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Numerical test of approximate single-step propagators: Harmonic power series expansions
versus system-specific split operator representations

Alexander N. Drozdov* and Shigeo Hayashi
Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-858

~Received 9 September 1998!

This paper compares the efficiency and accuracy of different second-order approximations for the single-step
propagator obtained by means of the power series expansion formalism and the split operator method. The
former is based on a harmonic reference system, while the latter allows for the use of physically motivated
~anharmonic! zeroth-order representations. Three typical examples—a system-bath Hamiltonian, a He´non-
Heiles anharmonic resonating system, and a Fokker-Planck chaotic model—are considered in the present
testing. The examples cover a variety of situations with strongly anharmonic coupling. Although no system-
specific reference system is involved in the power series representation of the propagator, it quite accurately
describes the dynamics of very anharmonic processes in theentire time domain even though the coupling is
strong. Another appealing feature of the approach is that it is essentiallyanalytical and thereforedoes not
require any computational effort to implement. This makes the power series expansion technique particularly
attractive for efficiently treating many-body problems. In contrast, numerical implementation of the split
operator method can be arduous as a general multidimensional calculation, while its utility is in general
restricted to the separable limit, when the coupling is almost turned off. In that limit the method indeed
provides accurate results over a broad range oft. With increasing coupling, however, the efficiency of the
method deteriorates very rapidly regardless of the particular choice of the zeroth-order representation.
@S1063-651X~99!08601-8#
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I. INTRODUCTION

Feynman path integration@1# has, in recent years, bee
the subject of intense study, and it has been found to
extremely promising as an approach to multidimensio
problems of quantum and statistical mechanics@2,3#. Particu-
larly exciting is the fact that the dynamics of fully quant
many-body problems can be interpreted in terms of class
~Feynman’s! paths that are one-dimensional lines regardl
of the number of degrees of freedom involved. Numeri
evaluation of the path integral requires discretization of
paths via time slicing. Since long time evolution is achiev
by repeated application of the evolution operator, one m
employ approximations of the evolution operator suita
only for short time propagation. This results in a multidime
sional integral. Clearly, the convergence of path integral c
culations depends critically on how good the approximat
for the short time evolution operator is. The better the sh
time propagator, the longer the time step one can emp
The standard procedure of approximating the evolution
erator for short time employs the symmetric Trotter break
based on partitioning the Hamiltonian into potential and
netic energy terms@4#. This splitting is exact for any time in
the limit of free-particle motion. Otherwise, it requires ve
short time increments for accuracy. Consequently, the
mension of the resulting path integral can be very high if
desired propagation time and/or the dimensionality of
system are large. The only possible way to evaluate it is
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employ Monte Carlo techniques@5#. A number of impressive
calculations of the low-temperature properties of quant
many-body systems have been performed using Monte C
path integration@6#. The latter, however, suffers from statis
tical errors. Yet another difficulty lies in the inefficiency o
statistical Monte Carlo sampling techniques when used
integrate highly oscillatory functions which occur due to t
oscillatory nature of the quantum time evolution operator

Several methods have been proposed to improve Mo
Carlo techniques@7#. Significant advances have also be
made in the development of higher-order approximations
the short time propagator valid for longer time@8–14#. An
extensive study of their relative efficacy can be found in
previous paper@15#. Although some of these methods ha
improved the statistics of path integral calculations allowi
time steps one order of magnitude larger than these pos
with the standard Trotter splitting@13,14#, their range of va-
lidity is in most nontrivial cases too short to allow an acc
rate numerical evaluation of the path integral for long tim
Thus, in spite of the above advances, the quantum and
tistical mechanics of truly multidimensional systems rema
beyond the computational powers of even the fastest p
integral algorithms.

An important exception involves problems where an ar
trary one-dimensional system is linearly coupled to a h
monic bath. Makri and co-workers@16# suggested a path
integral method to deal very efficiently with such situation
The starting point is an improved quasiadiabatic propaga
based on an adiabatic partitioning of the Hamiltonian. T
propagator is evaluated numerically in terms of the Trot
product formula and a basis set method. The approac
particularly attractive for two reasons. First, the harmo
bath appears in the path integral expression as a Gaus
9
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integral. The latter is easily integrated outanalytically, giv-
ing rise to a nonlocal influence functional and reducing
problem to a path integral for the system coordinate on
Second, the quasiadiabatic propagator is exact not only in
separable limit but also for a strongly coupled Hamiltonian
the bath is fast. In both limits this leads to a reasona
description of the dynamics with fewer time slices, allowi
an evaluation of the path integral by quadratures. The res
ing methodology does not employ Monte Carlo procedu
and thus yields numerically exact results free of statist
noise. More recently the approach was extended to a sys
coupled to a set ofanharmonicnoninteracting degrees o
freedom @17#. Although the path integral method has a
peared to be rather complicated for numerical implemen
tion, Makri and co-workers managed to apply it successfu
to a number of system-bath models. In addition, these
thors claimed that once their quasiadiabatic representatio
exact forany time in the separable limit, it may be used asa
single step propagatorfor fairly long times with moderate
coupling strengths. The issue of whether the quasiadiab
approximation for the propagator preserves its significa
for moderate coupling will be addressed in Sec. III of th
paper.

Yet another exception is the work of Drozdov@18,19#,
who elaborated a theory that combines the sum accelera
technique, as well as the power series expansion metho
Makri and Miller @8#. The basic ideas are representing t
full propagator as a product of the harmonic-oscillator pro
gator with the configuration function, and expanding the
ponent of the configuration function in a power series in
given function oft. The approach distinguishes itself fro
other methods in that it gives global approximations va
not only for short times, but also in intermediate and lo
time domains. In many practical applications the expans
coefficients can be evaluatedanalytically for any number of
degrees of freedom involved. This makes the power se
expansion method particularly attractive for treating ma
body problems. However, the utility of the method has be
illustrated only on one-dimensional models.

