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Diffusion limited aggregation and iterated conformal maps
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The creation of fractal clusters by diffusion limited aggregation~DLA ! is studied by using iterated stochastic
conformal maps following the method proposed recently by Hastings and Levitov. The object of interest is the
functionF (n) which conformally maps the exterior of the unit circle to the exterior of ann-particle DLA. The
mapF (n) is obtained fromn stochastic iterations of a functionf that maps the unit circle to the unit circle with
a bump. The scaling properties usually studied in the literature on DLA appear in a new light using this
language. The dimension of the cluster is determined by the linear coefficient in the Laurent expansion ofF (n),
which asymptotically becomes a deterministic function ofn. We find new relationships between the general-
ized dimensions of the harmonic measure and the scaling behavior of the Laurent coefficients.
@S1063-651X~99!07301-8#
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I. INTRODUCTION

The diffusion limited aggregation~DLA ! model was in-
troduced in 1981 by Witten and Sander@1#. The model has
been shown to underlie many pattern forming processes
cluding dielectric breakdown@2#, two-fluid flow @3#, and
electrochemical deposition@4#. The model begins with fixing
one particle at the center of coordinates ind dimensions, and
follows the creation of a cluster by releasing random walk
from infinity, allowing them to walk around until they hi
any particle belonging to the cluster. Upon hitting they a
attached to the growing cluster. The model was studied
and off lattice in several dimensionsd>2; here we are only
interested in the off-lattice versions in two dimensions.

DLA has attracted enormous interest over the years s
it is a remarkable example of the spontaneous creation
fractal objects. It is believed that asymptotically~when the
number of particlesn→`) the dimensionD of the cluster is
very close to 1.71@5#, although there exists to date no a
cepted proof for this fact in spite of several interesting
tempts @6,7#. In addition, the model has attracted intere
since it was among the first@8# to offer a true multifractal
measure: the harmonic measure~which determines the prob
ability that a random walker from infinity will hit a point a
the boundary! exhibits singularities that are usefully de
scribed using the multifractal formalism@9#. Nevertheless
DLA still poses more unsolved problems than answers. I
obvious that a new language is needed in order to allow fr
attempts to explain the growth patterns, the fractal dim
sion, and the multifractal properties of the harmonic m
sure.

Such a new language was proposed recently by Hast
and Levitov@10,11#. These authors showed that DLA in tw
dimensions can be grown by iterating stochastic confor
maps. We adopt their basic strategy and will see that it p
vides a new formulation of the problem which may lead
new insights and results.

The basic idea is to follow the evolution of the conform
mappingF (n)(w) which maps the exterior of the unit circl
PRE 591063-651X/99/59~2!/1368~11!/$15.00
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in the mathematicalw plane onto the complement of th
cluster ofn particles in the physicalz plane.F (n) is unique
by the Riemann mapping theorem, provided that it satis
the boundary condition

F~n!~w!;F1
~n!w as w→`. ~1!

HereF1
(n) is a real positive coefficient, fixing the argument

@F (n)(w)#8 to be zero at infinity.F (n)(w) is related to the
complex electric potentialC (n)(z) by

C~n!~z!5 ln h~n!~z!, ~2!

whereh(n)(z)5@F (n)#21(z) is the inverse mapping. Letting
z→` in Eq. ~1! it is easy to verify that Eq.~2! implies

C~n!~z!; ln z when z→` ~3!

as it should be atd52.
The equation of motion forF (n)(w) is determined recur-

sively. The choice of the initial mapF (0)(w) is rather flex-
ible, and in this paper we select~arbitrarily! an initial condi-
tion F (0)(w)5w. We expect the asymptotic cluster to b
independent of this choice. Then suppose thatF (n21)(w) is
given. The cluster ofn ‘‘particles’’ is created by adding a
new ‘‘particle’’ of constant shape and linear scaleAl0 to the
cluster of (n21) ‘‘particles’’ at a position which is chosen
randomly according to the harmonic measure. We den
points on the boundary of the cluster byZ(s) wheres is an
arc-length parametrization. The probability to add a parti
on an infinitesimal arcds centered at the pointz(s) on the
cluster boundary is

P~s,ds!;u¹C~s!uds. ~4!

The preimages ofz(s) andds in thew plane areeiu anddu,
respectively. Clearly,ds5u@F (n21)#8(eiu)udu. From Eq.~2!
we conclude that

P~s,ds!;u¹C~s!uuF8udu5du, ~5!
1368 ©1999 The American Physical Society
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PRE 59 1369DIFFUSION LIMITED AGGREGATION AND ITERATED . . .
so the harmonic measure on the real cluster translates
uniform measure on the unit circle in the mathemati
plane.

The image of the cluster ofn particles underh(n)(z) is,
by definition, just the unit circle. On the other hand, t
image of the cluster ofn particles underh(n21)(z) is the
unit circle with a small bump whose linear scale
Al0/uF8(n21)(eiun)u whereeiun is the image~underh(n21))
of the pointzn on the real cluster at which the growth o
curred.

Let us define now a new functionfln ,un
(w). This func-

tion maps the unit circle to the unit circle with a bump
linear scale Aln around the point eiun. For w
→`, fln ,un

(w);w ~with positive real proportionality

coefficient!. Using fln ,un
(w) the recursion relation

for F (n)(w) is given by~see Fig. 1!

