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Detecting periodicity in experimental data using linear modeling techniques
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Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect
periodicities in experimental data in the physical and biological sciences. We propose a method which is more
reliable than traditional techniques, and is able to make clear identification of periodic behavior when tradi-
tional techniques do not. This technique is based on an information theoretic reduction ofadinesegres-
sive) models so that only the essential features of an autoregressive model are retained. These models we call
reduced autoregressive modéRARM). The essential features of reduced autoregressive models include any
periodicity present in the data. We provide theoretical and numerical evidence from both experimental and
artificial data to demonstrate that this technique will reliably detect periodicities if and only if they are present
in the data. There are strong information theoretic arguments to support the statement that RARM detects
periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our
calculations demonstrate that RARM is more robust, more accurate, and more sensitive than traditional spectral
techniques[S1063-651X99)08501-3

PACS numbgs): 02.50.Wp, 02.60.Gf, 07.05.Tp, 02.50.Vn

[. INTRODUCTION information criteria; this is done to avoid overfitting of the
time serieq8]. It has recently been observed that a further
Periodic and nearly periodic behavior is a common fea-Optimization of an ARG) model may be possible by deleting

ture of many biological and physical systems and there existome of the terms to obtain a model

several widely used techniques to estimate the period of a

behavior, for example, spectral estimatidi, autocorrela-

tion [1], spectrographs, band pagsomb filters [2], and @

wavelet transformg3,4]. All of these standard techniques where

either employ, are related to, or are a generalization of, Fou- B
rier series. Isli<l<lz<---<l=n, lieZ", i=123...k

_ In this paper we propose an alternative method of detectrpe hope is to obtain a model that fits the time series equally

ing periodicity that is not so closely related to Fourier series\ye||, but has far fewer parameters. Profound theoretical ar-

This technique applies ideas from information theory to “n'guments, which are a codification of Occam’s razor, imply

ear autoregressive models of time series to extract evidenggat if a reduced autoregressive mod@®ARM) is suitably

of periods. optimized, then it is superior to an equivalent autoregressive
The basic principle is the following. Given a time seriesmodel AR(n). The key principle of this paper is that if one

{yJiL, one can propose a linear autoregressive modehas an optimized RARM, that is, the RARM that has been

Yi=aotaryi—, T Y, tagyii, T Tayi-, T &,

AR(Nn) by reduced to only the essential terms, then the parameters
I1,15,15, ..., often called lags provide information
Vi=a1Yi_ 1+ @y ptagyi_3t - tagy;_nt+et about the periodicity of the time series.
A practical procedure for obtaining an optimal RARM has
t=n+1n+2,... N, (1)  been described by Judd and M¢&§. This procedure was

introduced in the more general context of nonlinear model-

wheree, is assumed to be independent and identically disiNg, Put in the following section we describe briefly the un-
tributed random variables, which are interpreted as the moode[:}r/]'ng theory mtth;a tﬁpntext of RARM. d at i .
eling errors[1,5]. Under these assumptions the maximum dencee m:{ogr?c?v(/sothatlseazrrﬁ:ﬂﬁgaltw: Ia%spgefseelrr: 'ggtﬁ]‘q’;
err(iatltlgr? c:g (taesrt;rrgatoef :f 223 apr?arr?clj]ee;i?c’t?gr,] ’ éﬁ?r}sc?r?e?;oreRARM provides a more robust and accurate means of detect-
lated to th t lation funci d' Fouri A ing periods in time series than traditional spectral techniques.
Irfig c?om?nor? Srl;(c:)t(i::errteoa dlgtr(]arrl#i]r?elcirqeagptin?glrsgeffp;cerummat is, the proposed technique unambiguously identifies pe-

