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Comment on ‘‘Universal formulas for percolation thresholds. II. Extension to anisotropic
and aperiodic lattices’’

F. Babalievski*
Institute for Computer Applications 1 (ICA1), University of Stuttgart, 70569 Stuttgart, Germany

~Received 18 November 1997!

Recently S. Galam and A. Mauger@Phys. Rev. E56, 322~1997!# proposed an approximant which relates the
bond and the site percolation threshold for a particular lattice. Their formula is based on a fit to exact and
simulation results obtained earlier for different periodic and aperiodic lattices. However, the numerical result
for an aperiodic dodecagonal lattice does not agree well with the proposed formula. I present here new and
more precise data for this and other aperiodic lattices. The previously published value for the dodecagonal
lattice is confirmed. The reason for the deviation from the Galam and Mauger approximant is discussed.
@S1063-651X~99!09101-1#
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In a recent paper@1#, Galam and Mauger proposed a fo
mula which relates the site and bond percolation thresh
for a given lattice. This formula is a modification of a prev
ous one@2# designed to predict the percolation thresholds
a variety of periodic lattices. In the new Galam and Maug
approximant~NGMA! the ~mean! coordination number of a
lattice (z) is replaced by the effective one (zeff):

pc5p0@~d21!~zeff21!#2ad b,

whered is the spatial dimension,p0 and a are free param-
eters, whileb is either equal toa ~for bond dilution! or b
50 ~for site dilution!. Distinct parameter sets forp0 ,a di-
vide lattices into separate classes. The formula provide
connection between the site and the bond percolation thr
old in a particular class. So, if~say! the bond percolation
threshold is known for a lattice~and one guesses somehow
which class this lattice belongs!, then one can estimatezeff .
After replacingp0 anda with their values for site percolation
~within the same class! one could obtain a value for the sit
percolation threshold. In the same manner one could s
from a site percolation threshold and to get the bond thre
old.

The NGMA was tested on simulation and exact values
17 lattices and among them six lattices based on aperi
tilings. The values for two variants of the octagonal a
dodecagonal aperiodic lattices were extracted from my c
puter simulation results@3#. It appeared that some of thes
values do not fit well to the NGMA. The authors of@1#
supposed that the value for bond percolation on the ferro
riant of the dodecagonal lattice was estimated numeric
with rather low precision. Instead of my resultpc50.495,
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they suggest that the correct value should be close to 0.4
so it would fit much better to the theoretical curve~the
NGMA!. Since the bond percolation results given in my p
per were stated to be preliminary, it is reasonable to be s
picious about them.

Here I present new and more precise numerical data
these thresholds as well as for the bond percolation thre
olds for the other aperiodic lattices used for testing
NGMA — see the left part of Table I.

These values were obtained by computer simulat
analogous to that in@3#. The lattice sizes were much large
here: up to 5003500 bond lengths~the longer bond! and the
computational efforts were between 100 and 1000 tim
larger for the different lattices. For this work I used oth
pseudorandom number generators~PRNG!. For most of the
simulation thedrand48() PRNG from the standard GnuC
distribution was used. I used also theran2 generator from
@5# and the recently discussed@6# four tap shift-register gen-

is-

TABLE I. New numerical results for the bond percolatio
thresholds (pc) of questioned aperiodic lattices. The values on t
right are the rigidity~bond! percolation thresholds (pc

r ) taken from
@8#. The column with 4/z corresponds to the Maxwell approximan
for the rigidity threshold. Some of the lattices are always flop
~a.f.! in view of the rigidity percolation model. The error estimat
are put in parentheses and concern the underlined digit.

pc NMGA pc
r 4/z

Penrose 0.4767(5) 0.4748 a.f. 1
Penrose(f) 0.429(1) 0.435 . . . 0.836(2) 0.840 . . .
Octagonal 0.478(3) 0.4773 a.f. 1
Octagonal(f) 0.402(5) 0.406 . . . 0.769(2) 0.774 . . .
Dodecagonal 0.538(1) 0.5419 . . . a.f. 1.102 . . .
Dodecagonal(f) 0.4950(5) 0.475 . . . 0.938(1) 0.937 . . .
1278 ©1999 The American Physical Society
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eratorR(471,1586,6988,9689). The results coincided with
less than 1/10 of a percent in the mean of the cumula
Gaussian distribution which was used for a fitting functio
The fits just with a polynomial of third degree gave almo
the same results for the places~the values ofp) where the
spanning probability curve reaches a value of 1/2. O
should notice also that the value for the nonmodified Penr
lattice confirms the earlier results.