F~n!~w!5F~n21!
„fln ,un

~w!…. ~6!

According to the above discussionln is given by

ln5
l0

uF~n21!8~eiun!u2
~7!

so the right-hand side of Eq.~6! is determined completely by
F (n21)(w); Eq. ~6! induces the recursive dynamics
F (n)(w).

The recursive dynamics can be represented as iteration
the mapfln ,un

(w),

F~n!~w!5fl1 ,u1
+fl2 ,u2

+•••+fln ,un
~v!. ~8!

This composition appears as a standard iteration of stoch
maps. This is not so. The order of iterations is inverted—
last point of the trajectory is the inner argument in this ite
tion. As a result the transition fromF (n)(w) to F (n11)(w) is
not achieved by one additional iteration, but by compos
the n former maps Eq.~8! starting from a different seed
which is no longerv but fln11 ,un11

(w).

FIG. 1. Diagrammatic representation of the mappingsF andf.
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We note that in the physical plane the ‘‘particles’’ a
roughly of the same size. To achieve this the linear sca
Aln vary widely as a function ofn andu. We will see that
the distribution ofAln and their correlations for differen
values ofn determine many of the scaling properties of t
resulting cluster. In particular, their moments are related
the generalized dimensions of the harmonic measure.

There are many functionsfl,u which conformally map
the unit circle to the unit circle with a bump. A simple choic
is a function which behaves linearly for largew and has a
simple pole inside the unit circle which will induce a bum
in the image. The pole has to be atw0512l in order to
localize the bump nearw51 and make it of linear size of the
orderAl. The residue has to bel3/2, in order for the bump’s
height to be also of the orderAl. Consider then

f~w!5~11l!w1
l3/2

w2w0
.

Careful thinking leads to the conclusion that this functi
and other similar functions are inappropriate: they have lo
‘‘tails.’’ In other words, the unit circle is slightly distorted
everywhere. This small global distortion may result in a lo
of conformality or in the growth of nonconstant size particl
in the physical plane in numerical applications.

It was proposed in Ref.@10# that a choice forfln ,un
(w)

that is free of global distortion is given by

fl,0~w!5w12aH ~11l!

2w
~11w!

3F11w1wS 11
1

w2
2

2

w

12l

11l D 1/2G21J a

,

~9!

fl,u~w!5eiufl,0~e2 iuw!. ~10!

The parametera is confined in the range 0,a,1. As a
decreases the bump becomes flatter, with the identity m
obtained fora50. As a increases towards unity the bum
becomes elongated normally to the unit circle, with a limit
becoming a line~‘‘strike’’ in the language of@10#! when a
51. Naively one might think that the shape of the individu
particle is irrelevant for the large scale fractal statistics;
will see that this is not the case. The dependence ona is
important and needs to be taken into account. Notice that
map has two branch points on the unit circle. The advant
of this is that the bump is strongly localized. On the oth
hand, repeated iterations of this map lead to rather comp
analytic structure.

The aim of this paper is therefore to investigate the sc
ing and statistical properties of such iterated stochastic c
formal maps with a view to discovering the scaling prop
ties induced by the dynamics which any analytic theory m
ultimately explain. In Sec. II we present the numerical p
cedure used to generate the fractal clusters, and in Sec
give the necessary mathematical background to desc
such mappings. In particular, we discuss the Laurent exp
sion of the conformal map from the unit circle to then-
particle cluster; the coefficients of the Laurent series h
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FIG. 2. Typical clusters of
10 000 particles. The black re
gions represent the interiors of th
images of the unit circle under th
map F (10 000) for three values of
a. The large enclosed areas for th
a5

1
2 cluster are the unwanted

‘‘fillup’’ events discussed in Sec.
II. However, the black area in the
a5

4
5 cluster is only a numerica

artifact: that region is not resolved
by double precision arithmetic.
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interesting scaling behavior with the size of the cluster wh
is intimately related to the fractal dimension of the clus
and to the generalized dimensions of the harmonic meas
In Sec. IV we present numerical results regarding the sca
properties of averages of the Laurent coefficients and of
size parameterln . The results are accompanied by a the
retical analysis and interpretation. In Sec. V we conclu
with some remarks on the road ahead.

II. NUMERICAL PROCEDURE

The algorithm simulating the growth of the cluster
based on Ref.@10#. The n-‘‘particle’’ cluster is encoded by
the series of pairs$(u i ,l i)% i 51

n . Having the firstn21 pairs,
the nth pair is found as follows: chooseun from a uniform
distribution in @0,2p#, independent of previous history
Then computeln from Eq. ~7!, where the derivative of the
iterated functionF (n21) involves fln21 ,un21

8 , fln22,un22
8 ,

fln23 ,un23
8 etc., computed, respectively, at the poin

eiun, fln21 ,un21
(eiun), fln22 ,un22

„fln21 ,un21
(eiun)…, etc.

Notice that the evaluation of bothF8 andF after the addi-
tion of one particle involvesO(n) operations since the see
changes at everyn. This translates inton2 time complexity
for the growth of ann-particle cluster. This is inferior to the
best algorithms to grow DLA~using hierarchical maps@12#,
with close to linear efficiency!, but the present algorithm i
not aimed at efficiency. Rather, it is used since the Laplac
field and the growth probability which is derived from it a
readily available at every point of the cluster and away fr
it. The typical time to grow a 10 000-particle cluster is
minutes on a 300 MHz Pentium-II.