. : . riodicities even when spectral methods fail to do so, and
model by using either the Akaikig] or the Schward7]  fyrthermore, it does not falsely suggest the presence of peri-

ods when none are present. The evidence presented is a com-
bination of theoretical argument and numerical procedures,
*Author to whom correspondence should be addressed. FAXwhich are illustrated with both artificial and experimental
+44 131 451 3136. Postal address: Department of Physics, Heriotlata.
Wat University, Edinburgh, EM14 4AS, UK. Electronic address: ~ An important numerical procedure that will be used to
watchman@maths.uwa.edu.au establish that the proposed technique does not falsely iden-
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tify periods issurrogate data analysisThe principle of sur- Operationally the principle is applied as follows. Suppose
rogate data analysis is the following. From experimental datgou have a time serie{yt}{\‘zl given to a certain fixed accu-
one generates artificial data that are “similar” to the experi-racy and that you wish to communicate the data to a col-
mental data and satisfy a given hypothesis. One then calCyeague. To send the raw data would require a certain number
lates a test statistic for each surrogate data set, and henggpits. Alternatively, one could build a predictive model, of

obtains an ensemble of statistic values that estimate the di{sﬁe form (2), for example, and then send the model param-
tribution of the test statistic under the assumption that theeters(to some precision the initial |, observations, and the

original data are consistent with the given hypothesis. On%Iifferences between the model's predictions and actual ob-

then compares the statistic value of the original data with th : . - . i
estimated distribution of the surrogates. If the data have a%ervatmns. Given this information, your colleague can recon

. o Lo . struct the original data. If the model of the time series is
atypical statistic value, then the hypothesis will be rejected 00d. then the total number of bits required for parameters
otherwise it should be accepted. In this paper we employ thig ' q P '

technique to ensure that RARM procedures do not spurious| itial co.nditions, and prediction errors_is less than the num-
identify periodicities in temporally uncorrelated surrogateP€r Of bits of raw data, because the differences between the

data. predicted and actual observations are smaller than the obser-
vations. The total number of bits sent in the second case is
called thedescription lengthand the model that achieves the
o o ] _ minimum description length is the one recommended by the
The criteria we use for determining the optimal RARM is gppication of Occam'’s razor. The dogma is that this model

the minimum description length. Occam’s razor recommends,chieves the best prediction of the data without overfitting.
that the best description of a phenomenon is the shortest |, 4 ice it is usually sufficient to estimate the descrip-

destprlpt':ﬁn. This pgrl(rz]lple can kie made_ rldgorouz ustllngo:nforl-tion length of a model, rather than calculate it in detail. An
mation theory, and the principle was independently devely, -, o o usually have the form

oped by Wallacg10] and Rissanepl1].

Minimum description length

(description length= (number of datpx log(sum of squares of prediction errprs

+ (penalty for number and accuracy of parameters

Following Judd and Mee$d], the description length of a whereB=(Iy,l5, ... I\),Ve=[V| [V, | - |V, ] is a matrix,

RARM can be estimated as follows. Given a time seriesang ag=(a,,a,, . ..,a)". The maximum likelihood esti-

{yitL1, define a set of vectord/;}_; by mates ofag, that is, the values that minimizde, are given
by

Vo=(1,1,...,27,
ag=(VgVe) 'Vay.

Vl:(ynr e vyN—l)Tv L.
Now each parametes; must be sent to some precisiah,
that is, the maximum likelihood estimate af is “rounded-
off” by an amounts; . It can be showr9] that the optimal
precisions 6=(61,6,, . ..,5), that is, the round-off for
eacha; that gives the minimum description length, satisfy

Vo=(Yn-1, - -- in—Z)T’

Vi=(Ynojetr - Yn-j) s (Q5),=1/s;,
where
Vo=(y1, - Yn-n) s o- —~NV§Vg
Ve—y)(agVg—y)
and define (agVe—Yy) (agVeg—y)
T Consequently, it can be showW8] that the approximate de-
Y=Yn+1s -+ YN - scription length of the RARM?2) is
Observe that if the model2) is appropriate for the time N 2mele 1 k
series, one can write 5(1 In N + §+Iny k—E Ins; , 4
=1

k
y=> aV, +e=Vgag+e 3) where y is a constant depending on the overall scale of the
I i )
i=1 ' data.
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FIG. 1. The horizontal axis is the breath number — each datum in this time series corresponds to a single breath. The vertical axis is
derived from the output from the analog to digital conveffgoportional to cross-sectional area measured by inductance plethysmography,
arbitrary unitg. For each breath the minimum and maximum values over that breath were calculated and the difference recorded. This data
set consists of 762 points recorded from a 21 week old male during 24 min of continuous stage-2 sleep. This study had approval from the
ethics committee of Princess Margaret Hospital. The parents of this subject were informed of the procedure, and its purpose, and had given
consent. The recording took place during a scheduled overnight sleep study at Princess Margaret Hospital.