It is our aim here to compare the relative efficacy of t
two approaches in giving precise approximations to
single-step propagator valid for the entire time domain.
this end, we consider three typical two-dimensional mod
that cover a variety of physically meaningful situations w
strongly anharmonic mode coupling. The models selec
have been frequently used by many researchers as be
marks of different numerical methods and therefore sho
present a challenge for the considered perturbation te
niques. The reminder of the paper is organized as follows
Sec. II we review the split operator method and the pow
series expansion formalism, and discuss the numerical t
niques that we used. In Sec. III the applications are p
sented. Finally, Sec. IV summarizes our conclusions.

II. THEORY

In this paper we deal with the propagator of the par
differential equation of a generic type given by~summation
rule over repeated indices is always implied!
e
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] tP~x,tux0!5LP~x,tux0!

[@ 1
2 Di j ] i j

2 2] iGi~x!2F~x!#P~x,tux0!,

~2.1!

where x5(x1 , . . . ,xn), and L stands for the time-
independent Cartesian Fokker-Planck operator defined
Eq. ~2.1!. We assume that the drift vectorG(x) and the dif-
fusion matrixD entering this operator obey potential cond
tions @20#, so that forF(x)50 the logarithm of the station
ary solution of the above equation can be obtained by sim
integration,

U~x!522Ex
dq•D21G~q!, ~2.2!

to give

Pst~x![P~x,t→`ux0!5N21 exp@2U~x!#, ~2.3!

with a normalization constantN defined by Eq.~2.34!. Using
the standard transformation

P~x,tux0!5APst~x!/Pst~x0!c~x,tux0!, ~2.4!

one finds that the dynamics described by Eq.~2.1! is also
governed by a Schro¨dinger-type equation

2] tc~x,tux0!5Hc~x,tux0![@2 1
2 Di j ] i j

2 1V~x!#c~x,tux0!,
~2.5!

where H denotes the Hamiltonian operator with the tran
formed potential

V~x!5F~x!1 1
2 ~] iGi1Di j GiGj !. ~2.6!

HerebyDi j means the element of the inverse matrixD21.
Finally, we note that besides the propagator itself, the qu
tity of interest is also the probability distribution

P~x,t !5c~x,tux!/Tr@e2tH#. ~2.7!

It is not difficult to show that witht going to infinity, this
function reduces to the square of the ground state solu
c0(x) of the Hamiltonian~2.5!,

P~x,t→`!5c0
2~x!. ~2.8!

A. Split operator method

The basic idea of the method is to split the Hamiltoni
operator into a reference partHr and a disturbanceHd , read-
ing

H5Hr1Hd , ~2.9!

and then to employ a decomposition of the time evolut
operator valid to a given order in the time incrementt. In the
present paper we restrict our consideration to the simp
and most commonly used breakup, the so called symme
Trotter product formula

e2t~Hr1Hd!5e2tHd/2e2tHre2tHd/21O~ t3!. ~2.10!
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The breakup is exact for anyt if and only if the commutator
of Hr andHd commutes with bothHr andHd . Nevertheless,
throughout, Eq.~2.10! preserves its significance as a conv
nient starting point for constructing long time approxim
tions provided the reference operator is chosen such
†H,@Hr ,Hd#‡ is small. As noted in Sec. I, the standard sh
time propagator is obtained in terms of Eq.~2.10! by split-
ting the Hamiltonian into potential and kinetic energy term

Hr52 1
2 Di j ] i j

2 , Hd5V~x!. ~2.11!

This leads to a second-order free-particle coordinate re
sentation of the form

c f p~x,tux0!5@~2pt !ndetD#21/2

3expH 2
1

2t
~x2x0!•D21~x2x0!

2
t

2
@V~x!1V~x0!#J . ~2.12!

One can readily show that the commutator neglected in
riving Eq. ~2.12! is proportional to@14#

t3Di j ~] iV!~] jV!.

This neglect is quite severe, and introduces a large error
has to be compensated for by a very small time incremet.

An obvious way to refine the Trotter breakup is to empl
an improved zeroth-order representation of the propag
that is accurate for a particular problem, but much be
behaved than the free-particle basis exp(21

2tDij]ij
2). For ex-

ample, choosingHr as the separable part of the Hamiltoni
andHd as a potential term which mixes the degrees of fr
dom @21#,

Hr52 1
2 Dii ] i i

2 1Vi~xi !5(
i 51

n

Hi , Hd5F~x!,

~2.13!

yields the following system-specific approximation:

csa~x,tux0!5^xue2tHrux0&exp$2 1
2 t@F~x!1F~x0!#%.

~2.14!

The best zeroth-order propagators cannot be expresse
closed form in general, and must therefore be computednu-
merically. This can be done rather efficiently by standa
one-dimensional grid or basis set methods becauseHr is cho-
sen to be separable:

^xue2tHrux0&5)
i 51

n

^xi ue2tHiuxi
0&. ~2.15!

The scheme based on Eq.~2.14! will be referred to as the
separableapproximation~SA!. The approach is applicable t
any Hamiltonian with a diagonal diffusion matrix, whos
potential can be split according to Eq.~2.13!.

Another important situation, often met in real physic
processes, involves problems which can be represented
a so called system-bath approximation. The latter usu
-
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involves a relevant degree of freedomx ~the system! coupled
to a set ofnoninteractingdegrees of freedomyi ~the bath!:

H52 1
2 Dx]xx

2 1V~x!2 1
2 Dii ] i i

2 1Vi~x,yi !. ~2.16!

Then splitting the full Hamiltonian into the one-dimension
reference~describing the system of interest! and the rest

Hr52 1
2 Dx]xx

2 1V~x!,
~2.17!

Hd52 1
2 Dii ] i i

2 1Vi~x,yi !5(
i 51

n

Hi ,

we arrive with Eq.~2.10! at the following quasiadiabatic
approximation~QA! for the propagator:

cqa~x,y,tux0 ,y0!5^xue2tHrux0&E dz ^yue2tHd~x!/2uz&

3^zue2tHd~x0!/2uy0&. ~2.18!

