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Numerical test of approximate single-step propagators: Harmonic power series expansions
versus system-specific split operator representations
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This paper compares the efficiency and accuracy of different second-order approximations for the single-step
propagator obtained by means of the power series expansion formalism and the split operator method. The
former is based on a harmonic reference system, while the latter allows for the use of physically motivated
(anharmonig zeroth-order representations. Three typical examples—a system-bath Hamiltonianpa- He
Heiles anharmonic resonating system, and a Fokker-Planck chaotic model—are considered in the present
testing. The examples cover a variety of situations with strongly anharmonic coupling. Although no system-
specific reference system is involved in the power series representation of the propagator, it quite accurately
describes the dynamics of very anharmonic processes ierttie time domain even though the coupling is
strong Another appealing feature of the approach is that it is essentalfiytical and thereforedoes not
require any computational effort to implement. This makes the power series expansion technique particularly
attractive for efficiently treating many-body problems. In contrast, numerical implementation of the split
operator method can be arduous as a general multidimensional calculation, while its utility is in general
restricted to the separable limit, when the coupling is almost turned off. In that limit the method indeed
provides accurate results over a broad rangé &¥ith increasing coupling, however, the efficiency of the
method deteriorates very rapidly regardless of the particular choice of the zeroth-order representation.
[S1063-651%99)08601-9

PACS numbeps): 05.40—-a, 02.50.Ey

I. INTRODUCTION employ Monte Carlo techniqué¢§]. A number of impressive
calculations of the low-temperature properties of quantum
Feynman path integratiofiL] has, in recent years, been many-body systems have been performed using Monte Carlo
the subject of intense study, and it has been found to bpath integratiori6]. The latter, however, suffers from statis-
extremely promising as an approach to multidimensionalical errors. Yet another difficulty lies in the inefficiency of
problems of quantum and statistical mechafi&;8]. Particu- ~ Statistical Monte Carlo sampling techniques when used to
larly exciting is the fact that the dynamics of fully quantal integrate highly oscillatory functions which occur due to the

many-body problems can be interpreted in terms of classicdiscillatory nature of the quantum time evolution operator.

(Feynman's paths that are one-dimensional lines regardless  S€Veral methods have been proposed to improve Monte
of the number of degrees of freedom involved. NumericalC2/0 techniqued7]. Significant advances have also been

evaluation of the path integral requires discretization of th ade in the development of higher-order approximations to

paths via time slicing. Since long time evolution is achievedthe shprt time propagator va_I|d for _Ionger tirp@-—-14). An.
extensive study of their relative efficacy can be found in a

by repeated ap.plica'\tion of the evolutign operator, one May ovious papef15]. Although some of these methods have
employ appro_X|mat|ons of_the e\{olutlon o_perator _Sl‘_"tableimproved the statistics of path integral calculations allowing
only for short time propagation. This results in a multidimen-

X . . time steps one order of magnitude larger than these possible
smngl integral. Clearl_y_, the convergence of path mtegral (_:aIWith the standard Trotter splittini.3,14, their range of va-
culations depends critically on how good the approximationjgity is in most nontrivial cases too short to allow an accu-
for the short time evolution operator is. The better the shortate numerical evaluation of the path integral for long times.
time propagator, the longer the time step one can employrhys, in spite of the above advances, the quantum and sta-
The standard procedure of approximating the evolution optistical mechanics of truly multidimensional systems remains
erator for short time employs the symmetric Trotter breakumheyond the computational powers of even the fastest path
based on partitioning the Hamiltonian into potential and ki-integral algorithms.
netic energy termp4]. This splitting is exact for any time in An important exception involves problems where an arbi-
the limit of free-particle motion. Otherwise, it requires very trary one-dimensional system is linearly coupled to a har-
short time increments for accuracy. Consequently, the dimonic bath. Makri and co-workergl6] suggested a path
mension of the resulting path integral can be very high if theintegral method to deal very efficiently with such situations.
desired propagation time and/or the dimensionality of theThe starting point is an improved quasiadiabatic propagator
system are large. The only possible way to evaluate it is tdbased on an adiabatic partitioning of the Hamiltonian. The
propagator is evaluated numerically in terms of the Trotter
product formula and a basis set method. The approach is
*Permanent address: Institute for High Temperatures, 13/1@articularly attractive for two reasons. First, the harmonic
Izhorskaya Street, 127412 Moscow, Russia. bath appears in the path integral expression as a Gaussian
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integral. The latter is easily integrated analytically, giv- 3 P(x,1|x)=LP(x,t|x°%

ing rise to a nonlocal influence functional and reducing the

problem to a path integral for the system coordinate only. E[%Dijﬂﬁ-—aiGi(x)—®(x)]P(x,t|x°),
Second, the quasiadiabatic propagator is exact not only in the 2.1)
separable limit but also for a strongly coupled Hamiltonian if '
the bath is fast. In both limits this leads to a reasonablevhere x=(x;, ... x,), and L stands for the time-

description of the dynamics with fewer time slices, allowingindependent Cartesian Fokker-Planck operator defined by

an evaluation of the path integral by quadratures. The resulEq. (2.1). We assume that the drift vect@(x) and the dif-

ing methodology does not employ Monte Carlo proceduresusion matrixD entering this operator obey potential condi-

and thus yields numerically exact results free of statistications[20], so that ford®(x) =0 the logarithm of the station-

noise. More recently the approach was extended to a systeary solution of the above equation can be obtained by simple

coupled to a set ohnharmonicnoninteracting degrees of integration,

freedom[17]. Although the path integral method has ap-

peared to be rather complicated for numerical implementa- U(x)= —fodq-DflG(q), 2.2

tion, Makri and co-workers managed to apply it successfully

to a number of system-bath models. In addition, these au-

thors claimed that once their quasiadiabatic representation 18

e_xact foranytime in the sepgrable Iim_it, it may be usedaas PX)=P(x,t—x|xX)=N"texg—U(x)], (2.3

single step propagatofor fairly long times with moderate

coupling strengths. The issue of whether the quasiadiabatigith a normalization constam defined by Eq(2.34). Using

approximation for the propagator preserves its significancehe standard transformation

for moderate coupling will be addressed in Sec. Il of this

paper. P(X,t[X0) = VPs(X)/ P X0) h(x,t[x°), (2.9
Yet another exception is the work of Drozd$¥8,19, ] ] . ]

who elaborated a theory that combines the sum acceleratidi’® finds that the dynamics described by E1) is also

technique, as well as the power series expansion method §Pverned by a Schdinger-type equation