Armed with this estimate of the description length of asponding to this periodicity. Rissanen’s minimum descrip-
RARM, one can search over all combinations of ldgs tion length criterion guarantees that, provided the time series
=(I4,15, ... 1) to obtain the optimal RARM, however is sufficiently long, this will always be the case and so the
Judd and Mee$9] describe a fast and efficient method of RARM procedure will always detect periods that are present
doing this optimization. in a time series, provided the time series is sufficiently long.

The remainder of this section elaborates on the details of
this argument. A period in a time seriegy };., of N scalar
measurements is a strong positive correlation between values

A functionf is periodic with periodr if f(t)=f(t+7) for  separated by time steps, i.e., the autocorrelation
all t. A time serieqassumed stationarjpas anapproximatg

Il. DETECTING PERIODICITY USING OPTIMAL RARM

periodicity of periodr if y,~vy,. , for all t, or, equivalently, (y=(V,y)
the autocorrelatiop has a local maximum at. The reduced p(1)=— o (5)
autoregressive modé®) predicts the current value of a time 2 (y—y)?
seriesy; as a weighted average of the previous values, that is, n+i
at the time step$y,l,, ..., andl, previous tot. If a ime  has a local maximum at. Without loss of generality we
series has pe.r|od|c behawor., then the ldgsl,, ... Ik may assume thaT= 0, and therefore Eq5) reduces to
should be(multiples o the periods.

We claim that one can detect in time series a periodicity va
of period <n, by the following procedure, called the p(7)= W (6)

RARM procedure. Fom=0,1,2,3. .. N, build optimal
reduced autoregressive models of the fd@nusing the al- | et the set of lags for the optimal RARM of sidebe de-
gorithm described by Judd and M&és. For each model in  poted byB,=(1{9,180, ... 1{9). The vectorB uniquely
this sequence calculate its description leng@thand take as  determines the least-squares model
the overall optimal model that model with the smallest de-
scription length. We claim that if the overall optimal RARM
is nontrivial, then the lagk;,|,, . .. | should be(multiples
of) the periods< n,, in the original time series if the time
series is sufficiently long. Define

In order to establish our claim, we must demonstrate that
(i) if the time series contains a periaddenthe RARM pro- L(7)=
cedure detects this periodic behavior, didl if the RARM
procedure detects a periatienthere is periodic behavior in
the time series. In Sec. Il A we provide a theoretical argu-
ment to establish the forward implicati¢n. In Sec. Il B we
discuss an essential procedure for ensufing

k
y=> aVw+e.
= i

k
Viy- 3, aVivi
=1

k
=y"y|p(1)= 2, ap(7=1{)]. ()

According to the algorithm of Judd and MefH, given B,
andal®, the next best term to add to the model has the lag
) S 7 that maximizesL(7). However, identity(7) implies that
The argument to_ establish the forward |mp!|cat!on Pro-such ar is a local maximum op(7).
ceeds as follows. First, we observe that a period in a time  Rissanen’s minimum description length ensures that, for
series will (regardless_ of wh_ether it is linear or nonlm)egr sufficiently largeN, “if there is any machinery behind the
produce a local maximum in the autocorrelation functiongaia which restricts the future observation in a similar man-
p(7). Next it is shown below that, in the optimization of @ per as the past and which can be captured by the selected
RARM of given maximum size, the criterion for inclusion  ¢|ass of parametric functions, then we will find that machin-
of a particular terma,y; ., in Eq. (2) is closely related to the  ery» [11]. The argument in the preceding paragraphs dem-
magnitude of the autocorrelation gt p(l;). Hence, ifnis  onstrates that RARM are a sufficiently broad class of para-
large enough, the optimal RARM will include a term corre- metric functions to capture “machinery” behind the data,