The scheme is applicable to an arbitrary two-dimensio
problem governed by a general potential, as well as to m
tidimensional Hamiltonians allowing adiabatic separation
variables. Recently, Makri and co-workers@16,17# imple-
mented this idea to path integral calculations of system-b
problems with impressive success. As for the previous c
one can use standard one-dimensional propagation a
rithms to evaluate Eq.~2.18!. However, speed is of essenti
importance for the QA scheme, as the propagation algori
will have to be repeated for each particular value of the s
tem coordinatex. In our calculations the numerical procedu
was the following. The system propagator^xue2tHrux0& was
evaluated on a grid ofM points$x1 , . . . ,xM% by a basis set
method. The propagators^zue2tHd(xm)uy& were then obtained
from diagonalization of the coupled bath Hamiltonia
Hd(xm) at each grid value of the system coordina
$x1 , . . . ,xM%. This is computationally feasible because t
bath is assumed to be separable,

^zue2tHd~xm!uy&5)
i 51

n

^zi ue2tHi ~xm!uyi&, ~2.19!

and, therefore, standard one-dimensional algorithms can
used to calculate each factor on the right-hand side of
~2.19!. High efficiency was achieved by using a high ord
finite-difference basis set method described earlier@22#.

It is clear that the system-specific propagators@Eqs.~2.14!
and ~2.18!# are much more difficult to implement than th
free-particle representation@Eq. ~2.12!#. By construction,
however, these are exact for any value of the time increm
in the limit where the coupling is turned off. Thus one m
expect that they will be accurate for fairly long times wi
moderate coupling strengths.

Before closing this section three remarks are in ord
First, we note that aside from path integral methods@16,17#,
the idea of employing a good representation as the zer
order description of a problem is widely used in perturbat
theory @23# and grid and basis set calculations@22,24–26#.
Second, the above system-specific propagators can be fu
improved by using, instead of the Trotter product formu
~2.10!, higher-order symmetric decompositions. The lat
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can easily be constructed by repeated application of the T
ter breakup to give a multisplit factorization of the form@11#

e2t~Hr1Hd!5)
i 51

e2ai tHde2bi tHr1O~ t2k11!. ~2.20!

The coefficients (ai ,bi) and the number of operators appea
ing on the right-hand side of Eq.~2.20! are determined by the
desired order of accuracyk. For k.1, one application of Eq
~2.20! requires more computational effort than one appli
tion of Eq. ~2.10!. However, the higher-order decompositio
is expected to be more accurate, so that it should allow la
time increments to be taken than the Trotter breakup
comparable accuracy. For some choices, these larger
increments can compensate for the additional computati
effort of the higher-order procedure. Although a number
calculations of the real-time properties of quantum syste
have been performed using multisplit factorizations@11#, the
approach has found no application in quantum statistics
nonequilibrium statistical mechanics. The reason is that,
yond second order, any factorization of the form~2.20! must
produce some negative coefficients in the set (ai ,bi). When
applied to Fokker-Planck and/or Bloch equations, this me
that negative times must appear at some diffusion opera
making the resulting factorization unbounded. An alternat
approach was developed by Drozdov and co-work
@13,14,21#, who suggested employing a high-order factoriz
tion of the evolution operator, which explicitly includes th
commutator ofHr andHd . This factorization is applicable to
many-body problems of both quantum@14# and statistical
mechanics@13#, allows for the use of improved zeroth-ord
representations@21#, and still requires much less comput
tional effort than multisplit decompositions of Eq.~2.20!.
Finally, it may be noted that though most of the split ope
tor methods available in the literature are based on symm
ric decompositions of the evolution operator, asymme
factorizations can also be used. We mention specifically
work by Schwartz@27#, who developed a simple and effi
cient method to evaluate low-order nonadiabatic correcti
to adiabatic evolution operators. The method is based on
asymmetric product formula derived by Schwartz in terms
his resummation operator technique. As given, though,
formula applies only to calculation of the real-time quantu
dynamics of system-bath problems.

B. Power series expansion method

As we already noted, second-order system-specific pro
gators obtained by a combination of analytic and numer
techniques, though more accurate than the standard Tr
splitting, require significant computational effort if the d
mensionality of the system is large. Yet another disadvant
is that with this technique it is rather difficult to go beyon
the second order of approximation. Any high-order deco
position, when combined with anharmonic reference syste
@like those of Eqs.~2.13! and ~2.17!#, demands much more
computational effort than Trotter-approximated propagat
@Eq. ~2.10!#, and is thus unsuitable for treating truly multid
mensional problems. For this reason there has long be
desire to work out a simple computational tool for generat
analytic approximations for the propagator accurate for
t-
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long a time incrementt as possible and also capable of e
tension to higher orders of approximation. Only very r
cently has such a theory been developed in terms of an
ponential power series expansion formalism@18,19#. The
theory differs from other perturbation techniques@8,23# in
that the time evolution operator is approximated by a glo
polynomial expansion valid not only for short times, but al
in the intermediate and long time domains. This is achiev
by representing the full propagator as a product of a p
scribed zeroth-order propagatorPr with the configuration
function

P~x,tux0!5Pr~x,tux0!exp@W~x,x0;t !#, ~2.21!

and expanding the exponent of the configuration function
a power series in a given function oft:

W~x,x0;t !5tm~ t !Wm~x,x0!, m>0. ~2.22!

To be specific, we choose the harmonic-oscillator refere
propagator

Pr~x,tux0!5$@2p sinh~vt !/v#n detD%21/2

3expH 2gt1
v

2 sinh~vt !
Di j

3@2xixj
02~xixj1xi

0xj
0!cosh~vt !#J

~2.23!

and the functiont(t) given by the width ofPr ,

t~ t !5~12e22vt!/2v, ~2.24!

though a generalization to any but analytic zeroth-or
propagator and/or an arbitrary dependencet of t is also pos-
sible @19#. In the above,v and g are free parameters to b
specified so that the convergence of the series in Eq.~2.22! is
as fast as possible@18,19#.

The expansion coefficientsWm are determined by insert
ing Eqs.~2.21! and ~2.22! into Eq. ~2.1!, and equating like
powers oft. This yields, forW0 ,

W0~x,x0!5 1
2 @U~x0!2U~x!# ~2.25!

with U(x) given by Eq. ~2.2!. The rest of the expansion
coefficients are expressible in terms of the prescribed fu
tion w(x)

w~x!5V~x!2 1
2 v2x•D21x2g. ~2.26!

