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Numerical solutions of nonlinear wave equations
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Accurate, stable numerical solutions of ttreonlineaj sine-Gordon equation are obtained with particular
consideration of initial conditions that are exponentially close to the phase space homoclinic manifolds. Earlier
local, grid-based numerical studies have encountered difficulties, including numerically induced chaos for such
initial conditions. The present results are obtained using the recently reported distributed approximating func-
tional method for calculating spatial derivatives to high accuracy and a simple, explicit method for the time
evolution. The numerical solutions are chaos-free for the same conditions employed in previous work that
encountered chaos. Moreover, stable results that are free of homoclinic-orbit crossing are obtained even when
initial conditions are within 107 of the phase space separatrix vahtelt also is found that the present
approach yields extremely accurate solutions for the Korteweg—de Vries and nonlineatiggrequations.

Our results support Ablowitz and co-workers’ conjecture that ensuring high accuracy of spatial derivatives is
more important than the use of symplectic time integration schemes for solving solitary wave equations.
[S1063-651%99)02601-X

PACS numbegps): 02.70—c, 05.45.Pq

Ablowitz, Herbst, and Schobéd,2] have recently called based methods for solving the various nonlinear solitary
attention to the problem of numerically induced spatial andequations that play an important role in modern science and
temporal chaos in computational solutions of the sinetechnology.

Gordon equatiorfwhich has applications in physics, chem- In this paper we apply a reliable and robust approach that
istry, and biology. Similar numerical difficulties are encoun- has global method accuracy and local or grid method flex-
tered in solving other important equations, such as thebility for treating nonlinear solitary waves. All calculations
nonlinear Schrdinger equation [3,4] and modified reported were carried out on an IBM RISC-6000, model 560
Korteweg—de VriesKdV) equation[5]. This numerical in-  workstation in double precisiofl6 bit arithmeti¢. The nu-
stability is problematic since it is possible that at least somenerical examples studied are the sine-Gordon equation, the
previous reports of chaos might in fact have been the resulkdVv equation, and the nonlinear Schiinger equation. Our

of numerical inaccuracy. From the analytical point of view, approach combines a recently developed Lagrange distrib-
for an integrable SyStem, such numerical |nstab|l|ty is assogted approximating function&LDAF) method[lo] for spa-
ciated with singularities in action-angle variables, which pro-tjg| discretization and a fourth-order Runge-Kutta scheme
duce the so-called homoclinic orbits in the phase space 9¢17] for time discretization. The general distributed approxi-
ometry[l—4',6—8. The presence_of homopllnlc orbits leads mating functional DAF) method has been introducgtl] as

o . ; o e q computational tool for approximating functions and their
by oscillations between solutions on “opposite sides” of thederivatives to a similar level of accuracy. It has been shown

homoplmlc_orblt. These .ocnlanons can result from small per-, provide accurate solutions for a number of different types
turbations in the numerical parameters and/or small NUMETISt nonlinear partial differential equations, including the Bur-
cal errors in the calculated solution. Such ocillations differ b d ' 9

from the Gibbs oscillations occurring in the numerical solu-9€'s equation9,13 and the nonlinear Fokker-RIanck eaua-
tion of the Burgers equation with high Reynolds numbertions [14]. The pre;ent study focuses on nonlinear solitary
(describing inviscid fluid flow, which are caused by the Wave equations with particular emphasis on the phase space
sharp spatial changes in the solution over a small distancd®gimes that are “exponentially closef1] to homoclinic

[9]. From a computational point of view, a universal featureOrbits, where earlier local metho{is5,16 have encountered

of these instabilities is that they typically occur when thedifficulty in providing correct numerical results. In the
numerical method is not adequate for describing sufficientlypresent computations we employ the LDAF to evaluate spa-
accurately the actual changes in a solution for the giverial derivatives. The LDAF parameters used de-80 and
space and time meshes. Ablowitz, Herbst, and Schober founa/ A =2.88 for all case$10]. Here the parametevl deter-
that pseudospectral methods perform significantly better fomines the degree of a Lagrange interpolating polynomial,
the sine-Gordon equation than lattice type symplectiovhich is multiplied by a Gaussian. The width of the Gauss-
schemeg$2]. However, for nonlinear equations, spectral andian is determined by the ratio of a width parameteto the
pseudospectral methods are not as simple to implement amiform grid spacingA.