Naively one would expect that any choice of 0,a,1
would yield DLA clusters, sincea only determines the shap
of the particles@the aspect ratio is12 a/(12a) for small l#,
and the microscopic details of the particles~except their lin-
ear size! should not affect the global properties. Three typic
clusters with particles of various aspect ratiosa are shown in
Fig. 2. We mark in black the interior of the image of the u
circle under the conformal mapF (n)(w). The objects look
very much like typical DLA clusters grown by standard o
lattice techniques, and in the next section we demonst
that they have fractal dimensions in close agreement with
latter. Fora significantly different from 2/3, disadvantages
the algorithm get amplified. Since the functional form off is
fixed ~only the size and position of the ‘‘bump’’ change!,
particles of constant shape and size are obtained only if
magnification factoruF (n21)8u ~the inverse of the field! is
h
r
re.
g
e
-
e

n

l
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approximately constant in thew plane around the ‘‘bump’’
of f. If the particles are elongated along the cluster, then
variation of the field along the cluster affects the shape: la
otherwise deeply invaginated regions, whereF8 is large, are
filled up with a single particle, and the resulting cluster ten
to be more compact. This effect, slightly noticeable even
a52/3, is quite significant at the otherwise natural choice
a51/2, where the particles are half circles. In Fig. 2 w
show such a cluster and point out the area filling dark regi
which represent such unwanted events. The other extre
when the particles stick out of the cluster, leads to sensitiv
to variations in the field goingaway from the cluster. Espe-
cially if a bump is grown on a tip of a branch, where the fie
decreases rapidly as one goes away from the tip~such that
F8 increases significantly!, then the map of the bump get
magnified, resulting in particles of very unequal sizes.

It is necessary to stress that even fora52/3, when this
procedure appears to yield nice ramified structures, the p
lem of fill-ups does not go away: in a few rare cases
particle—if it happens to land on a place whereuF9u is
large—is significantly distorted. The net effect is that lar
areas surrounded by the cluster~where the growth probabil-
ity is small! are filled up entirely by one distorted particle
For the value ofa51/2 it appeared that the errors may b
unbounded. Our numerics indicates that fora52/3 the errors
were bounded for the cluster sizes that we considered. W
not have a mathematical proof of boundedness of the err
and our disregard of this danger is only based on the sens
appearance of our clusters at this value ofa.

III. MATHEMATICAL BACKGROUND

In this section we discuss the Laurent expansion of
conformal maps, and introduce the statistical objects that
studied numerically in the next section.

A. Laurent expansion

Since the functionsF (n)(w) andfl,u(w) are required to
be linear inw at infinity, they can be expanded in a Laure
series in which the highest power isw:

F~n!~w!5F1
~n!w1F0

~n!1F21
~n!w211F22

~n!w221•••,
~11!

fl,u~w!5 f 1w1 f 01 f 21w211 f 22w221•••, ~12!

where

f 15~11l!a,
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f 05
2aleiu

~11l!12a
,

f 215
2ale2iu

~11l!22aS 11
2a21

2
l D ,

f 225
2ale3iu

~11l!32aS 112~a21!l1
2a223a11

3
l2D .

The recursion equations for the Laurent coefficients
F (n)(w) can be obtained by substituting the series ofF and
f into the recursion formula~6!. We find

F1
~n!5F1

~n21! f 1
~n! , ~13!

F0
~n!5F1

~n21! f 0
~n!1F0

~n21! ,

F21
~n!5F1

~n21! f 21
~n!1F21

~n21!/ f 1
~n! , ~14!

F22
~n!5F1

~n21! f 22
~n!2F21

~n21!
f 0

~n!

~ f 1
~n!!2

1F22
~n21!

1

~ f 1
~n!!2

.

We note that then dependence off i
(n) follows from the de-

pendence on the randomly chosenun at thenth step, from
which follows the dependence ofln on n. The latter is, how-
ever, a function of all the previous growth steps, making
iteration ~13!,~14! rather difficult to analyze.

A general relation between the Laurent coefficients is f
nished by the so-called area theorem which applies to un
lent mappings. Since our maps solve the Laplace equat
with boundary conditions only at infinity and on the clust
boundary where the potential is zero, they map thew plane
uniquely~and with a unique inverse! to thez plane. In other
words, the pressure lines and the stream lines are nonde
erate. Such mappings have the property@13# that the area of
the image of the unit disk in thenth step is given by

Sn5uF1
~n!u22 (

k51

`

kuF2k
~n!u2. ~15!

A second theorem that will be useful in our thinking is
consequence of the so-called one-fourth theorem, see Ap
dix A. There a statement is proven that the interior of t
curve$z:z5F (n)(eiu)% is contained in thez plane by a circle
of radius 4F1

(n) . Now as the areaSn is obtained simply from
the superposition ofn bumps of roughly the same areal0 , it
has to scale asSn'nl0 , for largen. On the other hand, an
typical radius of the cluster should scale asn1/DAl0 whereD
is the dimension of the cluster. We can thus expect a sca
of F1

(n) that goes as

F1
~n!;n1/DAl0. ~16!

