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Generation of light spatiotemporal solitons from asymmetric pulses
in saturating nonlinear media
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The dynamics of multidimensional spatiotemporal solitons, i.e., light bullets, in saturating nonlinear media
is considered. The analytical approach based on the variation method and the numerical simulations show that
light bullets can be generated for a large range of parameters corresponding to the initially asymmetric pulses.
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Recently, growing attention has been devoted to the studiR, andT, are the initial spatial width and temporal duration
of ultrashort-pulse propagation in nonlinear mefid. In  of a Gaussian input pulse. It is complicated to realize such a
particular, the spatiotemporal dynamics of electromagneticondition experimentally.
(em) pulses has been the subject of intense investigations. A The purpose of this paper is to investigate the light bullets
stable solitonic pulse completely localized in space and timgeneration using an initial “asymmetric” pulse with the pro-
due to the nonlinear effects is called a light bullgf. The file significantly different from the equilibrium one. For the
evolution of the light bullets is described by the NSE with a saturating nonlinearity the exact analytical meth-
(3+1)-dimensional nonlinear Schiimger equationNSE) ods to derive nonstationary solutions do not exist. One has to
containing three “transverse” dimensions and one propagaresort to computer simulations, even if the analytical ap-
tion direction. proach is needed for a qualitative understanding of the nu-
It has been shown by Vakhitov and Kolokolov that the merical results obtained. Consequently, in order to treat the
NSE with the nonlinearity saturation admits three-evolution of asymmetric pulses, we first generalize our ana-
dimensional soliton solutions that are stable for infinitelylytical approach by removing the symmetry condition. This
small perturbation§3]. Such solutions, i.e., the light bullets, approach is then applied to a concrete saturating nonlinear-
are characterized by a balance of diffraction and dispersioity. Finally, guided by analytical results, the numerical simu-
effects, respectively, with nonlinear self-focusing in spacdations of the pulse dynamics are carried out.
and time. This balance implies that its spatial wigland its The dynamics of an em pulse propagating in a nonlinear
temporal durationT satisfy the conditiorR=T(—kD) 2, medium is based on the analysis of the NSE
wherek is wave vector and = d?k/dw? is group velocity
dispersion(GVD), which is assumed to be anomaloDs —+£—)+A £ KkDZS 4 ok2
<0. Recently, it has been shown numerically that under cer- 9z g L oat? Ny
tain circumstances the light bullets are stable even for large 1)
perturbations and their dynamics resembles the dynamics of
a soliton solution of an integrable systdd]. In our recent Where¢ is a slowly varying field envelope;q is the group
publication we considered the conditions for the light bulletsvelocity of the pulse propagating along teaxis, n, and
generation in media with saturating nonlinearigj. If an  n(|€]°) are, respectively, linear and nonlinear optical indi-
initial profile of the pulse is close to the stable equilibrium ces, andA | = d%/dx*+#%/dy? is the two-dimensional La-
one (the exact numerical solutipnthe pulse quickly attains placian describing beam diffraction. In dimensionless form
the profile of the ground-state soliton, in agreement with thé=g. (1) can be rewritten as
Vakhitov-Kolokolov theory. However, as predicted by our

s P2 on(|€%)
2ik — =0

2
analytical approach and confirmed by numerical simulations . JE  J°E 2
i ; —+s—=+ + =0.
due to the exceptional robustness, light bullets can be gener- ' oz 3077'2 A E+T([EIHE=0 )
ated from a large range of initial parameters even far from
stable equilibrium. Taking into account that=t—z/v, is a retarded time vari-

In Ref.[5] it is considered that the initial pulse parametersable, the field envelop& is £ redefined according to the
satisfy the “symmetry” conditionR,=To(—kD)Y? where nonlinearity under consideration ase + 1 corresponds re-
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spectively to the anomalous and normal GVD cases. Théhe right-hand sides of Eqé5) and(6) are zerd. It is obvi-

Lagrangian density corresponding to Ef) is
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where the asterisk denotes a complex conjugate g
= [of(u’)du’.