various lattice methods. Therefore, it would be extremely As the first example we consider the sine-Gordon equa-
useful to have accurate, efficient, simple, and general gridtion
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Fu(x,t)  d2u(x,t)
otz ax?

—sinu(x,t)], (D)

with periodic boundary conditions

u(x,t)=u(x+L,t). 2

The sine-Gordon equatiofil) is associated with a com-
pletely integrable Hamiltonian systef,1]; its phase space

2 McLaUHIB). s homocinie orbits have boen shown ”ﬂm%%ﬁim%ﬁﬁm

to be associated with chaos and numerical instabilies. el T

The simoat such ortit oanbe obtained bl;]seialm ring the ':;g!!mnmmmmmmunmmmnm:' ;
il
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spatially homogeneous sine-Gordon equation, i.e., the inte-
grable periodic pendulum equation

Pu
W+sm(u)=0, 3

which has a well-known “pendulum homoclinic” orbit
u(x,t)=m+ [ et
(x,H)=m+4tan {e] “) FIG. 1. Numerical solutions of the sine-Gordon equation.

corresponding to the phase space separatrix wgu,)
=(m,0). A family of homoclinic orbits can be constructed it possible to obtain solutions much closer to the homoclinic

[6,1] from the sine-Gordon equation’s symmetry orbit than was previously feasible.
We consider the numerical solution of Ed) subject to
(X tu)—(tx,u+m). () the same initial conditions used in REL]:

By doing this, one starts with a breather solution
[tan(v)cog cog w)t] 5 U0 =+ ecodux),  u(x0=0, ©
coshisin(v)x] |’ ®

where the parameter satisfies

u(x,t)y=4tan

with u=2x/L, L=2v2#, and 7 calculated as cos(—1).
Using a doubly discrete, integrable discretization scheme
|| <1. 7) [15], Ablowitz, Herbst, and Schobét] have shown that for
small €;’s, these initial values are exponentially close to the
This breather can be regarded as a kink-antikink boundefiomoclinic manifold and produce numerical instability when
pair in space with a 2/cos() periodic oscillation in time. One uses the Hirota solution algoritHt5]. Both spatial and
The sine-Gordon symmetr{5) leads to a family of real- temporal chaos are easily excited by very small perturbations
valued homoclinic orbits (including roundoff errgr. A more troubling aspect is that
these numerical instabilities persist as the mesh is refined and
.| tan( v)cog cog v)X] the temporal evolution of the numerical solution remains un-
costisin(v)t] |’ ®  stable even if all the conserved quantities are well preserved
(by employing a very fine grid In the present study we
In contrast to the spatially homogeneous homoclinic orbitchoosee;=0.05 and 0.1 and the numbRrof grid points in
(4), this family of homoclinic orbits also has am2cos) X is taken to be 64. These values are identical to those lead-
periodic spatial structure, i.e., a tangent cone associated withg to chaos in the calculations of Ablowitz, Herbst, and
a phase space limit poirttr,0). We refer the reader to Ref. Schober[1]. No irregular oscillations occur when the solu-
[6] for the construction of more general homoclinic statestion is translated though a multiple ofz2and no high-
and a detailed spectral analysis. We emphasize that a thdirequency oscillations occur even if the solution is integrated
ough numerical analysis of chaotic behavior in various disfor a long time. The case af;,=0.1 was found by Ablowitz,
cretizations of the sine-Gordon equation for a wide range oflerbst, and Schobefl] to involve spatial and temporal
parameter values, initial conditions, and time durations ichaos after a long-time integratigt®=300 time unit$. We
beyond the scope of the present work. Such an analysis, dswe propagated our numerical solution for 650 time units
has been initiated by Ablowitz, Herbst, and Schoigr is  without detecting any trace of chaotic instability. The results
certainly important, particularly in the case of numerical cha-of integrating Eq(1) with initial conditions(9) over a period
otic behavior in high-dimensional conservative systems. Oupf 450—-550 time units foe;=0.1 are presented in Fig. 1.
purpose here is to demonstrate that the present LDAF ap- While the present calculations for the above examples are
proach is not only stable for numerical parameter values anttee of numerical chaos, we note that homoclinic orbit cross-
initial conditions that led to numerical chaos when other spaing occurs when the solution is translated through a multiple
tial discretizations have been employdg?], but also makes of 27 (see Fig. 1 In order to test the reliability of the