We note in passing that this scaling law offers us a v
convenient way to measure the fractal dimension of
growing cluster. Indeed, we measured the dimensionD for a
range ofa in this way by averagingF1

(n) over 100 clusters.
f
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We found that for a range ofa spanning the interva
@1/3,8/9# the dimension is constant, around 1.7.

We can infer from Eq.~16! that the sum in Eq.~15! which
subtracts positive contributions fromuF1

(n)u2 contains terms
that cancel the behavior ofn2/D ~remember thatD,2), leav-
ing a power of unity for the scaling ofSn . Indeed, we will
show below both numerical and theoretical evidence for
scaling behavior of theuF2k

(n)u2 for k.6 which is in agree-
ment withn2/D.

We can give a direct physical interpretation for the co
ficients Fk

(n) by comparing them to the coefficients of th
series forC (n), cf. Eq. ~2!:

C~n!~z!5 ln~z!2 ln~r 0!1(
1

`
ck

zk
. ~17!

The coefficient of ln(z) is unity so that the electric flux is
unity. This corresponds to the normalization of the probab
ity. The constantr 0 is the Laplace radius which is the radiu
of a charged disk which would give the same field far aw
The rest of theck’s are conventional multipole moments.

The relations between the Laurent coefficients ofC (n)

andF (n) are

r 05F1 ,

c152F0 ,

c252F21F12
1

2
F0

2 , ~18!

c352F22F1
222F0F21F12

1

3
F0

3 ,

c452F23F1
32

3

2
F21

2 F1
223F1F0

2F2123F22F0F1
22

1

4
F0

4 .

The first line shows thatF15r 0 , the Laplace radius, in
accordance with the one-fourth theorem.

The second line shows that the dipole momentc1 is
2F0 . We can interpret this coefficient as a distance,
wandering of the center of charge due to the random addi
of the particles. We will take the point of view that th
quantity is less ‘‘intrinsic’’ than the others to the dynami
of the DLA growth. In fact, if we setF05c150 ~we could
imagine shifting the cluster as we grow it!, we can rewrite
the rest of the equations:

2F21;c2 /r 0 ,

2F22;c3 /r 0
2 , ~19!

2F23;~c41 3
2 c2

2!/r 0
3 ,

etc. This leads to the interpretation ofF2k in terms of the
multipole expansion of the electric field.
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B. Statistical objects and the relations
to generalized dimensions

Our growth process is stochastic. Accordingly, it is na
ral to introduce averages over the randomness. In our th
ing there are two important averages, one over historie
the whole random trajectory$u i% i 51

n , and the other only ove
the random choice ofun at thenth step. To distinguish be
tween the two we denote the first by angular brackets
refer to it as ‘‘history average,’’ while the second is denot
by an overbar and referred to as a ‘‘cluster average.’’ Th
is a possibility that for very large clusters (n→`) the two
averages result in the same numbers. We will refer to su
property as ‘‘self-averaging.’’

The cluster average of moments ofln offers a relation-
ship to the generalized dimensions of the harmonic mea
@14#. The latter are defined by dividing the plane into box
of sizee, and estimating the probability for a random walk
to hit the piece of the boundary of the cluster which is
cluded in thei th box by

pi~e!5uEi ue, ~20!

whereuEi u is the modulus of the electric fieldu¹C i u at some
point in thei th box. The generalized dimensions are defin
by the relation

(
i 51

N~e!

pi
q~e!;S e

RD ~q21!Dq

, ~21!

whereN(e) is the number of boxes of sizee that are needed
to cover the boundary, andR is the linear size of the larges
possible box, which is of the order of the radius of the clu
ter. Substituting Eq.~20! we find

eq21(
i 51

N~e!

uEi uqe;S e

RD ~q21!Dq

. ~22!

Takinge very small, of the order ofAl0, and assuming tha
the field is smooth on this scale we have

E
0

L

uEi uqds;~Al0!12q n~12q!Dq /D, ~23!

whereL is the length of the boundary,ds is an arc-length
differential, and we have used the scaling lawn;Sn /e2

;(R/e)1/D.
The connection to our language is obtained by consid

ing the cluster average of powers ofln . We grow a cluster
of n21 particles, perform repeated random choices
growth sites~without growing!, and computeln for each
choice. The cluster average can be represented as an int
over the unit circle,ln

q̄, and is given by

ln
q̄[~1/2p!E

0

2p

ln
q~u!du. ~24!

Recalling Eq.~7! we observe thatln
q(u)5l0

quE(u)u2q. The
last relation, Eq.~5!, and Eq.~23! imply the scaling relation

ln
q̄;n22qD2q11 /D. ~25!
-
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IV. NUMERICAL RESULTS
AND THEIR INTERPRETATION

In this section we present results on three topics.
~i! The coefficients of the Laurent expansion. The scal

behavior of these quantities is described and discusse
Sec. IV A.

~ii ! The microscopic fluctuations in the conformal ma
We show that the assumption of self-averaging is valid
Eq. ~25! and that the multifractal exponents are in a go
agreement with the known ones.

