543527 4.377505 2.851558
6000  1.202708 1204961  0.89625185  0.89621 5000 0.3938 0.4413620959 0.0452126 4.388844 2.872905
6000 0.3839 0.4304871158 0.0387846 4.397472 2.890357

This exercise clearly shows that the accuracy of our’ Pade We carried out the calculation using our HNC data and
scheme is indeed quite high. The error listed for the extrapoebtained 1.84F 10 2 for the first coefficient in the expan-
lated values is an estimation of the accuracy of the Padsion. There is no reason to expect a value identical to that
scheme and is returned by the numerical routine 88  found in the SMSA. Using the Padspproximants scheme

rounded off to the nearest power of 10. for 1/'—0, we obtain the following results:
SMSA HNC—our data HNC—Ng's data
—BU/NI 0.9000006: 107 0.8993+10 4 0.9009+ 10" *
—c(r=0)/T 1.20034-10°° 1.2007+10"4

We note that our treatment of Ng's potential energy data hawhile if we use Ng's data we obtain 0.23.0" 1. There is no
produced a somewhat different result from his own, whichobvious reason to expect the result to be the same as in the
gave BU/NI" = —0.8995+ 0.0002[4]. The analytical AHDL SMSA.

expansion for the potential energy in the SMSA is known Finally, we have investigated the scaling relations for the

(33,14, leading poles. We extrapolated the valuesagf with &®
1 e —0 and ofa; and|A| with £3—0 [see Eqs(37)—(40)]. The
/32: _ EFJFS(L) n ir +O(I 18 results obtained from our SMSA data and from Ng's HNC
N 10 108 15\ 108 ' data(Table Il in [4]) are displayed in Table V. The ampli-

(54 tudes in these scaling relations were also computed and are
) . _ listed in Table VILA;, was computed by extrapolating the
We u§ed _Padapprquants to estimate the secqnd coeffi-a1ue of the ratiargays/s® with s5—0. ForA,. andAz we
cient in this expansion by considering our numerical results ) . 5 1 -
for T "Y(BU/N)+0.90'¥ in the limit 1I'¥3-0 and we extrapolated, respectively, af—ay)aws/e® and 2(A|
find that the coefficient is —|A*|)/e3ays, with £3—0.

The numerical estimates from the SMSA of the universal
0.2886751%#10°° whereas 3/108=0.2886751346. quantitiesa;, o, and|A*| are in good agreement with the

analytical results. The HNC estimates have larger error bars

Once again this attests to the reliability of the Padeeme. but these are also consistent with the predictions of the scal-
If we perform the same calculation using our own HNC ing relations(37)—(40). Note that the amplitude@able VI

data we obtain the value 0.280 2 for this coefficient, do differ considerably between the two theories. We empha-
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TABLE V. The analytical predictions and our numerical esti-  TABLE VI. The amplitudes in the scaling relatiori87)—(40)
mates from the SMSA and HNC for the leading conjugate pair offor the poles of the OCP in the AHDL. The results for the SMSA
complex poles and its respective amplityéé| in the AHDL. The ~ Were obtained by applying Padgproximants on our own gener-
SMSA estimates were obtained by applying Pageroximants to  ated data. The results for the HNC were computed using the param-
the data in Table IV whereas the HNC estimates were obtaine@ters in Table Il off4] for the leading poles and our own data in
using data in Table Il of4] for the poles and amplitudes, an’)  Table IV for &(T’).
from our Table IV.

SMSA HNC
Analytical SMSA HNC AEO 448+ 102 15e 1
agaws 0 —0.00028-10"° ~-0.011+103 A, 0.64+ 102 1787103
ajaws 4.493409458 4.493910°4 4.50+10"? AR -1.8+10"" —1.67+1072
2|A%|/ays 314397174 3.145510°* 3.17+102

poles, we showed that the contribution from the next-to-
) ; . leading conjugate pair of poles leads to a splitting of the
size that the Padenalysis for the SMSA and HNC was made second maximum i(r) when I'=2000. Determining the
using data for the same valueslaf namely the values given higher-order poles in the HNC by direct calculation is not
previously and listed in Tables Ill and IV. Whereas there 'Spossible if these have an imaginary part greater thag. 2

no difficulty in solving the SMSA for arbitrarily largE, this Attempts at fitting the next-to-leading-order decayh¢f) to

is not the case for the HNC and like we did encounter . . . - .
problems forl’=7000. The differencemg% error estimates re- particular asymptotic forms in qrdgr 0 de@er_mlne the higher-
o ' order poles are also problematic since, within the HNC, con-

flects the fact that the SMSA ikessentially an analyt_lcal tributions from logarithmic branch points are expected to
theory whereas the HNC requires the numerical solution of dhtervene. What theactual next-to-leading-order decay of

nonlinear integral equation. h(r) is for the OCP remains to be ascertained. An excellent