2

ous that in the case of normal GV3£ —1) the absolute
extremum does not exist. Consequently, a three-dimensional
localization of the em pulse in the medium is not possible
independently of the structure of saturating nonlinearity. A
comprehensive treatment of the em pulse dynamics in Kerr
media with normal GVD can be found in Réf7]. In what
follows we concentrate on the case of anomalous G¥D (
=1). The equilibrium parameters of the pulse ag=Y,

To analyze rather complex dynamical properties of the— T.=Ao/K(A2)Y2 whereA, is the initial amplitude of the

pulses governed by E(R) we use a variational approafs.

pulse. It is straightforward to show that the absolute mini-

This approach determines the relations between the charagyym of the potential exists if the field amplitude is larger
teristic parameters of the localized solution approximated b¥nan the critical oné\., whose value depends on the chosen
a trial function. As the trial function we use Gaussian-shapediyrating nonlinearity. This stable and spherically symmet-

pulse

X2 y2 T2 .
E:A(Z)e’(p( X2 2¥Az) 2 Y @

where =x2b,(2) +y?b,+ 7°c(2) + ¢(2). The self-similar
evolution of the pulse is parametrized by thalependent
amplitudeA, transverse widthX andY, temporal duration
T, and phasep. The parametens, andb, are the wave front
curvatures and is the chirp parametgthe “temporal cur-
vature”).

After substitution of Eq(4) into Eg. (3) and integration

ric solution is the light bullet.

In the general formalism presented above we did not use
an explicit form for the nonlinear functiof(|E|?). In order
to investigate the dynamical properties of nonsteady solu-
tions, in the subsequent analysis we will consider a nonlinear
term of the form

f(|E[*)=E[*~|E|". (€)

This kind of nonlinearity has been widely applied in different
domains of researcf8]. Recent measurements of organic
materials show that, for instance, polydiacetylepara

overx, y, andr, the average Lagrangian obtained dependgoluene sulfonat¢PTS exhibits this kind of saturation non-
only on optimizing thez-dependent parameters of the trial linearity [9]. For PTS the second term in E(@) can be of
function. By demanding that the variation of the averagethe same order as or even larger than the first one. The non-
Lagrangian with respect to each of these parameters be zedinearity function K [see Eq.(8)] is now K(A?)=aA*

the corresponding set of Euler-Lagrange equations is de- BA®, wherea=2"%2andB=2x3"52 Consequently, for

rived,
dZR— 2 i V(X,Y,T 5
92~ 2orVIXY.T, 5
dZT— 2 J V(X,Y,T 6
d2 - Sy VIXY.T, (6)
whereR=(X,Y) and the effective potentidl has the form
1 1 s K(A?
V(X,Y,T):?—’_W—i_ﬁ_T' (7)
with the nonlinearity function
K= [ “dp #Fwe ) ®
u)y=— ue P,
Va Jo P

During the pulse evolution the “energykl=A?XY Tis con-
served. The wave front curvatures &xg= (1/4X)dX/dz and
b,=(1/4Y)dY/dz, while the chirp parameter isc
=(1/4sT)dT/dz

Equations(5)—(8) are equivalent to those describing the

the equilibrium radius of the pulse one gets

2

Xe= Vo= Te= AT 2pm8

(10

The equilibrium solution is stable against small perturbations
if Ag>A.~0.6, in agreement with Ref5].

Now we examine the dynamical behavior of a pulse that
is initially far from its symmetric equilibrium corresponding
to the light bullet. Integration of Eq$5)—(7) gives

1/dX\? 1/dY\? 1(dT\? VX YT
a\az) Talaz) Talag) TVXYD
:V(XO=Y01TO)1 (11)
where
VXYT—1 1 aN 'BNZ 12
XY D=set vt 7z~ gyt ey 12

The conservation of energh=A2XY T=A2X,Y,T, is

dynamics of a particle in a three-dimensional potential well.used in deriving Eq¥11) and(12). For simplicity, zero ini-
Using this analogy we can acquire a deeper physical undetial curvaturesh,(0)=b,(0)=c(0)=0 are assumed.

