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COMMENTS

Comments are short papers which criticize or correct papers of other authors previously publishedRhysieal Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as
for regular articles is followed, and page proofs are sent to authors.

Comment on “Universal formulas for percolation thresholds. Il. Extension to anisotropic
and aperiodic lattices”

F. BabalievsKi
Institute for Computer Applications 1 (ICA1), University of Stuttgart, 70569 Stuttgart, Germany
(Received 18 November 1997

Recently S. Galam and A. Mauggrhys. Rev. E56, 322(1997)] proposed an approximant which relates the
bond and the site percolation threshold for a particular lattice. Their formula is based on a fit to exact and
simulation results obtained earlier for different periodic and aperiodic lattices. However, the numerical result
for an aperiodic dodecagonal lattice does not agree well with the proposed formula. | present here new and
more precise data for this and other aperiodic lattices. The previously published value for the dodecagonal
lattice is confirmed. The reason for the deviation from the Galam and Mauger approximant is discussed.
[S1063-651%99)09101-1

PACS numbes): 64.60.Ak, 64.60.Cn, 64.70.Pf

In a recent pap€drl], Galam and Mauger proposed a for- they suggest that the correct value should be close to 0.475,
mula which relates the site and bond percolation thresholdso it would fit much better to the theoretical curyeae
for a given lattice. This formula is a modification of a previ- NGMA). Since the bond percolation results given in my pa-
ous on€2] designed to predict the percolation thresholds forper were stated to be preliminary, it is reasonable to be sus-
a variety of periodic lattices. In the new Galam and Maugerpicious about them.
approximanttNGMA) the (mean coordination number of a Here | present new and more precise numerical data for

lattice (2) is replaced by the effective onef): these thresholds as well as for the bond percolation thresh-
Cadb olds for the other aperiodic lattices used for testing the
Pc=Pol(d—1)(zeg—1)] °d >, NGMA — see the left part of Table I.

hered is th ial di . q ¢ These values were obtained by computer simulation
whered Is the spatial dimensiommo anda are free param-  5,515g0us to that ifi3]. The lattice sizes were much larger
eters, whileb is either equal taa (for bond dilution or b o615 10 508500 bond lengthgthe longer bongland the
=0 (for site dilution. Distinct parameter sets farp,a di-  compytational efforts were between 100 and 1000 times
vide lattices into separate classes. The formula provides @ oer for the different lattices. For this work | used other
connection between the site and the bond percolation thres}b‘seudorandom number generatéPRNG. For most of the
old in a particular class. So, iay the bond percolation g jation thedrand48() PRNG from the standard GnuC
threshold is known for a latticeind one guesses somehow o jistribution was used. | used also than2 generator from
which class this lattice belongsthen one can estima®- 5] and the recently discussé8] four tap shift-register gen-
After replacingp, anda with their values for site percolation

(within the same clagone could obtain a value for the site ) ,
percolation threshold. In the same manner one could start TABLE I. New numerical results for the bond percolation

from a site percolation threshold and to get the bond thresﬁhresholds p.) of questioned aperiodic lattices. The values on the
old. right are the rigidity(bond percolation thresholdsp{) taken from

The NGMA was tested on simulation and exact values f0'[8]. The column with 4¢ corresponds to the Maxwell approximant
for the rigidity threshold. Some of the lattices are always floppy

17 lattices and among them six lattices based on aperiodi o o . )
o . a.f.) in view of the rigidity percolation model. The error estimates
tilings. The values for two variants of the octagonal and . . o

I - are put in parentheses and concern the underlined digit.
dodecagonal aperiodic lattices were extracted from my com-
puter simulation result§3]. It appeared that some of these

r
values do not fit well to the NGMA. The authors ff] Pe NMGA Pe 4z
supposed that the value for bond percolation on the ferrovaPenrose 0.476(5) 0.4748 a.f. 1
riant of the dodecagonal lattice was estimated numericallyrenrose) 0.42(1) 04%F... 0.8%(2) 0.80...
with rather low precision. Instead of my resylf=0.495,  Octagonal 0.48(3) 0.4773 af. 1
Octagonal(f) 0.4®(5) 04G®... 070(2) 0.74...
Dodecagonal 0.5y(1) 0.549... a.f. 11@...
*Permanent address: Institute of General and Inorganic Chemipodecagona(f) 0_49?9(5) 0475 ... 0.93(1) 0.937...

try, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
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eratorR(471,1586,6988,9689). The results coincided within 1
less than 1/10 of a percent in the mean of the cumulativc o9
Gaussian distribution which was used for a fitting function.
The fits just with a polynomial of third degree gave almost
the same results for the placébe values ofp) where the

spanning probability curve reaches a value of 1/2. One¢_ 08

it L=500 .