Makri and Miller [8]. The basic ideas are representing the o\ o 1 2 0

full propagator as a product of the harmonic-oscillator propa- PO = Hp (X0 =[ = 2 Dy +V(X)]¢(X’t|?2)é)

gator with the configuration function, and expanding the ex- '

ponent of the configuration function in a power series in ayhere H denotes the Hamiltonian operator with the trans-

given function oft. The approach distinguishes itself from formed potential

other methods in that it gives global approximations valid B

not only for short times, but also in intermediate and long V(x)=<I>(x)+%(&iGpLD”GiGj). (2.6)

time domains. In many practical applications the expansion -

coefficients can be evaluatesalytically for any number of HerebyD' means the element of the inverse matix .

degrees of freedom involved. This makes the power serie§inally, we note that besides the propagator itself, the quan-

expansion method particularly attractive for treating many-ity Of interest is also the probability distribution

body problems. However, the utility of the method has been _ “tH
illustrated only on one-dimensional models. PO =g(x,tx)/Trle™™]. @7
It is our aim here to compare the relative efficacy of they i ot gifficult to show that witht going to infinity, this

two approaches in giving precise approximations t0 theynction reduces to the square of the ground state solution
single-step propagator valid for the entire time domain. Tolﬂo(x) of the Hamiltonian(2.5)

this end, we consider three typical two-dimensional models

that cover a variety of physically meaningful situations with o) = /2

strongly anharmonic mode coupling. The models selected POGE=2) = 5(x). @8
have been frequently used by many researchers as bench-
marks of different numerical methods and therefore should
present a challenge for the considered perturbation tech- The basic idea of the method is to split the Hamiltonian
nigues. The reminder of the paper is organized as follows. Iperator into a reference pait and a disturbance, read-
Sec. Il we review the split operator method and the poweing

series expansion formalism, and discuss the numerical tech-

niques that we used. In Sec. Ill the applications are pre- H=H;+Hq, 2.9
sented. Finally, Sec. IV summarizes our conclusions.

give

A. Split operator method

and then to employ a decomposition of the time evolution

operator valid to a given order in the time incremerih the

present paper we restrict our consideration to the simplest

and most commonly used breakup, the so called symmetric
In this paper we deal with the propagator of the partialTrotter product formula

differential equation of a generic type given tsummation

rule over repeated indices is always implied e tHrTHe) = g~ tHe2e~tHra=tHa2 L O(13),  (2.10

Il. THEORY
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The breakup is exact for anyif and only if the commutator involves a relevant degree of freedonthe systemcoupled

of H, andH4 commutes with botid, andH,. Nevertheless, to a set ofnoninteractingdegrees of freedory; (the bath:
throughout, Eq(2.10 preserves its significance as a conve- L ) L )

nient starting point for constructing long time approxima- H=—3Dyd5tV(X)—zD;idi +Vi(x,yi). (2.19
tions provided the reference operator is chosen such th%lh - S . .
[H.[H. ,H,]] is small. As noted in Sec. I, the standard short | NeN splitting the full Hamiltonian into the one-dimensional
time propagator is obtained in terms of E8.10 by split- reference(describing the system of interg¢stnd the rest

ting the Hamiltonian into potential and kinetic energy terms H,=—1D 32 +V(x)
r— 2 M xYxx !

Hi=-31D;d, Ha=V(x). (2.11 n (2.17
1 2
. . . =—1iD. 95+ V. = .
This leads to a second-order free-particle coordinate repre- Ha=—2Diidi +Vikxy) .21 Hi
sentation of the form
we arrive with Eq.(2.10 at the following quasiadiabatic

Pep(x,t[X°) =[(27t)"deD] 2 approximation(QA) for the propagator:
1
X exp{ = S (x=x9)- D7 (x=x") Paa(X.Y:tX0,y°) = (x|e~™"r|xo) f dz (yle ™%z
t X (z]e™ Ha(x0)2y0) 2.1
—E[V(X)+V(X0)]]. (2_12) <Z| |y > ( 8)
The scheme is applicable to an arbitrary two-dimensional
One can readily show that the commutator neglected in deProblem governed by a general potential, as well as to mul-
riving Eq. (2.12 is proportional to14] tidimensional Hamiltonians allowing adiabatic separation of
variables. Recently, Makri and co-workef$6,17 imple-
t3Dij(aiV)(ajV). mented this idea to path integral calculations of system-bath

problems with impressive success. As for the previous case,
This neglect is quite severe, and introduces a large error thaine can use standard one-dimensional propagation algo-
has to be compensated for by a very small time increrhent rithms to evaluate E(2.18. However, speed is of essential
An obvious way to refine the Trotter breakup is to employimportance for the QA scheme, as the propagation algorithm
an improved zeroth-order representation of the propagatowill have to be repeated for each particular value of the sys-
that is accurate for a particular problem, but much bettetem coordinate. In our calculations the numerical procedure
behaved than the free-particle basis exél@ij&ﬁ). For ex- was the following. The system propagatote'Hr|x,) was

ample, choosingd, as the separable part of the Hamiltonian evaluated on a grid d¥1 points{x,, ... Xy} by a basis set
andHg as a potential term which mixes the degrees of freemethod. The propagatotg|e™ Hd(m)|y) were then obtained
dom[21], from diagonalization of the coupled bath Hamiltonian
Hq(x,) at each grid value of the system coordinate
L ) ” {X41, ... Xu}. This is computationally feasible because the
H = —3Djidj +Vi(Xi):i21 Hi, Hg=F(x), bath is assumed to be separable,
(2.13

n
—tHg(Xm) [/ — Ja—tHim v,
yields the following system-specific approximation: (z]e”Mamly) .1;[1 (zle yi), (219
Yo%, tx%) = (x| X% exp{ — 3t[F(x) + F(x°)]}. and, therefore, standard one-dimensional algorithms can be
(2.14 used to calculate each factor on the right-hand side of Eq.