These are obtained from a recurrence relation whose exp
form can be found in Ref.@18#. Here we only present the firs
two expansion coefficients

W152E
0

1

du w~x01uDx!,

W25vW12 1
2 E

0

1

du ~12u!uDi j ] i j
2 w~q!uq5x01uDx ,

~2.27!
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whereDx5x2x0. Since our applications in Sec. III are all covered by a sixth-order polynomial potential

V5v01aixi1bi j xixj1ci jkxixjxk1di jkmxixjxkxm1ei jkmpxixjxkxmxp1 f i jkmplxixjxkxmxpxl , ~2.28!

we also present the explicit form taken by Eq.~2.27! in this case:

W152w~x0!2 1
2 aiDxi2~bi j 2

1
2 v2Di j !~xi

01 1
3 Dxi !Dxj2ci jk~ 1

2 $x
•

0x
•

0Dx
•
% i jk1 1

3 $x
•

0Dx
•

Dx
•
% i jk1 1

4 DxiDxjDxk!

2di jkm~ 1
2 $x

•

0x
•

0x
•

0Dx
•
% i jkm1 1

3 $x
•

0x
•

0Dx
•

Dx
•
% i jkm1 1

4 $x
•

0Dx
•

Dx
•

Dx
•
% i jkm1 1

5 DxiDxjDxkDxm !,

2ei jkmp~
1
2 $x

•

0x
•

0x
•

0x
•

0Dx
•
% i jkmp1 1

3 $x
•

0x
•

0x
•

0Dx
•

Dx
•
% i jkmp1 1

4 $x
•

0x
•

0Dx
•

Dx
•

Dx
•
% i jkmp1 1

5 $x
•

0Dx
•

Dx
•

Dx
•

Dx
•
% i jkmp

1 1
6 DxiDxjDxkDxmDxp!2 f i jkmpl~

1
2 $x

•

0x
•

0x
•

0x
•

0x
•

0Dx
•
% i jkmpl1

1
3 $x

•

0x
•

0x
•

0x
•

0Dx
•

Dx
•
% i jkmpl1

1
4 $x

•

0x
•

0x
•

0Dx
•

Dx
•

Dx
•
% i jkmpl

1 1
5 $x

•

0x
•

0Dx
•

Dx
•

Dx
•

Dx
•
% i jkmpl1

1
6 $x

•

0Dx
•

Dx
•

Dx
•

Dx
•

Dx
•
% i jkmpl1

1
7 DxiDxjDxkDxmDxpDxl !,

~2.29!
W25 1

12 nv21vW12 1
12 Di j @2bi j 1$c

•••
% i jk~xk

01 1
2 Dxk!1$d

•••
% i jkm~xk

0xm
0 1 1

2 xk
0Dxm1 1

2 xm
0 Dxk1 3

10 DxkDxm!

1$e
•••

% i jkmp~xk
0xm

0 xp
01 1

2 $x
•

0x
•

0Dx
•
%kmp1

3
10 $x

•

0Dx
•

Dx
•
%kmp1

1
5 DxkDxmDxp!1$ f

•••
% i jkmpl~xk

0xm
0 xp

0xl
0

1 1
2 $x

•

0x
•

0x
•

0Dx
•
%kmpl1

3
10 $x

•

0x
•

0Dx
•

Dx
•
%kmpl1

1
5 $x

•

0Dx
•

Dx
•

Dx
•
%kmpl1

1
7 DxkDxmDxpDxl !#,
io
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where the curly brackets denote complete symmetrizat
i.e.,

$c
•••

% i jk5ci jk1cik j1cki j1cjik1cjki1ck ji . ~2.30!

The generalization to higher-order polynomials is straig
forward.

Ideally, the power series representation of the propag
does not depend on the choice of the free parametersv and
g. However, as we cannot determine and sum infinit
many terms of the series in Eq.~2.22!, we have to truncate i
at some finitem5M . In this paper we restrict our conside
ation to M52 to be consistent with the second-order a
proximations of the split operator method. Obviously, t
accuracy of the truncated power series representa
PM(x,tux0) is sensitive tov andg. The standard way to fix
these parameters is to determine them variationally, so
the approximate propagatorPM is accurate for as long a tim
incrementt as possible. It may be noted that the variation
approach based on the harmonic-oscillator reference sy
is of common use in path integral methods@1,15,28#, basis
set calculations@22# and perturbation theory@29#; conse-
quently, a number of criteria for determining the free para
eters have resulted.

In the present calculations we have employed a criter
suggested in Ref.@18#. According to this criterion, the fre
quencyv is obtained from

1
2 v25

^VDi j xixj& r2^V& r^D
i j xixj& r

^~Di j xixj !
2& r2^Di j xixj& r

2
, ~2.31!

where^•••& r means averaging over the stationary refere
probability distribution, i.e.,

^V& r5@~p/v!n detD#21/2E dx V~x!exp~2vx•D21x!.

~2.32!
n,

-

or

y

-

n

at

l
m

-

n

e

Since the distribution contains the unknown parameterv,
Eq. ~2.31! constitutes a self-consistent integral equation. T
above criterion is particularly simple to apply to system
with polynomial coefficients, in which case all the integra
in Eq. ~2.31! are doable analytically. When applied to E
~2.28!, this leads to the relation

2nv424v2Di j bi j 24v$D
••

D
••

% i jkmdi jkm

23$D
••

D
••

D
••

% i jkmplf i jkmpl50, ~2.33!

which can be readily solved forv by any root finding pro-
cedure.

Next the parameterg is determined from the normaliza
tion condition. ForF(x)50 ~when the purely Fokker-Planc
dynamics is concerned!, the condition reads

E dx P~x,tux0!51, ~2.34!

leading us to

g52~ t2t2vt2!21lnH E dx P2~x,tux0!Ug50J ,

~2.35!

which is to be evaluated at each time moment of intere
Otherwise,g is given by

g52 4
3 v lnH @~p/v!n detD#21/2

3E dx exp@2 5
8 vDi j xixj2

3
4 v21V~x!

2 1
48 v22Di j ] i j

2 V~x!#J . ~2.36!
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which is time independent and is to be evaluated one tim
the beginning of calculations. The power series appro
outlined above possesses several advantages which de
to be pointed out.

~i! The recursive evaluation of the propagator is fai
straightforward, and can be readily carried out systematic
to any desired order int(t).