~iii ! Distribution functions of the Laurent coefficients. W
analyze numerically the width of those functions and fi
that F1

(n) tends to a deterministic function ofn. We attribute
this effect to nontrivial temporal correlations in the field, a
give some evidence of their existence.

A. Laurent coefficients of F „n…

All the coefficients of the Laurent series ofF (n)(w) are
complex numbers exceptF1 which is real by the choice o
zero phase at infinity, see Eq.~1!. Most of our discussion
below pertains to the amplitudes of the coefficientsFk . We
need to stress, however, that the phases are not irreleva
we attempted to use the correct amplitudes with rand
phases, the resulting series will in general not be conform

One of the main results of this paper is that in addition
the expected scaling behavior of the linear coefficientF1

(n)

@given in Eq.~16!# the rest of the amplitudes of the Laure
coefficientsuF2k

(n)u exhibit also a scaling behavior. We fin
numerically that in the mean the magnitudes of the Laur
coefficients scale as powers ofn:

^uFk
~n!u2&5akn

xk. ~26!

The exponentsxk are given in Fig. 3. We first discuss th
consequences of the scaling behavior ofF1

(n) .

1. Scaling of F1

The scaling behavior~16! has immediate consequenc
for the scaling behavior of the bump areasln . The connec-

FIG. 3. The scaling exponents of the Laurent coefficien
^uF2ku2&;nxk. The values are obtained by averaging 400 indep
dent realizations of 10 000 particle clusters.
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tion appears from the recursion Eq.~13! of F1
(n) which to-

gether withf 15(11l)a reads

F1
~n!5)

k51

n

@11lk#
a. ~27!

Taking history averages we find

^F1
~n!&5K )

k51

n

@11lk#
aL , ~28!

ln^F1
~n!&'a(

k51

n

^lk&, ~29!

d ln^F1
~n!&/dn'a^ln&. ~30!

The last two equations are obtained by expanding the lo
rithm and keeping only divergent sums: both the mean
F1

(n) and the mean of the sum oflk increase as a function o
n. All other sums of powers oflk converge as a function o
n, cf. Sec. IV B. Thus, if we assume that^F1

(n)&}n1/D, cf. Eq.
~16!, fractal scaling of the radius~see below! implies that
@10#

^ln&51/naD. ~31!

In the next subsection we show that this is indeed suppo
by the simulations. Note that^ln& is inversely proportional
to n for any value of the fractal dimensionD. On the other
hand, if we assume the property of self-averaging, Eq.~31!
implies a relationship between the generalized dimensionD3
and the fractal dimensionD. Comparing Eqs.~25! and ~31!
leads immediately to the relation

D35D/2. ~32!

This scaling relation was derived by Halsey@15# using much
more elaborate considerations. We see that in the pre
formalism this scaling relation is obtained very naturally.
fact the present formulation is more powerful since Eq.~31!
predicts not only the exponent of the third moment of t
electric field, but also the prefactor. It is also noteworthy t
the scaling relation~32! results simply from the existence o
a power law behavior for the radiusF1

(n) .

2. Scaling of F0

We found the exponent of^uF0u2& to bex050.760.1, see
Fig. 4. To estimate the scaling behavior ofF0 theoretically
we note that

F05
1

2pE0

2p

F~n!~u!du5
1

2pE0

L

z~s!uE~s!uds. ~33!

Accordingly we can write

uF0u25~1/4p2!E
0

L

dsE
0

L

ds8z~s!z~s8!* uE~s!uuE~s8!u

;l0R2E
0

L

dsuE~s!u2. ~34!
a-
f

ed

nt

t

In writing the second line we assumed that the main con
bution to the correlation function is short ranged,

^z~s!z~s8!* uE~s!uuE~s8!u&;l0R2uE~s!u2d~s2s8!.
~35!

The justification for this is that the field is expected to exhi
wild variations as we trace the boundaryz(s). In addition the
main contribution to the integral is expected to come fro
the support of the harmonic measure where the radius i
the order ofR. From the estimate~34! and Eq.~23! we then
find

x05
22D2

D
'0.64 ~36!

in agreement with our measurement ofx0 . ~We used here
D250.90 in correspondence with the numerical finding
ported in Sec. IV C. Any of the values ofD2 quoted in the
literature would yieldx0 in the range 0.760.1.)

3. Scaling of F2k

The exponentsxk for k,0 are smaller than 2/D but ap-
proach it asymptotically, see Fig. 3. This behavior is e
pected from the area theorem, and also from a direct estim
of the integral representation of the coefficients for largek,

uF2ku25
1

4p2E
0

L

ds

3E
0

L

ds8z~s!z~s8!* uE~s!uuE~s8!ueik[u~s!2u~s8!] .

~37!

In Appendix B we show that this integral can be estima
using the multifractal formalism of the harmonic measu
with the final result

FIG. 4. The scaling of̂ uF0
(n)u2& ~thick lines! and the sum of

diagonal terms@thin lines, see Eq.~51!# with sizen. Clearly the two
have different scaling exponents. The solid lines are averages
400 clusters of size 10 000, the dashed lines are averages ov
clusters of size 100 000.
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uF2ku2;~R/4k!2E da~2k/p! f ~a!/a, ~38!

where a and f (a) are the strength of singularities of th
harmonic measure and the dimension of the sets of po
that exhibit these singularities, respectively@9#. For our pur-
poses the important consequence of Eq.~38! is the scaling
relation ~assuming self-averaging!