(2.19. High efficiency was achieved by using a high order
The best zeroth-order propagators cannot be expressed gflite_difference basis set method described eaf2ef.

closed form in general, and must therefore be compoted Itis clear that the s e
) . . ystem-specific propagaféigs.(2.14)
merically. This can be done rather efficiently by standard_.q4 (2.18] are much more difficult to implement than the

one-dimensional grid or basis set methods bechljse cho-  free-particle representatiofEq. (2.12]. By construction,
sen to be separable: however, these are exact for any value of the time increment

n in the limit where the coupling is turned off. Thus one may
—tH; [0\ — Ja—tHi[y0 expect that they will be accurate for fairly long times with
(xle |1;[1 (xile ). 219 moderate coupling strengths.

Before closing this section three remarks are in order.
The scheme based on E@.14) will be referred to as the First, we note that aside from path integral methp 17,
separableapproximation(SA). The approach is applicable to the idea of employing a good representation as the zeroth-
any Hamiltonian with a diagonal diffusion matrix, whose order description of a problem is widely used in perturbation
potential can be split according to E@.13. theory[23] and grid and basis set calculatiof2,24—-28.
Another important situation, often met in real physical Second, the above system-specific propagators can be further
processes, involves problems which can be represented witmproved by using, instead of the Trotter product formula
a so called system-bath approximation. The latter usually2.10, higher-order symmetric decompositions. The latter



PRE 59 NUMERICAL TEST OF APPROXIMATE SINGLE-STEP ... 1389

can easily be constructed by repeated application of the Troteng a time increment as possible and also capable of ex-
ter breakup to give a multisplit factorization of the fofi]  tension to higher orders of approximation. Only very re-
cently has such a theory been developed in terms of an ex-
ponential power series expansion formali$i8,19. The
eft(HﬁHd):Hl e %itfag~ P+ O(t**1).  (2.20  theory differs from other perturbation techniqugs23] in
o that the time evolution operator is approximated by a global
polynomial expansion valid not only for short times, but also
in the intermediate and long time domains. This is achieved
by representing the full propagator as a product of a pre-
scribed zeroth-order propagat®, with the configuration
“function

The coefficients 4; ,b;) and the number of operators appear-
ing on the right-hand side of E¢R.20) are determined by the
desired order of accurady Fork>1, one application of Eq.
(2.20 requires more computational effort than one applica
tion of Eq. (2.10. However, the higher-order decomposition
is expected to be more accurate, so that it should allow larger P(x,t|x%) =P, (x,t|x°)exd W(x,x%1)], (2.21)

time increments to be taken than the Trotter breakup for

comparable accuracy. For some choices, these larger tinend expanding the exponent of the configuration function in
increments can compensate for the additional computationa power series in a given function bof

effort of the higher-order procedure. Although a number of

calculations of the real-time properties of quantum systems W(x,X%t) = 7)) Win(x,X°),  m=0. (2.22
have been performed using multisplit factorizatiphs], the -~ ) .

approach has found no application in quantum statistics an8i® be specific, we choose the harmonic-oscillator reference
nonequilibrium statistical mechanics. The reason is that, beRropagator

yond second order, any factorization of the fof2:20 must

produce some negative coefficients in the setlf;). When Pr(x.t
applied to Fokker-Planck and/or Bloch equations, this means o B
that negative times must appear at some diffusion operators, X exp{ —yt+ mm

making the resulting factorization unbounded. An alternative

approach was developed by Drozdov and co-workers

[13,14,27, who suggested employing a high-order factoriza- X[ 2x%7= (X% +x7x?) cost{wt) ]

tion of the evolution operator, which explicitly includes the

commutator oH, andH . This factorization is applicable to (2.23
many-body problems of both quantufi4] and statistical ) ) .

mechanicg13], allows for the use of improved zeroth-order @nd the functionr(t) given by the width of,,
representation§21], and still requires much less computa- %0

tional effort than multisplit decompositions of E¢R.20. (t)=(1-e *") 20, (2.29
Finally, it may be noted that though most of the split opera- o .
tor methods available in the literature are based on symme{hough a generallzanon_ to any but analytl_c zeroth-order
ric decompositions of the evolution operator, asymmetricD.rOpagaltor and/or an arbitrary dependencs t is also pos-
factorizations can also be used. We mention specifically th |bIe_[;9]. In the abovew and y are free parameters to be
work by Schwartz[27], who developed a simple and effi- Specified so tha_t the convergence of the series i(EJ2) is
cient method to evaluate low-order nonadiabatic correction§> fast as pOSSIb[dB,lQ;].. . .

to adiabatic evolution operators. The method is based on an The expansion coefﬂmgnwm are determined by insert-
asymmetric product formula derived by Schwartz in terms of"9 Egs.(2.21) and_(2.22) into Eq. (2.1), and equating like
his resummation operator technique. As given, though, thi§OWers ofr. This yields, forWo,

formula applies only to calculation of the real-time quantum
dynamics of system-bath problems.

x%)={[ 27 sinh wt)/ w]" detD} ~ 2

Wio(x,x%) = 3[U(x%) = U(x)] (2.29

with U(x) given by Eq.(2.2). The rest of the expansion
B. Power series expansion method coefficients are expressible in terms of the prescribed func-

