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Generation of light spatiotemporal solitons from asymmetric pulses
in saturating nonlinear media

V. Skarka
Laboratoire Propriétés Optiques des Mate´riaux et Applications, Equipe Postulante 130, Centre National de la Recherche Scientifiq
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The dynamics of multidimensional spatiotemporal solitons, i.e., light bullets, in saturating nonlinear media
is considered. The analytical approach based on the variation method and the numerical simulations show that
light bullets can be generated for a large range of parameters corresponding to the initially asymmetric pulses.
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Recently, growing attention has been devoted to the st
of ultrashort-pulse propagation in nonlinear media@1#. In
particular, the spatiotemporal dynamics of electromagn
~em! pulses has been the subject of intense investigation
stable solitonic pulse completely localized in space and t
due to the nonlinear effects is called a light bullet@2#. The
evolution of the light bullets is described by th
(311)-dimensional nonlinear Schro¨dinger equation~NSE!
containing three ‘‘transverse’’ dimensions and one propa
tion direction.

It has been shown by Vakhitov and Kolokolov that t
NSE with the nonlinearity saturation admits thre
dimensional soliton solutions that are stable for infinite
small perturbations@3#. Such solutions, i.e., the light bullets
are characterized by a balance of diffraction and dispers
effects, respectively, with nonlinear self-focusing in spa
and time. This balance implies that its spatial widthR and its
temporal durationT satisfy the conditionR5T(2kD)21/2,
wherek is wave vector andD5d2k/dv2 is group velocity
dispersion~GVD!, which is assumed to be anomalousD
,0. Recently, it has been shown numerically that under c
tain circumstances the light bullets are stable even for la
perturbations and their dynamics resembles the dynamic
a soliton solution of an integrable system@4#. In our recent
publication we considered the conditions for the light bull
generation in media with saturating nonlinearity@5#. If an
initial profile of the pulse is close to the stable equilibriu
one ~the exact numerical solution!, the pulse quickly attains
the profile of the ground-state soliton, in agreement with
Vakhitov-Kolokolov theory. However, as predicted by o
analytical approach and confirmed by numerical simulati
due to the exceptional robustness, light bullets can be ge
ated from a large range of initial parameters even far fr
stable equilibrium.

In Ref. @5# it is considered that the initial pulse paramete
satisfy the ‘‘symmetry’’ conditionR05T0(2kD)1/2, where
PRE 591063-651X/99/59~1!/1270~4!/$15.00
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R0 andT0 are the initial spatial width and temporal duratio
of a Gaussian input pulse. It is complicated to realize suc
condition experimentally.

The purpose of this paper is to investigate the light bull
generation using an initial ‘‘asymmetric’’ pulse with the pro
file significantly different from the equilibrium one. For th
NSE with a saturating nonlinearity the exact analytical me
ods to derive nonstationary solutions do not exist. One ha
resort to computer simulations, even if the analytical a
proach is needed for a qualitative understanding of the
merical results obtained. Consequently, in order to treat
evolution of asymmetric pulses, we first generalize our a
lytical approach by removing the symmetry condition. Th
approach is then applied to a concrete saturating nonlin
ity. Finally, guided by analytical results, the numerical sim
lations of the pulse dynamics are carried out.

The dynamics of an em pulse propagating in a nonlin
medium is based on the analysis of the NSE

2ikS ]E
]z

1
1

vg

]E
]t D1D'E2kD

]2E
]t2 12k2

dn~ uEu2!

n0
E50,

~1!

whereE is a slowly varying field envelope,vg is the group
velocity of the pulse propagating along thez axis, n0 and
dn(uEu2) are, respectively, linear and nonlinear optical ind
ces, andD'5]2/]x21]2/]y2 is the two-dimensional La-
placian describing beam diffraction. In dimensionless fo
Eq. ~1! can be rewritten as

i
]E

]z
1s

]2E

]t2 1D'E1 f ~ uEu2!E50. ~2!

Taking into account thatt5t2z/vg is a retarded time vari-
able, the field envelopeE is E redefined according to the
nonlinearity under consideration ands561 corresponds re-
1270 ©1999 The American Physical Society
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spectively to the anomalous and normal GVD cases.
Lagrangian density corresponding to Eq.~2! is

L5U]E

]xU
2

1U]E

]yU
2

1sU]E

]t U
2

1
i

2 S E
]E*

]t
2E*

]E

]t D2F~ uEu2!