A. Forward implication (i)



1382 MICHAEL SMALL AND KEVIN JUDD PRE 59

correlation

0 0.1 0.2 0.3 04 05 0 20 40 60
frequency (breath") period (lag, 7)

FIG. 2. Spectral techniques: Estimates of the power spedfaubitrary unitg and autocorrelation function for the data illustrated in Fig.
1. The RARM detected periodic motion over a period of six data points, se@Ed vertical dot-dashed line marks the location of period
6 behavior in both the frequendpower spectrumnand time(autocorrelationdomain. A peak in the autocorrelation function corresponds
exactly with the period 6 behavior detected by RARM. The power spectrum has a peak close to a frequerley @66 667. A period
of 6 is the closest integer value to the peak evident at this location in the power spectrum. While both power spectra and autocorrelation
detect behavior with a period of 6, these results are not as conclusive as the RARM algorithm.

including observed periodicities. Thus, if periodicity is to test the null hypothesis that the time series contains no
present in the data, then RARM techniques will detect it —periodicities, that is, has no temporal correlation. Theiler's
provided N is sufficiently large. This ensures the forward algorithm 0 generates surrogate time series having no tem-

implication (i). poral correlation by simply shuffling the original time series,
or put another way, the surrogates are i{iddependent and
B. Reverse implication (ii): Surrogate data techniques identically distributedl noise having the same rank distribu-

In order to establish that the RARM technique does nof'on as the or|g|n_al time sene[_iS].
falsely identify a period when none is present, the numerical OUr Proposal is to use optimal RARM as the test for pe-
procedure of surrogate data analysis can be used. The tedfiRdicity, that is, if the optimal RARM is nontrivial in that
nique of surrogate data was originally introduced by Theile<>0 in Eq. (2), then periods are present in the time series.
and colleagueEL2). They suggest three surrogate generation! © believe the validity of this test, one must require that if
techniques to address three different hypotheses about a tirze optimal RARM detects a period in a time series, then it
series, but for our purposes we only use Theiler's algorithmmust not detect any period in algorithm O surroge14).
0 surrogates. This surrogate test must be applied to each data set for which
In the present case we are interested in whether a timan optimal RARM has been constructed to ensure that the
series contains periodicities, or said in another way, we wislstructure detected ieach data set is genuine. That is, we

0 100 200 300 400 500 600 700

correlation
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frequency (breath'1) petiod (lag, 7)

FIG. 3. Artificial data: A data set of 764 realization of the process described by avith normal observational noise, standard
deviation 1. This linear model is of the same form as that predicted from the model of the data in Fig. 1. Also shown is the power spectrum
(arbitrary unit$ and autocorrelation estimate for this data set. For this data set RARM gave a clear indication of period 6 behavior. The
dot-dashed line on the power spectrum and autocorrelation function corresponds to the period of 6 detected by RARM.
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FIG. 4. Artificial data: Data from a reduced
autoregressive of the same form as that predicted
. . . . . . . from the model of the data in Fig. 1. This data set
-0 500 1000 1500 2000 2500 3000 8500 4000 4500 5000 consists of 5000 realizations of E() with ob-

t servational noise, standard deviation 2. Also
shown is the power spectrugarbitrary unitg and
autocorrelation estimate for this data set. For this
data set RARM gave a clear indication of period
6 behavior. The dot-dashed line on the power
spectrum and autocorrelation function corre-
sponds to the period of 6 detected by RARM.
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propose that an algorithm O surrogate test is a necessary p&ection Il C describes the application of these same meth-
of the procedure of detecting periodicity using an optimalods to global climatic data.