As we already noted, second-order system-specific propdion #(X)
gators obtained by a combination of analytic and numerical
techniques, though more accurate than the standard Trotter

splitting, require significant computational effort if the di- These are obtained from a recurrence relation whose explicit

mensionality of the system is large. Yet another disadvantagﬁ)rm can be found in Ref18]. Here we only present the first
is that with this technique it is rather difficult to go beyond two expansion coefficients

the second order of approximation. Any high-order decom-
position, when combined with anharmonic reference systems 1

[like those of Egs(2.13 and(2.17)], demands much more W, = —f du o(x°+uAx),

computational effort than Trotter-approximated propagators 0

[Eqg. (2.10], and is thus unsuitable for treating truly multidi- )

mensional problems. For this reason there has long been a _ 1 _ 2

desire to work out a simple computational tool for generating We= oWy =z fo du (L= uD;j & @(lg=0 uax.
analytic approximations for the propagator accurate for as (2.27

e(X)=V(X)— 2w?x- D" x— . (2.26
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whereAx=x—x°. Since our applications in Sec. Ill are all covered by a sixth-order polynomial potential
V=0v0+aiX; + i XiX; + CijiXiXjXic+ dijkemXiXj XiXm+ €ijkmpXi X XiXmnXp F Fijiem piXiXj XiXmX pX (2.28
we also present the explicit form taken by E8.27) in this case:
W, = — o(x°) — 3a;Ax;— (bj; — 302D (XX + §A%) AX; — Ciji (3 {XOXCAX Jiji+ ${XCAX AX Jij+ FAX AXjAX)
— dijem( 3 XOOXPAX Fijem+ ${XOCAX AX Fijkm+ F{XCAX AX AX ijkm+ s AXAXAXAXp,),
— €ijkmp( 3 IXOXOXOAX Yiikmpt 3IXXOXPAX. AX Fiikmpt ${XOXCAX AX AX }ijkmpt #{X°AX AX AX.AX }ijkmp
+ 5 AX AX AXAXnAXD) = Fijmpi( 3 IXOXXOXPXOAX Fiikmpi+ 3 {XXOXPXOAX. AX Fijkmpi+ F{X°XOXPAX. AX.AX }iikmpi

+ E{XOCAX AX AX AX Fijkmpr+ $1XPAX AX AX AX AX Fijmpit FAXAXAXAXRAXAX ),
(2.29
W, = f5nw?+ oW, — 15Di[ 2b; +{c.. Hijk X+ 3A%) +{d. . Fijkm(XpXh+ 5 XpAXm+ 3X3AX+ 15 AXAX )

0,,0,,0 0,,0 0 0,,0,,0,,0
+{e~--}ijkmp(xkxmxp+%{X-X-AX-}kmp"_ %{X-AX-AX»}kmp+éAXkAXmAXp)+{f--~}ijkmpl(xkxmxpxl

+ 3{XOOXPAX Femprt 5 {OCKOAX AX Femprt 5{XCAX AX AX Fempit 3 AXAXRAXAX)) ],

where the curly brackets denote complete symmetrizatiorSince the distribution contains the unknown parameiger
ie., Eq. (2.3 constitutes a self-consistent integral equation. The
above criterion is particularly simple to apply to systems
{c.. }ijk=Cijk + Cikj + Cxij + Cjik + Cjxi T Ckji - (2.30  with polynomial coefficients, in which case all the integrals
in Eg. (2.3) are doable analytically. When applied to Eq.
The generalization to higher-order polynomials is straight(2.28, this leads to the relation
forward.

Ideally, the power series representation of the propagator 2nw*—4w?Djjbj; — 40{D..D . }ijkmijkm
does not depend on the choice of the free parameteaad
v. However, as we cannot determine and sum infinitely —3{D..D..D. }ijkmpifijkmp=0, (2.33

many terms of the series in E@.22), we have to truncate it
at some finitem= M. In this paper we restrict our consider- which can be readily solved fap by any root finding pro-
ation to M=2 to be consistent with the second-order ap-cedure.
proximations of the split operator method. Obviously, the Next the parametey is determined from the normaliza-
accuracy of the truncated power series representatiotion condition. For®(x) =0 (when the purely Fokker-Planck
Pu(x,t|x%) is sensitive tow andy. The standard way to fix dynamics is concerngdthe condition reads
these parameters is to determine them variationally, so that
the approximate propagatby, is accurate for as long a time dx P
incrementt as possible. It may be noted that the variational xP(x.t
approach based on the harmonic-oscillator reference system
is of common use in path integral methdds15,29§, basis
set calculationd22] and perturbation theory29]; conse- leading us to
quently, a number of criteria for determining the free param-
eters have resulted. B P 0

In the present calculations we have employed a criterion y=—(t=7-w7) n f dx Po(x,t)x7) | =0t
suggested in Ref.18]. According to this criterion, the fre- (2.35
guencyw is obtained from

x9=1, (2.39

(VD”x»x-) —(V) <Dijx‘x_> which is to be evaluated at each time moment of interest.
2— St d aitAs (2.3)  Otherwise,y is given by

N

¢ (D)) — (Dlxpx)2

where(- - -), means averaging over the stationary reference y=-30 '”[[(77/‘")” detD]~*?
probability distribution, i.e.,

xf dx exf —3wD'IxX;— F0 V(X)
(V),=[(7T/w)”detD]_1’2j dx V(x)exp(— wx- D~ x).

(2.32 - ﬁw_zDijﬂizjV(X)]}. (2.36
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which is time independent and is to be evaluated one time ifiorm method[14]. While the integral appearing in the qua-
the beginning of calculations. The power series approackiadiabatic propagatdiEqg. (2.18] is evaluated by matrix
outlined above possesses several advantages which desemaltiplication.

to be pointed out.

(i) The recursive evaluation of the propagator is fairly A. System-bath Hamiltonian
straightforward, and can be readily carried out systematically
to any desired order inr(t).