standing of the dynamics of light pulse. Let us first examine For the pulse energy exceeding the critical oré, (
the possibility of steady self-trapping of light pulse corre- =35.3), two absolute extrema, a minimum and a maximum,
sponding to the situation when the nonlinearity exactly bal-appear, i.e., a three-dimensional potential well is created. For
ances both diffraction and dispersion. Such an equilibriumllustration, for the energiN= 36, we plot in Fig. 1 the cor-

corresponds to the absolute extremum of the potefitel,

responding two-dimensional potential as a function of dura-
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FIG. 1. Two-dimensional potential well as a function of dura- : z
tion T and width X for the energyN=236 slightly exceeding the
critical one. FIG. 3. Numerical simulations of the Schiinger equatior(2).
The width R and durationT approach their common equilibrium

value.
tion T and widthX assuming that the transverse spatial sym-

metry of the pulse holds during its evolution € Y). If the delineate the trapping region, the numerical simulations of

initial width and duration are inside the well, the self- f lindricall : | iod
trapping occurs preventing the spreading of the pulse. Wit Eq. (2) orzcy |r11r|ca y symmetric pulses are carried out
,ﬁizaz/arﬁrh alar, , wherer | =(x?+y?)¥?]. We use a

increasing energy the potential well deepens and the trappi ite-difference method in both the radial and temporal di-

area becomes wider, as can be seen in Fig. 2, where { ) o .
energy isN=80. The minimum at the bottom of the poten- rections for an initially Gaussian-shaped pul&0r, ,7)|

tial well corresponds to the stable equilibrium, i.e., to the:AOeXp(—ri/ZRS___TZ/ZTS)' The simulations show that the
light bullet. The maximum corresponds to the unstable equiPUlS€ above a critical energy is trapped provided its initial
librium. For convenience, only the potential between its exParameters belong to the range reasonably close to the one
trema is plotted in Figs. 1 and 2. predicted by the .analyt_|cal apprqa(See Fig. 3 in Ref{5]).

The effective particle trapped in the potential well in gen_The numerical simulations for different values of the pulse
eral follows a complex trajectory around the stable equilib-6n€rgy (up to N=150) and different levels of asymmetry
rium. The variational approach does not account for any at{Ro/To~0.1-10) are carried out. The dynamics of the pulse
tenuation that obviously leads to the relaxation on the botton$iZ€S in the transverse and temporal directions with the

of potential well, as can be seen by numerical simulations ofSymmetric initial conditionsko=4 andT,=7 for the en-
the NSE. ergyN=280 is given in Fig. 3. Both size parameters undergo

In order to check the predictions of our analytical ap-& damped oscillation around the same equilibrium state with
proach concerning the appearance of a potential well thdf'® period closed to the one that follows from the variational
approach. Thus, in spite of the initial asymmetry in the final
stage of evolution, the symmetric stable pulse, i.e., light bul-
let, will be formed. For other initial conditions studied the
pulse dynamics exhibits essentially the same behavior as in
Fig. 3. In these simulations the modulation instability that
may lead to the spontaneous decay of the pulse into a num-
ber of fragments did not take place. A longitudinally modu-
lated cylindrical beam can indeed spontaneously break into a
train of light bullets, as it has been shown in R€f0]. Such
a case corresponds to the conditidtis>~ and Ry/Ty—0
and it is beyond the scope of our investigation in this Brief
Report.

In conclusion, we considered the light bullet generation
from initially asymmetric input pulses propagating in satu-
rating nonlinear media. The numerical simulations confirm
the analytical prediction based on variation method that an
asymmetric pulse with the energy above a critical one
evolves towards the light bullet for a large range of param-
eters. Light bullets are exceptionally robust objects that can

FIG. 2. Enlargement of the potential well for higher eney be generated even far from stable equilibrium. It is much less
=80. The initial widthX and durationT if inside the potential well complicated to realize the initial pulse parameters without
lead to the light bullet generation. restrictions on their symmetry in an experiment.
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