ux,t)y=m+4tan
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! TABLE I. Errors of the numerical solutions for the KdV equa-
tion. The numbers in square brackets denote powers of 10.

025 2.1-4 7.4-5 21-5 53-5]
050 3.4-4] 1.1-4] 27-5 6.0-5]
075 571-4] 171-4] 3.0-5 6.7-5]

/N‘ At t L,2 L2 L,P L.
,‘ | “‘\\\\/‘\\“‘lf)““;}\‘l 0.005 Ax=0.01 Ax=0.025

X
49
Y

{

i
"‘\\!\5}‘7’6‘“ |

Sl iy
il

) \
l\\/ el

;

i

;," 100 74-4] 21-4 33-5 6.§-5]
ﬁf\‘\\\‘\t‘"‘ 0.0005 Ax=0.013
“}{\f\.\\\\\\ 0.25 21-10] 4.71-10]
g “\\‘ 0.50 23-10] 4.1-10]
0.75 26-10] 6.0-10]
1.00 3.0-10] 5.4-10]
u %Referencd18].
t bPresent work.

=4.84x10 4, andA=%(7/B)Y?]. Sanz-Serna and Christie
obtained accurate results for this exactly soluble problem by
using their modified Petrov-Galerkin method. Our results, as
shown in Tables | and Il, are more accurate than theirs, while
using a much larger grid spacing.

These results provide very strong support for the earlier
statement of Ablowitz, Herbst, and Schober that the occur-
rence of numerical chaos is primarily the result of inaccurate
approximation of the spatial derivatives in discretizing the
partial differential equatiof2], as opposed to the treatment
of the temporal evolution. By an appropriate choice of the
DAF parameterd! and /A one can control the accuracy of
| the DAF derivatives to the limit of machine accura@ven
Jnigher accuracy should be attainable by use of extended pre-
cision). This should enable one to obtain stable, converged
solutions for initially even closer to the separatrix.

In conclusion, in this paper, we have employed the LDAF
Jntegrator{10,17 to solve the nonlinear sine-Gordon, Schro
dinger, and KdV equations numerically. Particular consider-
ation was given to cases where the initial values are expo-

auxt)  2u(x.t) ne_ntiaIIy close to.the homoclinic manifolds. I_Dr.evio.us chal or
i > +4|u(x,t)[?u(x,t)=0, (11 grid-based algorithms have encountered difficulties, includ-
ing numerically induced spatiotemporal chqt$ So far, no
numerical method totally free from homoclinic orbit crossing
has been reported. However, the LDAF method provides
smooth, chaos-free, and even homoclinic-orbit-crossing-free
Eif one uses an appropriate valueeyfapproximation tom in
the initial condition(10)] results using a reasonable number
Bf grid points and time increment. In addition, such results

FIG. 2. Numerical solutions of the nonlinear Soflimger equa-
tion up tot=100.

present integrator, we introduce a small perturbatgrto
the zeroth-order homoclinic orbit and modify the initial con-
dition (9) to read

u(x,0)=(7+€g) + €e;cog uX), U(x,00=0, (10

with u=27/L, L=2v2w, and e;=0.05. This represents a
stable phase space structure when the perturbatids suf-
ficiently large. For smalley values, the solutions are stil
extremely close to the homoclinic orbits. Our method ha
achieved numerical convergence and yielded homoclinic
orbit-crossing-free results forma(+ eg) =3.141 592 6 when
the number of grid pointdl is larger than 700.