(i) It is a method that can be applied to simple or com-
plex systems, and high dimensionalilges notpresent spe-
cial problems. In many practical applications the potentials H=—3Dydx+V(X) = 3Dyd5,+(Q%2Dy)(y—Ax)?,

U(x) and®(x) are polynomials. In such a case, the function (3.9

¢(x) [Eg. (2.26)] is also a polynomial, and therefore the

integrals entering the expansion coefficients are easily evaluwhich gives rise to one of the simplest and most intensively
atedanalytically for any number of degrees of freedom in- studied models of dynamical processes in the condensed
volved. This is trueregardlessof whether the Hamiltonian phase. The model involves a relevant coordinatdescrib-
allows adiabatic separation of variablege, e.g., Eq$2.13  ing the nonlinear system of inter¢stoupled to a harmonic

or (2.17)]. “bath” degree of freedomy that mimics the effect of the

(iii) Having the power series expansion for the propagatoenvironment, with\ being the coupling parameter. A great
permits one to incorporate the true long time limit solution ofdeal of effort has been devoted in recent times to the con-
the problem under study properly, whenever that is knowrstruction of rigorous numerical or approximate analytical
exactly. The latter is a generic case for the purely Fokkermethods for efficiently treating system-bath Hamiltonians
Planck dynamics®(x)=0, whose stationary solution is [14,16,17,21,25,27
given by Eq.(2.3). A global approximation for the propaga-  To be specific, we choose the system potential to be a
tor can be obtained by truncating the series in @2 ata  pure quartic oscillator
given m=M, and multiplying the resulting approximation
Pu by a correction functiorr

To begin with, we consider the generic system-bath
Hamiltonian

V(X)=1x%. (3.2
Py(x,t]x%) =F(x,x%t) Pp(x,t[x°), (2.37  Following the SA scheme, we také, as the entire separable
part of the full Hamiltonian
such that H, = — $Dyd%+ V(X)+ (A2Q2/2D ) x?
F(xx%t—0)=1+0(7), k=M+1,
(x,x%t—0) (7 —3Dyd5,+(Q%2D,)y?,
F(x,X%t—0)=Py(X)/Py(x,t—x|x%). (2.39 3.3

F=—(NQ%D,)xy.

In a simplest realization, this gives ] ] ] _
Moreover, in order to exploit the adiabatic refereffite QA

o o Vol schemg we partition Eq.(3.1) into a Hamiltonian for the
Py(x.t[x%) =Pu(x,t|x°)exp{ (2w n)M* system and an adiabatically displaced harmonic-oscillator

KIN[P(X)/Py(x,t—xxO T (2.39 Hamiltonian reading
H =- %DX(?)Z(X+V(X)!

lll. APPLICATIONS (3.9
_ _ _ _ _ Hg=—3Dyd5,+(Q%2Dy)(y—Ax)2.
In this section we give three examples illustrating the ef-
ficiency and accuracy of the various second-order approxiSince the bath HamiltoniaH 4 depends only parametrically
mations for thesingle-step propagatodiscussed in Sec. Il. on the system coordinate, the corresponding matrix element
The examples selected involve only two degrees of freedoris easily obtained analytically. It is nothing but the propaga-
so that exact results and quasiadiabatic approximations caor of a shifted harmonic oscillator. Taking advantage of the
be generated in a reasonable amount of time. The former affact that this propagator is GaussiaryirEq. (2.18 takes the
obtained using a high-order split-operator fast Fourier transform

/ Q Q
lqua(xvya”XO !yO) :<X|eilHr|XO> 27TDy sinhQt epoDy sinhQt {Z(y_ )\X)(yO_ )\XO) - )\(X_ XO)

X oSt 3t — 2\ (X—Xg) (Y — Yo+ AXg—AX)coshy Qt—[(y—AX)2+ (Yo— AXg)2]coshQt}.
(3.9
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FIG. 2. Probability distributiofas defined in Eq(3.7)] of the
system-bath HamiltoniafEgs. (3.1) and (3.2)] obtained forh =1
and 2. Solid lines, second-order power series expansion; dashed
lines, quasiadiabatic propagator; circles, exact numerical results.

200
150
100

% error

it involves no anharmonic referenoeorks much better than
the Trotter-approximated propagators. As evidenced by the
figure, it quite accurately describes the dynamics of the
system-bath problem in the entire time domain for both weak
and moderate coupling. This is in drastic contrast to the qua-
FIG. 1. Percentage error in the off-diagonal matrix elenjént  siadiabatic representation of Makri and co-worKdrg), [Eq.
(3.6)] of the system-bath Hamiltonigegs. (3.1 and(3.2)] for A (3.5)]. The latter accurately describes the dynamics over a
=0.1, 0.5, and 1. Circles connected by solid lines, standard TrOtt%road range of on|y for A=0.1. With increasing Coup"ng,
splitting [Eq. (2.12]; dot-dashed lines, SA scherfiégs.(2.14 and  however, the accuracy of E¢B.5) deteriorates very rapidly,
(3.3]; dashed lines, quasiadiabatic propagdtiq. (3.9]; solid  anq already fon =0.3 it fails to provide correct results. The
lines, second-order power series expansens.(2.21 and(2.22]. g scheme also substantially improves the standard Trotter
_ ) L o .. splitting only if the coupling is weakN=0.1), while for a
We would like to emphasize that it is just this kind of Hamil- stronger coupling it works not better than E8.12. Finally,

tonian for which the quasiadiabatic representation of th&, 5 the cases considered the error made by the the standard
propagator was design¢i6,22,25,2]). Only very recently,  Tgyer splitting increases with almost exponentially, and

Makri and co-worker$16] applied Eq.(3.5) to path integral very soon grows out of the scale of the figure.
calculations of chemical dynamics with impressive success. g, completeness, we show in Fig. 2 results obtained for