RARM. If RARM methods identify periodicity in the surro-
gates, then this is clear evidence of false identification of
periodicity in the data. However, if the RARM algorithm o
detects no periodicity in the surrogates, then periodicity iden- Using inductance plethysmography, we have collected
tified in the original data is genuine. To ensure that the remeasurements of the cross-sectional area of the abdomen of

verse implication(ii) holds, one need only apply an algo- infants during natural sleep. From these measurements we

A. Infant respiratory data

rithm O surrogate calculation. extract a measure that can be related to the breath volume
[15]. Figure 1 gives an example of data collected in this way.
Ill. CALCULATIONS We applied our RARM procedure to the data illustrated in

Fig. 1 and obtained a model of the form

In this section we demonstrate with artificial and experi-
mental data, that RARM detects periodic behaxipif and Yi=aotagyi-1tayi-ete, (8
(i) only if it is present in the original time series. To dem-
onstrate that RARM detects periodic behavifoit is present  where ay~2.945 206,a,~0.300 739, anda,~0.202 056.
in the data, we construct artificial data contaminated withFigure 2 shows the result of an analysis of this data set with
noise and demonstrate the effectiveness of the RARM algca fast Fourier transform algorithfMATLAB’s spectrum
rithm. We compare the RARM results to traditional Fouriercommand and an estimate of the autocorrelation function.
spectral and autocorrelation techniques. We repeat these c&eth these techniques yield small peaks at the same value
culations for some experimental data comparing the RARMthat is, 6) and are consistent with the results of our RARM
algorithm and traditional techniques. To demonstrate that oualgorithm. However, the results are not as unambiguous as
RARM algorithm detects periodic behaviamly if it is  the results of the RARM algorithm. That is, the RARM de-
present in the data, we apply the method of surrogate datatects a periodicity that is not strong enough to be unambigu-

In Sec. Ill A we describe the application of these tech-ously identified by spectral methods.
niques to detect periodicities in recordings of infant respira- For many time series of breath sig&6] we have com-
tory patterns during natural sleep. Section Il B applies thesputed autocorrelation and Fourier spectral estimates. We
methods to artificial data sets to demonstrate the effectivehave applied our RARM algorithm to each data set and com-
ness of these techniques compared to traditional methodpared this to the result of applying traditional techniques. For

0.5f }
o
g O ] FIG. 5. Global air temperature: Monthly glo-
3 bal air temperature measured as deviatiorde-
E—o.s . grees Celsiysfrom monthly mean temperature
for the period 1856—1997 (1704 data
—1F -

1860 1880 1900 1920 1940 1960 1980 2000
year
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FIG. 6. Spectral techniques: Estimates of the power spectrum and autocorrelation function for the data illustrated in Fig. 5. The data in
Fig. 5 were linearly detrended before calculating Fourier spectrum and autocorrelation. The RARM detected periodic motion over a period
of 7, 24, and 45 months. A vertical dot-dashed line marks the location of period 7, 24, and 45 behavior in both the frequency and time
domain. A peak in the autocorrelation function corresponds exactly with the period 24 and 45 behavior detected by RARM. The power
spectrum has a peak close to a frequency 6f'450.0222. While both power spectra and autocorrelation detect behavior with a period of
24 and 45, these results are not as conclusive as the RARM algorithm.

these data the period of periodic behavior detected by theod 6. For the time series shown in Figs. 3 and 4 we con-
RARM algorithm is consistent with the periods detected bystructed 100 algorithm O surrogates. None of them exhibited
autocorrelation. That is, if RARM detects periodic behavior,periodicity detected by RARM.

then it is of the same period as that detected by the autocor- The traditional Fourier spectral and autocorrelation tech-
relation estimatdif the autocorrelation detects periodic be- hiques identify the same period as the RARM technique for
havior. Furthermore, if RARM does not detect periodic be- the shorter but less noisy data illustrated in Fig. 3. However,
havior, then neither does the autocorrelation estimate. Thir the data shown in Fig. 4, the RARM technique has iden-
traditional techniques will often fail to detect periodic behav_nfled periodicities that_are not obvious from trz_id|t|onal tech-
ior when the RARM algorithm does detect it. niques. Furthermore, it should be noted that in all cases the