So I could claim~within the rigor of a Monte Carlo simu
lation! that the bond percolation threshold for th
‘‘ferro’’modification of the dodecagonal aperiodic lattice
indeed 0.495 within error bars of60.001. In fact, a more
precise value could be extracted from the data of Fig. 1,pc
50.495060.0005. The error bars would be even smaller
one disregarded the shift in the spanning probability cu
for L5300.

Now one could draw the conclusion that deviations of t
percolation threshold from the NGMA do exist and one h
either to accept that the approximant is good within a lar
interval of deviations,upc2pc

eu5D,0.014, or to search fo
a way to improve the approximant itself.

The reason for the discrepancy could be suggested in
line of thinking that van der Marck has presented recently@4#
for site percolation. He paid attention to certain lattices
which there are sites positioned on specific positions tha
not contribute to percolation at all — e.g., in 2D these are
‘‘star sites’’ inside a triangle.

Indeed for bond percolation such entirely irrelevant bon
are impossible. However, one can show that some bo
contribute much less to the short-range connectivity than
others. This is the case of the questioned aperiodic do
cagonal lattice with ‘‘ferro’’bonds. This lattice is a modifi
cation of the original dodecagonal lattice constructed by
colar, which corresponds to an aperiodic tiling of a pla
with a hexagon, a square, and a rhombus. The ‘‘ferro’’mo
fications consist in adding new bonds along the short dia
nals of the rhombuses. Now one can show that these
bonds contribute less to the short-range percolative con
tivity.

An estimation for this contribution could be done by st
ing a percolation problem for ‘‘one rhombus system.’’ W
have five bonds arranged in a rhombus where the fifth b
is along the short diagonal. The question is what is the pr
ability for a bond to be a ‘‘cutting’’ one for percolation be
tween sites on the acute angles~i.e., what is the probability
that the extraction of this bond destroys the connection
tween the two sites!. One can easily see that this probabili
is 2p3(12p)2 ~the two zigzag paths! for the ferrobond,
which gives '1/16 for p'1/2 ~close to the questione
threshold value!. The same value~near top51/2) is '3/16
for the other bonds@4p3(12p)21p2(12p)31p4(12p)#.
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Of course, things change when one considers percola
between the sites connected directly with the ‘‘ferro’’bon
The cutting probability~again nearp51/2) for this bond is
already '9/32@p(12p2)2# and the cutting probability of
each of the other bonds is'3/32@p2(12p)2(11p)#.

It appears that the chance to be a cutting bond is the s
for the two types of bonds if both pairs of opposite vertic
of the rhombus are considered . But one has to mention~e.g.,
on Fig. 1~g! in @1#! that there are only one or two outgoin
bonds from the obtuse angle vertices, while the acute vo
ces have two to four outgoing bonds.

So if one considers the ‘‘spreading of connectivity’’ on
more step beyond the two diagonals of the rhombus,
contribution of the ‘‘ferro’’bond is less significant~by a fac-
tor of 2 approximately!.

In contrast to the above, the same analysis for cent
force rigidity percolation@7# on the same lattices@8# shows
that the ‘‘ferro’’bond is always a cutting bond within th
questioned rhombus. There is a simple approximant for
rigidity thresholds — the so-called Maxwell approxima
@7,8#. It is just twice the other mean-field-like approximan
the Scher and Zallen prediction for~connectivity! bond per-
colation thresholds in two dimensions (pc'2/z,) wherez is
the mean coordination number!. One can see from Table
that the estimates for rigidity percolation models, where ea
bond has~almost! equal significance for spreading the rigid
ity, agree with the Maxwell approximant extremely well.

I thank H. J. Herrmann and J.-P. Hovi for a critical rea
ing of the manuscript. This research was supported by
German Academic Exchange Foundation~DAAD !.

FIG. 1. The frequency of the occurrence of spanning clus
S(p,L) for dodecagonal lattices with different size(L). Each data
point is averaged over 1000 realizations. The data sets forL5100
are collected with the following PRNG:~a! drand48() , ~b!
ran2() , ~c! R~471,1586,6988,9689!.
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