As the second example we consider the nonlinear Schr
dinger equation

at ox

with periodic boundary conditiongperiod L =22) and
initial values[3] u(x,0)=0.5+0.05 cos(4/L). Numerically
induced chaos in this equation has been studied by Ablowit
and Herbst[3] and by McLaughlin and Schobé#]. The
present LDAF approach provides stable numerical solution
(see Fig. 2 under the same integration conditions. Ablowitz,
Herbst, and 2] have recently advanced the conjecture that i _ i
the crucial factor in the occurrence of this numerical chaos is. |ABLE Il Errors of the numerical solutions for the Klein-
the accuracy of the discretization of spatial derivatives. ThisGOrdOn equatioriat=0.001 andAx=0.333.

suggests that the success of the LDAF approach is due to its

: . . . e t L, L.
accuracy in representing(x,t) and its spatial derivatives.
To further test this conjecture we examine the accuracy of 0.1 5.7—-15] 8.00—15]
the LDAF method by numerically solving the KdV equation 0.2 1.1-14] 1.6-14]
x.1) (x0) 3 (x.0) 0.3 1.6—14] 2.2-14]
Ju(x,t Ju(x,t J°u(x,t 0.4 1.9-14] 2.6-14]
+ t + =0 12 . : :

at uex,t X B (12 0.5 2.0-14] 2.6-14]
1.0 2.3-14] 3.4-14]
with Dirichlet boundary conditions, assuming the initial soli- 2.0 6.0—14] 7.4-14]

tary wave packef18] u(x,0)=37 sech(Ax—6) [7=0.3, B




PRE 59 BRIEF REPORTS 1277

are obtained using an explidias opposed to impligitalgo-  preserving the phase space structures of low-dimensional
rithm for the time evolution. We note that whenis gener-  Hamiltonian systems. Only very recently have Ablowitz,
ated as cos'(—1) in the computefand e,=0), correspond-  Herbst, and Schobg?] suggested that this is not the relevant
ing to initial conditions that are extremely close to theissue, but rather that the accuracy of the spatial discretization
separatrix, zeroth-order homoclinic orbit crossings can occuis more important. This was based on results obtained by a
for certain numerical parameters, which were not eliminatethseudospectral approa¢@]. The present results, obtained

by increasing the number of grid points up to 3000. Suchyith the LDAF approach, provide convincing support for
initial conditions place extremely high demands on the accugneijr conjecture.

racy with which spatial derivatives must be computed. In

order to demonstrate the reliability of the LDAF approach, The authors thank Professor M. Ablowitz for providing us
we have introduced initial conditions that are within I®f  with a copy of Ref[2] prior to publication. Helpful discus-
the zeroth-order homoclinic orbit in the initial values. In this sions with Professor C. Schober are gratefully acknowl-
circumstance, the LDAF approach is able to provide resultgdged. D.J.K. was supported in part by the National Science
free from homoclinic orbit crossing and numerical chaos forFgundation under Grant No. CHE-9700297 and the R. A.
T+ € equal to 3.1415926. A spectral analysis indicatesyelch Foundation under Grant No. E-0608. G.W.W. was
that the LDAF method preserves the action of the sinexypported by the R. A. Welch Foundation under Grant No.
Gordon linear operatofthe spatial part of the Lax paiat g g8, G.W.W. was supported by the NSERC and the R. A.
least as well as or better than a previous pseudospectral a@aich Foundation under Grant No. E-0608. The Ames
proach[19-22. Laboratory is operated for the U.S. Department of Energy by

In the past, symplectic numerical methods have been ®Mowa State University under Contract No. 2-7405-ENG82.
phasized and regarded as superior to explicit methods for
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