Furthermore, the generalization of E@.5) to an arbitrary yhe system probability distribution dgjoes to infinity:
number of bath degrees of freedom is straightforward and

does not complicate the final expressid®]. It is in this —w

particular case that implementing the quasiadiabatic propa- p(x)=f dy P(x,y,t—o). (3.7

gator numerically is not more difficult than in the SA -

scheme. Both schemes are exact when the coupling is turned

off. One may thus expect that they would be accurate foHowever, before discussing the results, three remarks are in

Systems with moderate Coup"ng_ As far as the power serie@fder. FirSt, we recall that this function is related to the

expansion method is concerned, the above model is challenground state solution through E.8). Second, neither Eq.

ing for it not only when the coupling is strong but also in the (2.12 nor (2.14) can be normalized fok #0 ast—c. That

separable limit. This is because the Hamiltonian remainés wWhy these approximations are not presented in the figure.

highly anharmonic even though=0. Third, within the scope of the quasiadiabatic approximation
The accuracy of the various approximations for the propathe functionp(X) is independent ok and given by

gator is investigated by calculating the off-diagonal matrix

element p(X)=lim (x|e“”r|x)/Tr[e‘tHr], (3.8

t—oo

(x,yle""|xo,yo) with x=y=1 and xo=Yyo=0.
(3.6) which is simply the square of the ground state wave function
of the uncoupled system. It is remarkable that the true system
The calculation is performed &,=D,=(=1 for different  probability distribution indeed remains insensitive to the
values of the coupling parameter The results are presented coupling strength over a broad rangexofAs shown by Fig.
in Fig. 1. Surprisingly, the power series expansfalthough 2, the deviation of Eq(3.8) from the numerically exact re-
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sults remains small even though=1. Of course, with fur- 40
. . . .. . . A=0.1
ther increasing coupling the deviation also increases, but this 20 L i
happens rather slowly. 5
& 0
B. Modified Hénon-Heiles potential = 20
As a second example, we consider a modifiedund 40
Henon-Heiles Hamiltonian of the forrf80] 0 ¢ 10
H=—3(35ct 0y + 3 (x2+y?) “ —
+AX(y2— 1x2) + N2 +y2)2, (3.9 % |
=4 0 SIS
where the coupling parameteris a measure of anharmonic- f 20 .
ity. The Henon-Heiles Hamiltoniai31] is a chaotic model a0 L “\\\ i
that (classically describes a resonating system. It has been 60
used as a model for many classical or quantum studies of o ; 10
nonlinear molecular dynamic$32]. The Heaon-Heiles
Hamiltonian is also important in numerical analysis. It has
frequently been exploited to test the utility of different nu-
merical schemeg4,24,30,33 In all these investigations, 5
however, the coupling parameterwas taken to be rather %
small,\~0.1, so that the Hamiltonian was close to the two- &
dimensional harmonic oscillator. In the present testing, in

order for the model to present a challenge for the methods
outlined in Sec. Il, we carried out calculations over a wide
range of coupling strengths, ranging from the harmonic os-
cillator (\=0) to a very anharmonic process=£2).

Following the SA scheme, we choobk as the separable
part of the Hamiltonian

FIG. 3. Same as Fig. 1 but for the modified rd@-Heiles
Hamiltonian [Eq. (3.9)] with A=0.1, 0.5, and 2. The SAEq.
(2.14] and QA[Eg. (2.18] propagators are calculated by partition-
ing the Hamiltonian according to Eq$3.10 and (3.12), respec-
tively.

Hi= =3 (d5c+ 95 + 303+ = 50+ T 2(x+y ), strength, we again calculated the off-diagonal matrix element
310  and the probability distribution as defined by E(%.6) and
(3.7), respectively. Figure 3 shows the relative error in the
off-diagonal matrix element obtained far=0.1, 0.5, and 2.
As anticipated, the standard Trotter splittiffqg. (2.12]
F=Axy?+ 1A2x%y2. (3.1 gives the worst approximation of the exact results. The error
made by this propagator increases witkiery rapidly, and
On the other hand, to calculate the propagator within thdor t=10 it overestimates the matrix element by several or-
scope of the QA scheme, we split EQ.9) into a system ders of magnitude. This is the case regardless of the particu-

accordingly,

HamiltonianH, and an anharmonic batti4 reading lar value of the coupling parametir Use of the improved
zeroth-order representatiofiggs. (3.10 and(3.12] is seen

Ho=—2102 +3x2— I+ HA4, to reduce the error of the Trotter breakup considerably, pro-
3.1  Vvided the coupling is weak enough £0.1). Even in that

Hy=— §a§y+ Iy2Haxy?+ EN2(y*+2x2y?). case, however, the utility of the system-specific propagators

is restricted to the intermediate time domain. As the coupling

It should be pointed out that the Hen-Heiles Hamiltonian strength increases, the range of applicability of the Trotter-
is anharmonic in both variables. As a result, the numericahpproximated propagators rapidly decreases, and f00.5
implementation of the quasiadiabatic propagator, E24.89  these are all valid only for short times. The power series
and(3.12, is not as simple as in the case of the system-batlexpansion is in very good agreement with the numerically
Hamiltonian considered Sec. Il Acf. Eq. (3.5]. It is  exact results in the weak coupling limit. The agreement be-
enough to say that the necessary computational effort isomes worse with increasing coupling but rather slowly, so
much larger than that of the standard grid propagatiorihat even forh=2 the method still provides an accurate
scheme used to generate numerically exact results. With irdescription over a broad range bf The results presented
creasing dimensionality, however, the situation becomes bettemonstrate the potential of the power series approach. It is
ter. In such a case, the numerical work in the standardeen to be able to describe correctly the dynamics of a very
scheme grows exponentially, while the quasiadiabatic apanharmonic process for fairly long times. For comparison,
proximation requires a computational effort that scales onlythe improved Trotter-approximated propagators provide a
linearly with the number of degrees of freedom involved. level of accuracy comparable with that of the power series