~3!

where the asterisk denotes a complex conjugate andF(u)
5*0

uf (u8)du8.
To analyze rather complex dynamical properties of

pulses governed by Eq.~2! we use a variational approach@6#.
This approach determines the relations between the cha
teristic parameters of the localized solution approximated
a trial function. As the trial function we use Gaussian-shap
pulse

E5A~z!expS 2
x2

2X2~z!
2

y2

2Y2~z!
2

t2

2T2~z!
1 ic D , ~4!

where c5x2bx(z)1y2by1t2c(z)1f(z). The self-similar
evolution of the pulse is parametrized by thez-dependent
amplitudeA, transverse widthsX andY, temporal duration
T, and phasef. The parametersbx andby are the wave front
curvatures andc is the chirp parameter~the ‘‘temporal cur-
vature’’!.

After substitution of Eq.~4! into Eq. ~3! and integration
over x, y, andt, the average Lagrangian obtained depen
only on optimizing thez-dependent parameters of the tri
function. By demanding that the variation of the avera
Lagrangian with respect to each of these parameters be
the corresponding set of Euler-Lagrange equations is
rived,

d2R

dz2 522
]

]R
V~X,Y,T!, ~5!

d2T

dz2 522s
]

]T
V~X,Y,T!, ~6!

whereR5(X,Y) and the effective potentialV has the form

V~X,Y,T!5
1

X2 1
1

Y2 1
s

T2 2
K~A2!

A2 , ~7!

with the nonlinearity function

K~u!5
8

Ap
E

0

`

dp p2F~ue2p2
!. ~8!

During the pulse evolution the ‘‘energy’’N5A2XYT is con-
served. The wave front curvatures arebx5(1/4X)dX/dz and
by5(1/4Y)dY/dz, while the chirp parameter isc
5(1/4sT)dT/dz.

Equations~5!–~8! are equivalent to those describing th
dynamics of a particle in a three-dimensional potential w
Using this analogy we can acquire a deeper physical un
standing of the dynamics of light pulse. Let us first exam
the possibility of steady self-trapping of light pulse corr
sponding to the situation when the nonlinearity exactly b
ances both diffraction and dispersion. Such an equilibri
corresponds to the absolute extremum of the potential@i.e.,
e
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the right-hand sides of Eqs.~5! and ~6! are zero#. It is obvi-
ous that in the case of normal GVD (s521) the absolute
extremum does not exist. Consequently, a three-dimensi
localization of the em pulse in the medium is not possi
independently of the structure of saturating nonlinearity.
comprehensive treatment of the em pulse dynamics in K
media with normal GVD can be found in Ref.@7#. In what
follows we concentrate on the case of anomalous GVDs
51). The equilibrium parameters of the pulse areXe5Ye

5Te5A0 /K(A0
2)1/2, whereA0 is the initial amplitude of the

pulse. It is straightforward to show that the absolute mi
mum of the potential exists if the field amplitude is larg
than the critical oneAc , whose value depends on the chos
saturating nonlinearity. This stable and spherically symm
ric solution is the light bullet.

In the general formalism presented above we did not
an explicit form for the nonlinear functionf (uEu2). In order
to investigate the dynamical properties of nonsteady so
tions, in the subsequent analysis we will consider a nonlin
term of the form

f ~ uEu2!5uEu22uEu4. ~9!

This kind of nonlinearity has been widely applied in differe
domains of research@8#. Recent measurements of organ
materials show that, for instance, polydiacetylenepara-
toluene sulfonate~PTS! exhibits this kind of saturation non
linearity @9#. For PTS the second term in Eq.~9! can be of
the same order as or even larger than the first one. The
linearity function K @see Eq. ~8!# is now K(A2)5aA4

2bA6, wherea5223/2 andb523325/2. Consequently, for
the equilibrium radius of the pulse one gets

Xe
25Ye

25Te
25

2

aA0
222bA0

4 . ~10!

The equilibrium solution is stable against small perturbatio
if A0.Ac'0.6, in agreement with Ref.@5#.