^uF2ku2&5l0n2/Dg~k!, ~39!

with g(k);1/k2*da kf (a)/a. One knows from the theory o
multifractals thatf (a)/a<1, and therefore we can boun
g(k) from above and from below,Ak22,g(k),Bk21. This
is in accord with our numerical simulations in the range
<k<10, although the calculation in Appendix B is on
valid for large values ofk. We found agreement with Eq
~26! with xk→2/D andak;k2a with 1,a,2.

Note that this scaling behavior has important con
quences for both the area theorem and for conformality.
solute convergence of the sum(k51

` kuF2k
(n)u2 in the area theo-

rem requiresa.2, which is not the case. The situation
even more serious for the existence of conformality. To
sure the latter the sum(k51

` kuF2k
(n)u must exist. This would

requirea.4. The reason that the sums exist in the theory
only due to the ultraviolet cutoff atAl0. This cutoff intro-
duces a highestk in the Laurent expansion which we es
mate as 2pkmax'L/Al0;n whereL is the perimeter of the
cluster.

B. Multifractal exponents

Here we test Eq.~25!. In Fig. 5 we display double-
logarithmic plots of ^ln

q& vs n for q50.5,
1, 1.5, 2, 2.5, 3, and 3.5. The values of the exponents
rived from our simulations agree very well~within the un-
certainties! with the generalized dimensionsDq obtained in
the past@5# for D2 , . . . ,D8 using standard methods. In ad
dition we reproduce numbers in agreement with the theo

FIG. 5. Scaling of the momentŝln
q& with powers ofn. The

curves from top to bottom correspond toq50.5, 1, 1.5, 2, 2.5, 3,
and 3.5. The exponents22qD2q11 /D are in agreement with the
oretical predictions~see text! and with numerical values for the
generalized dimensions in the literature.
ts

-
-

-

s

e-

t-

ical prediction ofD05D'1.71 andD35D/2. This agree-
ment is a strong indication for self-averaging at least for
purpose of computing moments ofln ~i.e., ^ln

q&;l̄n
q).

C. Fluctuations of the averages

We previously discussed the scaling behavior ofuF2k
(n)u2

and showed that their history averages obey Eq.~26!. How-
ever, uF2k

(n)u are random variables with broad scaling dist
butions. Figure 6 describes the rescaled standard devia
sk

(n) of the Laurent coefficients,

sk
~n!5A^uFk

~n!u4&2^uFk
~n!u2&2/^uFk

~n!u2&, ~40!

for k51,0,21,22 as a function of the cluster sizen. As is
seen clearly from the graphs the widths of the distributio
for all k<0 tend asymptotically to a finite value. This is th
normal behavior for scaling distributions. The exception
case isk51. Even though it exhibits a scaling law of th
type ~26! ~see Sec. III!, with

x15
2

D
'1.18,

the rescaled distribution width ofuF1
(n)u2 tends to zero asn

goes to infinity. This means that the rescaled distribut
function of F1

(n) tends asymptotically to ad function. The
importance of this result for the evaluation of the frac
dimension of the cluster warrants an immediate discussio
this sharpening phenomenon.

The conclusion of the numerics onF1 is that there exists
a universal constantc(l0) such that

n21/DF1
~n!→c~l0!, ~41!

wherec(l0) is cluster independent. Moreover, we found th
c(l0)5cAl0, which is in accordance with the role playe

FIG. 6. The rescaled standard deviationsk
(n) of the Laurent co-

efficients of the map~see definition in text!. For kÞ1, sk
(n) fluctu-

ates around unity, corresponding to broad distributions. Fork51 it
tends to zero asn→`, demonstrating the asymptotic sharpness
the distribution ofF1 . The solid lines are averages over 400 clu
ters of size 10 000, the dashed lines are averages over 30 cluste
size 100 000.
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by Al0 as an ultraviolet inner length scale, which is the on
length scale that appears in the mappings. Note that the
stantc in Eq. ~41! depends on the parametera. We measured
c values of 0.6, 0.87, 1.2, and 1.8 fora values of 1/3, 1/2,
2/3, and 4/5, respectively.

The observed sharpening is not obvious since we kn
that F1

(n) is built from a product of random variablesln ,
whose moments change withn in multifractal manner ac-
cording to Eq.~25!.

One could attempt to connect the sharpening ofF1
(n) to the

existence of other sharp functions ofn. Considering the full
expansion of Eq.~27! we find

1

a
ln F1

~n!5(
i 51

n

ln~11l i !

5(
i 51

n

l i2
1

2(i 51

n

l i
21

1

3(i 51

n

l i
31•••. ~42!

We could understand Eq.~41! easily if all the sums of all the
powers ofl i converged to constants,

(
i 51

n

l i2
2

D
lnn→c1 , ~43!

(
i 51

n

l i
2→c2 , ~44!

with ci cluster independent. In fact, this is not the case. T
sums of powers are not cluster independent. A clear dem
stration of this is a simulation that we performed in whi
the initial condition was very far from a circle. The ind
vidual sums in Eq.~42! were very different from the averag
values, but nevertheless( i 51

n ln(11li) converged to the righ
value. It is our conclusion that each of the sums in Eq.~42!
is not cluster independent, and yet somehow the resum
form is cluster independent.