We have provided experimental evidence that the RARMESUlts of the autocorrelation and spectral methods are not
technique detects periodic behavior when it does occur. No lear cut. For reasonably long but extremely noisy data sets,

we will demonstrate that the RARM technique does not lead"€, RARM algorithm still provides a decisive and accurate
. : e o ; . estimate of the period of periodic behavior present in the
to spurious identification of periodic behavior. That is, we

will show that if the RARM algorithm detects periodic be- G2t

havior,thenthere is periodic beha_vior in the dat_a. To do this, C. Global climatic data
we apply a surrogate data algorithm which will ensure that hi , ibe th licati £ th h
false indications of periodicities can always be identified. In this section we describe the application of these tech-

For the data illustrated in Fig. 1, none of the 100 surro-.nmIues with ”°i$y .physical data. The time series we use here
gates generated by shuffling the data exhibited periodic be> monthly deviations from monthly mean global air tem-

havior of any period. This calculation was repeated with an_peratures over the period 1856-19d7]. These global air

other 48 data sefl6]. In all 49 cases the RARM failed to temperature measurements are obtained by averaging obser-

o o ) yations at many spatially separated sites on the globe. Figure
detect periodic behavior in the surrogate data in at least 98 ghows the complete data set. A more detailed discussion of

(of 100) surr_ogates of each dat_a set. _Thi_s_i_ndicates that thgese data may be found [ia8]. Analysis using the methods
RARM algorithm does not identify periodicities not present gescribed in this paper demonstrates the presence of periodic
in the data. fluctuation over periods of 7 months, 2 years, and 45 months
[19]. Fourier spectral and autocorrelation estimates were also
B. Artificial data applied(after detrending this time serjeand the results are
. , ) illustrated in Fig. 6. From 100 algorithm O surrogates,
In this section we use the optimal RARM from Sec. lll A R ARM did not detect periodicity in 99 of them. These results
as a basis for generating noisy artificial data with a knownyemonstrate the presence of genuine periodic fluctuation in
periodicity. From Eq/(8) we use the model this time series and that the fluctuation is difficult to detect
_ with traditional techniques. An advantage of the RARM
ViZ@ot a1t a6t & © technique is that no detrending is required. The results of the
RARM algorithm are not effected by trends or nonstationar-

(where ay~2.945206,a,~0.300 739, anda,~0.202 056, ity.

as abovgto generate an artificial data setTo these data we
add observational noisg, and apply the above analysis to
the seriex, z;=y,+ ¢€;. Figure 3 demonstrates the result of
this technique for an artificial data set of the same length as We have provided theoretical and experimental evidence
the data and normal observational noise with standard deviae support the use of RARM techniques to detect periodic
tion 1 [e,e,~N(0,1)]. Figure 4 is the result of the same behavior in noisy experimental time series. The concept of
technique for a longer data set (5000 data poiated more  minimum description length ensures that a RARM built with
observational nois¢e,~N(0,1) ande~N(0,2)]. In both an MDL modeling criterion will detect any periodicities
cases, RARM clearly identified periodic behavior with pe-present in the data. We provided numerical evidence using

IV. CONCLUSIONS
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experimental and artificial data to support this. Moreoverguard against false positives, we recommend application of
these calculations have demonstrated that the RARM algasurrogate data tests, as discussed in this paper. Periodicity
rithm provides an accurate and decisive method of detectingetected using RARM is genuine provided RARM detects no
periodicities that is more sensitive than Fourier spectrum operiodicity in i.i.d. noise surrogates.

autocorrelation methods.

By applying surrogate data techniques, we have demon-
strated that the RARM algorithm did not identify periodici-
ties in temporally uncorrelated surrogates. This is strong ex-
perimental evidence that the RARM algorithm is robust We wish to thank Madeleine Lowe and Stephen Stick of
against identification of false periodicities. It does not iden-Princess Margaret Hospital for Children for supplying the
tify behavior not present in the original system. However,infant respiratory data, and for physiological guidance. We
this result has only been supported by numerical evidencealso thank Tiempo Climatic Cyberlibrary for making the glo-
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