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Numerical solutions of nonlinear wave equations
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Accurate, stable numerical solutions of the~nonlinear! sine-Gordon equation are obtained with particular
consideration of initial conditions that are exponentially close to the phase space homoclinic manifolds. Earlier
local, grid-based numerical studies have encountered difficulties, including numerically induced chaos for such
initial conditions. The present results are obtained using the recently reported distributed approximating func-
tional method for calculating spatial derivatives to high accuracy and a simple, explicit method for the time
evolution. The numerical solutions are chaos-free for the same conditions employed in previous work that
encountered chaos. Moreover, stable results that are free of homoclinic-orbit crossing are obtained even when
initial conditions are within 1027 of the phase space separatrix valuep. It also is found that the present
approach yields extremely accurate solutions for the Korteweg–de Vries and nonlinear Schro¨dinger equations.
Our results support Ablowitz and co-workers’ conjecture that ensuring high accuracy of spatial derivatives is
more important than the use of symplectic time integration schemes for solving solitary wave equations.
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PACS number~s!: 02.70.2c, 05.45.Pq
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Ablowitz, Herbst, and Schober@1,2# have recently called
attention to the problem of numerically induced spatial a
temporal chaos in computational solutions of the si
Gordon equation~which has applications in physics, chem
istry, and biology!. Similar numerical difficulties are encoun
tered in solving other important equations, such as
nonlinear Schro¨dinger equation @3,4# and modified
Korteweg–de Vries~KdV! equation@5#. This numerical in-
stability is problematic since it is possible that at least so
previous reports of chaos might in fact have been the re
of numerical inaccuracy. From the analytical point of vie
for an integrable system, such numerical instability is as
ciated with singularities in action-angle variables, which p
duce the so-called homoclinic orbits in the phase space
ometry @1–4,6–8#. The presence of homoclinic orbits lead
to exponentially unstable numerical solutions, characteri
by oscillations between solutions on ‘‘opposite sides’’ of t
homoclinic orbit. These ocillations can result from small p
turbations in the numerical parameters and/or small num
cal errors in the calculated solution. Such ocillations dif
from the Gibbs oscillations occurring in the numerical so
tion of the Burgers equation with high Reynolds numb
~describing inviscid fluid flow!, which are caused by th
sharp spatial changes in the solution over a small dista
@9#. From a computational point of view, a universal featu
of these instabilities is that they typically occur when t
numerical method is not adequate for describing sufficien
accurately the actual changes in a solution for the gi
space and time meshes. Ablowitz, Herbst, and Schober fo
that pseudospectral methods perform significantly better
the sine-Gordon equation than lattice type symplec
schemes@2#. However, for nonlinear equations, spectral a
pseudospectral methods are not as simple to implemen
various lattice methods. Therefore, it would be extrem
useful to have accurate, efficient, simple, and general g
PRE 591063-651X/99/59~1!/1274~4!/$15.00
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based methods for solving the various nonlinear solit
equations that play an important role in modern science
technology.

In this paper we apply a reliable and robust approach
has global method accuracy and local or grid method fl
ibility for treating nonlinear solitary waves. All calculation
reported were carried out on an IBM RISC-6000, model 5
workstation in double precision~16 bit arithmetic!. The nu-
merical examples studied are the sine-Gordon equation,
KdV equation, and the nonlinear Schro¨dinger equation. Our
approach combines a recently developed Lagrange dis
uted approximating functional~LDAF! method@10# for spa-
tial discretization and a fourth-order Runge-Kutta sche
@12# for time discretization. The general distributed appro
mating functional~DAF! method has been introduced@11# as
a computational tool for approximating functions and th
derivatives to a similar level of accuracy. It has been sho
to provide accurate solutions for a number of different typ
of nonlinear partial differential equations, including the Bu
gers equation@9,13# and the nonlinear Fokker-Planck equ
tions @14#. The present study focuses on nonlinear solita
wave equations with particular emphasis on the phase s
regimes that are ‘‘exponentially close’’@1# to homoclinic
orbits, where earlier local methods@15,16# have encountered
difficulty in providing correct numerical results. In th
present computations we employ the LDAF to evaluate s
tial derivatives. The LDAF parameters used areM580 and
s/D52.88 for all cases@10#. Here the parameterM deter-
mines the degree of a Lagrange interpolating polynom
which is multiplied by a Gaussian. The width of the Gaus
ian is determined by the ratio of a width parameters to the
uniform grid spacingD.

As the first example we consider the sine-Gordon eq
tion
1274 ©1999 The American Physical Society
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]2u~x,t !

]t2 5
]2u~x,t !

]x2 2sin@u~x,t !#, ~1!

with periodic boundary conditions

u~x,t !5u~x1L,t !. ~2!