~ii ! It is a method that can be applied to simple or co
plex systems, and high dimensionalitydoes notpresent spe-
cial problems. In many practical applications the potenti
U(x) andF(x) are polynomials. In such a case, the functi
w(x) @Eq. ~2.26!# is also a polynomial, and therefore th
integrals entering the expansion coefficients are easily ev
atedanalytically for any number of degrees of freedom in
volved. This is trueregardlessof whether the Hamiltonian
allows adiabatic separation of variables@see, e.g., Eqs.~2.13!
or ~2.17!#.

~iii ! Having the power series expansion for the propaga
permits one to incorporate the true long time limit solution
the problem under study properly, whenever that is kno
exactly. The latter is a generic case for the purely Fokk
Planck dynamicsF(x)50, whose stationary solution i
given by Eq.~2.3!. A global approximation for the propaga
tor can be obtained by truncating the series in Eq.~2.22! at a
given m5M , and multiplying the resulting approximatio
PM by a correction functionF

Pg~x,tux0!5F~x,x0;t !PM~x,tux0!, ~2.37!

such that

F~x,x0;t→0!511O~tk!, k>M11,

F~x,x0;t→`!5Pst~x!/PM~x,t→`ux0!. ~2.38!

In a simplest realization, this gives

Pg~x,tux0!5PM~x,tux0!exp$~2vt!M11

3 ln@Pst~x!/PM~x,t→`ux0!#%. ~2.39!

III. APPLICATIONS

In this section we give three examples illustrating the
ficiency and accuracy of the various second-order appr
mations for thesingle-step propagatordiscussed in Sec. II
The examples selected involve only two degrees of freed
so that exact results and quasiadiabatic approximations
be generated in a reasonable amount of time. The forme
obtained using a high-order split-operator fast Fourier tra
in
h
rve

ly

-

s

u-

r
f
n
r-

-
i-

m
an
re

s-

form method@14#. While the integral appearing in the qua
siadiabatic propagator@Eq. ~2.18!# is evaluated by matrix
multiplication.

A. System-bath Hamiltonian

To begin with, we consider the generic system-ba
Hamiltonian

H52 1
2 Dx]xx

2 1V~x!2 1
2 Dy]yy

2 1~V2/2Dy!~y2lx!2,
~3.1!

which gives rise to one of the simplest and most intensiv
studied models of dynamical processes in the conden
phase. The model involves a relevant coordinatex ~describ-
ing the nonlinear system of interest! coupled to a harmonic
‘‘bath’’ degree of freedomy that mimics the effect of the
environment, withl being the coupling parameter. A gre
deal of effort has been devoted in recent times to the c
struction of rigorous numerical or approximate analytic
methods for efficiently treating system-bath Hamiltonia
@14,16,17,21,25,27#.

To be specific, we choose the system potential to b
pure quartic oscillator

V~x!5 1
4 x4. ~3.2!

Following the SA scheme, we takeHr as the entire separabl
part of the full Hamiltonian

Hr52 1
2 Dx]xx

2 1V~x!1~l2V2/2Dy!x2

2 1
2 Dy]yy

2 1~V2/2Dy!y2,
~3.3!~3.3!

F52~lV2/Dy!xy.

Moreover, in order to exploit the adiabatic reference~the QA
scheme!, we partition Eq.~3.1! into a Hamiltonian for the
system and an adiabatically displaced harmonic-oscilla
Hamiltonian reading

Hr52 1
2 Dx]xx

2 1V~x!,
~3.4!

Hd52 1
2 Dy]yy

2 1~V2/2Dy!~y2lx!2.

Since the bath HamiltonianHd depends only parametricall
on the system coordinate, the corresponding matrix elem
is easily obtained analytically. It is nothing but the propag
tor of a shifted harmonic oscillator. Taking advantage of t
fact that this propagator is Gaussian iny, Eq. ~2.18! takes the
form
cqa~x,y,tux0 ,y0!5^xue2tHrux0&A V

2pDy sinhVt
exp

V

2Dy sinhVt
$2~y2lx!~y02lx0!2l~x2x0!

3cosh2 1
2 Vt22l~x2x0!~y2y01lx02lx!cosh1

2 Vt2@~y2lx!21~y02lx0!2#coshVt%.

~3.5!
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We would like to emphasize that it is just this kind of Ham
tonian for which the quasiadiabatic representation of
propagator was designed@16,22,25,27#!. Only very recently,
Makri and co-workers@16# applied Eq.~3.5! to path integral
calculations of chemical dynamics with impressive succe
Furthermore, the generalization of Eq.~3.5! to an arbitrary
number of bath degrees of freedom is straightforward
does not complicate the final expression@16#. It is in this
particular case that implementing the quasiadiabatic pro
gator numerically is not more difficult than in the S
scheme. Both schemes are exact when the coupling is tu
off. One may thus expect that they would be accurate
systems with moderate coupling. As far as the power se
expansion method is concerned, the above model is chall
ing for it not only when the coupling is strong but also in t
separable limit. This is because the Hamiltonian rema
highly anharmonic even thoughl50.

The accuracy of the various approximations for the pro
gator is investigated by calculating the off-diagonal mat
element

^x,yue2tHux0 ,y0& with x5y51 and x05y050.
~3.6!

The calculation is performed atDx5Dy5V51 for different
values of the coupling parameterl. The results are presente
in Fig. 1. Surprisingly, the power series expansion~although

FIG. 1. Percentage error in the off-diagonal matrix element@Eq.
~3.6!# of the system-bath Hamiltonian@Eqs. ~3.1! and ~3.2!# for l
50.1, 0.5, and 1. Circles connected by solid lines, standard Tro
splitting @Eq. ~2.12!#; dot-dashed lines, SA scheme@Eqs.~2.14! and
~3.3!#; dashed lines, quasiadiabatic propagator@Eq. ~3.5!#; solid
lines, second-order power series expansion@Eqs.~2.21! and~2.22!#.
e
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ed
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it involves no anharmonic reference! works much better than
the Trotter-approximated propagators. As evidenced by
figure, it quite accurately describes the dynamics of
system-bath problem in the entire time domain for both we
and moderate coupling. This is in drastic contrast to the q
siadiabatic representation of Makri and co-workers@16#, @Eq.
~3.5!#. The latter accurately describes the dynamics ove
broad range oft only for l&0.1. With increasing coupling
however, the accuracy of Eq.~3.5! deteriorates very rapidly
and already forl*0.3 it fails to provide correct results. Th
SA scheme also substantially improves the standard Tro
splitting only if the coupling is weak (l50.1), while for a
stronger coupling it works not better than Eq.~2.12!. Finally,
in all the cases considered the error made by the the stan
Trotter splitting increases witht almost exponentially, and
very soon grows out of the scale of the figure.