We did not investigate the AHDL for higher poles as fit to simulation data foh(r) beyond the first maximum was
these could not be calculated within the HNC. However, theyobtained by assuming it was the sum of three terms with the

were calculated in the SMSA. One requires very large val- ;
ues,I'~10’, before the appropriate scaling relations can beform (45) [35] but this does not prove that there are only

i ! ... pole contributions.
2$Séuqr2(a(g7t)0;r?d\g§g;j and we did not check the generahzanoﬁ (iv) Our investigation of the AHDL of the OCP has am-

plified that of Ref[14]. Within the SMSA there is, of course,
no difficulty in obtaining the solutions, poles, etc. with arbi-
IV. CONCLUDING REMARKS trary precision and all the predictions associated with the
) ) AHDL have been confirmed. The present work demonstrates
We have presented a comprehensive analysis of the decgyat the asymptotic regime is not entered uhtiks very high
of correlations in the OCP. The main conclusions of ourindeed—see Fig. 6. Even fdt as high as 7000, the trajec-
study are as follows. o tories of the higher poles have not attained behavior which
(i) The mechanism for the onset of oscillationshifr) in  resembles remotely that of the AHDL. The situation is much
the OCP is the same as that fdnarge correlations in the  petter for the leading pole, which is why we were able to
RPM or the YRPM. It arises from the coalescence of twoggnduct the Padanalysis based on data for<6000. Al-
imaginary poles, which exist fof <I'c, to produce a con-  though the numerical solutions of the HNC are less accurate
jugate pair of complex poles fdr>I"y. At the crossover than the input from the SMSA, our analysis does suggest that
value I'k the Wavelength of the oscillations is infinite. We the predictions of the AHDL are also obeyed by the
obtain values fol ' equal to 2.1199 and 1.120 in the SMSA HNC—at least for the quantitier =0)/T", BU/N, and the
and the HNC, respectively. It is important to recognize thatyarameters of the leading pole which we were able to calcu-
this mechanism is very different from that found for the on-|ate. We provide new estimates for the various coefficients
set of oscillations in simple fluids where the interatomic po-entering the expansions of the quantities.
tential exhibits(short-rangeflattraction as well as repulsion. (v) While our results support the ideas of universality of
There[8,9,17 a single imaginary pole dominates at low den- structure conjectured for the AHDL, and therefore support
sity whereas a conjugate complex pair dominates at higlhe description of the limity=1 as defining arideal liquid,
density. At the crossover poiritermed the Fisher-Widom it js clear from Figs. 6 and 7 that one soon leaves the AHDL.
[34] valug) the imaginary pole and the conjugate pair haveThis is confirmed by plotting the results on an expanded
the same imaginary pard,= ay# 0, and the wavelength of scale for largey. Whether one can use predictions based on
the oscillations is finite. Such crossover results from a comthe AHDL to describe the properties of stalfleith respect
petition between repulsive and attractive forces. to the solid dense liquids remains a matter for further inves-
(i) In both the monotonicI'<I'yx, and oscillatory,I'  tigation and debate.
>T1"x, regimes, leading-order asymptotics provide a remark- As a final remark we mention that our analysis also has
ably accurate description &f(r) at intermediate as well as implications for the decay ofone-body density profiles at
long range. This is due to the fact that, as in other fluidswall-fluid interfaces. It is straightforward to sho},9,36
[8,11,10,24, the leading poles) are well-separated from the that the profile at a single wall and the solvation force for a
remaining poles or singularities. confined fluid decay into bulk in the same fashionh¢s),
(iii) In the SMSA, where we are able to calculate all thei.e., with the same exponential decay Ien@y@l and, when
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appropriate, the same oscillatory Wavelengtlﬁl. Only the 1+279 2(1— )3« 172
amplitudes and phases depend on the particular form of the Q= - 1- ( 1+ —2) 1 (A5)
wall-fluid potentials—note the latter must be short-ranged. K (1+27)

These results are a consequence of the fact that for fluids

with short-ranged interatomic potentials the asymptotic de- M= Q_z_ 1+ /2 (A6)
cay of the profile and the solvation force is governed by the 24y (1—7)?

leading poles of the bulk functid?n(q). We expect the same
results to be valid for the OCP subject to external potentialsy is the packing fraction andx?®= K%d2=4ﬂ'ﬁp62d2
e.g., a hard-wall or a half-space of compensating charge-12I' »?°. Note that the parametaf is proportional to the
background. Thus, fof <I'y we predict monotonic decay potential energy,
and forI'>Ty oscillatory decay of the density profile into
bulk. The wavelength should decrease and the decay length pu 1,
of the oscillations should increase &sis increased. Al- N 2% V. (A7)
though there have been several theoretical and simulation
studies of the OCP near wall37], these have not addressed The continuity ofh(x) —c(x) atx=1 requires
the predictions we give here.
gx=1")=—M=—-c%(x=1"). (A8)
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— 2\1/2
APPENDIX A: THE OCP TREATED IN THE SMSA 0=2(67+37°)""+1+27
2 3,13 ] 1/2
We consider a system of charged hard spheres of diameter —[(A+27)"+4(1= )7 V3l (A9)

d immersed in a uniform oppositely charged background , . . .
which preserves the overall electrical neutrality. The interi-WhICh can be solved numerically fof(I") using a Newton-

onic potential is Raphson procedure.