should notice also that the value for the nonmodified Penrosg o5 datﬁé: tZSSS i
lattice confirms the earlier results. s datal=300 X
So | could claim(within the rigor of a Monte Carlo simu- datal=200
lation) that the bond percolation threshold for the 08 data L2100 E:; o]
“ferro”modification of the dodecagonal aperiodic lattice is 02 fit L=100 (b) - ----+
indeed 0.495 within error bars of 0.001. In fact, a more 01 fET datﬁatlijgg((gg S
precise value could be extracted from the data of Fig,1, : data L=100() | ©
=0.4950+0.0005. The error bars would be even smaller if 048 0485 049 0495 05 0805 051

one disregarded the shift in the spanning probability curve P
for L=300.

FIG. 1. The frequency of the occurrence of spanning cluster

Now one could draw the conclusion that deviations of thisg , | ) for dodecagonal lattices with different site). Each data
percolation threshold from the NGMA do exist and one hasygint is averaged over 1000 realizations. The data setk $6t00

either to accept that the apEroximant is good within a largefre collected with the following PRNG(a) drand48() , (b)

interval of deviations|p.—p¢|=A<0.014, or to search for ran2() , (c) R(471,1586,6988,9689
a way to improve the approximant itself. _ . .
The reason for the discrepancy could be suggested in the Of course, things change when one considers percolation

; L tw he sites connected directly with the “ferro”bond.
line of thinking that van der Marck has presented recdpi]y etween t - ) . ;

: : ; ; ; ; The cutting probabilityagain neap=1/2) for this bond is
for site percolation. He paid attention to certain lattices for Iready ~9/37 p(1—p?)2] and the cutting probability of

which there are sites positioned on specific positions that dgach of the other bonds is3/37 p2(1— p)2(1+p)].

hot cor)tribut'e t_o percqlation atall —e.g., in 2D these are the It appears that the chance to be a cutting bond is the same
star sites” inside a tnangle_:. . . for the two types of bonds if both pairs of opposite vertices
Indeed for bond percolation such entirely irrelevant bond f the rhombus are considered . But one has to mertéian

are impossible. However, one can show that some bon Fig. Xg) in [1]) that there are only one or two outgoing
contribute much less to the short-range connectivity than thg, g from the obtuse angle vertices, while the acute vorti-
others. This is the case of the questioned aperiodic dOd%es have two to four outgoing bonds

cagonal lattice with “ferro”bonds. This lattice is a modifi- So if one considers the “spreadiné of connectivity” one

cation of 'Fhe original dodecagonal Iatt!ce_corj;;tructed by SOore step beyond the two diagonals of the rhombus, the
colar, which corresponds to an aperiodic tiling of a plane

contribution of the “ferro”bond is less significariby a fac-
with a hexagon, a square, and a rhombus. The “ferro”modi—tor of 2 approximately g by

fications consist in adding new bonds along the short diago- In contrast to the above, the same analysis for central-

nals of the rhombuses. Now one can show that_ these neyy .o rigidity percolatior{7] on the same lattice8] shows
bonds contribute less to the short-range percolative connegro+ the “ferro”bond is always a cutting bond within the

tivity. oo . I questioned rhombus. There is a simple approximant for the
_An estlm?tu_)n for tg'ls co?tnl?‘utmn EOUI% be done by stat- jqigiry thresholds — the so-called Maxwell approximant
ing a percolation problem for “one rhombus system.” We 17 o it i just twice the other mean-field-like approximant:

have five bonds arranged in a rhombus where the fifth bond}, o 'scher and zallen prediction fézonnectivity bond per-

is along the short diagonal. The question is what is the prObéoIation thresholds in two dimensionp~2/z,) wherez is
ability for a bond to be a “cutting” one for percolation be- ¢

. h . hat is th babili the mean coordination numbeilOne can see from Table |
tween sites on the acute anglee., what is the probability .4 16 estimates for rigidity percolation models, where each
that the extraction of this bond destroys the connection b

®hond hagalmosi equal significance for spreading the rigid-
tween the two sites One can easily see that this probability ith the M I ; t ext | I
is 2p3(1—p)? (the two zigzag pathsfor the ferrobond, 'y, agree with the Maxwell approximant extremely wetl

which gives ~1/16 for p~1/2 (close to the questioned | thank H. J. Herrmann and J.-P. Hovi for a critical read-
threshold valug The same valuénear top=1/2) is~3/16 ing of the manuscript. This research was supported by the
for the other bond§4p3(1—p)?+p?(1—p)3+p*(1—p)]. German Academic Exchange Foundati@AAD).
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