For completeness, we show in Fig. 2 results obtained
the system probability distribution ast goes to infinity:

r~x!5E
2`

2`

dy P~x,y,t→`!. ~3.7!

However, before discussing the results, three remarks ar
order. First, we recall that this function is related to t
ground state solution through Eq.~2.8!. Second, neither Eq
~2.12! nor ~2.14! can be normalized forlÞ0 ast→`. That
is why these approximations are not presented in the fig
Third, within the scope of the quasiadiabatic approximat
the functionr(x) is independent ofl and given by

r~x!5 lim
t→`

^xue2tHrux&/Tr@e2tHr#, ~3.8!

which is simply the square of the ground state wave funct
of the uncoupled system. It is remarkable that the true sys
probability distribution indeed remains insensitive to t
coupling strength over a broad range ofl. As shown by Fig.
2, the deviation of Eq.~3.8! from the numerically exact re

er

FIG. 2. Probability distribution@as defined in Eq.~3.7!# of the
system-bath Hamiltonian@Eqs. ~3.1! and ~3.2!# obtained forl51
and 2. Solid lines, second-order power series expansion; da
lines, quasiadiabatic propagator; circles, exact numerical result



th

-

e
s

a
u-
,
r
o
i

od
de
os

th

ica

a

t
io
i

be
ar
a
n

th
lin

ent

he

rror

or-
ticu-

ro-

tors
ing
er-

ies
lly

be-
so
te
d
It is
ery

on,
a

ies

n-

PRE 59 1393NUMERICAL TEST OF APPROXIMATE SINGLE-STEP . . .
sults remains small even thoughl51. Of course, with fur-
ther increasing coupling the deviation also increases, but
happens rather slowly.

B. Modified Hénon-Heiles potential

As a second example, we consider a modified~bound!
Hénon-Heiles Hamiltonian of the form@30#

H52 1
2 ~]xx

2 1]yy
2 !1 1

2 ~x21y2!

1lx~y22 1
3 x2!1 1

16 l2~x21y2!2, ~3.9!

where the coupling parameterl is a measure of anharmonic
ity. The Hénon-Heiles Hamiltonian@31# is a chaotic model
that ~classically! describes a resonating system. It has be
used as a model for many classical or quantum studie
nonlinear molecular dynamics@32#. The Hénon-Heiles
Hamiltonian is also important in numerical analysis. It h
frequently been exploited to test the utility of different n
merical schemes@4,24,30,33#. In all these investigations
however, the coupling parameterl was taken to be rathe
small,l;0.1, so that the Hamiltonian was close to the tw
dimensional harmonic oscillator. In the present testing,
order for the model to present a challenge for the meth
outlined in Sec. II, we carried out calculations over a wi
range of coupling strengths, ranging from the harmonic
cillator (l50) to a very anharmonic process (l52).

Following the SA scheme, we chooseHr as the separable
part of the Hamiltonian

Hr52 1
2 ~]xx

2 1]yy
2 !1 1

2 ~x21y2!2 1
3 lx31 1

16 l2~x41y4!;
~3.10!

accordingly,

F5lxy21 1
8 l2x2y2. ~3.11!

On the other hand, to calculate the propagator within
scope of the QA scheme, we split Eq.~3.9! into a system
HamiltonianHr and an anharmonic bathHd reading

Hr52 1
2 ]xx

2 1 1
2 x22 1

3 lx31 1
16 l2x4,

~3.12!
Hd52 1

2 ]yy
2 1 1

2 y21lxy21 1
16 l2~y412x2y2!.

It should be pointed out that the He´non-Heiles Hamiltonian
is anharmonic in both variables. As a result, the numer
implementation of the quasiadiabatic propagator, Eqs.~2.18!
and~3.12!, is not as simple as in the case of the system-b
Hamiltonian considered Sec. III A@cf. Eq. ~3.5!#. It is
enough to say that the necessary computational effor
much larger than that of the standard grid propagat
scheme used to generate numerically exact results. With
creasing dimensionality, however, the situation becomes
ter. In such a case, the numerical work in the stand
scheme grows exponentially, while the quasiadiabatic
proximation requires a computational effort that scales o
linearly with the number of degrees of freedom involved.

In order to understand how dependent the accuracy of
various approximations for the propagator is on the coup
is

n
of

s

-
n
s

-

e

l

th

is
n
n-
t-
d

p-
ly

e
g

strength, we again calculated the off-diagonal matrix elem
and the probability distribution as defined by Eqs.~3.6! and
~3.7!, respectively. Figure 3 shows the relative error in t
off-diagonal matrix element obtained forl50.1, 0.5, and 2.
As anticipated, the standard Trotter splitting@Eq. ~2.12!#
gives the worst approximation of the exact results. The e
made by this propagator increases witht very rapidly, and
for t510 it overestimates the matrix element by several
ders of magnitude. This is the case regardless of the par
lar value of the coupling parameterl. Use of the improved
zeroth-order representations@Eqs. ~3.10! and ~3.12!# is seen
to reduce the error of the Trotter breakup considerably, p
vided the coupling is weak enough (l50.1). Even in that
case, however, the utility of the system-specific propaga
is restricted to the intermediate time domain. As the coupl
strength increases, the range of applicability of the Trott
approximated propagators rapidly decreases, and forl50.5
these are all valid only for short times. The power ser
expansion is in very good agreement with the numerica
exact results in the weak coupling limit. The agreement
comes worse with increasing coupling but rather slowly,
that even forl52 the method still provides an accura
description over a broad range oft. The results presente
demonstrate the potential of the power series approach.
seen to be able to describe correctly the dynamics of a v
anharmonic process for fairly long times. For comparis
the improved Trotter-approximated propagators provide
level of accuracy comparable with that of the power ser
expansion method only forl<0.01, when the Hamiltonian is
very close to the two-dimensional harmonic oscillator.