This remarkable sharpening calls for further discussion
appears that its interpretation requires better understan
of the time correlations of the field: an independent choice
random realization of a series ofl i according to their mul-
tifractal distribution can only generateF1

(n) with the proper
scaling exponent but cannot trivially yield a highly peak
distribution of F1

(n) . Therefore we consider now some ev
dence for the existence of temporal correlations.

The first outstanding evidence appears in the contex
the scaling behavior ofF0 , which was discussed in Se
IV A. We show that if we assume that there exist no cor
lations between different growth stages, the exponentx0 will
be very different from the measured and calculated va
From the recursion relations of the Laurent coefficients@Eq.
~14!# we can estimate, in the limit of largen whenln is very
small on the average,

^uF0
~n!u2&; (

m51

n

(
m851

n

^F1
~m!F1

~m8!lmlm8e
i ~um2um8!&

; (
m51

n

(
m851

n

^F1
~m!F1

~m8!&^lmlm8e
i ~um2um8!&. ~45!
n-

w

e
n-

ed

it
ng
f

of

-

e.

The second line is obtained becauseF1
(m) is proportional to

the radius of the whole cluster and should not be correla
with lm . The crucial approximation comes next: iflm and
lm8 can be treated as independent formÞm8, then~sinceum
andum8 are independent! Eq. ~45! simplifies to

^lmlm8e
i ~um2um8!&'^lm

2 &dm,m8 ~46!

^uF0
~n!u2&; (

m51

n

^~F1
~m!! 2&^lm

2 &;n112/D24D5 /D;n0.3.

~47!

The numerical simulation resulted in an exponent of the
der of 0.7, in serious disagreement with Eq.~47!. We think
that the assumption of independence, Eq.~46!, is the culprit.

Another fact which illustrates the importance of the tim
angle correlation Eq.~46! is the difference between the ex
ponents ofF0 and F21 (^uF0u2&;n0.7 whereas^uF21u2&
;n0.9). Their equations of motion~14! differ, for smallln ,
by two terms only. The first one is the termlnF21

(n21) in the
right hand side of the equation forF21 which is absent in the
equation forF0 . We checked numerically that neglectin
this term leads to a very small change in the exponent.
second difference is that the termlnln2ke

i (un2un2k) in Eq.
~48! is replaced bylnln2ke

2i (un2un2k). The change in the
exponent can therefore be directly attributed to the existe
of important time-angle correlations.

We tried to analyze numerically the time-angle corre
tions ^lnln2ke

i (un2un2k)&. The results for somek’s are
shown in Fig. 7. It appears that as we increase the size o
ensemble,̂ lnln2ke

i (un2un2k)&→0 with the usualN21/2 de-
pendence on the ensemble size. If we believe these nume
results~doubts may exist due to the relative smallness of
ensembles analyzed!, then the previous results must be r
lated to more subtle correlation of higher order nature.

Lastly we would like to discuss the importance of ea
stages of the growth.^F1

(n)& might be written in the following
way:

FIG. 7. Time-angle correlations of the field. In order to redu
statistical noise, the values plotted are averaged in bins@n,1.1n#.
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^F1
~n!&5K )

i 51

n

~11l i !
aL ~48!

@see Eq.~13!#. Neglecting the correlations in time in th
above product one may approximate

K )
i 51

n

~11l i !
aL ')

i 51

n

^~11l i !
a&. ~49!

Numerical evaluation of the two objects in Eq.~49! shows
that they differ by a few percent~see Fig. 8!. The numerics
indicate the scaling laws

K )
i 51

n

~11l i !
aL 5cl0n2/D, ~50!

)
i 51

n

^~11l i !
a&5c1l0n2/D, ~51!

wherec1 /c>1.06.
To gain further insight we checked also the object

K )
i 51

k

~11l i !
aL )

i 5k11

n

^~11l i !
a&

for various values ofk. The results are shown in Fig. 8. As
seems from this graph, time correlations between the in
and late stages of the growth are much more important t
local correlations in the late stages.

We checked also two-point time correlations^lnln2k&
for somek’s. The results are plotted in Fig. 9. As it turns o
from this graph, ^lnln2k&'^ln&^ln2k& up to statistical
fluctuations.

V. SUMMARY AND DISCUSSION

The language proposed by Hastings and Levitov app
to offer many appealing features. It generates DLA clust
in such a way that the conformal mapF (n) from the circle to
the boundary of the cluster is known at every instant. In t

FIG. 8. The ratio ofF1 approximated by neglecting time corre
lations and the fullF1 : ) i 51

n ^(11l i)
a&/^) i 51

n (11l i)
a& ~thick

line!. The quantities^) i 51
k (11l i)

a&) i 5k11
n ^(11l i)

a& are also
plotted fork510, 100, and 1000.
al
n

rs
rs

s

paper we examined carefully the numerical procedure u
to generate the conformal maps, and pointed out the ad
tages and the shortcoming of the algorithm.