In order to understand how dependent the accuracy of thexpansion method only for<0.01, when the Hamiltonian is
various approximations for the propagator is on the couplingrery close to the two-dimensional harmonic oscillator.
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0.8 I T T C. Fokker-Planck chaotic system

As a third more sophisticated example, selected to illus-
trate the use of the present methods, we consider the stochas-
tic dynamics in a two-dimensional potential with strongly
anharmonic mode coupling. The model is governed by the
Fokker-Planck equation

5tP(nyat|XO1y0):[ax(axu)"_é’y(é’yu)_‘— %D(O”§X+ é’)z/y)]

FIG. 4. Same as in Fig. 2, but for the modified rtda-Heiles XP(x,,t|X0,Yo0), (3.1
Hamiltonian[Eg. (3.9)] with A=2. 3.1
q U=2x*+2y*+Axy(x—Y)?,

Itis also remarkable that the efficiency of the power seriesyhose stationary solution is known to be
expansion method in giving precise ground state solutions
appears to be rather insensitive to the coupling strength. As P«(x,y)=N"lexg —2U(x,y)/D]. (3.19
illustrated in Fig. 4, it works equally well for both moderate
and large coupling strengths, to say nothing about the weak will be recalled that the normalization constavis deter-
coupling limit. The same is not true for the Trotter- mined from Eq.(2.34).Transformation2.4) casts the above
approximated propagators, none of which can be normalizedquation into a Hermitian Schdmger-type form with the
ast goes to infinity, excepting the trivial case=0. Hamiltonian

H=—3D (55t d5y) + P,
(3.19
1
o= 5{(64+ N2)X6+ N[ (48— 8N)x5y + (31 — 64)x4y2-+ (124 — 48\ )x3y3+ (31 — 28)x2y*

+(Z-8N)XYP ]+ (B2 +A2)y0 = (12— 20)x?— (£ — 2N )y?— 6AXY.

This model was introduced by Millonas and ReifB4#| when studying stochastic chaos. The latter term was used to describe
the observation of chaos in the classical trajectories of the corresponding Hamilton’s equations of motion,

- IH . _(97-[ (3.16
P a9;’ a ap;’ '
whereq=(X,y),p=(px,py), and the Hamiltonian reads

with the potentiald(x,y) given by Eq.(3.15. Millonas and Reich[34] calculated, foD =0.2 and G=A=<0.14, the eigen-
values of Eq(3.13 by expandingH in a harmonic-oscillator basis and truncating the matrix at a suitably large size. Taking
advantage of the fact that is parity invariant enabled them to compute the eigenvalues for the even and odd parity matrices
separately, using two sets of 2600 basis functions for each parity. Analyzing the spectral propertie@df3Egs a function
of the coupling parametex, these authors arrived at the conclusion that the system should exhibit a transition to chaos for
A=0.14. More recently, IngbdB5] performed an accurate calculation, @k 0.2 and 0.\ <0.55, of the time evolution of
P(x,y,t|0,0) by means of a path integral method, requiring up to 2000 foldings. The main findings revealed in his numerical
calculations are the following. The system appears to be very stable with a single peak in its probability up ¥rough
=0.5. The onset of instabilities first occurslat0.55. However, Ingber failed to establish the reason why the instabilities
appear.

Following Ingber, we also calculated the time evolutionRy,y,t|0,0) atD=0.2 for different values of the coupling
strength, and compared the numerically exact results with those obtained from the approximate propagators. The improved
zeroth-order representations we have used in this case are

H,=—3D(d%+d5,) + 3D 1 [(64+ NH)x8+ (55 +ND)y®]— (12— 20 )X~ (£ — 2\ )y?,
Hg=Axy{3D [ (48— 8)\)x*+ (31N — 64)x3y + (551 — 48\ )x?y*(BIN — R)xy>+ (F —8\)y*] - 6}, (318

and
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H, = — 3D %+ 3D H(64+M2)x®— (12— 212,
(3.19

1
Hg=—3D3j,— (¥ —20)y?—6Axy+ 5 {A[(48—8M)X°y + (3] — 64)x*y?

+ (1 =480 )3y + (3N — R)x%y + (B =8N )xy® ]+ (55 +\?)y°}.

The former is chosen according to the SA schefiegs.  origin to keep an acceptable level of accuracy of the SA and
(2.13 and(2.14], while the latter corresponds to adiabatic QA schemes. Both are found to diverge very rapidly with
separation of variableEgs. (2.17) and (2.18]. But before  time as|x| and|y| increase.
presenting our results we would like to indicate the reason The results obtained for the off-diagonal matrix element
for the cause of appearance of instabilities. It lies in the factre presented in Fig. 6. The overall situation is seen to be
that the stationary solutiofEg. (3.14)] is nontrivial if and  quite similar to the case of the 'Hen-Heiles Hamiltonian.
only if |[\| <0.54. Just in that range of coupling strengths theAs shown by the figure, the standard short time approxima-
normalization constant remains finite. Meanwhile fof\ | tion is least accurate. Use of the quasiadiabatic zeroth-order
=0.54, the potential(x,y) is no longer unbounded from representation improves the accuracy of the Trotter breakup
above asx andy go to infinity. ConsequentlyN becomes in the intermediate time domain, but its numerical implemen-
infinite, and the stationary solution reducesPig=0. Thisis  tation is more arduous than a conventional numerically exact
well illustrated by Fig. 5, which shows that the contour plot calculation. The SA scheme works a bit better than the qua-
of the basin exhibits a transition as the coupling parameter siadiabatic propagator, though its validity is also generally
is varied. The contour lines are seen to be closedXor restricted to short times and/or small coupling strengths. In
<0.54, whereas at=0.54 a valley appears along which the contrast, the global power series approximation for the
potential remains finite with increasingandy. propagator provides an accurate description of the dynamics
Turning back to the discussion of the various approxima-over a broader range af in the entiretime domain, and still
tions for the propagator, we would like to emphasize that the
above model presents a particular challenge for the power 20
series approach; it remains highly anharmonic whatever the
coupling constank is [see Eq.(3.15]. On the other hand,
since the stationary solution of E€B.13 is known exactly,
the extrapolation formul&2.39 can be used to construct a
global approximation for the propagator. The global approxi-
mation is obviously exact in both limits of short and long
times for all values oA from the interval[0,0.53. There-
fore, one may expect that it would be reasonably accurate in
the intermediate time domain as well. Moreover, we note 20
that the accuracy of the approximate propagators is investi-
gated through the calculation of the off-diagonal matrix ele-
ment