FIG. 3. Same as Fig. 1 but for the modified He´non-Heiles
Hamiltonian @Eq. ~3.9!# with l50.1, 0.5, and 2. The SA@Eq.
~2.14!# and QA@Eq. ~2.18!# propagators are calculated by partitio
ing the Hamiltonian according to Eqs.~3.10! and ~3.12!, respec-
tively.
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It is also remarkable that the efficiency of the power ser
expansion method in giving precise ground state soluti
appears to be rather insensitive to the coupling strength
illustrated in Fig. 4, it works equally well for both modera
and large coupling strengths, to say nothing about the w
coupling limit. The same is not true for the Trotte
approximated propagators, none of which can be normal
as t goes to infinity, excepting the trivial casel50.

FIG. 4. Same as in Fig. 2, but for the modified He´non-Heiles
Hamiltonian@Eq. ~3.9!# with l52.
s
s
s

ak

d

C. Fokker-Planck chaotic system

As a third more sophisticated example, selected to ill
trate the use of the present methods, we consider the stoc
tic dynamics in a two-dimensional potential with strong
anharmonic mode coupling. The model is governed by
Fokker-Planck equation

] tP~x,y,tux0 ,y0!5@]x~]xU !1]y~]yU !1 1
2 D~]xx

2 1]yy
2 !#

3P~x,y,tux0 ,y0!,
~3.13!

U52x41 3
5 y41lxy~x2y!2,

whose stationary solution is known to be

Pst~x,y!5N21exp@22U~x,y!/D#. ~3.14!

It will be recalled that the normalization constantN is deter-
mined from Eq.~2.34!.Transformation~2.4! casts the above
equation into a Hermitian Schro¨dinger-type form with the
Hamiltonian
cribe

king
atrices

os for

merical
ough
ities

improved
H52 1
2 D~]xx

2 1]yy
2 !1F,

~3.15!

F5
1

2D
$~641l2!x61l@~4828l!x5y1~31l264!x4y21~ 104

5 248l!x3y31~31l2 96
5 !x2y4

1~ 72
5 28l!xy5#1~ 144

25 1l2!y6%2~1222l!x22~ 18
5 22l!y226lxy.

This model was introduced by Millonas and Reichl@34# when studying stochastic chaos. The latter term was used to des
the observation of chaos in the classical trajectories of the corresponding Hamilton’s equations of motion,

ṗi52
]H
]qi

, q̇i5
]H
]pi

, ~3.16!

whereq5(x,y),p5(px ,py), and the Hamiltonian reads

H5 1
2 p21DF, ~3.17!

with the potentialF(x,y) given by Eq.~3.15!. Millonas and Reichl@34# calculated, forD50.2 and 0<l<0.14, the eigen-
values of Eq.~3.13! by expandingH in a harmonic-oscillator basis and truncating the matrix at a suitably large size. Ta
advantage of the fact thatH is parity invariant enabled them to compute the eigenvalues for the even and odd parity m
separately, using two sets of 2600 basis functions for each parity. Analyzing the spectral properties of Eq.~3.13! as a function
of the coupling parameterl, these authors arrived at the conclusion that the system should exhibit a transition to cha
l>0.14. More recently, Ingber@35# performed an accurate calculation, forD50.2 and 0.1<l<0.55, of the time evolution of
P(x,y,tu0,0) by means of a path integral method, requiring up to 2000 foldings. The main findings revealed in his nu
calculations are the following. The system appears to be very stable with a single peak in its probability up thrl
50.5. The onset of instabilities first occurs atl50.55. However, Ingber failed to establish the reason why the instabil
appear.

Following Ingber, we also calculated the time evolution ofP(x,y,tu0,0) at D50.2 for different values of the coupling
strength, and compared the numerically exact results with those obtained from the approximate propagators. The
zeroth-order representations we have used in this case are

Hr52 1
2 D~]xx

2 1]yy
2 !1 1

2 D21@~641l2!x61~ 144
25 1l2!y6#2~1222l!x22~ 18

5 22l!y2,

~3.18!Hd5lxy$ 1
2 D21@~4828l!x41~31l264!x3y1~ 104

5 248l!x2y2~31l2 96
5 !xy31~ 72

5 28l!y4#26%,

and
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Hr52 1
2 D]xx

2 1 1
2 D21~641l2!x62~1222l!x2,

~3.19!

Hd52 1
2 D]yy

2 2~ 18
5 22l!y226lxy1

1

2D
$l@~4828l!x5y1~31l264!x4y2

1~ 104
5 248l!x3y31~31l2 96

5 !x2y41~ 72
5 28l!xy5#1~ 144

25 1l2!y6%.
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The former is chosen according to the SA scheme@Eqs.
~2.13! and ~2.14!#, while the latter corresponds to adiaba
separation of variables@Eqs. ~2.17! and ~2.18!#. But before
presenting our results we would like to indicate the rea
for the cause of appearance of instabilities. It lies in the f
that the stationary solution@Eq. ~3.14!# is nontrivial if and
only if ulu,0.54. Just in that range of coupling strengths
normalization constantN remains finite. Meanwhile forulu
>0.54, the potentialU(x,y) is no longer unbounded from
above asx and y go to infinity. Consequently,N becomes
infinite, and the stationary solution reduces toPst50. This is
well illustrated by Fig. 5, which shows that the contour p
of the basin exhibits a transition as the coupling parametel
is varied. The contour lines are seen to be closed fol
,0.54, whereas atl50.54 a valley appears along which th
potential remains finite with increasingx andy.

Turning back to the discussion of the various approxim
tions for the propagator, we would like to emphasize that
above model presents a particular challenge for the po
series approach; it remains highly anharmonic whatever
coupling constantl is @see Eq.~3.15!#. On the other hand
since the stationary solution of Eq.~3.13! is known exactly,
the extrapolation formula~2.39! can be used to construct
global approximation for the propagator. The global appro
mation is obviously exact in both limits of short and lon
times for all values ofl from the interval@0,0.53#. There-
fore, one may expect that it would be reasonably accurat
the intermediate time domain as well. Moreover, we n
that the accuracy of the approximate propagators is inve
gated through the calculation of the off-diagonal matrix e
ment

P~x,y,tux0 ,y0! with x5y50.15 and x05y050.
~3.20!