Bp(r)y=co, r<d APPENDIX B: AMPLITUDE AND PHASE FOR SIMPLE
) POLE CONTRIBUTIONS IN THE OCP
e
=B—, r>d. (A1) In this appendix we describe the evaluation of the ampli-

tude and phase of contributions bgr) arising from simple

The MSA for this system consists of the Ornstein-ZernikeP0!€S: It is assumed thaf’(r) has been obtained numeri-

relation (3), the exact condition due to the hard-cdrér) cally from the HNC or anothe_r clo_sure approxima'Fion.
=—1 for r<d, and the closure approximation®(r) If a pure imaginary poleg=i«q, is found by solving Eq.

=c(r)+B¢(r)=0 for r>d. The solution to the MSA for (28), then its amplitude in the expansidd5) of h(r) is
this problem was given by Palmer and We§&8] and reads  91Ven by
1 | 7))

1
_ 2, T 2.2 A=— = , (BY)
C(X)=A+67M X+ = k"X 2mp? dc(iag)/diag

2 -
+1 A+ K2V)x3+ K X5, x<1, (A2) where the derivative of(q) can be obtained from Edq24)
2 1 1

60 and is given by

wherex=r/d and the dimensionless coefficients are deter- qc(ia,) 47 (= sinh agr)
mined by the following equations: d =—/| drrc3(r)|r coshagr) — ——
@o @gJo ag
(1+2p)?  Q°  (1+7)Qk_(5+7)« _2 @)2 ©2)
(-9t +4(1—7;)2 129 60 aop\ @0/

(A3) Consider now a conjugate pair of complex polgs

, +ay+iagy. Using EQ.(10) in Eq. (15) leads to the following
_ Q+9=95 (A-7)Q expression for the amplitude of the contribution of a single
V=-— - : (A4) :
129 1279« complex pole:




1450

2mp| pdcs(q)/da+2x3/g°]

(B3)

It is useful to introduce the functioresandb defined by

. 4 .
Csr(Q)E?(a—lb) (B4)
and the functiong andd defined by
dcs'(q)/d 1 .
ME——Z[Csr(q)—4W(C—id)]. (B5)
q q

Then, for the positive polg= + a;+iay, it follows that

a= derrcsr(r)sinktaor)cos(alr),
0
(B6)
bzf dr rcS'(r)cosh agr)sin(a;r)
0

and

c= f:dr r2cS"(r)cosh agr )cog ast),
(B7)
d=f dr r2cS'(r)sinh( agr)sin( a;r).
0

The (complex amplitude of this poleA™=|Ale™? [see the
discussion after Eq17)], can be written as

~ . 2 dcs' K3
A~ lel— — Wp{p (q) ) D]

_|_ —_
q dq q®

8m2p? a—ib ] ]

= |z —(c—id)=(f—ig)

q ap—lay

8mp? .

= (a+ib), (B8)
q
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where
f—ig=«3/(27pq?) (B9)
and
-~ aaptba - aa;—ba
a=%—c—f, b=~21—20+d+g.
aptag agtaj
(B10)
Rearranging Eq(B8), we obtain
~ . (agtah)
|A|e_'0=fe_'“_2p) (Bll)
8m2p2\a2+Db?
with the anglesg andt determined by
. ay+iag . a+ib ®12)
g =—— e'=—.
Vai+a? Va?+b?
Using Eq.(B9), it follows that
2 2_72 2 ~
K a;— K 201
D 1 0 D 140 (813)

T2mp (R ad)? O 2mp (Bt ad)?

In order to compute the amplitude and phase of a conjugate

pair of complex polegj=*+ a;+ia, we employcs'(r) in
Egs.(B6) and(B7) to find a, b, ¢, andd. Thena andb are
evaluated from Eq(B10) with Eq. (B13). Finally we use
these results in EqB11) to find |A| and the phas&=t
—2p, with the angles and p calculated from Eq(B12).

Note that the range of convergence of the integrals in Eqgs.

(B6) and (B7) is the same as in Eq$25) and (26) and this

prescription for determining the amplitudes and phases is
only valid provided the poles themselves can be determined

from the latter pair of equations.
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