Ar=0.1

% error

A=0.25

% error

P(X,Y,t|Xg,Yo) With x=y=0.15 andxy=Yy=0.
(3.20

The final point &,y) in Eq. (3.20 is taken to be close to the

5 . 5
)
X &
o - -
NN FIG. 6. Same as in Fig. 1, but for the off-diagonal matrix ele-
5 L ment [Eq. (3.20] of the stochastic moddlEq. (3.13] with D
-8 0 y 8 =0.2 and\=0.1, 0.25, and 0.5. The SPEQ. (2.14)] and QA[Eq.

(2.18] propagators are calculated by partitioning the Hamiltonian
FIG. 5. Contour linesU(x,y)=10 of potential(3.13 for A according to Egqs3.18 and(3.19), respectively. Solid lines are for
=0, 0.52, 0.54, and 0.8. the global second-order approximatiggg. (2.39].
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201 domain. The error made by the standard Trotter splitting is
again very large compared to that of the power series expan-
sion.

% error

7] IV. CONCLUDING REMARKS

t 10 In this paper we have formulated and applied two differ-
ent approaches to calculating quantum and statistical me-
22025 chanics of multidimensional nonlinear systems, namely, the
T split operator method and the power series expansion formal-
ism. Our study was not intended to be an exhaustive com-
parison of these techniques, but rather intended to illustrate
their stability and relative efficacy in giving precise dynami-

- cal properties in a simple economic way. Both approaches
are perturbative in the coupling potential and the time incre-
ment, but the manner in which higher-order corrections can
be taken into accourtas well as the way in which the po-
tential enters the methodis quite different. For this reason,
the strategy followed made use of the second-order approxi-
mations to avoid having to evaluate numerically multidimen-
sional integrals that necessarily arise in high-order split op-
erator decompositions. Similarly, the examples considered
are chosen to be two dimensional in order to allow a com-
parison with a conventional grid method without extraordi-
nary computational effort.

From a vast amount of possibilities, we selected three
different rather general ways to partition the underlying
Hamiltonian operator that have been frequently used by
many researchers. These @rethe standard splitting of the

% error

% error

FIG. 7. Percentage error in the second cumuJ&at (3.21)] of
the stochastic mod¢Eqg. (3.13]. Circles connected by solid lines,
standard short time propagatfq. (2.12)]; dashed lines, power
series expansiofEgs.(2.21) and(2.22]; solid lines, second-order

global approximatiofEq. (2.39]. Hamiltonian into potential and kinetic energy ternis) the
SA scheme using the separable part of the Hamiltonian as a
requires no computational effort. zeroth-order representation, afid) the quasiadiabatic ap-

The relative efficacy of the ordinary and global power proximation based on partitioning the Hamiltonian into a

series approximations for the propagator is seen from Fig. 72ne-dimensional system part coupled to a bath of noninter-
which shows the relative error in the second cumulant acting degrees of freedom. Although system-specific propa-
gators, by construction, incorporate the exact dynamics of

anharmonic zeroth-order representations, this will not always
a(t)=(x?(1))— (x(1))?, (3.21)  assure us accurate resulesg., what if the system does not
behave adiabatically at ajl?The calculations we performed
clearly demonstrate that the efficiency of the approach de-
where pends crucially on the decision about which part of the
Hamiltonian properly describes the dynamics in the interme-
diate time domain. In some cases, a clear disparity between
neen 7 * variables makes the choice obvious. Thus, for instance, the
()= J’_mde_wdy%“P(x,y,t). .22 approach works well in the separable limit when the cou-
pling is almost turned off X=<0.01). In this case, the
system-specific propagators indeed remain correct for times
Also shown are results obtained with the standard Trottesufficiently long to observe physical effects. Otherwise,
splitting. The corresponding errors of the two system-choosing the best partitioning of the system is more of an art
specific propagators are not presented in the figure, becauiean an exact science. Still, an improper choice can result in
both fail to provide convergent results for the second cumua less than optimally efficient propagator, or even one which
lant whatevem # 0. It is clear from Fig. 7 that the range of is worse than the standard short time propagator.
applicability of the power series expansion method is quite It is remarkable that in all the cases considered the best
robust to variations in the coupling strength. One would ex-agreement with exact numerical calculations was attained
pect the accuracy of Eq$2.21) and (2.22 to fall off very  with the power series representation of the propagator. The
quickly as\ goes up, but in fact, going from a potential of method holds regardless of whether the Hamiltonian allows
A=0.1 to one abouk =0.5, there was a slow decay in the adiabatic separation of variables. It is capable of accurately
accuracy of the results. It is also seen that the use of thdescribing the dynamics efry anharmonic processésthe
interpolating formula(2.39 substantially improves the ap- entire time domain. The latter is particularly surprising, as
proach, considerably decreasing the error in the entire timéhe present power series expansion invol@esanharmonic
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reference system. Yet another appealing feature of the powenial potentials. For others, its numerical implementation
series approach is the ease with which it can be implementesiay be very arduous.

numerically. The necessary calculations can be performed
analytically for any number of degrees of freedom, which
makes the method very attractive for treating many-body Financial support from the Ministry of Education, Sci-
problems. This, however, is in general true only for polyno-ence, Sports, and Culture of Japan is greatly appreciated.
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