The final point (x,y) in Eq. ~3.20! is taken to be close to th

FIG. 5. Contour linesU(x,y)510 of potential ~3.13! for l
50, 0.52, 0.54, and 0.8.
n
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origin to keep an acceptable level of accuracy of the SA a
QA schemes. Both are found to diverge very rapidly w
time asuxu and uyu increase.

The results obtained for the off-diagonal matrix eleme
are presented in Fig. 6. The overall situation is seen to
quite similar to the case of the He´non-Heiles Hamiltonian.
As shown by the figure, the standard short time approxim
tion is least accurate. Use of the quasiadiabatic zeroth-o
representation improves the accuracy of the Trotter brea
in the intermediate time domain, but its numerical impleme
tation is more arduous than a conventional numerically ex
calculation. The SA scheme works a bit better than the q
siadiabatic propagator, though its validity is also genera
restricted to short times and/or small coupling strengths
contrast, the global power series approximation for
propagator provides an accurate description of the dynam
over a broader range ofl in theentire time domain, and still

FIG. 6. Same as in Fig. 1, but for the off-diagonal matrix e
ment @Eq. ~3.20!# of the stochastic model@Eq. ~3.13!# with D
50.2 andl50.1, 0.25, and 0.5. The SA@Eq. ~2.14!# and QA @Eq.
~2.18!# propagators are calculated by partitioning the Hamilton
according to Eqs.~3.18! and~3.19!, respectively. Solid lines are fo
the global second-order approximation@Eq. ~2.39!#.
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requires no computational effort.
The relative efficacy of the ordinary and global pow

series approximations for the propagator is seen from Fig
which shows the relative error in the second cumulant

s~ t !5^x2~ t !&2^x~ t !&2, ~3.21!

where

^xn~ t !&5E
2`

`

dxE
2`

`

dy xnP~x,y,t !. ~3.22!

Also shown are results obtained with the standard Tro
splitting. The corresponding errors of the two syste
specific propagators are not presented in the figure, bec
both fail to provide convergent results for the second cum
lant whateverlÞ0. It is clear from Fig. 7 that the range o
applicability of the power series expansion method is qu
robust to variations in the coupling strength. One would
pect the accuracy of Eqs.~2.21! and ~2.22! to fall off very
quickly asl goes up, but in fact, going from a potential
l50.1 to one aboutl50.5, there was a slow decay in th
accuracy of the results. It is also seen that the use of
interpolating formula~2.39! substantially improves the ap
proach, considerably decreasing the error in the entire t

FIG. 7. Percentage error in the second cumulant@Eq. ~3.21!# of
the stochastic model@Eq. ~3.13!#. Circles connected by solid lines
standard short time propagator@Eq. ~2.12!#; dashed lines, powe
series expansion@Eqs.~2.21! and ~2.22!#; solid lines, second-orde
global approximation@Eq. ~2.39!#.
7,

r
-
se
-

e
-

e

e

domain. The error made by the standard Trotter splitting
again very large compared to that of the power series exp
sion.

IV. CONCLUDING REMARKS

In this paper we have formulated and applied two diffe
ent approaches to calculating quantum and statistical
chanics of multidimensional nonlinear systems, namely,
split operator method and the power series expansion form
ism. Our study was not intended to be an exhaustive co
parison of these techniques, but rather intended to illust
their stability and relative efficacy in giving precise dynam
cal properties in a simple economic way. Both approac
are perturbative in the coupling potential and the time inc
ment, but the manner in which higher-order corrections c
be taken into account~as well as the way in which the po
tential enters the methods! is quite different. For this reason
the strategy followed made use of the second-order appr
mations to avoid having to evaluate numerically multidime
sional integrals that necessarily arise in high-order split
erator decompositions. Similarly, the examples conside
are chosen to be two dimensional in order to allow a co
parison with a conventional grid method without extraor
nary computational effort.

From a vast amount of possibilities, we selected th
different rather general ways to partition the underlyi
Hamiltonian operator that have been frequently used
many researchers. These are~i! the standard splitting of the
Hamiltonian into potential and kinetic energy terms,~ii ! the
SA scheme using the separable part of the Hamiltonian
zeroth-order representation, and~iii ! the quasiadiabatic ap
proximation based on partitioning the Hamiltonian into
one-dimensional system part coupled to a bath of nonin
acting degrees of freedom. Although system-specific pro
gators, by construction, incorporate the exact dynamics
anharmonic zeroth-order representations, this will not alw
assure us accurate results~e.g., what if the system does no
behave adiabatically at all?!. The calculations we performe
clearly demonstrate that the efficiency of the approach
pends crucially on the decision about which part of t
Hamiltonian properly describes the dynamics in the interm
diate time domain. In some cases, a clear disparity betw
variables makes the choice obvious. Thus, for instance,
approach works well in the separable limit when the co
pling is almost turned off (l&0.01). In this case, the
system-specific propagators indeed remain correct for tim
sufficiently long to observe physical effects. Otherwis
choosing the best partitioning of the system is more of an
than an exact science. Still, an improper choice can resu
a less than optimally efficient propagator, or even one wh
is worse than the standard short time propagator.

It is remarkable that in all the cases considered the b
agreement with exact numerical calculations was attai
with the power series representation of the propagator.
method holds regardless of whether the Hamiltonian allo
adiabatic separation of variables. It is capable of accura
describing the dynamics ofvery anharmonic processesin the
entire time domain. The latter is particularly surprising,
the present power series expansion involvesno anharmonic
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reference system. Yet another appealing feature of the po
series approach is the ease with which it can be impleme
numerically. The necessary calculations can be perform
analytically for any number of degrees of freedom, whic
makes the method very attractive for treating many-bo
problems. This, however, is in general true only for polyn
al
,

a-
,
-

g-

itt

ys

.

-
a

J.

m

er
ed
d

y
-

mial potentials. For others, its numerical implementati
may be very arduous.
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