The sine-Gordon equation~1! is associated with a com
pletely integrable Hamiltonian system@6,1#; its phase space
geometry has been analyzed recently by Ercolani, For
and McLaughlin@6#. Its homoclinic orbits have been show
to be associated with chaos and numerical instabilities@6,1#.
The simplest such orbit can be obtained by examining
spatially homogeneous sine-Gordon equation, i.e., the i
grable periodic pendulum equation

]2u

]t2 1sin~u!50, ~3!

which has a well-known ‘‘pendulum homoclinic’’ orbit

u~x,t !5p14 tan21@et# ~4!

corresponding to the phase space separatrix at (u,ut)
5(p,0). A family of homoclinic orbits can be constructe
@6,1# from the sine-Gordon equation’s symmetry

~x,t,u!→~ t,x,u1p!. ~5!

By doing this, one starts with a breather solution

u~x,t !54 tan21F tan~n!cos@cos~n!t#

cosh@sin~n!x# G , ~6!

where the parametern satisfies

unu!1. ~7!

This breather can be regarded as a kink-antikink boun
pair in space with a 2p/cos(n) periodic oscillation in time.
The sine-Gordon symmetry~5! leads to a family of real-
valued homoclinic orbits

u~x,t !5p14 tan21F tan~n!cos@cos~n!x#

cosh@sin~n!t# G . ~8!

In contrast to the spatially homogeneous homoclinic o
~4!, this family of homoclinic orbits also has a 2p/cos(n)
periodic spatial structure, i.e., a tangent cone associated
a phase space limit point~p,0!. We refer the reader to Re
@6# for the construction of more general homoclinic sta
and a detailed spectral analysis. We emphasize that a
ough numerical analysis of chaotic behavior in various d
cretizations of the sine-Gordon equation for a wide range
parameter values, initial conditions, and time durations
beyond the scope of the present work. Such an analysis
has been initiated by Ablowitz, Herbst, and Schober@1#, is
certainly important, particularly in the case of numerical ch
otic behavior in high-dimensional conservative systems. O
purpose here is to demonstrate that the present LDAF
proach is not only stable for numerical parameter values
initial conditions that led to numerical chaos when other s
tial discretizations have been employed@1,2#, but also makes
st,
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it possible to obtain solutions much closer to the homocli
orbit than was previously feasible.

We consider the numerical solution of Eq.~1! subject to
the same initial conditions used in Ref.@1#:

u~x,0!5p1e1cos~mx!, ut~x,0!50, ~9!

with m52p/L, L52&p, andp calculated as cos21(21).
Using a doubly discrete, integrable discretization sche
@15#, Ablowitz, Herbst, and Schober@1# have shown that for
small e1’s, these initial values are exponentially close to t
homoclinic manifold and produce numerical instability wh
one uses the Hirota solution algorithm@15#. Both spatial and
temporal chaos are easily excited by very small perturbati
~including roundoff error!. A more troubling aspect is tha
these numerical instabilities persist as the mesh is refined
the temporal evolution of the numerical solution remains u
stable even if all the conserved quantities are well preser
~by employing a very fine grid!. In the present study we
choosee150.05 and 0.1 and the numberN of grid points in
x is taken to be 64. These values are identical to those le
ing to chaos in the calculations of Ablowitz, Herbst, a
Schober@1#. No irregular oscillations occur when the solu
tion is translated though a multiple of 2p and no high-
frequency oscillations occur even if the solution is integra
for a long time. The case ofe150.1 was found by Ablowitz,
Herbst, and Schober@1# to involve spatial and tempora
chaos after a long-time integration~t>300 time units!. We
have propagated our numerical solution for 650 time un
without detecting any trace of chaotic instability. The resu
of integrating Eq.~1! with initial conditions~9! over a period
of 450–550 time units fore150.1 are presented in Fig. 1.

While the present calculations for the above examples
free of numerical chaos, we note that homoclinic orbit cro
ing occurs when the solution is translated through a multi
of 2p ~see Fig. 1!. In order to test the reliability of the

FIG. 1. Numerical solutions of the sine-Gordon equation.
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present integrator, we introduce a small perturbatione0 to
the zeroth-order homoclinic orbit and modify the initial co
dition ~9! to read

u~x,0!5~p1e0!1e1cos~mx!, ut~x,0!50, ~10!

with m52p/L, L52&p, ande150.05. This represents
stable phase space structure when the perturbatione0 is suf-
ficiently large. For smalle0 values, the solutions are sti
extremely close to the homoclinic orbits. Our method h
achieved numerical convergence and yielded homocli
orbit-crossing-free results for (p1e0)53.141 592 6 when
the number of grid pointsN is larger than 700.

As the second example we consider the nonlinear Sc¨-
dinger equation

i
]u~x,t !

]t
1

]2u~x,t !