The results of this paper pertain to the scaling behavio
the Laurent coefficientsuFku of the conformal mapF (n) and
of the moments ofln which are related to moments of th
field. We presented a theoretical discussion of the expon
characterizing moments ofuFku andln . We pointed out the
relations to the multifractal analysis of the harmonic me
sure, and derived scaling relations. Of particular interes
the scaling relationD35D/2 that was derived by Halsey an
which appears here as a very natural consequence of
formalism.

One important result which is not adequately interpre
in this paper is the sharpness of the distribution ofF1 . This
coefficient is proportional to the radius of the cluster, and
sharpness is directly related to the existence of a unive
fractal dimension independently of the details of the shape
the cluster. Understanding the sharpness appears to be
nected to understanding the existence of universal fracta
mension, and we believe that it poses a very worthwhile a
focused question for the immediate future.
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APPENDIX A: CONSEQUENCES
OF THE ONE-FOURTH THEOREM

In this appendix we prove that every univalent function
the type~11! is bounded in a circle of radius 4F1 . This fact
is based on two basic properties of univalent functions@13#.

~1! There is one-to-one correspondence between univa
functions of the formf (w)5a1w1a2w1••• (S class! and
univalent functions of the formg(w)5a1w1a21 /w
1a22 /w21••• (S class!. This correspondence is given b

FIG. 9. Correlations of the field. In order to reduce statistic
noise, the values plotted are averaged in bins@n,1.01n#.
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g~w!↔g~1/w!21. ~A1!

~2! The Koebe one-quarter theorem.The image of the uni
disk under every function of class S contains the disk z:uzu
,4ua1u.

Consider a functionF(w) of the form ~11!. This is a
S-class function with linear coefficientF1 . Let us denote its
conjugate@by Eq.~A1!# S-class function asP(w). The linear
coefficient ofP is 1/F1 . Consider now the smallest circle i
the z plane which bounds the image of the unit circle und
F, $z:uzu5R%. From Eq. ~A1! it is clear that the circle
$z:uzu51/R% is the largest circle which is contained in th
image of the unit disk underP. Thus the Koebe one-quarte
theorem ensures that 1/R>1/(4F1), which implies R
<4F1 .

APPENDIX B: ESTIMATE OF THE SCALING
BEHAVIOR OF ŠzF 2k

„n…z2
‹

To estimate the largek and largen dependence ofF2k
(n) ,

the components are first written as integrals over the bou
ary of the cluster

F2k
~n!5~1/2p!E

0

2p

F~n!~eiu!eikudu

5E
0

L

z~s!eiku~s!uE~s!uds, ~B1!

where

u~s!5E
0

s

uE~s8!uds8. ~B2!

For the purposes of Sec. IV we are interested inuFk
(n)u2:

uFk
~n!u25E

0

LE
0

L

z~s!z* ~s8!eik[u~s!2u~s8!]

3uE~s!uuE~s8!uds ds8. ~B3!

For a given value ofn ~or equivalently, ofR;n1/D), an
examination of Eq.~B3! shows that for largek the fluctua-
tions in the values of the integrands depend more cruci
on the phase variations than on the field and radius va
tions. The phase varies appreciably whenu changes an
amount

Du'~p/2k! ~B4!

and therefore it is useful to split up the integral Eq.~B1! into
a sum of essentially independent contributions coming fr
the electric field singularities with exponentsa. This expo-
nent is determined by the scaling law relating the meas
~which is proportional to Du) of a box to its size
(Ds)a :Du;@(Ds)a /R#a @9#. The integral is split into con-
tributions made of contour sections of different lengt
(Ds)a dependent on the singularity but each giving rise
the same changeDu. If one can estimate both the magnitud
of the contribution of a specific multifractal electric fie
r

d-

ly
a-

re

singularitya to the integral and the number of such cont
butionsNa(k,n) @9#, then one can write

^uF2k
~n!u2&;(

j
uI a j

~k,n!u2

;E daNa~k,n!uI a~k,n!u2, ~B5!

where

I a~k,n![E
~DS!a

uE~s!uz~s!ds. ~B6!

To estimateNa(k,n) we recall that by definition

Du5E
s

s1Ds

uE~s8!uds8;~Ds/R!a. ~B7!

From Eq.~B4!

~Ds!a;R~p/2k!1/a. ~B8!

Using Eq. ~B8! and the fact that the fractal dimension
singularities of sizea is f (a), we can now also estimate th
number of singularities of sizea which contribute to the
integral as

Na~k!;@R/~Ds!a# f ~a!;~2k/p! f ~a!/a. ~B9!

To estimateuI a(k,n)u2 we note that the major contribution t
Eq. ~B6! comes from the support of the harmonic meas
whereuz(s)u'R. Accordingly

uI au2;R2F E
~Ds!a

uE~s!udsG2

;R2~Du!2;R2~2p/k!2,

~B10!

where we have made use of Eqs.~B2!, ~B4!. Combining Eq.
~B5! with the estimates~B9! and ~B10! then yields

^uF2k
~n!u2&;~R/4k!2E da~2k/p! f ~a!/a. ~B11!

We note that the approximation adopted in this appen
differs from thed-function assumption~35! in asserting that
for high values ofk the variation of the phase dominates t
decay of the integrand compared to the rapid decorrelatio
the field. One would guess that fork of the order of unity the
field decorrelates faster due to the rapid variation over the
length. For high values ofk the phase decorrelation i
strongly amplified and we adopt the assumption used he
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