Now we examine the dynamical behavior of a pulse t
is initially far from its symmetric equilibrium correspondin
to the light bullet. Integration of Eqs.~5!–~7! gives

1

4 S dX

dzD 2

1
1

4 S dY

dzD 2

1
1

4 S dT

dzD
2

1V~X,Y,T!

5V~X0 ,Y0 ,T0!, ~11!

where

V~X,Y,T!5
1

X2 1
1

Y2 1
1

T2 2
aN

XYT
1

bN2

X2Y2T2 . ~12!

The conservation of energyN5A2XYT5A0
2X0Y0T0 is

used in deriving Eqs.~11! and~12!. For simplicity, zero ini-
tial curvaturesbx(0)5by(0)5c(0)50 are assumed.

For the pulse energy exceeding the critical one (Nc
535.3), two absolute extrema, a minimum and a maximu
appear, i.e., a three-dimensional potential well is created.
illustration, for the energyN536, we plot in Fig. 1 the cor-
responding two-dimensional potential as a function of du
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tion T and widthX assuming that the transverse spatial sy
metry of the pulse holds during its evolution (X5Y). If the
initial width and duration are inside the well, the se
trapping occurs preventing the spreading of the pulse. W
increasing energy the potential well deepens and the trap
area becomes wider, as can be seen in Fig. 2, where
energy isN580. The minimum at the bottom of the pote
tial well corresponds to the stable equilibrium, i.e., to t
light bullet. The maximum corresponds to the unstable eq
librium. For convenience, only the potential between its
trema is plotted in Figs. 1 and 2.

The effective particle trapped in the potential well in ge
eral follows a complex trajectory around the stable equi
rium. The variational approach does not account for any
tenuation that obviously leads to the relaxation on the bot
of potential well, as can be seen by numerical simulations
the NSE.

In order to check the predictions of our analytical a
proach concerning the appearance of a potential well

FIG. 1. Two-dimensional potential well as a function of dur
tion T and width X for the energyN536 slightly exceeding the
critical one.

FIG. 2. Enlargement of the potential well for higher energyN
580. The initial widthX and durationT if inside the potential well
lead to the light bullet generation.
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delineate the trapping region, the numerical simulations
Eq. ~2! for cylindrically symmetric pulses are carried o
@D'5]2/]r'

2 1r'
21]/]r' , wherer'5(x21y2)1/2#. We use a

finite-difference method in both the radial and temporal
rections for an initially Gaussian-shaped pulseuE(0,r' ,t)u
5A0exp(2r'

2/2R0
22t2/2T0

2). The simulations show that th
pulse above a critical energy is trapped provided its ini
parameters belong to the range reasonably close to the
predicted by the analytical approach~see Fig. 3 in Ref.@5#!.
The numerical simulations for different values of the pu
energy ~up to N5150) and different levels of asymmetr
(R0 /T0'0.1– 10) are carried out. The dynamics of the pu
sizes in the transverse and temporal directions with
asymmetric initial conditionsR054 andT057 for the en-
ergyN580 is given in Fig. 3. Both size parameters under
a damped oscillation around the same equilibrium state w
the period closed to the one that follows from the variatio
approach. Thus, in spite of the initial asymmetry in the fin
stage of evolution, the symmetric stable pulse, i.e., light b
let, will be formed. For other initial conditions studied th
pulse dynamics exhibits essentially the same behavior a
Fig. 3. In these simulations the modulation instability th
may lead to the spontaneous decay of the pulse into a n
ber of fragments did not take place. A longitudinally mod
lated cylindrical beam can indeed spontaneously break in
train of light bullets, as it has been shown in Ref.@10#. Such
a case corresponds to the conditionsN→` and R0 /T0→0
and it is beyond the scope of our investigation in this Br
Report.

In conclusion, we considered the light bullet generati
from initially asymmetric input pulses propagating in sat
rating nonlinear media. The numerical simulations confi
the analytical prediction based on variation method that
asymmetric pulse with the energy above a critical o
evolves towards the light bullet for a large range of para
eters. Light bullets are exceptionally robust objects that
be generated even far from stable equilibrium. It is much l
complicated to realize the initial pulse parameters with
restrictions on their symmetry in an experiment.

FIG. 3. Numerical simulations of the Schro¨dinger equation~2!.
The width R and durationT approach their common equilibrium
value.
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