]x2 14uu~x,t !u2u~x,t !50, ~11!

with periodic boundary conditions~period L52A2p! and
initial values @3# u(x,0)50.510.05 cos(4p/L). Numerically
induced chaos in this equation has been studied by Ablo
and Herbst@3# and by McLaughlin and Schober@4#. The
present LDAF approach provides stable numerical soluti
~see Fig. 2! under the same integration conditions. Ablowi
Herbst, and@2# have recently advanced the conjecture t
the crucial factor in the occurrence of this numerical chao
the accuracy of the discretization of spatial derivatives. T
suggests that the success of the LDAF approach is due t
accuracy in representingu(x,t) and its spatial derivatives
To further test this conjecture we examine the accuracy
the LDAF method by numerically solving the KdV equatio

]u~x,t !

]t
1u~x,t !

]u~x,t !

]x
1b

]3u~x,t !

]x3 50 ~12!

with Dirichlet boundary conditions, assuming the initial so
tary wave packet@18# u(x,0)53h sech2(Ax26) @h50.3, b

FIG. 2. Numerical solutions of the nonlinear Schro¨dinger equa-
tion up to t5100.
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54.8431024, andA5 1
2 (h/b)1/2#. Sanz-Serna and Christi

obtained accurate results for this exactly soluble problem
using their modified Petrov-Galerkin method. Our results,
shown in Tables I and II, are more accurate than theirs, w
using a much larger grid spacing.

These results provide very strong support for the ear
statement of Ablowitz, Herbst, and Schober that the occ
rence of numerical chaos is primarily the result of inaccur
approximation of the spatial derivatives in discretizing t
partial differential equation@2#, as opposed to the treatme
of the temporal evolution. By an appropriate choice of t
DAF parametersM ands/D one can control the accuracy o
the DAF derivatives to the limit of machine accuracy~even
higher accuracy should be attainable by use of extended
cision!. This should enable one to obtain stable, converg
solutions for initially even closer to the separatrix.

In conclusion, in this paper, we have employed the LDA
integrator@10,17# to solve the nonlinear sine-Gordon, Schr¨-
dinger, and KdV equations numerically. Particular consid
ation was given to cases where the initial values are ex
nentially close to the homoclinic manifolds. Previous local
grid-based algorithms have encountered difficulties, incl
ing numerically induced spatiotemporal chaos@1#. So far, no
numerical method totally free from homoclinic orbit crossin
has been reported. However, the LDAF method provid
smooth, chaos-free, and even homoclinic-orbit-crossing-
@if one uses an appropriate value ofe0 approximation top in
the initial condition~10!# results using a reasonable numb
of grid points and time increment. In addition, such resu

TABLE I. Errors of the numerical solutions for the KdV equa
tion. The numbers in square brackets denote powers of 10.

Dt t L2
a L`

a L2
b L`

b

0.005 Dx50.01 Dx50.025
0.25 2.1@24# 7.0@25# 2.1@25# 5.3@25#

0.50 3.8@24# 1.1@24# 2.7@25# 6.0@25#

0.75 5.7@24# 1.7@24# 3.0@25# 6.2@25#

1.00 7.4@24# 2.1@24# 3.3@25# 6.6@25#

0.0005 Dx50.013
0.25 2.1@210# 4.7@210#

0.50 2.3@210# 4.1@210#

0.75 2.6@210# 6.0@210#

1.00 3.0@210# 5.8@210#

aReference@18#.
bPresent work.

TABLE II. Errors of the numerical solutions for the Klein
Gordon equation~Dt50.001 andDx50.333!.

t L2 L`

0.1 5.7@215# 8.0@215#

0.2 1.1@214# 1.6@214#

0.3 1.6@214# 2.2@214#

0.4 1.9@214# 2.6@214#

0.5 2.0@214# 2.6@214#

1.0 2.3@214# 3.8@214#

2.0 6.0@214# 7.3@214#
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are obtained using an explicit~as opposed to implicit! algo-
rithm for the time evolution. We note that whenp is gener-
ated as cos21(21) in the computer~ande050!, correspond-
ing to initial conditions that are extremely close to t
separatrix, zeroth-order homoclinic orbit crossings can oc
for certain numerical parameters, which were not elimina
by increasing the number of grid points up to 3000. Su
initial conditions place extremely high demands on the ac
racy with which spatial derivatives must be computed.
order to demonstrate the reliability of the LDAF approac
we have introduced initial conditions that are within 1027 of
the zeroth-order homoclinic orbit in the initial values. In th
circumstance, the LDAF approach is able to provide res
free from homoclinic orbit crossing and numerical chaos
p1e0 equal to 3.141 592 6. A spectral analysis indica
that the LDAF method preserves the action of the si
Gordon linear operator~the spatial part of the Lax pair! at
least as well as or better than a previous pseudospectra
proach@19–22#.

In the past, symplectic numerical methods have been
phasized and regarded as superior to explicit methods
ut.
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preserving the phase space structures of low-dimensi
Hamiltonian systems. Only very recently have Ablowit
Herbst, and Schober@2# suggested that this is not the releva
issue, but rather that the accuracy of the spatial discretiza
is more important. This was based on results obtained b
pseudospectral approach@2#. The present results, obtaine
with the LDAF approach, provide convincing support f
their conjecture.
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